UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Periodic cointegration: Representation and inference

Boswijk, H.P.; Franses, P.H.

Publication date
1995

Published in
Review of Economics and Statistics

Link to publication

Citation for published version (APA):
Boswijk, H. P., & Franses, P. H. (1995). Periodic cointegration: Representation and inference.
Review of Economics and Statistics, LXXVII, 436-454.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:26 Jul 2022


https://dare.uva.nl/personal/pure/en/publications/periodic-cointegration-representation-and-inference(1b7b69ee-a454-4883-816f-f075c619a139).html

PERIODIC COINTEGRATION: REPRESENTATION
AND INFERENCE

H. Peter Boswijk and Philip Hans Franses*

Abstract—This paper considers a new approach to the analy-
sis of stable relationships between nonstationary seasonal
time series. The basis of this approach is an error correction
model in which both long-run effects and adjustment parame-
ters are allowed to vary per season. First, we discuss theoreti-
cal arguments for such a periodic error correction model. We
define periodic cointegration and compare this to the concept
of seasonal cointegration. Next, we analyze statistical infer-
ence in the periodic error correction model. A sequential
procedure is proposed, consisting of a test for periodic cointe-
gration, an estimator of the cointegration parameters and
adjustment coefficients, and a class of tests for the hypothesis
that some of the parameters are constant over the seasons.
The finite sample behavior of the proposed test statistics is
analyzed in a limited Monte Carlo exercise. We conclude the
paper with an application to 2 model of aggregate Swedish
consumption.

I. Introduction

During the past decades, cointegration and er-
ror correction models (ECMs) have become
much-favored tools in the econometric analysis of
time series. One of the main attractions of these
models is that they allow for a clear distinction
between long-run relationships and short-run ad-
justment. Engle and Granger’s (1987) definition
of cointegration pertains to stable long-run rela-
tionships between non-stationary variables of a
specific type, i.e., (non-seasonal) processes with a
unit root at the zero frequency. For the analysis
of secasonally observed time series, Hylleberg
et al. (1990) and Engle et al. (1993) have ex-
tended this theory to cointegration at seasonal
frequencies. The idea behind this extension is
that several time series may have common non-
stationary seasonal components. Osborn (1993)
has argued that the associated ECM may be
difficult to interpret from an economic point of
view. The present paper proposes an alternative
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approach to cointegration between seasonal time
series which attempts to overcome this difficulty.

The basis of our analysis is a periodic error
correction model, i.e., an ECM in which both
long-run parameters and adjustment coefficients
are allowed to vary per season. If the individual
time series contain a stochastic trend, then the
periodic ECM implies periodic cointegration, i.e.,
stable but (possibly) seasonally varying long-run
relationships. Such models were originally pro-
posed by Birchenhall et al. (1989) and Franses
and Kloek (1991). They are closely related to the
univariate concept of periodic integration; see
Osborn (1988) and Boswijk and Franses
(1995,1994). In the present paper we extend
Boswijk’s (1992) analysis of cointegration in con-
ditional ECMs to periodic cointegration and er-
ror correction. Our procedure consists of a test
for cointegration, an estimator of the cointegra-
tion parameters, and a class of tests for the
hypothesis that some parameters are constant
over the seasons. The applicability of our proce-
dure is illustrated in a Monte Carlo experiment
and an empirical application.

The outline of the paper is as follows. In sec-
tion II, we compare seasonal cointegration and
periodic cointegration as possible extensions of
the standard ECM. We consider only quarterly
time series; the models and methods discussed in
this paper can be extended to monthly processes
in a straightforward manner. In section III, we
give the estimation and testing procedures, and
we derive their asymptotic properties. The rele-
vance of the asymptotics for the finite sample
performance of the tests is checked via a limited
Monte Carlo experiment in section IV. In section
V we apply the methods to a model of real per
capita consumption in Sweden. In the final sec-
tion we conclude the paper with some remarks.

II. Error Correction and Cointegration for
Seasonal Time Series

In this section we discuss seasonal and periodic
cointegration and error correction as extensions

Copyright © 1995



PERIODIC COINTEGRATION

of the standard error correction model. Consider
an observed bivariate time series {y,,z, =
1,...,n}, where the process {z,} is considered
exogenous, whereas y, is generated by the
single-equation conditional error correction
model

Al}’, = A’(yl~1 - HZI—I) + BAz, + €,

where A is the error correction coefficient (or
adjustment parameter), 6 is the long-run multi-
plier, and B is the impact multiplier. Further, {¢}
i{s white noise, i.e., a mean-zero uncorrelated
process. If —2 < A < 0, then the characteristic
equation of (1) has its root outside the unit circle,
which implies a stable long-run relationship y =
fz. Assume that the explanatory variable is inte-
grated of order 1 (/(1)). If the model is stable,
then the linear combination y, — 6z, is station-
ary, although z, (and y, if 8 # 0) are integrated
of order 1; ie., y, and z, are cointegrated of
order (1,1) with cointegrating vector (1,— 6)'.
On the other hand, if A = 0, then there is no
adjustment towards equilibrium and hence no
cointegration.

A.  Seasonal Integration and Cointegration

The assumption made above that y, and z, are
I(1) implies that these series contain a stochastic
trend, which appears to be a stylized fact of many
observed economic series. In addition, seasonal
time series often display a slowly changing sea-
sonal pattern. In the standard univariate analysis
of such seasonal time series, see Box and Jenkins
(1976), non-stationary fluctuations are removed
before the analysis. This can be accomplished by
taking annual differences, i.e., applying the
fourth-difference filter A,, where A, = (1 — L),
with L the lag operator (such that L*x, =x,_,
k € N). Hylleberg et al. (1990, henceforth HEGY)
propose a test procedure to check the validity of
this transformation. Their test is based on the
decomposition (1 — L*) = (1 — L)S(L), where
S(LY=U+L+L*+0)=>0+LX1—-il)Xl
+ {L). The crucial aspect is that non-seasonal
non-stationarity is removed by the (1 — L) filter,
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whereas seasonal non-stationarity may be re-
moved by S(L). Applying both A, and A, as
suggested by Box and Jenkins' (1976) aitline
model, often appears to be superfluous in prac-
tice, see, e.g., Osborn (1990). HEGY show that
an AR(4) model for a univariate series {x,} can
always be rewritten as

Dyx, = mxy oy + Xy g+ T3X3

+ myx; .t &, t=1,...,n,

(2

where

X, =8(L)x,, X3, = —(1 - L+ L*~L%x,

and
X3, - _(1 - Lz)x,.

For AR(p) models with p > 4, the right-hand
side of (2) should be augmented with lagged A,x,
terms. If 7, =0, i =1,...,4, then an AR model
for A,x, results, so that the A, filter is required
to obtain stationarity. In that case x, is said to be
seasonally integrated. If, on the other hand, 7 =
0 but m; # 0, { = 2, 3,4, then (2) can be rewritten
as an AR model for A, x,. Other combinations of
m-values are also possible. HEGY provide critical
values for t-tests for the hypotheses r, = 0 and
m, = 0, and an F-test for 7, = m, = 0, inter alia.

HEGY also propose a multivariate extension of
this approach, involving seasonal cointegration
(see also Engle et al., 1993). For a bivariate time
series x, = (y,, z,)’, define the transformations
x,, i=1,2,3, similarly to the univariate case
above. The simplest seasonal ECM reads

Mgy, = yuaiX| 1 + YneiXs
+(yy — Yisl)aixs
(v + viul)agxs . + €,

3

together with a similar equation for A,z,. In
comparison with the non-seasonal ECM in (1),
there are four target relationships in (3), formu-
lated in terms of the transformed series y; and
z,,. As demonstrated by Osborn (1993), the model
corresponds to

4
Ay, = E /\i(-y!—i - giztwl) + &,

i=1
Loo,n (4

Hence the seasonal cointegration model can be
interpreted as a model with four different target

t =
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relationships and adjustment parameters, each
associated with a different lag. An alternative
formulation, which allows parameter variation
with respect to the seasons instead of the lags, is
considered next.

B.  Periodic Integration and Cointegration

Before we discuss the periodic cointegration
model, we first consider some relevant concepts
in univariate periodic time series. Consider again
a univariate quarterly series {x,). The first-order
periodic autoregression (PAR(1)) is given by

X, = ¢,x,_, + ¢, t=1,...

with {€} white noise. Thus in season s, the
autoregressive parameter equals ¢,. Given this
parameter variation, the process (5) is not covari-
ance-stationary. Issues of stationarity and integra-
tion in periodic processes are analyzed most
conveniently in a multivariate model for the an-
nual process {X;, T=1,...,N}, obtained by
stacking the 4 quarterly observations of x, in year
T into a 4 X 1 vector X;. Thus X r =x 7 1),
and N = n/4 denotes the total number of years
in the sample (see, e.g., Tiao and Grupe (1980)).
Following Franses (1994), we shall call {X;} the
vector of quarters (VQ) process of {x,}. The ad-
vantage of the VQ representation is that a peri-
odic and hence time-varying model of {x,} can be
written as a constant-parameter model of {X}.
In particular, any periodic autoregression for {x,}
implies a vector autoregression for {X}.

