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Abstract 

Motivated by the precision results in the electroweak theory studies of two-loop Feynman di- 
agrams are performed. Specifically this paper gives a contribution to the knowledge of massive 
two-loop self-energy diagrams in arbitrary and especially four dimensions. This is done in three re- 
spects: firstly results in terms of generalized, multivariable hypergeometric functions are presented 
giving explicit series for small and large momenta. Secondly the imaginary parts of these integrals 
are expressed as complete elliptic integrals. Finally one-dimensional integral representations with 
elementary functions are derived. They are very well suited for the numerical evaluations. 

1. Introduction 

The beautiful results of the LEP1 experiments have shown that the electroweak theory 
has a predictive power like that of QED several decades ago. It is to be expected that 
eventually the electroweak theory will provide high precision predictions for many 
experiments in the present and near future. One may in particular think in this respect 
of the measurement of the Z-mass and -width, a better determination of the W-mass 
and a first indication of the value of the top mass. This will in the future require 
two-loop calculations in the electroweak theory. One then has to face several problems: 
amongst others, a large number of diagrams and many different non-negligible masses. 
It is known that analytical results for arbitrary non-vanishing masses are in general not 
obtainable for two-loop diagrams in the form of generalized polylogarithms. The present 

* Supported by Stichting FOM and EU contract CHRX-CT-92-0004. 

0550-3213/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0550-32 13 (94)00475-7 



384 S. Bauberger et al./Nuclear Physics B 434 (1995) 383-407 

1 4 

T123 T1~34 Tl1~34 2 T12~s 

Fig. 1. Topologies. 

paper contributes to the knowledge about this problem by introducing and applying new 
analytical and numerical approaches. A number of new results will be presented. 

We focus on the simplest class of two-loop diagrams, i.e. the set of scalar two-loop 
self-energies. They are essential for physical predictions and moreover they show the 
typical problems one encounters in the evaluation of two-loop diagrams. There exist 
four non-trivial self-energy diagrams. 

In order to classify our conventions we give the explicit form of the so-called master 
diagram: 

T12345(P ;ml,m2,m3,m4,m5) = k2 m2. . .k2 -m2 

where each bracket denotes a D-dimensional integration over one loop momentum q: 

dDq D 4 ( ( . . . )  = / i~r2(2--~ ) _ . . . ) ,  (2) 

where/z is an arbitrary mass. The momenta of the propagators kl . . . . .  k5 are determined 
by momentum conservation in terms of the external momentum p and the integration mo- 
menta ql and q2. It can be immediately seen that diagram T11234 (p2 ;  m 2, m'21, m22, m32, m24) 
can be reduced to a difference of two T1234 diagrams by partial fractioning of the prop- 
agators with the same momentum: 

Tl1234(p2;m2, m;2,m2, m 3 , m n ) _ m 2 _ m t  2 2 2  1 (T1234 (p 2 ;ml,m2,m2,m24)2 2 
/ 1 

_T1234 (p2; ml, Z,mz,m3 , 2  2 m2) ) .  (3) 

In the special case ml = m~ this has to be taken as a derivative with respect to m~. 
So we are only left with three diagrams to be discussed. Of these the master diagram 
is convergent in four dimensions, the other two are divergent. After evaluating them in 
D = 4 - 2 6  dimensions, one would like to derive an expansion in 6 which starts in 1/S 2 
and 1/6 terms. 

In recent years several groups derived small- and large-p 2 expansions for these dia- 
grams. For the general massive case they obtained algorithms for symbolic evaluation of 
these expansion coefficients. For the general coefficients in these expansions, no closed 
expression was derived. More recently multiple series were found for which the general 
coefficient is known and which lead to generalized hypergeometric functions in several 
variables. One aim of this paper is to extend these results, an other to express the 
imaginary parts by elliptic integrals. On the other hand an elegant numerical method 
has been worked out leading to a two-dimensional integral representation [ 1,2]. The 
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second aim of our paper is to improve on this by introducing a one-dimensional integral 
representation containing only elementary functions. For this a general procedure for di- 
agrams containing one-loop self-energy expressions in a subloop is presented. The actual 
outline of the paper is as follows: in Sect. 2 the analytic approach leading to general- 
ized hypergeometric functions and the corresponding explicit series representations are 
given, the elliptic integrals for the diagrams are calculated in Sect. 3. The next section 
describes the numerical approach by means of a one-dimensional representation which 
is derived by a self-energy insertion into one-loop diagrams. Finally Sect. 5 presents 
some numerical comparisons and draws conclusions. 

2. Analytic approaches and hypergeometric functions 

In this section we present analytic results in an arbitrary number of dimensions D 
for the two-loop scalar self-energy diagrams. They will be in the form of generalized 
hypergeometric functions, that is multiple series of ratios of p2 and the masses. We also 
discuss the expansion of these results around D = 4. 

The simplest case of a two-loop scalar self-energy diagram T123 (p2", m1,2 m2 ,2 m~) was 
discussed in a previous paper [3]. In fact, the result turned out to be represented by 
Lauricella functions which could be derived by x-space techniques or Mellin-Barnes 
representation for a massive propagator. It turns out that there is a third method using 
dispersion relations. Since the latter method will be used several times in this paper we 
shall first rederive the result for 7"123 (p2; m 2, 2 2 m 2, m3) by means of dispersion relations. 
Then we focus our attention on the two-loop scalar self-energy diagram with four 

TI234 (p  , ml, m 2, m 3, m 4) where the small-p 2 behavior can again be derived propagators 2. 2 2 2 2 

by the dispersion method and the large-p 2 behavior by the Mellin-Barnes representation 
method. 

Although we have three methods, the master diagram still poses many problems, the 
origin of which we will briefly discuss in the last section. 

So we start with the rederivation of T123(p2; 2 2 2 m I , m 2, m3) by means of dispersion 
relations. The imaginary part is given by 

m l , m 2 , m  3 ) Im (7"123 (p2; 2 2 m 2 ) )  = ATI23 (p2 ;  2 2 2 
m l '  m2 '  2i 

Z-26 ['2( 1 -- 6) m3)2 ) =-¢r(4irr/x ) F-~---~)O(p2 - (m, +m2+ 

1 
4¢r 

( V/~5_ ml )2 

X f ds 
(m2+m3) 2 

(V~-i-m,) 2 

/ 
(m2+m3) 2 

,~½-6( 2 2 S, m 2, m3) A½ -~ (p2, s, m 2) 
s 1-8 (p2)1-8 

ds ABo(s; m~, mZ) ABo(p2; s, m21) (4) 
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where M a ,  b,c) = ( a -  b -  c) 2 -  4bc is the Kall6n function. The dispersion relation 
reads 

= m 1 , m 2 , m 3 ) m2'm3) 27ri Z -- p 
(ml+m2+m3)  2 

,lds,,,,o, 2l dz = 4 ~  2 s'm2'm3) z _p2 ABo(z;s'm2)" 
( m24_nt 3 ) 2 ( V~_}_ m l  )2 