Building on carlier work of Osborn et al. (1988),
Boswijk and Franses (1994) define the process
{x,) to be periodically integrated of order 1 (PI(1))
if the characteristic equation of the VAR model
of {X;} has exactly 1 unit root and all other roots
outside the unit circle; if there are no unit roots,
then x, is PI(0) or periodically stationary. The
condition of 1 unit root implies that the 4 compo-
nents of X, have a single common trend and
hence 3 cointegrating relationships. Thus, the
seasons are not allowed to drift too far apart.
This is in contrast with a seasonally integrated
time series, where the factor (1 — L)* in the
autoregressive polynomial implies that the corre-
sponding VQ process is /(1) but not cointegrated
(see Osborn, 1993).

THE REVIEW OF ECONOMICS AND STATISTICS

Franses (1994) develops a test procedure to
choose between periodic integration and seasonal
integration, based on an application of Johansen’s
(1991) cointegration analysis to a VAR model for
the VO process. Because such a VAR model may
easily be overparametrized, Boswijk and Franses
(1993) propose a likelihood ratio test for periodic
integration of order 1 based on the original peri-
odic autoregression. Boswijk and Franses show
that a studentized version of this test has the
same asymptotic distribution under the null hy-
pothesis as the standard Dickey-Fuller unit root
test, tabulated in Fuller (1976). The test has been
generalized to higher order PAR processes by
Boswijk and Franses (1994).

The periodically integrated AR (PIAR) process
may be extended to periodic cointegration for
multiple time series in various ways. The most
general set-up is considered by Franses (1995a),
who analyzes cointegration in VAR models for
the VQ process of a quarterly m X 1 vector time
series {x,}. However, the above-mentioned hazard
of overparametrization is even more prominent in
this case.

Therefore, following Birchenhall et al. (1989)
and Franses and Kloek (1991), we analyze a class
of models with somewhat more structure im-
posed. Consider the following periodic condi-
tional error correction model

Ayy,=B'Ayz, + A(y_q — 02,.4) + €,

t=1,...,n, s=1,...,4, (6)
where {¢} is a white noise process with variance
o 2. This model may be directly compared to (4).
Note that the A, z, term is the result of condition-
ing on z,, which may also be performed in the
seasonal cointegration model. Both models imply
four different long-run relationships. However, in
(3)-(4) the parameters of these relations vary
with the lag, whereas in (6), they vary with the
season. The motivation for this parameter varia-
tion is as follows. First, the seasonally varying
adjustment parameter A, is a reflection of adjust-
ment costs varying over the quarters. For exam-
ple, this may be the case with employment in
typically seasonal industries, such as tourism or
construction, Further, the long-run parameter 6,
and the assaciated target relationship is not con-
stant. This reflects seasonally varying preferences,
e.g., a particular consumption bundle may not
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generate the same level of utility in the summer
as in the winter.

Having discussed periodic integration and er-
ror correction, we are now able to define the
concept of periodic cointegration. We use
{D,,t=1,...,n,5=1,...,4} to denote a set of
seasonal dummies.

DEerFINITION 1: Consider a quarterly m-vector pro-
cess {x,}, with a VQ process which is integrated of
order 1. Then

(i) x, is said to be fully periodically cointegrated
of order (1,1), if there exist m X r matrices
o, of full column rank, 0 <r<m, §=
1,...,4, such that the VQ process of
i, D, alx, is stationary.

(ii) x, is said to be partially periodically cointe-
grated of order (1,1), if there exist m X r
mairices o, of full column rank, 0 <r < m,
s =1,...,4, such that at least one of the
components of the VQ process of
Ti_ Dy alx, is stationary.

Notice that {x,} is allowed to be I(1), seasonally
integrated or periodically integrated. If a process
is fully cointegrated, then in each of the seasons
there is adjustment towards the long-run relation-
ship ax, If it is partially cointegrated, then in
some of the quarters there will be no adjustment,

In this paper, we shall consider at most 1
cointegrating relationship per season, so r = 0 or
r =1, Moreover, we shall assume that the cointe-
grating vectors «, can be normalized with respect
to the first components of x, ie., a;x, =
¥, — 6,z,. This naturally leads to (6), although the
system needs to be completed with a model for
z,. In the next section we shall consider statistical
inference on periodic cointegration in a slight
generalization of (6) under certain conditions on
the explanatory variables z,.

III. Statistical Inference on
Periodic Cointegration

In this section we restate the periodic error
correction model, together with some assump-
tions. Then we give a class of Wald tests for
periodic cointegration, and derive their asymp-
totic properties. Next, we analyze inference on
the long-run parameters and adjustment coeffi-
cients. Finally, we bring together the various esti-
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mators and test statistics in an empirical mod-
elling procedure, summarizing the implications of
the results of this section for practical inference.

A. The Model and Assumptions

Consider the periodic error correction model
for a quarterly time series y,, conditional upon a
k-vector of quarterly time series z,:

Ay = ’\s(Yr—A - 9;21—4) +

14 14
> Vidyyo + 2 Bidyz,_; + &,
i=1 i=0

sty s=1,0.,40 ()
Here {¢,} is a white noise process with variance
oy, i=1,...,p, are scalar parameters
whereas B, { =0,...,p, are k X 1 parameter
vectors, and finally A | and 6, are the adjustment
parameter and the vector of long-run parameters
in season s, respectively. Notice that in (7), no
deterministic regressors such as seasonal dummy
variables or a linear trend term are included.
Below we shall discuss such extensions in detail.

For the asymptotic results to be derived here,
we shall require some assumptions on the distur-
bances and the conditioning variables. First, we
assume that the fourth difference of each compa-
nent of z, has an unconditional mean that de-
pends upon the season only, ie.,

4
Az = Y. D, My T 1y,

s=1

Lk, t=1,...

(8
where {u;} are zero-mean processes. One can
expect the restrictions w; = pp = pz = My
j=1,...,k, to hold in practice, since otherwise
the seasons will diverge as t — «. Let ug = €
and u, = (uy,, uy,,...,u,). We shall consider
two different VQ processes, with its components
ordered by variable or by season. Thus, let
Up = Uiz Uiy, ..., Ugp)' where Uy is the VQ
process of u;, and alternatively define Ur =
(Uly,...,UlY, where Uy stacks the s compo-
nents of Ug, j=0,...,k Notice that Ur=
K, Ur, where m =k + 1 and K,,, is the com-
mutation matrix (cf. Magnus and Neudecker,

j=1,.. ,n,
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1988). Define the long-run covariance matrices

Q= ' E E[UTUTl'—ilv
ﬁ: Z E[gTﬁ;"—i] =I<4mQ‘I<l’tm' (9)

j=—x

The matrix () consists_of variable-blocks Qij,
Lj=0,..., k, whereas () contains season-blocks
Q,.,rs=1...,4

AsSUMPTION 1. The VQ process {Ur} satisfies the
following conditions:

(D) {U;} is stationary and obeys a multivariate
invariance principle, i.e., N"'2LiNU, =
B(r), where [rN] is the integer part of rN,
the symbol * = ” denotes weak convergence,
and B(r) is a (4m)-vector Brownian motion
process with covariance matrix ().

(i) {Uyr} is a martingale difference sequence
relative to the sequence of a-fields generated
by Wips.oos Uips Uy, i = 1,2,...), with
covariance matrix Qg = o %I, so that for
J=1. .k T2 ElUpr Ul o] = 0.

(i) Qg > 0 (positive definite), s = 1, ..., 4.

By stationarity of {U;} we exclude explosive or
I(d) processes with d > 1. Condition (ii) simply
restates that (7) represents a conditional model of
y, given z, and the past, with homoscedastic
martingale difference errors. Finally, (iii) states
that in each season, the cumulative sum of u, is
not cointegrated. By this assumption two cases
are excluded. Firstly, cointegrating relationships
between the components of z, only are assumed
not to exist. Moreover, the possibility is excluded
that all A in (7) equal zero and yet y, and z, are
cointegrated due to error correcting behavior of
z,, since that would imply that the cumulative
sum of u, = ¢ is cointegrated with z,. Thus,
under Assumption 1 the parameters A, deter-
mine whether or not y, and z, are periodically
cointegrated, which is the basis of the Wald tests
proposed below. If A, < 0 in some season s, then
y, and z, are partially cointegrated in that season;
if all A, <0, then full periodic cointegration
holds. Finally, observe that Assumption 1 does
not require {3 or ) to be positive definite; in
fact, when z;, is periodically integrated, then the
corresponding block {};; has rank 1.

THE REVIEW OF ECONOMICS AND STATISTICS

ASSUMPTION 2: The VQ process of A,y, is station-
ary.

This entails that the characteristic equation of
the VQ representation of (7), given in (Al) in
appendix 1, has at most 4 roots equal to one and
all other roots outside the unit circle, so that
explosive processes (as well as, e.g., [(2) pro-
cesses) are excluded.

ASSUMPTION 3 (Long-run weak exogeneity): £y; =
0,j=1,...,k

This assumption will be required only for mixed
Gaussian inference on the cointegration parame-
ters, see Theorem 2; it does not play any role in
testing for cointegration. The assumption implies
that the Brownian motions corresponding to z,
and the cumulative sum of ¢ are independent.
This requires that in a model for z,, the coeffi-
cients of the error correction terms (y,_, —
6.z,_,) are all equal to zero. This is related to the
notion of weak exogeneity, see Engle et al. (1983).
For a discussion of the role of weak exogeneity in
cointegrated systems, see Johansen (1992), who
shows that the assumption implies that inference
on the cointegration parameters in conditional
models is efficient and that hypothesis tests have
an asymptotic y* distribution. In a recent paper,
Dolado (1992) argues that weak exogeneity is too
strong an assumption for these results, and that a
zero long-run correlation between the errors and
the conditioning variables (called long-run weak
exogeneity) suffices. Boswijk (1992) proposes a
Lagrange-multiplier test for (long-run) weak exo-
geneity, which involves a simple variable addition
test statistic for the estimated error correction
terms in a model for z,. This test can be straight-
forwardly extended to the present context.

B.  Testing for Periodic Cointegration

As discussed in the previous subsection, peri-
odic cointegration requires the adjustment pa-
rameters A, to be strictly smaller than zero. In
this section we propose a class of Wald tests for
the null hypothesis of no cointegration against
the alternative of periodic cointegration. Two
versions of this test are considered: the Wald,
statistic for the periodic cointegration in season
s, and the joint Wald statistic. Both versions are
extensions of Boswijk’s (1994) cointegration test,
which has been developed for non-seasonal data.
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In order to obtain expressions for the test
statistics, we rewrite the model (7) more con-
cisely. Recall that x, = (y,, z,), and that D,
s =1,...,4, denote seasonal dummy variables.
Next, define §, = (8,,, 83,) = (A,,— A,8)), s =
1,...,4. Finally, let w, denote the vector of dif-
ferenced explanatory variables in (7), with 7 as
its coefficient vector. Then (7) becomes

Ay, = Z 8Dgyx,.y + 7'w, + €,

t=1,...,n. (10)

Notice that from the definition of §, it follows
that A, =0 implies 8, = 0. Thus the null and
alternative hypotheses for the Wald, test are, for
some particular s

Hy,: 8, =0, H:8,#0, (1)
whereas for the Wald test, they are
Hy:8=(6;,...,8;,) =0, H;: 5+ 0.
(12)

Notice that the Wald, statistics are designed to
test for partial periodic cointegration, whereas
the Wald statistic corresponds to the full periodic
cointegration hypothesis. Nevertheless, both tests
will have power against both alternative hypothe-
ses.

Let &, denote the ordma}'y least-squares (OLS)
estimator of §,, and let ¥[§8,] denote the OLS
covarlance matrlx estimator. Similarly, define

=(&),...,8)) and its estimated covariance
matrix V[6 ] Then the Wald statistics are given
by

wald, = §(P[8]) 5,

~ (n = [)(RSS,, - RSS,)/RSS,, (13)
Wald = §'(P[8])" 6
~ (n — I)(RSS, — RSS,)/RSS,,  (14)

where [ is the number of estimated parameters in
(10), and where RSS;,, RSS, and RSS, denote
the OLS residual sum of squares under Hy,, H,
and H,, respectively.

The model (7) contains no deterministic regres-
sors. However, if the long-run relationships re-
quire an intercept, then seasonal dummies should
be added to the error correction model, i.e., the
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tests should be based on
4yt Z :LLOSDS‘( + Z 6
+1rw,+e,, t=1,...,n. (15)

Finally, if the variables contain a drift, i.e, o =
(s s oo os ) # 0, where py = (g, on oy )
j=0,...,k, then this will change the asymptotic
distributions of the Wald statistics, as follows
from the general results by Park and Phillips
(1988, 1989) and Sims et al. (1990). Thus, in order
to obtain distributions that are invariant to the
presence of drifts, a set of linear trend terms
should be added to the regressors, leading to

4
Z (/J'OsD.w + TD.rtt)

s=1

Ay =

+Z§Dx 4 T 7w, + €,

t=1,...,n. (16)

This also allows for a trend term to appear in the
long-run relationships.

In Theorem 1 we state the asymptotic proper-
ties of the Wald, and Wald statistic. Unless indi-
cated otherwise, all integrals in this section are
taken from 0 to 1 and with respect to Lebesgue
measure (e.g., [¢B(r) dr is denoted by /B). More-
over, we shall use the following functional:

MW, U) =deU’[fUU’}_1fUdW', (17)

where W(r) is a scalar standard Brownian motion
process and U(r) is a vector process on [0,1]
satisfying [UU’ > 0. The squared multiple corre-
lation coefficient between W(1) and U(l) is de-
noted by p*(W, U). Finally, we use U* and U**
to denote “demeaned” and “detrended” pro-
cesses, respectively (cf. Park and Phillips, 1988,
pp. 474-475).

us(r) = u(r) - [U,
U**(r) = U*(r)
5 -1
- [fe-37] fe-nu
(18)

THEOREM 1: Let y, be generated by (7), let As-
sumptions 1 and 2 hold, and assume p = 0. Then,
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as n — o, and under H,, and Hy, respectively,

4
Wald, = h(W,,U), Wald= Y h(W,,U,),
)

where WAr), s =1,...,4, are independent stan-
dard Brownian motion processes, whereas U(r) are
standard m-vector Brownian motion processes, sat-

isfying:
(@) ifeither A, < 0,9 #s,0ry; =0and B; =0
for imod4 # 0, then p*(W,,U) = 1;
(it) if, in addition, Q , = 0, then U; and U, are
independent.

If the test statistics are based on (15), and p = 0,
then U, in (19) should be replaced by US; if they
are based on (16), then U, should be replaced by
UF* (regardless of the value of ).

Under H,,, and as n — «, Wald, » = and
Wald — «, so that the fests are consistent.

Proofs are given in appendix 1. Theorem 1 im-
plies that the asymptotic null distributions of the
Wald, and Wald statistics depend upon a number
of nuisance parameters, viz. the correlation be-
tween W, and U, and the correlation between U,
and U, s # q.

Consider first the Wald, statistic. The possible
correlation between Uq and U, g # s, of course
leaves the asymptotic distribution of this statistic
unaffected. Moreover, since the null hypothesis
H,, does not restrict A,, g #s, the condition
A, <0 is generically satisfied. Thus, generically
we have p*(W,U) = 1, in which case we may
define W, = U,, without loss of generality. This is
also the case if y, is only related to z,
X,_4»X,_gs...; then p*(W,,U,) = 1 regardless of
Ag» g # . The distribution of A(U,,, U,) is identi-
cal to the one obtained in Boswijk (1994) for the
non-seasonal case, where simulated critical values
are tabulated. In appendix 2, table Al, these are
reiterated, based on 50,000 replications. Finally,
if p?>(W,,U,) < 1, then it can be shown that the
distribution of A(W,, U,) is a mixture of a y2(m)
distribution and the distribution of A(U,,, U,).
Since this distribution is more concentrated to-
wards zero, the actual significance level will be
smaller than the nominal one if critical values
from table Al are used, so that the test size
(maximum significance level) can be controlled. -

THE REVIEW OF ECONOMICS AND STATISTICS

For the joint Wald test, Monte Carlo simula-
tion of the distribution of L!_,A(W,, U,) reveals
that it is invariant to possible correlations be-
tween U; and U,, ¢ # s. This is also confirmed in
the finite sample Monte Carlo study in section
IV. Thus, since W, is independent of W,, we may
take the four terms A(W,, U,) to be independent.
However, since the null hypothesis now entails
that all A, = 0, the distribution of each of the
terms will depend upon p?*(W,, U,), which only
equals 1 if the differenced variables in (7) only
appear with their lags being a multiple of 4. In
table A2, the asymptotic critical values are given
for this case, i.e., for ©!_ A(U,,, U,). As indicated
above, the appropriate critical values for the other
case will be smaller, so that the size is control-
lable.

C. Inference on Long-run Parameters and Testing
for Periodicity

If the tests proposed in the previous subsection
reject the null hypothesis of no cointegration,
then the next step is to estimate the cointegration
parameters and adjustment coefficients, and to
test hypotheses on these parameters. For that
purpose, we analyze the asymptotic properties of
such estimators and test statistics here. In partic-
ular, we consider the hypothesis that some or all
parameters are constant over the seasons.
Throunghout this subsection, we assume that y,
and z, are fully periodically cointegrated. Results
for the partial cointegration case can be derived
analogously.

From the definition of &, we have that A, =
8,5»and 6, = —§6,,/8,,. This suggests the follow-
ing estimators of the adjustment coefficients and
long-run parameters:

/is=5“, s=1,...,4.