(5) 

Using the expansion 

1 1 ~ - ~  ( ~ )  k 
- -  - ( 6 )  
z - p2 z k---o 

we perform first the integration over z: 

o o  o 0  

A = Z ( p 2 )  k fdz Z~-2-k(z -- R)l/2-a(Z -- U) 1/2-~ 
k=O u 

o o  

= ~--~(p2)ku-S-kB(k + 8, 3/2  - 8) 2FI (6 - 1/2, k + 8; k + 3/2;  v/u) ,  
k=O 

(7)  

where u = (ml + x/s) 2 and v = (ml - v/S) 2. One transforms the Gauss hypergeometric 
function 2FI using relations which one can find in Ref. [4],  

2F1 (6 - 1/2, k + & k + 3 / 2 ; v / u )  

_ (  ?v,~ ,~ -2(k+a) 
\ m , + v ~ ]  2 F l ( k + & k + l ; 2 k + 2 ; ( 1 - m 2 / s ) )  

[ v(1 -8 )  
[ r ( k  + 2 - 8 )  

2Fl(k + 6, k + 1;&m~/s) 

( ~ )  I -6  F ( ~ - l )  

+ r ( k  + 8--------3 
2 F l ( k + 2  - & k +  1 ; 2 -  6;m21/s)] 

( _2~ ~-2~k+~ r(2k + 2) 
X \ m l  + v / s J  k! 

(8) 
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With  this result, TIE 3 (p2;  2 2 2 ml ,  m2, m3) becomes 

T123 (p2; 2 2 m 2) m 1 , m 2 , 

_(4~. / . t2)sF(1  - 6)F(6- 1) 7 dss6-1 ,~½-6(s ,  2 2 
m2, m 3) F ( 2  - 26) J 

(m2+m3) 2 

x \4~./.t2 j F 4 ( 1 , 2  - 8;2 - 6,2 - 6;p2/s,m~/s) 

_ s F4(1,&2-6,&p2/s,m~/s) . (9) 

Since in (5)  the z-integration up to some factors represents the one-loop self-energy, 
we find as a by-product 

=o p2; 2 2 ( . . . .  6,p /m2,ml/m z) ml,m 2) F(6-  1) F4(1,2 6;2 8,2 . 2 2 2 2 
[ m~ \ 4~/z 2 J 

- k,4,rr/~2j( m2 "~-'~F4(1,&Z_6,6;p2/m2,m~/m2)l 

= / ' ( 6 )  ~ { x2(xlx2)-62Fl(l'6,2-& Xl 

+ ( 1  --  x z )  (1  --  x l ) - ~ ( 1  - -  x 2 )  - 8  1 - -  x l )  
1 - - 6  z F I ( I ' & 2 - & I - x 2  

q-(Xl -- X2) 1-26B( 1 - 6, 1 -- 6) (--1) -6} ,  (10) 

where 

1 ( ~/,~(p2,mZ,m2) ) (11) xl,2 = 2p---- Y p2 _ ml 2 + m 2 -4- 

Using the definition of  the F4 functions we easily perform the integration over s. 
After some manipulations similar to the ones used in (8) we obtain the result for the 
London transport diagram which agrees with the one derived using x-space techniques 
or Mellin-Barnes representation 

2 2 2 2 ( m2 .~ 2(v-I ) 
T123 (p  ; m l , m a , m  3) = - m  2 k.4.rrp.2 j 

x (Z~Z~ F2(-v) Fc(3)(1, 1 -F ~'; 1 q-p, 1 +~' ,1 -+-I";Zl,Z2, Z3) 

--Z~' F 2 ( - ~ )  Fc(3)(1, 1 - t,; 1 + v ,  1 - r,, 1 -k- r';Zl,Z2, Z3) 
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--Z~ F2(- -v)  Fc (3) ( 1, 1 - v; 1 - v, 1 + v, 1 + v; Zl, Z2, z3) 

- F ( v ) F ( - v ) F ( 1  - 2v) Fc(3)(1 - 2v, 1 - v;1 - v, 1 - v, 1 + v ; Z l , Z 2 , Z 3 ) } , ( 1 2 )  

2 2 where zi = rn2i/m~, i = 1 ,2 ,  z3 = p / m  3 and v = 1 - & The above result is valid for 
small p2 but it can be analytically continued to the large-p 2 region, using known analytic 
continuation formulae for the Lauricella function Fc (3). 

With the dispersion method described above we derive the small-p 2 result for T1234 
in D dimensions. The discontinuity ATI234 is a sum of a two- and a three-particle cut, 
which we denote by AT~3)4 and AT/33)4, respectively. The two-particle cut is given by 

AT(2) ,  2,m2 ) .12341.p . i = ABo(p2;m~,m~)Bo(m~; m3,m4)2 2 , (13) 

where according to the Cutkosky rules m~ in Bo(m~; m32, m42) is considered as m~ + ie, 
when ml > m3 q-m4. Inserting this result in the dispersion integral gives 

oo 

T(2) m2)_  1 f 1 AT(2 ) (z;m/2) 
*1234 (p2; - ~ /  dz z -  p2 1234 

(ml+m2)  2 

=Bo(p2;m~,m~)Bo(m~; 2 2 m 3, m 4 ) . (14) 

The discontinuity AT~33)4 is related to the three-particle cut given in (4) but with an 
additional factor, which according to the Cutkosky rules is the complex conjugate of the 
propagator (s - ml 2 + iE)- i  and therefore we get the dispersion relation 

oo 

f m3 ' m4) ..(3) m2 ) _(47r/z2)26 /'2(1 -c$) a½-a(s,  2 2 
/1234 (p2; ---- ~ ' - i  2 ~ )  as s ,_a(s  _ m~ - ie) 

(m3-/-m4) 2 

, t3- ( s , z , m  2) 
x dz z l_~( z  _ p 2 )  ' (15) 

( ,/7+m2)2 

A further discussion of the analytic properties of AT~3)4, AT1~3)4 and consequently T~3)4, 
T1(33)4 is postponed to subsection 3.2. After performing the z-integration we obtain 

. 2. rn/2 ) _(4¢r/x2)sF(1 - ~ ) F ( a -  1) f s 8-1 ,_ TI (3) 234tP,  = F ( 2 - 2 8 )  ~ dSs---2-~12A~ 8(s 'm~'m~)  
(m3+m4) 2 

x \47r~2 j F4(1 ,2-  & 2 -  & 2 -  &p2/s,m~/s) 

] - ~ F 4 ( 1 , & 2 - & & p 2 / s , m ~ / s )  . (16) 
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Expanding (s - m 2) - l  in m~/s and performing the integration over s one gets 

T(3) F(1  - 6 )F (1  + S) ( m ] "~-26 
1234 (p2; m/Z) = 6 \47r/z 2 ,] 