(20)
These estimators are closely related to Stock’s
(1987) nonlinear least-squares estimator for the
nonperiodic case, except that he excludes the
contemporaneous Az regressors in (7). If z, is
weakly exogenous for the parameters of (7), i.e.,
if the parameters of a model for z, given the past
are variation independent of the parameters of
(7), and if in addition the errors {¢} are Gauss-
ian, then (20) gives the maximum likelihood esti-
mates of A, and 6,. Define the parameter vector
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o= (A,0"), with A=(A,...,A,) and 6=

(8,,...,6;), and similarly ¢. The Jacobian matrix
or derivative of the transformation ¢(8) is
ap I, ®¢ i
= —5'57 = [ 4 7 ! , J= dlag(Jl,...,J4),
(21)
where ¢, is the first unit m-vector, and where
a6,
Js = 0-)55/ = [51—s282: —Sl—sllk]
1
Z_A_S[H‘ L], s=1,...4
(22)

where %, > 0 is some 4 X 4 matrix, defined in
appendix 1. If and only if, in addition, Assumption
3 holds, then & is asymptotically mixed Gaussian,
Le, Ty(d — @) = [5. N, G) dP(G).

N(O, 0'2251)

Ty(é— @) = -1 :
n(®— @) vec{[fBlsB’“} fBUdBOS//\s,s=l,...,4}

2, 0
TNI}[‘,»b]TN =G=o?

where 2, > 0 is some 4 X 4 matrix, defined in
appendix 1. If and only if, in addition, Assumption
3 holds, then & is asymptotically mixed Gaussian,
ie, Th(@ — @) = [;, (NO,G)dP(G).

Theorem 2 implies that, regardless of any
exogeneity assumptions, the long-run parameter
estimators 6, are superconsistent just as in the
non-periodic case, cf. Stock (1987). However, As-
sumption 3 is required for the estimators to have
an asymptotic mixed Gaussian distribution (and
to be asymptotically efficient); we have used
Jo>oN(O, G) dP(G) to denote a distribution
which is normal conditional upon G in (24). The
most relevant consequence of this result is sum-
marized in Corollary 1. Consider the (gener-
alized) F-statistic

1 A -1
= - (R$ = r)[RV[$IR’] (R =)
(25)

0 diag{/\ffB“Bjs, 5=
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In order to state the asymptotic properties of
@, define the scaling matrix Ty = diag (YN ' Iy,
N - I1,). Moreover, express the (4m)-vector
Brownian motion process B(r) as K, ,(B(r),
.., B{r))', where B(r) is an m-vector Brown-
fan motion with covariance matrix g, corre-
sponding to the partial sum of U, (cf. Assump-
tion 1). Finally, partition B/(r) as (B,(r),
B)(r)")'. In Theorem 2 the asymptotic properties
of & and V[@] are given for the case where no
seasonal intercepts or trends are included in (7),
and w = 0. Generalizations in this direction, ie.,
for the case where p # 0, can be dealt with
analogously, and do not lead to fundamentally
different results.

THEOREM 2: Lety, be generated by (7) with A, < 0,
s=1,...,4, let © =0, and let Assumptions 1 and
2 hold. Then, asn — =,

(23)
-1
, 24
L4} 29
for the null hypothesis
Hy Rop=RA+R,0=r, (26)

where R =[R,:R,] is a known h X 4m matrix
of full row rank and r is a known h-vector.

COROLLARY 1: Make the assumptions of Theorem
2. If and only if either Assumption 3 or the condi-
tion rank(R,) = h (or both) hold, then hF =
x2(h) under Hy and as n — .

The condition rank(R,) = 4 implies that the
asymptotic distribution of F is determined by the
distribution of 5\, which 18 normal whether or not
Assumption 3 holds. If this is not the case, and in
particular if the restrictions concern 8 only, then
long-run weak exogeneity is a necessary require-
ment for the conventional y? null distribution
(or the F-distribution for the F-statistic) to apply.
If Assumption 3 does not hold, then the asymp-
totic distribution of F will depend upon nuisance
parameters, cf. Park and Phillips (1988, 1989) and
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Sims et al. (1990). Without proof, we state that
the same results will apply to a likelihood ratio,
Lagrange multiplier or Wald statistic for H, in
(26); this can be proved using Taylor series ex-
pansions as usuatl.

A class of hypotheses which are of particular
interest in the present set-up concerns the pa-
rameter variation. We distinguish three null hy-
potheses on the parameters A, and 6, in (7), and
on &, in (10):

HO/\: Ay = ’\Is s =2,3,4
Hy,: 0, = 0,, s =2,3,4, (27)
Hys: 8, = 8, s=2,3,4.

Notice that Hy,; = H,, N Hy,. As the alternative
hypothesis we may consider simply 8, + §,, s =
2,3,4, but also more restricted hypotheses. For
example, we may wish to test constancy of 6,
under the maintained hypothesis of constant A,

which is a test for H,; against H,,. Each of these
hypotheses may be tested using the generalized
F-statistic in (25). For H,, and H,; these will
correspond to the classical F-statistic, since both
the model and the hypotheses are linear in A and
8. However, for the hypothesis H,,, we might
instead of (25) use the likelihood ratio-based
F-statistic F,, = [(n — I})/hl(RSS, —
RSS,y)/RSS,, where [ is the number of estimated
parameters in (10), where RSS, is the unre-
stricted OLS residual sum of squares, whereas
RSS, is the restricted residual sum of squares,
obtained from non-linear least-squares estimation
of

4

A4y[ = Z Astz(er -
s=1

Blz,_,) +7'w, + ¢,

t=1,...,n. (28)

Corollary 1 implies that the F-statistic for H,,
will always have an asymptotic F-distribution un-
der the null. This is related to the fact that under
the cointegration hypothesis, the adjustment pa-
rameters A, are coefficients of stationary vari-
ables (cf. Sims et al., 1990). The test statistics for
the other two periodicity hypotheses, however
require weak exogeneity.

As discussed at the beginning of this section, a
Lagrange-multiplier statistic for weak exogeneity
can be obtained as follows. First, construct the
4 X 1 vector {§,, t=1,...,n} of estimated dis-
equilibrium errors, so B, = D, (y, — 6,z,), s =

1,...,4. Next, test the hypothesis « = 0 in the
suitably selected multivariate model

A(L)Az, = B(L)A4y1—1 + K'I},_4 +n,
t=1,...,n, (29)

where A(L) and B(L) are matrix lag polynomials
with A4(0) = I, and {n,} is a vector white noise
process. Under the null hypothesis, (29) implies
that z, is seasonally integrated; if some of the
components of z, are periodically integrated, the
model should be changed accordingly. Since 0 is
estimated super-consistently and v, is stationary,
a Wald, likelihood ratio or Lagrange-multiplier
statistic for « = 0 has an asymptotic y? null
distribution, see Boswijk (1992).

If the hypothesis is rejected, a number of dif-
ferent approaches to obtain efficient estimators
and y? hypothesis tests may be found in the
(non-periodic) cointegration literature. Firstly, we
may start out with a multivariate periodic model
for x, = (y,, z;)" and test for cointegration in this
system using Johansen’s (1991) approach. For bi-
variate x,, this is analyzed in Franses (1995a).
However, as mentioned above, such models can
easily be overparametrized.

A second approach that deals with this prob-
lem is to treat the short-run dynamics nonpara-
metrically. For example, Phillips and Hansen’s
(1990) fully modified estimator could be extended
to the present context. More easily, we could
follow the approach of Stock and Watson (1993)
inter alia, to include both lags and leads of the
differenced conditioning variables in the regres-
sion equation. In our case, this would lead to
estimating 6, in

4 P
A4y1 = Z /\SDSI(yl—4 - es,zf~4) + Z 'YjAztyJ—i
s=1 i=1
p
+ Z B,A4Z l E[’ tzli 3 n
I=-p

(30)

An explicit asymptotic analysis of such estimators
and related test statistics is beyond the scope of
this paper, but we can expect the least-squares
estimators from (30) to be asymptotically efficient
and mixed normal, provided that p goes to infin-
ity as a suitable function of n. An elegant expla-
nation of this result using likelihood factoriza-
tions is given by Stock and Watson (1993, p. 785).

e e [ e
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A final approach may be to parametrize the
endogeneity, i.e., formulate a simuitaneous model
for those variables which may not be considered
weakly exogenous, This is similar in spirit to the
first approach based on VARSs, but by imposing
mere identifying information the dimensionality
problem may be reduced. A development of this
approach is left for future research.

D. An Empirical Modelling Procedure

The foregoing results suggest an empirical
modelling procedure consisting of four different
steps. First, the long-run relationship of interest
is formulated, and the variables that enter such a
relationship are collected. In order to (partially)
check the validity of Assumptions 1 and 2, the
univariate properties of these variables are ana-
lyzed, in particular with respect to the presence
of stochastic and deterministic trends and peri-
odic behavior (cf. section II, and Boswijk and
Franses, 1994). The choice of the explanatory
variables should be such that one is reasonably
confident that there are no cointegrating rela-
tionships between them. If there were such rela-
tionships, then part (iii) of Assumption 1 would
be violated, and the cointegrating relationship of
interest (i.e, between the dependent and ex-
planatory variables) would not be identified.

In the second step, an initial specification of
the conditional error correction model is formu-
lated, estimated, and tested. If diagnostics reveal
no misspecification, then the Wald, and Wald
coinfegration test statistics are computed from
the estimated ECM, if necessary augmented with
periodic trend terms. Comparing these statistics
with critical values from tables Al and A2, re-
spectively, one then tests for partial or full peri-
odic cointegration.

If the hypothesis of no cointegration is re-
jected, then one can proceed with estimation of
and inference on the long-run parameters and
adjustment coefficients. In particular, the peri-
odic parameter variation is tested, since this
may lead to a more parsimonious model. The
asymptotic theory implies that F-statistics on the
long-run parameters may only be compared with
critical values from F-tables if the explanatory
variables are weakly exogenous (Assumption 3).
Thus, in step 4, we propose to test for weak
exogeneity using a variable addition test for the
estimated disequilibrium errors in a model for
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the explanatory variables. If weak exogeneity is
rejected, one has to consider alternative estima-
tors of the long-run parameters, which were dis-
cussed in the previous subsection.

IV. A Monte Carlo Experiment

In this section we use a Monte Carlo experi-
ment to investigate the finite sample performance
of the tests proposed in section III. The purpose
of this experiment is quite limited: therefore, we
do not compare our approach to seasonal cointe-
gration, or study the effect of dynamic misspecifi-
cation on the tests (e.g., by assuming a moving
average process with a near-unit root; see Boswijk
and Franses, 1992). We use the following data-
generating process (DGP) for the bivariate time
series (y,, z,)':

4
Ay, = 2 D:I/\'s(yl—4 - 052:—4)
s=1

+ yA4y,_1 + BA421 + €>

4
A(]ZI = Z Dy k(-4 — 02,_4) + 7,
s=1

t=1,...,n,

(31)
where ((e,n,)'} are iid. N(0,1,), and where
g € (1,4} determines the appropriate differenc-
ing filter for z,. In all cases, we take B = 0.5 and
n € {100, 200}, which corresponds to either 25 or
50 years of quarterly observations. For the re-
maining parameters, we consider the following
cases:

A A =k,=0,Vs;y=0;9g=4

B: A =x,=0,Vs;y=0;¢g=1

C: A=xr,=0,¥Ys;7y=03;9g=4

D: A, =-—-05,k=0,0 =1,Vs;
y=0¢9=

E: A, =-05k=03,8=1,Vs;
y=0,9g=4

F: A =-05,k =0,Vs;
6=(08,10,12,10);y=0;9 =14

G: = —(0.2,0.4,0.6,0.8)";

k,=0,6=1,Vs;y=0;q =4

The results are based on 10,000 replications. In
each replication only the first equation of (31) is
estimated, augmented with 4 seasonal dummies.
From this we compute the Wald, and Wald test
statistics, as well as F-statistics for Hy,, Hy, and
H,;, see (27). Cases A~C are used to assess the
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TABLE 1.—REIECTION FREQUENCIES OF THE Wald, AND Wald STATISTICS

Case n Wald, Wald, Wald, Wald, Wald
Size

A 100 0.0531 0.0486 0.0529 0.0516 0.0621
200 0.0529 0.0484 0.0507 0.0523 0.0563

B 100 0.0535 0.0512 0.0541 0.0524 0.0633
200 0.0522 0.0500 0.0516 0.0510 0.0598

C 100 0.0505 0.0450 0.0480 0.0471 0.0500
200 0.0447 0.0419 0.0434 0.0474 0.0409

Power

D 100 0.5711 0.5657 0.5674 0.5688 0.9821
200 0.9636 0.9622 0.9638 0.9641 1.0000

E 100 0.4554 0.4556 0.4564 0.4637 0.8794
200 0.8916 0.8888 0.8919 0.8896 0.9999

F 100 0.4926 0.5666 0.6710 0.7668 0.9927
200 0.9324 0.9619 0.9837 0.9945 1.0000

G 100 0.1289 0.3986 0.7231 0.9101 0.9885
200 0.3405 0.8683 09919 0.9998 1.0000

size of the cointegration tests. In case B, z, is a
random walk, which implies that the Brownian
motions U, in Theorem 1 will be dependent. In
the previous section it was suggested that the
asymptotic distribution is invariant to this depen-
dence. In case C there is short-run dynamics in
A,y,, which by Theorem 1 should lead to lower
significance levels of the Wald, and Wald test
statistics, since condition (7) is not satisfied. The
remaining cases D—G are used to study the power
of the cointegration tests, and the size and power
of the various tests for variation in the cointegra-
tion parameters (F) and in the adjustment param-
eters (G). E is the only case where weak exogene-
ity is violated, so that we may expect a size
distortion of the tests for seasonal parameter
variation.

The rejection frequencies at a nominal 5%
level are presented in table 1 for the Wald, and
Wald periodic cointegration test statistics, and in
table 2 for the periodicity F-test statistics.

Starting with the Wald statistics, we observe
that in cases A and B, the rejection frequencies

TABLE 2.~—REJECTION FREQUENCIES OF THE PERIODICITY
F-STATISTICS

Case n F(H,,) F(H,,) F(Hy;)
D 100 0.0404 0.0762 0.0652
200 0.0464 0.0688 0.0626
E 100 0.0398 0.0771 0.0701
200 0.0475 0.0787 0.0725
F 100 0.0422 0.3525 0.3175
200 0.0488 0.8407 0.8065
G 100 0.4196 0.0923 0.4367
200 0.8566 0.0849 0.8378

are quite close to the nominal size, whereas in
case C, they are somewhat smaller. This is in
agreement with Theorem 1, which states that in
the absence of short-run dynamics, the asymp-
totic null distribution of the test statistics is free
of nuisance parameters, whereas if v # 0, the
distribution is more concentrated towards zero.
For the remaining cases D to G, we observe that
the power of the tests increases (not surprisingly)
with the sample size n, with the absolute value of
the error correction parameter A, and also
slightly with the long-run parameter 6,. More-
over, it can be seen that the power of the joint
Wald test is much larger than the individual Wald,
tests. However, this is probably caused by the fact
that we consider only fully cointegrated DGP’s;
for partially cointegrated systems, the joint Wald
statistic can be expected to lose power relative to
the individual tests.

Next, consider the results for the periodicity
tests in table 2. We observe that, whereas in cases
D and E the actual size of the F-test for con-
stancy of the error correction parameters A, is
quite close to its nominal value, the tests for
constancy of 6, and for overall non-periodicity
suffer from size distortions if # = 100. If n gets
larger, the rejection frequencies appear to con-
verge to 5% for case D, but the distortions persist
in case E. This can be explained by Corollary 1
and the violation of Assumption 3. The power of
the tests increases with the sample size as ex-
pected.

In summary, this Monte Carlo experiment
indicates that the periodic cointegration tests
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perform quite well in terms of size and power
properties. The effect of introducing short-run
dynamics (y # 0) is rather small, and in agree-
ment with Theorem 1. The F-tests for periodic
parameter variation have reasonable power prop-
erties. The tests that involve the long-run param-
eters appear to suffer from modest size distor-
tions, which however vanish as the sample size
increases, provided that the weak exogeneity as-
sumption holds.

V. An Application: Consumption and
Income in Sweden

In Osborn (1988) it is shown that Hall’s (1978)
version of the life cycle—permanent income hy-
pothesis, augmented with periodic preferences,
implies a periodically integrated AR(1) process
instead of Hall's random walk process for aggre-
gate non-durables consumption. However, the
same paper demonstrates that in the United
Kingdom, a lagged income variable contributes
significantly to the explanation of consumption,
indicating a violation of the assumptions underly-
ing the life cycle-permanent income hypothesis.
Given the periodicity in the consumption series,
these results may suggest consideration of a peri-
odic error correction model of consumption given
income. In this section, we analyze the quarterly
unadjusted time series of real per capita non-
durables consumption and real per capita dispos-
able income in Sweden, over the period

FIGURE 1.—L0G OF SWEDISH REAL PER CAPITA NON-DURABLES
CONSUMPTION (¢,) AND DISPOSABLE INCOME (y,), AND THEIR
SEASONALLY ADJUSTED SERIES (ca, AND ya,), 1963.1-1988.4
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1963.1-1988.4. The natural logarithms of the data,
denoted ¢, and y,, and their seasonally adjusted
series, denoted ca, and ya,, are displayed in
figure 1.

‘We start with a univariate analysis of the two
series, then we analyze a periodic error correc-
tion model for ¢, given y,, and finally we repeat
this analysis for seasonally adjusted data. The
latter investigation is motivated by the conjecture
formulated in Franses (1995b) and Ghysels and
Hall (1992) that, theoretically, linear seasonal ad-
justment filters do not entirely remove the peri-
odicity in a time series.

All empirical models presented below are
tested for possible misspecification, viz. first- and
fourth-order serial correlation, first-order peri-
odic serial correlation (see Franses (1993)), first-
and fourth-order ARCH effects, and non-normal-
ity. In order to save space, we only report whether
the diagnostics indicate any misspecification.