Z "lzmF(1 + m + n ) F ( 1  + 8 + m + n + k +  l) 
x zkz~( 1 -  3) 4 F ( 2 - 6 + m ) m ! n ! l !  

m,n,k,l=O 

{ZI_SF(2  -- ~+_._m +__ n)F(2_+...m_..+ n_+k +_ l) 
× ~ 2 F ( 2 - 8 + n ) F ( 2 ( m + n + k ) + 4 + / )  

F ( 6 + m + n ) F ( 2 6 + m + n + k + l )  ) (17) 
F ( 6 + n ) F ( 2 ( m + n + k ) + 2 + 2 6 + l )  ' 

where zi = m~/m~ with i = 1,2, 3 and z4 = p2/m~. Note that the contribution from the 
three-particle cut is written in terms of multiple series which are no longer Lauricella 
functions but rather belong to a special class of generalized hypergeometric functions. 
To our knowledge they have not been studied in the mathematical literature. One can 
however obtain information on the convergence region. The series in (1 - z3) can be 
written as 2FI functions which can be transformed into 2F1 functions with variable z3. 
One then obtains four quartic series in zi. Applying the standard reasoning (see e.g. 
Ref. [5] ) we get the following conditions for convergence: 

m2 + ~ < ml and ml + m3 < m4. (18) 

With these results T1234 becomes 

T1234(p2;m2) = Bo(p2;m2,m2)Bo(m~; m3, m4)2  2 .+.. 1234 ~ p T ( 3 )  t-2" m2), . (19) 

Next the general small-p 2 result for T1234 will be expanded in 6. 
The following combination of the general massive case with a massless case is chosen 

in such a way that the infinite parts cancel [6] : 

TI234N(p2;m2, 2 2 2 2 2 2 m2)_T1234(p2;m2,m2,0,O).  m 2, m 3 , m 4) = T1234 (p2; ml ' m2 ' m3 ' 

(20) 

An analytic form of this combination is obtained by expanding the multiple series 
and their coefficients in 6, where the first and the second logarithmic derivatives of the 
F-function occur at integer arguments, 

1 0'(n + 1) = ( ( 2 ) -  (21) ¢ , ( n + l ) = - y +  ~ ,  ~-~, 
k=l k=l 

with the Euler constant y and ( ( 2 )  = 17"2/6. 
The 1/6 2, 1/6 and y terms indeed drop out from the result and a finite combination of 

various multiple series remains and some other terms corresponding to the finite parts of 
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Tt234 (p2; ml2, m~, 0, 0) and Bo(p2; m~, m~)Bo(mel; m~, m e) which are given in Ref. [71. 
The result is given in the appendix. 

The large-p 2 result has been derived using the Mellin-Barnes representation for a 
massive propagator, 

(k 2 - m2)~ 

+ioo 

f (--m2) ' 1 l ds ~ F ( - s ) F ( o t  + s) 
F (  c~) 27ri 

--io,~ 

(22) 

where the integration contour in the s-plane must separate the series of  poles of  F ( - s )  
on the right from the series of  poles of  l ' ( s  + a)  on the left. In the expression for 
Tt234 we apply (22) with cr = 1 to all propagators, thereby relating the general massive 
case to the massless one, but with the propagators raised to arbitrary powers 1 + si. The 
required expression is well known, see e.g. Ref. [8] 

• 4 

e -'~" Z : ' '  " (_p2/,-4-~,o,,, 
TI234 (p2; 0, 0, 0, 0; 1 + st ,  1 + $2,1 + $3,1 + $4) = ( ~ - - 4  

F ( 2  "t- S 3 -t- $4 - -  D / 2 ) F ( D / 2  - 1 - s 2 ) F ( D / 2  - 1 - s 3 ) F ( D / 2  - 1 - s4) 
× 

F ( I  + s2)F(1  + s3) / ' (1  + s 4 ) F ( D  - 2 - s3 - $4) 

F ( 4  - D + y'~4=t s i ) F ( D  - 3 - sl - s2 - s3) 
x (23) 

r(39/2 - 4 - ~-~i4=t s i ) F ( 3  + st + s3 + $4 -- 9 / 2 ) "  

Closing the integration contours in a way that the convergence is guaranteed we get 

T1234 (p ;ml ,  m2, m3, rn4) = Z ciBi + B (24) 
i=1 

where 

B = ( - x 4 ) 2 u - t F ( 1 - _ ~  F 4 ( 1 , 1 - ' p ; l + v , l - v ; x t , x 2 )  

× [_f'2 (v ) / " (  1 -- 2v)F4( 1 - v, 1 - 2v; 1 - v, 1 - v; r, t) 

+ t v F ( v ) F ( - v ) F 4 ( 1 ,  1 - v; 1 - v, 1 + v; r , t )  

+ r U F ( v ) F ( - v ) F 4 ( 1 ,  1 - v; 1 + v, 1 - v ; r , t )  

+ r ~ t ~ F 2 ( - v ) F ( l + V ) F 4 ( l , l + v ; l + v , l + v ; r , t ) ]  (25) 
r ( l  - v) 

2 2 2 2 with xi = m2/p  2 with i = 1 ,2 ,3 ,4 ,  r = m t / m  4 and t = m3/m 4. Between the brackets 
we recognize up to some factors the result for the vacuum diagram with three massive 
lines [9] .  Furthermore the coefficients ci are 
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F 2 ( v ) F ( v  - 1 ) F ( 1  - 2v )  
C 1 = 

F ( 3 v -  1) 

( _ x 2 ) v V ( v ) V ( - v ) V ( v  - 1 ) V ( 2  - v)  
C2 

V ( 2 v  - 1) 

_ x 3 ) v F ( v ) F ( - v ) F ( v  - 1 ) F ( 2  - v)  
C3 

V ( 2 v  - 1) 

C4 = --X4) v 
F 2 ( v ) F ( - v ) F (  1 - v )  

V(2v) 

C 5 = - - X 2 ) v ( - - X 4 ) V I ' 2 ( - - p ) ,  

C6 = - x 2 ) V ( - x 3 ) V F 2 ( - p ) .  

The  other  te rms  are quart ic series, 

oo ~ (1)j l (  1 _ v)j3+j4 ( 1 _ 2 v ) j 3 + j 4 ( 2  _ 2 v ) j , + j 2 + j 3 + j 4 ( 2  _ 3v)j,+j2+j3+j. a 

B I --~ Z " " --(1 -- -) )~,2 ( l ~ l ) ~ j ~ l  - -  ~ j 4  ~ ~ ) j l  + J3 + j4 ('~2 ----2~ ) j l  + j3 +----~, 4 ~1, jt--o 
O 0  

B2 = Z  

.~:=0 

( 1 )Jl ( 1 -- v)j3+j4 ( 1 -- 2v)j3+j4 (2  -- 2v)h+jz+j3+j4 (2  -- v)jt+./2+___ j3+j4 

-(-f -+- -v ~j2 ( l ~ v ~J3-( i ~ 2 - -  ~ ~- 2~' ) J, + J3 + J, q ' jl---O 
O 0  

B3 = Z  
jr--0 

OO 

B4= Z 
jl---0 

O(3 

B5 = ~  
jl =0 

OO 

B 6 =  Z 
jl =0 

where  

j4=O 

j4--O 

h=0 
O 0  

j4---O 

.~---o 

( 1 )jl ( 1 ) j3+j4 ( 1 - v)j3+j4 (2 - 2V)jl+j2+h+j 4 (2  -- v).il+j2+h+j 4 
q '  

( 1 )j, ( 1 ) j3+j4 ( 1 - v)j3+j  4 (2  - 2v)jl+j2+j3+j 4 (2  - v) j ,  +j2+j3+j4 q 

( 1 )jl ( 1 ))3+j4 ( 1 - / ) ) j 3 + j 4  (2)jt+j2+j3+j4 (2  - l.J)jl+j2+J3+j4 , . . . . . . . . . . . .  q 
( 1 + v)j2 ( 1 - v)j3 ( 1 + v)j4 (2  - v)j~+j3+j4 (2)k+j3+j 4 

( 1 )j, ( 1 ) j3+j4 ( 1 - v)j3+j 4 (2)j,+jz+h+j 4 (2  - l:)jl+j2+J3+j4 . . . . . . . .  q ,  
( 1 + v)j2 ( 1 + v)j3 ( 1 - v)j4 (2  - 1.')j,+j3+j 4 ( 2 ) j l + j 3 + j  4 

(26)  

q =  ~ '  x322 ~ x344 (27)  
j l  !j2 !j3 !j4! 

The  large-p  2 result  given by (24)  is valid for  

[p2[ > (m2 + m3 + m4) 2 and ml > m3 + m4. (28)  

One  m a y  wonder  what  the relation is be tween the large-p 2 expansion o f  (24)  and 
that given in Ref.  [8 ] .  In the latter approach the various terms in the p2 expansion are 
obta ined f rom the expans ion  o f  subgraphs.  The  subgraphs  are obta ined by distr ibuting 
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the momentum p over the propagators in all possible ways. In the case of the diagram 
T1234 o n e  has the following subgraphs: the diagram itself, the four diagrams where one 
internal line is removed, the two diagrams where two internal lines are removed and one 
diagram where three internal lines are removed. So one expects eight subgraphs, in fact 
seven because the contribution from the one where the line corresponding to propagator 
1 in our convention is removed is zero. 

Following the analysis of Ref. [8] one can easily find the first term of each of the 
contributing series. For the subgraph representing the whole diagram the first term in the 
series should be the massless diagram. This series then corresponds to the first term in 
(24), i.e. B1. The series which originates from the subgraph where two lines have been 
removed, e.g. 2 and 3, starts with the product of two massive tadpoles. They contribute 
a factor (m2m~)" which can be identified with the sixth term in (24). The remaining 
subgraphs are obtained by removing one internal line, e.g. line 3. This yields a series 
starting with a massive tadpole proportional to (m~) ~. This is the third term in (24). 
The last term in (24) corresponds to the diagram where three internal lines are removed 
whose reduced graph is the vacuum diagram. Thus the seven series in (24) can be 
related directly to the seven subgraphs which are required for the method of Ref. [ 8]. 

The large-p 2 expansion satisfies a system of four partial differential equations given 
below: 

( ~ ( 1  +D1)x71 - T2(1 + D 1 ) )  f = 0 ,  (29) 

( (d  + D2) ( I  + D 2 ) x 2 1  - ~V2) f = 0,  (30) 

(~(d+D3)(l+D3)x31 --7-2(d+D3+D4)(e+D3+D4))f=O, (31) 

(~(d+D4)(l+D4)x41 -7-2(d+D3+D4)(e+D3+D4))f=O, (32) 

where 

= (a+ ~ Di)(c+ ~ Di), (33) 
i=1,3,4 i=I ,3,4 

4 4 

7-2 = (a+ ~-'~Oi)(b+ ~"~Di), 
i=1 i=1 

(34) 

a = (2 - 2v),  b = (2 - 3v),  c = (2 - v),  d = ( I - v),  e = ( 1 - 2v) and Di = xia/cgxi. 
The expressions for small and large p2 are given in an arbitrary number of dimensions 

and for arbitrary masses. One may subsequently derive special cases setting masses equal 
to zero. Taking the small-p 2 expansion, m3 and m4 cannot be taken zero simultaneously. 
When enough masses are zero and others are equal it is not so difficult to recognize 
known hypergeometric functions and to perform an expansion in & We give the following 
examples. 

We will use the following abbreviations: 

(35) 



S. Bauberger et al./Nuclear Physics B 434 (1995) 383-407 393 

In the case ml = m2 = m3 = 0 the three-particle cut contribution (17) reads 

TI 3) 23a (p2; 0, 0, 0, m 2) = F ( 1  - 6 ) F ( ~ 3 -  1 )F(26)3F2(1 ,&26;2 ,2 -&x)  (36) 

and the two-particle cut contribution is given by 

( l, B°(pR;O'O)B°(O;O'm2)=- ~ ~ V(2- 2&) .(37) 

Expanding the two results from above in 8 we obtain 

, } Tlz34(pZ;O,O,O, m Z ) = ~ - q - - ~  - L m - l n ( - x )  

19 3 2 1 
+-~- - ; ( ( 2 )  + L m + ( - 5  + 2In ( - x ) )  Lm + ~ In 2 ( - x )  

- 3 1 n ( - x ) - 2 X - l l n ( 1 - x ) - X + l L i z ( x ) ,  (38) 
x x 

where x = p2/m2, in agreement with Ref. [7]. 
In the case ml = m2 = 0 and m3 = m4 -- m the contribution from the three-particle cut 

(17) becomes 

TI(3) r 2 . = 2 / ' ( 6 - - 1 ) F ( 2 6 ) F ( 2 + & ) (  m 2 )-26 
234~P ) F(3 + 2&) ~ 3 F 2 ( 1 , & 2 & 2 - & 3 / 2 + & x / 4 )  

1 1 ( 1  ) 2  3 2 
- 2a  2 + ~ + Lm -- I_.,. -- L,. -- ~ -- ( ( 2 )  + r + O ( 6 ) .  ( 3 9 )  

where 

oo FZ(n ) n 
Y = - ~-~ ( l + n ) - -~n  + 2 ) x 

n=l 

x 1 
= - -g (  3/72(1, 1, 1;2,5/2;x/4) -- ~ 3F2(1, 1,2;3 ,5/2;x /4)) .  (40) 

Knowing the analytic expression for the B0 functions which occur in the two-particle 
cut contribution and expanding in 6 we obtain 

1 1 ( ~  ) 1 9 1  T,234(p2;O,O, m2,m2)=~+ a -Lp + -~- - ~¢(2)  