A.  Univariate Time Series Analysis

To select an appropriate univariate model for
consumption and income, we start with a general
PAR(6) model, which is subsequently simplified
according to the outcome of F-statistics for pa-
rameter restrictions and diagnostic checks. For
¢,, the F-statistic for periodic parameter variation
in the initial model equals 2.525, which is signifi-
cant at the 5% level. The PAR(6) model may be
reduced to the following periodic subset model:

€ = o + P15C-} + ‘10436;—4 + €,
s=1,...,4, (32)

denoted PAR(1,4). None of the diagnostics indi-
cate misspecification of this model, and the null
hypothesis of a non-periodic AR process can again
be rejected. To test for periodic integration, we
rewrite (32) in its VQ representation (cf. section
II1), and check whether the characteristic equa-
tion has a unit root. It can be easily checked that
this is the case if IT%.,(1 — @) = T @y
which can be tested with the Boswijk and Franses
(1995) test statistic.

For the estimated model, the roots of the char-
acteristic equation are 1.068, 4.104, and 2.167 +
1.407:. Although these are obviously all outside
the unit circle, the first root appears to be quite
close to unity. The Boswijk-Franses test statistic
for a unit root equals —2.543, which should be

t=1,...,n,
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compared with critical values of Fuller’s (1976)
%, statistic. If a linear trend term with four peri-
odic coefficients is added to (32), to allow for
periodic trend-stationarity under the alternative,
the Boswijk-Franses statistic becomes —2.760;
this statistic should be compared with the critical
values of Fuller’s 7. statistic. Hence the null hy-
pothesis of a unit root cannot be rejected at the
5% or 10% level, either with or without linear
trends included, and the Swedish consumption
series appears to be well described by a periodi-
cally integrated AR model.

For the disposable income series, we start again
with a PAR(6) model. The diagnostics do not
indicate any misspecification of this model. How-
ever, the periodicity F-statistic equals 0.663, which
implies that a non-periodic AR model will suffice
to describe y,. Therefore, we use HEGY’s method
to test for possible unit roots in this series. We
start with an AR(6) model, which can be rewrit-
ten as (2), augmented with two lagged differences
(A,y,_, and A,y,_,) and 4 seasonal dummies
(and possibly a linear trend). If a linear trend is
omitted, the HEGY test statistics are t(7 = 1) =
—1.550, t(m, = 0) = —2.588, and F(mr;= m =
0) = 5.671; with a trend added, they become
tr = 1) = —1.491, (e, = 0) = —2.601, and
F(my = m, = 0) = 5.553. Upon comparison with
the critical values from HEGY, none of the unit
root statistics is significant at the 5% level,
whether or not a linear trend term is included;
the F-statistics, however, are significant at the
10% level. Rejection of the hypothesis 73 = m;
= 0 would imply that the A, = (1 — L?) filter is
required to achieve stationarity. However, be-
cause the evidence is not very strong, we arrive at
an AR(2) model for A,y,. Subsequent testing
shows that the linear trend term can be deleted,
and the four dummies may be replaced by a
single intercept. The diagnostics for this final
model reveal no misspecification. In summary,
the outcome of the univariate analysis is that ¢, is
periodically integrated, and that y, is seasonally
integrated.

B. A Conditional Error Correction Model

At first sight, the results of the univariate anal-
ysis leave little room for possible cointegrating
" relationships between ¢, and y,: periodic integra-
tion of ¢, implies that all seasons of this series
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TaBLE 3.—PERIODIC COINTEGRATION Wald TEST STATISTICS

4 Dummies 4 Dummies, 4 Linear Trends
Wald, 2,253 12.612
Wald, 8.433 14.786
Wald, 0.744 3.282
Wald, 8.343 8.807
Wald 19.280 38.469

have a common stochastic trend, whereas the
quarters of the seasonally integrated y, have four
different trends. Thus, if these results are taken
literally, cointegration in at most one quarter
seems possible. Notice, however, that there is
some indication of rejection of the F(7; = m, =
0) test, which indicates that the quarters of y, can
have two common trends (cf. Franses (1994)).

Therefore, we now proceed to investigate pos-
sible cointegrating relationships in a periodic er-
ror correction model, where both ¢, and y, are
transformed to (periodic) stationarity by the A,
filter. After some experimenting with different
lag lengths, we choose the following initial speci-
fication

Aye, = py + BAgy, + vAye,

+ As(ct—4 - 05y1—4) + €,

s=1,...,4, (33)

which does not appear to be misspecified. We
shall report on the estimated parameter values
only in a simplified model below. Table 3 reports
the Wald, and Wald cointegration statistics in
(33), as well as in the same model augmented
with four periodic linear trends. The latter is
required to obtain an asymptotically similar test
in case the series are integrated with drift, see
section III.

The results for the model without trends indi-
cate no cointegration at the 5% or 10% level in
any of the quarters; the Wald, and Wald, statis-
tics would be significant at the (rather generous)
20% level. If the trend terms are added, the
results are slightly more promising: the statistics
for the first and second quarter are significant at
the 10% and 5% level, respectively, and the over-
all Wald statistic is quite close to its 10% critical
value. However, the significance of Wald, is re-
flected in a highly significant trend term in this
quarter, which may be an indication of a missing
variable., On the basis of these tests, we tenta-
tively proceed with a model with error correction

t=1,...,n,
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terms only in the second and fourth quarter:
Aye, = 0.008 + 0.213A,y, + 0.224Ac,_,

(0.003) (0.055) (0.090)

= 03110, (¢,, — 0.049 — 0.868y,_,)
0.109) {0.261) (D.107)

~ 0448D,,(c,_, — 0.517 - 0.614y,_4)
(0.160) (0.170) (0.062)

+ 8, (34)

where & = 0.015, and no misspecification is indi-
cated by the diagnostics. The F(1,90) statistic for
equality of error correction coefficients equals
0.507, the statistic for 8, = 6, is F(1, 90) = 2.663,
and the joint test statistic equals F(2, 90) = 2.253.
Hence we cannot reject the null hypothesis of
equal adjustment parameters and long-run elas-
ticities in the second and fourth quarter. An
F-statistic for equality of all parameters of the
error correction terms (including the long-run
intercept) yields F(3,90) = 3.938, so that this hy-
pothesis is rejected. Hence our final model is

Ay, = 0.008 + 0.196A,y, + 0238A,c¢,_,
0.002)  (0.055) ©.091)

- 0.26O<D2,(c,_4 ~ 0489 - 0.687y,_,]

(0.080) (0,210) (0.086)
+Dy [y — 0313 - O.687y,_4)}
(0.236)
+ &, (35)

To test for weak exogeneity of y, for the long-
run parameters, we extract the error correction
variables from (34) and add these to the univari-
ate AR(2) model for A,y,. An F-test statistic for
their joint significance is F(2,93) = 2.985; be-
cause this statistic is only slightly smaller than the
5% critical value, the validity of the weak exo-
geneity assumption may be doubtful. This implies
that more efficient estimation of the cointegra-
tion parameters is possible in a joint model of ¢,
and y,.

Because the series are in natural logarithms,
the model implies the following two long-run
targets for the original series (indicated by capi-
tals):

C =1.631Y"% (5 =2),

C = 1.368Y%%7 (5 =4). (36)
Thus, although the long-run elasticity is equal in
both quarters, a change in disposable income will

have a smaller long-run effect on non-durables
consumption in the fourth quarter. The speed of
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adjustment towards these targets is equal in these
quarters; in the first and third quarter, the speed
of adjustment is restricted to zero.

C. Seasonally Adjusted Time Series

A natural question that can be raised concerns
the effects of analyzing seasonally adjusted data
instead of the original data. In the literature
there is some indication that seasonal adjustment
filters may affect unit root inference (see Ghysels
and Perron (1993) inter alia) in the sense that test
statistics are biased towards non-rejection. Fur-
ther, there is evidence that periodicity in the
autoregressive model for the original data is not
completely removed by seasonal adjustment (see
Franses (1995b)) which is due to the fact that
linear filters handle the observations in the same
way throughout the year.

The data on Swedish consumption and income,
given in the appendix, are seasonally adjusted
along the lines described in Ooms (1994, section
4.5). Tt consists of applying a linearization of the
Census-X11 filter to the time series, extended
with 28 post-sample forecasts and 28 pre-sample
backcasts, These forecasts are constructed using a
nonperiodic and unrestricted (i.e., with no unit
roots imposed) AR model, containing seasonal
dummies and a linear trend. Of course, when
there is significant periodicity in the data, the
non-periodic autoregressive order required to ob-
tain white noise errors can be very large (see
Osborn (1991)). The adjusted data, denoted by
ca, and ya,, are displayed in figure 1.

‘We start again with a univariate analysis of the
two series. For the sake of completeness, we start
again with periodic AR models. For ca,, a PAR(3)
model does not suffer from misspecification ac-
cording to the diagnostics. The test statistic for
the null hypothesis of no periodicity equals 0.587;
hence periodicity cannot be detected any more in
the adjusted time series. The augmented Dickey-
Fuller statistics for the emerging AR(3) model
equal £, = —2.284 and 7, = —2.324, so that we
end up with an AR(2) model for A ca,. Note that
seasonally adjusting a PI(1) series here leads to
an I(1) series, as is also found in the simulations
reported in Franses (1995b). For ya,, we start
with a periodic AR(4) model. Here the periodic-
ity F-test is 0.411, and in the resulting AR(4)
model, the ADF statistics are 7, = —1.531 and
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% = —0.078, so that we arrive at an AR(3) model
for A, ya,.

Applying Boswijk’s (1992) approach to test for
cointegration in a conditional error correction
model for the adjusted series, we start with a
nonperiodic version of (33):

Ajca, = 0.036 — 0.375A ca,_y + 0.164 A, ya,

(0.030) 0.090) (0.051)
~0.111 (ca,_, - 0.746ya,

(0.055) (0.128)
+ @,, (37)

with &= 0.011. A variable addition test for
{D,,, D,,ca,_,, D,,ya,_,, s = 1,2,3}, equals
F(9, 90) = 0.414, so that there is no indication of
periodic effects in the long-run and adjustment
parameters. The Wald statistic for cointegration
in (37) equals 5.854; this should be compared
with critical values from table A1(b), so that the
null hypothesis of no cointegration cannot be
rejected. Although there is slightly more evidence
of cointegration if a linear trend term is added to
the right-hand side of (37), it is still not signifi-
cant: the Wald statistic equals 10.792,

In summary, the analysis with seasonally ad-
justed time series shows that linear adjustment
filters may affect unit root and cointegration in-
ference indeed, in the sense that the (already
rather weak) cointegrating relationships in the
original data are obscured. Moreover, we find
that in this case the underlying periodicity is
removed. Hence, although seasonal adjustment
may be useful for some purposes, it appears to
generate misleading inferences for possibly peri-
odically cointegrated time series.

VI. Concluding Remarks

In this paper we have analyzed periodic cointe-
gration and error correction. Periodic error cor-
rection models appear to be quite useful for the
analysis of non-stationary seasonal data, because
they allow, e.g., preferences, constraints and ad-
justment costs, to vary over the seasons. This is
illustrated by the empirical model for Swedish
consumption, where adjustment towards equilib-
rium only takes place in the second and fourth
quarter. Such behavior may have important impli-
cations, not only for modelling and forecasting
seasonal economic series, but also for policy anal-
ysis.

THE REVIEW OF ECONOMICS AND STATISTICS

The modelling procedure that we have pro-
posed comprises a class of Wald tests for cointe-
gration, estimators of cointegration parameters
and adjustment coefficients, and tests for hy-
potheses on these parameters, in particular with
respect to their periodic variation. For the esti-
mators and hypothesis tests, the current approach
requires some exogeneity assumption. To relax
this assumption, the possible simultaneous error
correcting behavior has to be accommodated,
which is the subject of current research.

A possible disadvantage of periodic models in
general is that they require a rather large number
of parameters. For this reason we have proposed
to analyze the conditional error correction model
rather than a general VAR model for the VQ
process of the vector time series. Further, in our
model, the error correction term appears only
with a lag of four, and the short-run dynamics are
restricted to be constant over the seasons, which
reduces the parameter dimensionality problem.
Moreover, we have stressed testing for periodic-
ity. With these tests, one can check whether the
parameter variation is significant, and if not, one
may want to consider a more parsimonious model
with constant parameters.

APPENDIX 1

Proofs

This appendix contains the proofs of Theorems 1 and 2,
and of Corollary 1. We shall make use of the following
lemma:

LEMMA Al: Let y, be generated by (7), augmented by four
seasonal intercepts pg,, s = 1,...,4, and let Assumptions 1 and
2 hold. Define {X; = (Yr, Z' Y } 'the Vo plocess of {x,}. More-

over, let A = diag(a,,..., /\4),® =[00,) with ©® =
dldg( s B); i A, —() then 6, = 0. LetF,andB,,z—
L...,P= [(p - 1)/4] +1, denote matrices of order 4 X 4
and 4 >< 4k, respectively, such that
P
ToAYr = pg + ByAZr + Y (LAYy.; + BAZr_,)
i=1
+ AYpl, —A®'Z | + Uy, (A1)
T =1,..., N, is the VQ rep;esentatzon of (7). Finally, let T' =

):, IF and B = —YF | B;. Then {Xy)} has the following
representatton

r
X=Xy +CuT+CY, U+Eg,
j=1

(A2)

where Er = (E{r,0) with {E\7} a 4 X 1 mean-zero stationary
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uvector process, and
¢, C
c=|"n 2]
0 Iy
Let r denote the number of non-zero A, parameters. If r =
then Cyy =0 and Cy, = G) s ifr < 4, then Cyy = L Th)” 'Iu
and Cy = —10(]01"]0) W+ B) + O, where Iy isa (4 — r)

X 4 matrix containing those columns of the identity matrix I,
that correspond to the zero A, parameters.

(A3)

Proof of Lemma Al: Define the 4m X 4m matrices

@ Iy -5 @ F: B; . P
0= L, i~ 1o L |’ i=1,...,P,

£ r B
=@, Y @ = :
! i; [0 [‘“‘}

Next, let the 4m X r matrices o and B be defined such that
« contains the non-zero columns of {A - -0} and B’ contains
the corresponding rows of [, — @'} if » = 0, then both a
and B are void. The relationship between X, and Uy can
now be derived from the multivariate model

(A4)

P
@) - oL
i=1
=u+aB'Xe | + Up,

P(LYAX, = AX,

T=1,...,N. (AS)

This is a VAR model in ECM format, although the errors Uy
are merely stationary, not white noise. Assumption 2 now
guarantees that Johansen’s version of the Granger representa-
tion theorem (cf. Johansen (1991), Theorem 4.1) applies, Let
a, and B, denote (4m — r) X 4m matrices of rank (4m —
r)such that ', = O and '8, = 0.If r = 4, then these are

givenby o, =[0°7,) and B, =[@:1,]. If r < 4, then

N I, ©
*+7lo L) Bum 0 Iy
Johansen’s (1991) Theorem 4.1 states that (AS) implies (A2),
with ET a stationary moving average of Uy, and C = 8, (a',
®B,)"'a', . Substitution of the definitions of «, , 8, and
P yields (A3) Finally, from the definition of X7, U and C it

is obvious that the part of E; corresponding to Z, vanishes,
ie, Ey = (Ej,0). o

(A6)

Proof of Theorem 1: Let X, denote_ the n X m matrix of
observations on Dy, x,_,, let X [X,::X,], and let X_;
denote the n X 3m matrix containing X,, r # 5. Next, let

={w,...,w,] and e = (¢,,..., ¢,)’, and define the famil-
iar projection matrix M(X) =1,, ZX(X'X)"'X', For the
Wald; statistic, we have under H,,,

& =[xm(w: x_)x,] " xim(w x_)e,
v[a] =er[xm(w: x)x]" (A7)
Because X;X_| =0, we have

X;M(W L X_ )X,
I

=X\ X, - XWWwMX_ )Wl wx,

XMW X_)e
=Xle—- XW[WM(X_)IW]'WM(X_)e.
(A8)
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Now p =0 implies that w, contains mean-zero, stationary
components, uncorrelated with €. Moreover, X_; contains
I(1) components, possibly with some stationary linear combi-
nations (if some A, < 0, g # 5). Thus the convergence ratcs
of Park and Phillips’ (1989) Lemma 2.1 imply

(N“IXW, NTUWM(X_ )W,

N2 WM(X _ )e) = 0,(1). (A9)
Therefore, by Assumption 1, Lemma Al and the continuous
mapping theorem, we have

N2XIM(W * X)X,
= N2X,X, +0,(1) = C, [BB'C,,
NXIM(W - X )e

= N"'Xje +0,(1) = C; [BdBy,. (A10)
Here C . §=1,...,4, are 4m X m matrices such that € =

[E,:- C4] —-K4,,,C Notice that

C';,_ Cll.x Ci?..:
Tl 0 Leel

where Cy; ;, and C,; ; are the S, Fows of €y, and C),,
respectively, whereas e, is the s™ 4 %1 unit vector. The
orders of convergence 1mp[y that 6 is super-consistent; con-
sistency of &7 shall not be proved *here explicitly but follows
from the general results by Park and Phillips (1988, 1989).
Lemma 1 implies that Cy, ; # 0; together with Assumption 1
(iii), this implies that C.QC, > 0. Define Uf(r) =
(C:Q€,)"'72C: B(r), an m-vector standard Brownian motion
process, and W(r) By,(r)/a, a scalar standard Brownian
motion, then we have

(A11)

th

1 . S,
Wald, = — f dBDSB'CS[C; / BB’CS] C, [BdB,

—h( 5 s)

The results for the case where seasonal dummies and trends
are included can be proved analogously.