( - P 2 )  1 ( -p2 ) 
+L2p-5Lp+31n - ~  - ~ l n  2 

m 2 21 -( --P-2--,]2m2"~ + 3 ~ - ( r ,  - r2) ln(r~)  + 1 + l n 2 ( r ~ ) ,  ( 4 1 )  

where rl and r2 are the roots of the equation 

m 2 
m2r + __ = 2m 2 _ p2, (42) 

r 



394 S. Bauberger et al./Nuclear Physics B 434 (1995) 383-407 

in agreement with Ref. [6].  
When m2 = m3 = 0 and ml = m4 = m, Eq. (17) gives 

"1 3> (P2;m2,O,O, m2) = ( , -2~ F ( 6 ) F ( 2 6 ) F (  l m 2 
234 ( 1  7-~--) ( f 7 2 ~  ~ /  2F1 (26 '  6; 2 - 6; x )  " 

(43) 

c9 2 2 2 
+Bo (p2; m 2, m 2 ) ~ Bo ( m l; m 3 , m 4 ) . 

dm 1 
(47) 

To this the contribution Bo(p2; m 2, 0)Bo(m2; 0, m 2) should be added: 

/ ' 2 ( 1 + 6 )  ( m2 ) -28 
T(Z>34(P2;mZ'O'O'm2)=62(1--~)(]--26) ~ 2 F l ( 1 , & 2 - 6 ; x ) .  (44) 

Expanding in 6 we get 

T1234 (p2; m 2, 0, 0, m 2 ) = ~ h- ~-~ 5 -- 2Lm + 2 In ( 1 - x) 

+ ~ - - ~ ( (  ) + L ~ - 5 L m - Z L m  l n ( 1 - x )  

1 
- - L i 2  ( x ) .  (45) 

x 

In principle there is one class of  cases which has not yet been covered by the above 
multiple series. That is the case where m3 = m4 = 0. For completeness we give the 
small-p z case as a linear combination of  an /72 and an F4 functions [5,10,11]• For the 
derivation we used the Mellin-Barnes representation method• 

T1234(pZ;m~,m2,0,O ) = ( m~ ~ - 2 6 F (  1 - 6 ) r ( 6 -  1) r (26 -  1) 
\ 4 7 r #  2 J 

x [( 1 :t: v/'y) -2(1+'S)F2 ( 1 + 6, l, 3 /2  - 6; 1 + 6, 3 - 26; zl, z2) 

- x  1-26F4 ( 1,2 - 6; 2 - 6, 2 - 6; x, y)]  (46) 

where x = mZ/m~, y = pZ/m~, z, = x / (  1 + v/y) 2 and z2 = + 4 v ~ / ( 1  + v/y) 2. 
As it was mentioned in the introduction the case Tl1234 with m~ = ml can be obtained 

from T1234 by differentiating with respect to m~. For instance, differentiating Eq. (19) 
leads to 

2 2 2 2 2 m 2) O~_T(3) 2. 2 2 2 2 = (p ,ml,m2,m3,m4) 7"11234 (P ; ml, ml,  m2, m3, c~m 2 "1234 

• 2 2 2 .  2 2 +Bo(p2;  vj = 2, ~'2 = 1, m 1, m2)Bo(ml, m3, m4) 
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In this result the propagators in the B0 functions have the usual powers ui = 1 except 
when indicated b, 1 = 2. One can now even take the limit ml = 0 and then expand the 
result in 6. In Sect. 4 more details on the products of B0 functions and their expansion 
will be given. 

From Eq. (47) one can obtain special cases. Taking ml  = 0 and one other mass van- 
ishing double series are obtained. In some cases one may obtain known hypergeometric 
functions, e.g. for ml = m2 = 0, m3 = m4 = m ,  which leads to 

( m 2 "~-26/'(t~-- 1)F(1 + 2 6 ) F ( 3 + t ~ )  
T11234 ( p 2 ;  0, 0, 0, m 2, m 2) = 2 \4----~2 / F(5  + 26) 

2 
x 3 F 2 ( 1 , 6 , 2 6 +  1 ; 2 -  6 , 6 +  5 / 2 ; 4 ~ z )  

( m2 )-6(-p2)-6F(I+6)F(6)F2(I-6) ( 1 
+ ~ ~ F(1 - 26) 6m2(1"- 28) 

(48) 

3. Analytic approaches and elliptic integrals 

In this section we inspect the imaginary parts of the London transport diagram T123 
and of T1234. It turns out that they can be calculated in four dimensions in terms of 
complete elliptic integrals. These are well known functions and thus the results are 
of analytic interest. Furthermore fast and precise algorithms for the calculation of the 
elliptic integrals are available. Therefore the results provide also an efficient way to 
calculate the imaginary parts numerically. 

3.1. Imaginary part  o f  the London transport diagram 

As can be seen from (4) the imaginary part of T123 is convergent in four dimensions 
and reads with a factorization of the K~ill6n functions 

X3 

X2 

with 

X l = ( m l - - m 2 )  2", x 2 = ( m l + m 2 ) 2 ;  x 3 = ( p - - m 3 )  2", x 4 = ( p + m 3 ) 2 ;  

xl <~ x2 ~ x3 ~ x4 ; p = l¥/~l >~ ml q- m2 + m3 . 

The integration limits are zeros of the square roots, and thus (49) leads to complete 
elliptic integrals, defined by 
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1 

dt rr 1 1 
K(x) = X/(1 _ t2)( 1 _ x2t2 ) = -~ 2F1 ( - ~ ,  ~; 1 ; X 2 )  , (50) 

0 

1 
dt(1-x2t 2) 7"r 11 

= ~ 2 F l (  1;x 2) (51) E(x) = V/( 1 _ t2)( 1 _ x2t2) ~, ~; , 
0 

1 

/ dt 7rF  ~ 1 l ' l ; c , x  2) (52) 
H(c,x)= (l_ct2)v/(1--t2)(l_x2t2) =.~ 1( ; , 2 ,  

0 

with the Gauss hypergeometric function 2F1 and the Appell function Fl [5,10,11]. 
Reduction of (49) to the Legendre normal form of the elliptic integrals [12,13] by 
decomposition into partial fractions and partial integration yields after some algebra 

im (T123 (p2;m2, 2m2,m32) ) = 

)2 p2 4mlm2[(p+m3 --map+mlm2] K ( , ~ ~  
\ V q++q-- / 

m 2 + m 2 + m~ +p2 ( , ~ ~  
+ 

2 ~ E k v  q++q__/ 

-2mlm2- (~_+_ +8mlm2[(ml 2 + m 2 ) ( p 2 + m  2) 2 2 2 m 2 p 2 ]  ~ ~ )  

qv'q-~'~-- H ' V q++q--/ 

8mlm2(p2 -m2)2q~__ H ( (ml -m2)2 q-+-- , ~ ~  } 
\ (m, -+ ~2)Z q__ ' V ~ ) 

×O (p2 _ (ml + m2 + m3) 2) , (53) 

with variables q±+ corresponding to the physical and unphysical thresholds 

q+± := (p ± m3) 2 - (ml + m2) 2. (54) 