The correlation between W, and U, equals 1 if W, is a
linear combination of U,. This is the case if and only if for
some m-vector (c,,,czx)' Cyp s = ¢, and Cpy (= ¢, ® €3
then C;B-is a non-singular linear transformation of B,. From
the definition of C,, and C,, it can be checked this is the
case, either if I" = yI, and B = (&' @ I,) for some scalar y
and k-vector b, or if I = e, ie., if A, is the only zero error
correction parameter.

For the joint Wald statistic, we have under Hy,

(A12)

Wald = ~1—-s‘M(W)X[X MWYX] T XMW e,
(A13)

Because N™'X'M(W)e = N™! vec{X;el{ + 0,(1) and
N7TEX'M(W)X = N-? diag{ X, X,}] + o @), it folfows from
the derivations above that under Hq, Wald = S_ Wald, +
0,(1), which leads to the required result. Independence of U
and U, under the stated conditions follows from the fact that
under those conditions, U, is a non-singular linear
transformationof B,.

To prove consistency, we note that except for the degrees of
freedom correction, the Wald, statistic is equal to the squared
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t-statistic for A, = 0 in

Agy, = A g + E 8D, 3 g + 7w + g,
r#s

t=1,...,n, (Al4)

where D, Ds,( y, = 6/z,). This can be checked by expressing
both stalistics in RSS(,S and RSS), cf. (13). In Theorem 2 it is
proved that if A <0, 0 is super-consistent, which implies
that the t-ratio in (A14) is asymptotxcally equivalent to the
t-ratio in the same equation, but with 2, replaced by v,; since
this is a stationary process and A; < 0, the t-ratio will diverge
to minus infinity as # — =, and hence Wald, — . From this,
divergence of Wald can be deduced as well. ]

Proof of Theorem 2: Exptess the least-squares estimator §
as

§=6+[X'MW)X]™ X' M(W)e
= 5+ DTG [Ty (D7 Y X MW XD ' ]

XTy (DY X' M(W e, (A15)
where
D l= _‘?E_
do’
= [diag(A7'8,...., A7%8,) ‘diag(A F,.., A F)],
0
F= [Ik]' (A16)

Hence XD~! = [V M2, A,Z,], where V is a matrix of
observations on v ,_4 = DS,(y — fz,_4), of order n X 4,
and Z,isan n X & matrix of observahons on Dyz,_,, §=

4 Notice that V'V is a diagonal matrix, and similarly
Z’ = (), 5 # r, Assumption 1 and the continuous mapping
theorem imply that

NT2ZLM(W)Z, = N2 Z)Z, + 0,(1) = [B By,
NT'ZIM(W)e= N"'Zje +0,(1) = [By, dBy,,
s=1,...,4, (A7)

where the 0,(1) terms follow the canvergence rates of Lemma
2.1 of Park and Phillips (1989), and the fact that w, and ¢, are
mean-zero, mutual]y uncorrelated stationary processes. De-
fine 3, = Plim N~'V'M(W)Y, and notice that although V'V

is diagonal, the correction with respect to W implies that X,
is not necessarily diagonal. By Assumption 1 (i), the fact that
both ¥ and W contain stationary processes, a martmgale
difference central limit theorem implies that N~ /2 V' M(W )e
= N(0, ¢ *%,). Finally, by an appeal to Park and Phillips’
(1989) Lemma 2.1 it can be shown that N~¥2Z! M(W)V =

0,(1), s = 1,...,4. Summarizing these results, we have
Tg‘(D*')’X’M(W)XD*'T,;‘
3, 0
“lo diag{A?anB’,s} » (A18)
N(O, 022,,) ]
T (DY X' M(W )e = ec{f/\:BlsdBus} (A19)

Since D™'Ty! = 0, (A15), (A18) and (A19) together imply

THE REVIEW OF ECONOMICS AND STATISTICS

that & is con51stent Define D as D in (21)-(22), with J,
replaced by J, = —A;'[6,'/,]. Notice_that T(5 ~ 5)—-
(4, — ), so that 'I"N(qo— ) = TND(S - 6) Because
thTNDD 'Ty' = I, we obtain (23). Express the stan-
dardized estimated covariance matrix of ¢ as

TVp[$]Ty = 62Ty DD~ ' T
x[Tg (DY X' M(W)YxD Ty ]
XTg ' (D™'Y D' Ty.

-1

(A20)

Because Plim Ty DD~ 'Ty! = I,,,, and because consistency
of & implies that Plim &° = o*, (A20) together with (A18)
implies (24).

If and only if By, and By, are independent, we have that

-1
I:fBl.\' ;a] jBls dBD:/)‘slBl.\'

-1
~N(o,g2[)\§f3“3'“] ) s=1,...,4.

(A21)
Hence, only if Assumption 3 holds, then (A21) holds for all s,
which gives the required result. O

Proof of Corollary 1: Express R& — r under Hy as R(p —
¢) = R, (A=A + R3(6 — 8). Consider first the case where

rank (R ) = k. Then we have, under Hy,
UNR(A=1) + VNR,(6—8) =YNR,(A-2)
+0,(1) = N(0, 7*R 2] 'R}), (A22)
and similarly, because of (24) and the definition of Ty,
NRV{3]R' = NRP[AIR, + 0,(1) > 0 2R 3,R,. (A23)

Since rank(R,) = h 1rnp11es that the limit in (A23) is invert-
ible, we obtam hF = x*(h), whether or not Assumption 3
holds.

If rank(R,) = ¢ < h, then (A22) and (A23) still hold, but
because the asymptotic covariance matrlx in (A22) is no
longer invertible, we cannot deduce a x* null distribution
from the asymptotics of A only. Define the 2 X h orthogonal
matrix H = [H; - H,], where H, is an & X ¢ matrix such that
Hi{R, is of full row rank ¢, and where H, is of order & X
(h — g) and satisfies H3R, = 0; if R, =0, then H, is void
and H, = I,. Notice that a full row rank of R implies that
rank(H3R,) = h — q. Next, define the h X h scaling matrix
Th = diag(yN-1,, N-I,_,), or Ty =NI, if Ry =0. The
F-test statistic can be expressed under H,, as

i

1
F=—[THH'R( - o)) [T RVLGIR TS

X[TEH'R($ — ¢)]. (A24)
Now the orders of convergence in Theorem 2 imply
THR(D— ) = VNH|R (A —A)\) +0,(1) A
NH4R,(6 - 0)
and
THH'V{ IR H T
NH{R\V[ AR H, + 0,(1) 0,(1)
- 0,(1) N2, RV[61RYH, |
(A26)
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Thus asymptotically, the F-statistic equals the sum of a statis-  but the second term requires mixed normality of §, and hence
tic for H{R;A = Hjr|, and a statistic for HR,0 = Hjr,, Assumption 3, to have an asymptotic y*(h — q) distribution
where r = (r},r5)" in an obvious partition. The first term will  under the null (independent of the first term}. u}
always have an asymptotic y*(g) distribution under the null,

APPENDIX 2

Critical Values

TABLE Al.—AsYMPTOTIC CRITICAL VALUES FOR THE Wald TEST

k 20% 10% 5% 2.5% 1%
(a) No Constant or Trend
1 4,80 6.48 8.10 9.66 11.60
2 7.40 9.38 11.18 12.99 15.12
3 9.87 12.10 14.20 16.09 18.64
4 12.21 14.72 16.97 19.08 21.72
5 14.55 17.22 19.72 21.98 2490
(b) Constant, no Trend
1 7.49 9.50 11.36 13.10 15.25
2 9.92 12.18 14.24 16.17 18.64
3 12.29 14.79 16.99 19.09 21.81
4 14.63 17.29 19.74 21.95 24.86
5 16.86 19.82 2233 24.74 27.82
(c) Constant and Trend
1 10.13 12.38 14.39 16.33 18.71
2 12.45 14.89 17.11 18,23 21.78
3 14,78 17.39 19.78 22.00 24.84
4 17.03 19.86 2243 24.78 27.89
5 19.25 22.31 2495 2748 30.61

Note: The quantiles are obtained via Monte Carlo simulation with 50,000 replications, where Brownian motions
are approximated by Gaussian random walks of 500 observations; k denotes the number of exogeneous variables.

TABLE A2.— AsYMPTOTIC CRITICAL VALUES FOR THE Wald TEST

k 20% 10% 5% 2.5% 1%
(a) No Constant or Trend
1 16.17 19.09 21.65 24.00 26.99
2 25.26 28.73 31.75 34.60 3788
3 34,02 38.03 41.50 44.73 48.79
4 42,77 47.20 51.13 54.74 58.71
5 51.35 56.15 60.41 64.21 68.41
(b) Constant, No Trend
1 25.34 28.75 31.82 34.58 3797
2 34,13 38.07 41.51 44,74 48.61
3 42.85 47.22 51.06 54.56 58.88
4 51.29 56.22 60.45 64.13 68.80
5 59.78 64.99 69.42 73.35 78.15
(c) Constant and Trend
1 35.00 38.97 4249 45.89 49.43
2 43.50 4792 51.73 355.21 59.25
3 51.93 56.72 60.78 64.39 68.82
4 60.21 65.48 69.87 73.68 78.43
5 68.51 74.02 7853 82.85 88.05

Note: See table Al.
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