This result is valid in all parameter regions. In special cases it leads to simpler 
formulae. For equal masses one gets 

77" 
Im(T123 (p2; m 2, m 2, m 2) ) = -P-2 V/(p _ m) (p + 3m) 

x { - 4 m 2 p  K(K)+ (p-m)(p22 +3m2) E(K)} O(p2-9m2)' (55) 

with x 2 := (p + m)3(P - 3m) 
(p - m)3(p + 3m) ' (56) 

involving only complete elliptic integrals of the first and second kind, i.e. 2Fl Gauss 
hypergeometric functions. If at least one mass is zero, Im(T123) reduces to logarithms. 
The most complicated case leads to 



S. Bauberger et aL /Nuclear Physics B 434 (1995) 383-407 397 

Im(T123 (p2;O, m22,m2) ) = rr I p 2 + m 2 + m~v/.~+q_ 
- 7 1 .  2 

log(P 2 + m~ - m22 - qv'-qT~-- ) +(2m2p 2 m2 ( m 2 + p 2 ) )  
2m3p 

2m2m3p 2 ~1-~---~-~ } +m~(p 2 m3 2 ) log( 
(p2 _ m3)2 _ m2(m~ q_p2) + (p2 _ m3)vq+q_ ) 

x O ( p  2 --  ( m 2  + m 3 )  2) , (57) 

with q± := (p 4- m3) 2 - m 2 . 

3.2. The imaginary part 0fT1234 

The two-particle cut contribution to the discontinuity of T1234 was given in (13), 

,,,,r,(2) l _2 ~ 2  m~, 2 2 m 3, m 4) = ABo (p2; m21, m22)Bo(m~ + ie; m~, m]) (58) Za/12341,/1 ; tr~ 1, 

As a product of a one-loop self-energy integral and a one-loop self-energy discontinuity 
it is composed of elementary functions and gets a real part for 

(m3 q- m4) 2 < m 2 and (ml + m2) 2 < p2. (59) 

The three particle cut contribution can be calculated in a fashion very similar to the 
case of the London transport diagram. Only one more (complex conjugated) propagator 
l / ( t  - m E - ie) has to be added in (49). The calculation yields 

AT~33)4(p2; 2 2 2 m42)= ml,m2,m3, 

2rri{ ~ ( ~ ~ ' ]  ( ~ ~ ' ]  
p2 4m3m4 K + ~ E 

\ g q++q-- / \ g q++q-- / 

8m3m4 ( p 2 -  m 2 + m 2 + m~ +m24) 17 .{ q-+ , , ~ ' ~ ~ .  
-1 

x/q++q-- \ q - -  V q++q-- ] 

8m3m,(p_____~ 2 z.mS) 2 ( ( m 3 -  m4) 2 q - + ,  , ~ ~  
m 2 ~  --C 1 1 \ ( m 3 7 m 4 ) 2 q - -  V q++q--/  

8m3maA(P2' 2 2ml'm2) / / (  m 2 - ( m a - m 4 ) 2  q - + - - i e , ~  } 
q m~x/q++q-- \ m  2 (m3  -'1"- m4) 2 q - -  

X O ( p  2 --  ( m 2  q - m 3  i f - m 4 )  2) , (60) 

with 

q±+ := (p + m2) 2 - (m3  q- m 4 )  2. (61) 
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In the case (59) the characteristic c of the last//-function in (60) is greater than 1, 

m 2 - (m3 - m4) 2 q-+ 
= > 1, (62)  c m 2 -- (m3 -4- m4) 2 q - -  

which requires an analytic continuation of that function. A comprehensive discussion of 
the analytic properties of the elliptic integrals can be found in Ref. [ 14]. The m~ + ie 

prescription in (60) ensures that AT(33)4 gets the correct real part, given through 

1 
Im ( I I ( c  - ie, K) ) = ~ii ( l l ( c  - ie, K) -- I I ( c  + ie, K) ) 

c 

= - 2 -  ( C - - I ) ( c - - K  2)" (63) 

AT(2) Consequently This contribution cancels the real part of the two-particle cut ~'1234. 
AT1234 is always purely imaginary. 

Numerical checks show the agreement of the results of (53) for Im(T123) and of 

1 (AT1234+ATI234) Im(T1234) = ~ (2) (3) (64) 

with previously published tables [3,6]. 

4. One-d imens iona l  integral  representations 

4.1. A general approach to two-loop integrals containing a self-energy subloop 

An alternative method to the series expansion of the two-loop scalar diagrams consists 
in the derivation of one-dimensional integral representations. These are built up from one- 
loop self-energy functions B0 coming from the self-energy subloop and the remaining 
one-loop integral. They can be derived by using a dispersion representation of the B0 
function. 

A two-loop diagram with only three-vertices 

? / ~ ~ N -  1 

7 7 2 ~  2 

where k is the momentum flowing through the self-energy insertion, can in a first step 
be reduced to simpler diagrams by a decomposition into partial fractions 
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1 1 1 ( 1 
k 2 _ m z + 2 k  2 - m 2 + 3 -  m2+2 m~v+3 ~,k 2 -  

1 
m~+2 k 2 _ -mN+32 ) 

399 

This yields for the diagram 

TI ...N+3 (Pi; m 2) = 1 ( T1 iv+2(Pi;m2,. 2 2 - ... • . ,  m N + l ,  mN+2) 
m~+ 2 m2+3 

2 2 2 "~ 
- T I  ...N+2(Pi; m l  . . . . .  rely+l,  m N + 3 ) ;  • (65) 

The difference has to be replaced by a derivative if m~+ 2 = m2+3 . 
Insertion of the dispersion representation for the self-energy subloop leads to 

T1...N+2 (Pi;  m21,. . 2 2 . ,  m N +  l , raN+2) 

( , -. Bo(kZ;m~,m~+l) ( k + p l ) Z _ m ~ " "  

× , 1 )  
( k+p l  + . . .  + P N - I )  2 - m 2 _ l  k 2 - m~v+2 

o o  

/ ( ' 1 dsABo(s;mZ, m~+,) k 2 - s + i e  2~i 
so 

1 1 1 ) 
x k2 _ m2+2 (k + p l ) 2  _ m 2 "'" (k +pl + . . .  +PN-I)2 _ m2_1 

(66) 

with so = ( m N  + m N +l  )2. After a further decomposition into partial fractions, 

k 2 - s  k 2-m~v+2 s - m ~ +  2 k e - m ~ +  2 k 2 s 

the k-integrations and one of the s-integrations can be performed and yield 

T1...N+2(Pi; m 2 , . .  2 2 • ,  mN+l  , mN+2) 

2 . m  2, 2 (1)  2 2 2 = B0 (mN+ 2, mlv+l ) T  (Pi;  m l  . . . . .  m N - 1 ,  mN+2) 

c~ 2 2 

2~ril f ds AB°(s'mu'mN+l)T(l)(pi;m~,.s--m2+-----~2 ..,  m2_l,S). 
80 

(68) 

T (1) denotes a one-loop N-point function in which s enters in the remaining one- 
dimensional integration as a mass variable. 

A diagram with two four-vertices leads to a result which is similar to the remaining 
integration in (68), 
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~ PN-1  

o o  l~ 
Tl...N+l (Pi; m/2) = ~ /  as z~Bo (s; m~, m~v+l ) 

so 

X /  -1  1 1 ) 
k ~U s (k + Pl )2 _ m 2 "'" (k + Pl + . . .  + PN-1 )2 _ m2_l 
0(3 1/ 

= - - -  mN, mu+l) T 1) (pi; . (69) 2rri dsABo(s;  2 2 ( m~ . . . .  m ~ _ l , S ) .  

SO 

4.2. Examples 

An application of (69) to the London transport diagram leads to 

oo  

T123 (p2;  2 2 2 1 f ml 'mz 'm3)  = 27ri dsABo(s;m22, m 2) Bo(pZ;s,m~) , (70) 

(m2+m3) 2 

a result which would also follow from (5). In that case a suitable subtraction [6] is 

TI23N ( P  2 m~,  2 2 2 2 2 2 2 2 ; m2,m 3) T123(p2;ml,m2,m3)- = T123 (p ;ml,0,  m 3) 

-T123 (p2; 0, m 2, m32) +/'123 (p2; 0, 0, m]) .  (71) 

For T1234 one  obtains from (68) 

T1234 (p2; m 2, m 2, m3 ,2 m4 )2 

oo  

1 / ABo(s;m~,m]) 
= ml,m2) -- Bo(p2;s, m2)) (72) 2~ri ds s -  m 2 - ie (B°(p2; 2 2 

( m 3 + m 4 )  2 

B o ( m ~  + . . 2 2 2. 2 2 = tE, m3, m 4 ) B o (  p , m l , m 2 )  

1 7 ABo( " 2 2 
2rci J ds s, m 3, m4) Bo(p2; s, m 2) (73) 

s - m~ - ie 
(m3+m, I )  2 

The representations (70) and (73) with the subtractions (71) and (20) provide 
efficient ways to calculate T123Jv and T1234 N in all parameter regions. The results agree 
numerically with those published in Ref. [3]. 

One may also consider vertex functions, for example 
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Pl -- P2 

P~ 

2 2 2. m12 . . . . .  m~)=Bo(m~;m24, m~) 2 2 2 2 2 2 Co (pl,  P2, P3 ; ml, m2, m3 ) T(Pl ,P2,P3, 
oo 

ABo(s;m24, m~ ) 1 d s  2 2 2 2 2 - - - - -  CO(Pl ,p2,P3;S, m 2, m 3 ) . (74) 2¢ri s - m~ 
sO 

In that case the counterterm of the self-energy subloop can be subtracted for a numerical 
evaluation. 

In the cases of T123N and TI234N equivalent one-dimensional integral representations 
can be obtained with a direct integration in the momentum space or using the dispersion 
representation. 

The case Tl1234 for ml = 0 gets the representation 

2 2 2 2 Tl1234(p ;O,O, m2, m3,ma) = Bo(p2;~,l = 2, v2 = l;O, m2)Bo(O, . 2 2 
o o  

_ 1 - -  / ds ABo(s;m~,m~) [Bo(p2;s, m22 ) _Bo(p2;O, m2) ] (75) 
2~'i s 2 

(m3+m4) 2 

The integral is convergent and the result in an arbitrary number of dimensions for the 
product BoBo which we denote by Z is given by 

1 ( m ~  ~ - ~ (  m~ "~-~(1 m2"~-I [ ( m23~1-'] 
Z = m--'~ \ 4"n'~ 2 ,] \ 4,n.g2 ,] - m4 2 ,] 1 - \ m4 2 ] j 

F2(1 + 6) 
x~- (~  _--~-~ 2F1(1 + 8 , 2 ; 2 -  8;pZ/m~). (76) 

One can perform the expansion of Z in 8 and obtains 

Z = ( I - x ) - I  ( rn32"~- l{~___  1 ( L m 4 + a + b _ 2 ) + 3 + ( ( 2 ) +  X 
l - m l  ) - 

1 
(L~  + b) z - 2 (Lm4 + b) - m~ [Lnu --~ Lm3] } (77) + a  (L, u + b - 2) + ~ rn-~ ' 

where x = p2/m~, a = 1 + (1/x - 1) In( 1 - x), b = Lm2 + 2 In( 1 - x) and 
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X=(~-~-f-)ln(l-x)- (~ - f )  ln2(l-x)+(~--f-)Li2(x). (78) 

In the above representation masses can be set to zero, except the case m 3 = m4 = 0. 
However, for this case an explicit result can be derived, 

1 ( m2 )-2'F(I+')FZ(-')F(l+26) Tl1234(p2;O'O'm2'O'O)=~m 2 ~ ( 1 - 2 6 ) F ( 2 - ~ )  

× 2Fl(1 + 26,2 + & 2 -  & x )  (79) 

with x = p2/m2. Expanding the result around D = 4 we get 

Tl1234(p2;O,O, me,O,O)-2m2(l_x) c+d- + 9 +  3 ( ( 2 )  

+2dZ-6d+4c(d -3)  + 4 ( ~ ) l n 2 ( 1 - x )  

-4(~)ln(l-x)+2(2x~-------~l)Li2(x)} , (80) 

where c = 1 + (l/x- l ) l n (1  - x) and d = Lm + 2 1 n ( 1  - x).  
For the other cases where some masses are zero the integral can also be calculated 

analytically. A simple case is 

l 1 3 1 ( t p . q _ t m ) 2  p2TII234(p2;O'O'O'm2'O)=-~-]-~ {-I + Lp + Lm} 2 2 
1 

+Lp + Lm - ~ x l n  ( - x )  + L iz (x )  

+ 2  x -  I n ( l - x )  (81) 

where x = p2/m2, in agreement with Ref. [7].  

5. Numerical comparisons and conclusions 

In this section numerical comparisons are made between the various results of  this pa- 
per and the literature. Moreover some concluding remarks and an outlook are presented. 
Various numerical evaluations for small p2 are presented in Table 1. In the first col- 
umn are values from the two-dimensional numerical integral representation [6] ,  in the 
second results from the series obtained from the hypergeometric functions (appendix), 
whereas column three uses three terms of  the Taylor expansion of  [ 15] and finally the 
last column is calculated from the one-dimensional integral of  Sect. 4. The comparison 
gives confidence in the various calculational methods. 

In conclusion the analytic results in terms of  generalized hypergeometric functions 
offer the possibility to use well-known mathematical techniques for analytic continuation, 
partial differential equations, contour integral representations, etc. Moreover the result is 
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Table 1 
Real part of T1234N (p2;m2, m~,m2, m]) for small values of p2. The masses are ml = 1, m2 = 3, m3 = 5 
and m4 = 7. A: Result from VEGAS integration. B: Result ofEq. (A.5). C: Approximation using 3 terms of 
Taylor expansion. D: One-dimensional integral representation (73) 

p2 A B C D 

2.66667 -8.454752 -8.45044 -8.445577 -8.45038 
1.77778 -8.286016 -8.28753 -8.286116 -8.28747 
1.18519 -8.186514 -8.18486 -8.184417 -8.18481 
0.790124 -8.116017 -8.11883 -8.118665 -8.11878 
0.526749 -8.077571 -8.07583 -8.075740 -8.07577 
0.351166 -8.053491 -8.04759 -8.047528 -8.04754 
0.234111 -8.033367 -8.02896 -8.028900 -8.02890 
0.156074 -8.013727 -8.01662 -8.016561 -8.01656 
0.104049 -8.018667 -8.00843 -8.008371 -8.00837 
0.069366 -7.999787 -8.00298 -8.002926 -8.00292 
0.046244 -7.997535 -7.99936 -7.999303 -7.99930 
0.030829 -7.985865 -7.99695 -7.996891 -7.99689 
0.020553 -8.006871 -7.99534 -7.995285 -7.99528 
0.013702 -7.900682 -7.99427 -7.994214 -7.99421 
0.009135 -7.957410 -7.99356 -7.993501 -7.99350 
0.006090 -7.793835 -7.99308 -7.993026 -7.99302 

derived for arbitrary masses from which one can get many special cases. In other words 
the several formulas for the cases with vanishing masses [7] are unified in one result in 
D dimensions. When one is only interested in the imaginary parts an alternative analytic 
result in four dimensions is obtained in terms of  complete elliptic integrals. Since their 
properties are well known they are easily accessible for numerical evaluations. Finally 
we have derived a one-dimensional integral representation for all two-loop diagrams 
containing a self-energy insertion. For the two-loop self-energy diagrams treated in this 
paper the integrand is composed of  elementary functions only and the representation is 
valid for all values of  p2. The main application of  these integrals in this paper is for 
numerical evaluations, giving a good alternative to the existing two-dimensional integrals. 
In order to complete the treatment of  massive two-loop self-energy diagrams one has to 
make the similar study of  the master diagram. As to the analytic approaches the prospects 
are not so good since it is not of  the self-energy insertion type. In practice this means for 
instance that the massless case with arbitrary powers of  the propagators is not available 
in the literature. This prevents an application of  the Mellin-Barnes representation. On 
the other hand symmetry properties, special cases and imaginary parts have been studied 
in [ 16]. The two-dimensional integral representation was derived in particular for this 
diagram [ 1 ]. Nevertheless further studies will be needed. Once adequate techniques 
for the self-energy diagrams are available one could envisage practical applications for 
physics predictions. For the electroweak theory the obvious application is to the gauge 
boson self-energies which play a role in the Mw - Mz mass relation and details of  the 
Z line shape. For QED the two-loop vacuum polarization has been known for a long 
time [ 17], but the electron two-loop self-energy was never fully calculated. 
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Append ix  A 

Here we give the result for the small-p 2 expansion in 6. We introduce the dimension- 
less variables x, y, u and v defined by 

= PA m~ (A.1) 
x m~' Y=m---~2' 

and 

U m2 m2 = __  = __23 (1.2) 
ml ' rot" 

We also need the roots rl and r2 of the equation 

m~r + m___~ =m21 + m~-  p2 (1.3) 
r 

and the roots r3 and r4 of the equation 

m~r + m___~ = m~ + m 2 - m~. (A.4) 
r 

TI234N (p2; 2 2 2 m4 2) = -A1 + A2 + C1 + C2 + C3 m l , m 2 , m 3 ,  

+C4 + C5 + C6 + C7 (1.5) 

where 

AI = 8 - 2~'(2) + 1 + ln2(y) 
X 

+ ( - 2 (  I + y - 1 ) x  43r'-rZx - -  ( ln(r l)  - l n ( r 2 ) ) )  In(y) 

i x  1(l y+x) 
+ In(1 - x) + Li2(x) 

x 

1 rl - r2 {41n(r l )  _ 41n(r2) 

+ l n (  1 - - r l  ) i n  ( r ~ l - - r 2 ) ) - - I n (  l - - r 2  ) in ( r2(1 - - r l ) )  
\ r2 -- rl t/ \ rl -- r2 \ rl -- r 2 /  \ r 2  - -  r l  

-+-Li2( rl(1--r'-2))rl-r2 - L i 2 ( r 2 ( 1 Z r l ) ~ \  r 2 - r ,  / 
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( m + n ) ! ( m + n - 1 ) ! ( m + n +  k + l - 1 ) ! ( m + n + k  + l)! 

r t l , r t=l  
k,l--O 

× [ - 0 ( m + n ) - 2 0 ( m + n + k + l ) - 0 ( m + n + k + l + l )  

-0(m + 2) + ~9(n) + 2~b(2(m + n + k) + 2 + l)] z~z~( 1 - z3)lz~. (A.8) 

C2= ~ ( m + n ) ! ( m + n + l ) ! ( m + n + k + l + l ) ! ( m + n + k + l ) !  
m!(m + l )!n!(n + l )!l!(2(m+ n + k) + l + 3)! 

m,n,k,l=O 

× [ l o g ( m ~ / m ~ ) + ~ ( m + n + k + l + l ) + ~ b ( m + 2 )  

+0(n + 2) O(m.+n.+2)]z~z~+l(l z "tzm - -  - -  3 )  4 "  (A.9) 

o o  
C3= ~ ( m - 1 ) ! ( m + k + l - 1 ) ! ( m + k + l ) !  

_ Z , I  m 

( m + l ) ! l ! ( 2 ( m + k ) + l + l )  z~(1- 3) Z4 
k,l=O 
n l = l  

(A.10) 

C4= 
o o  

( n + k + l - l ) ! ( n + k + l ) !  k n. 
l ! ( 2 ( n + k ) + l + l ) !  ZlZ2 ~I - z 3 ) l  

k,l=O 
n=l 

× [ - l + 2 ~ b ( 2 ( n + k ) + 1 + 2 ) - 2 ~ , k ( n + k + l ) - ~ ( n + k + l + l ) ] .  (A.11) 

C5= 
-~ (k + l - 1 ) ! ( k . +  l)! 

/ . ~ - ( ~ - - ~ - ~ - ~ (  zk(1  -- Z3) l [--1 -- 2 ~ ( k  + l )  

k,l=l 

- ¢ ( k  + t + 1) + 2j,(2k + t + 2) ] .  (A.12) 

C6=Z~ k!(k-1)!~2__k~_l) - i z 'k[ -1 -2o(k) -o (k+l )+2~p(2k+2) ]  
k=l 

(A.13) 

o o  

C 7 = Z  ( l -  1)!. t=J (I+ ~Ytl --z3)l [--I -20(I) -~O(l+ 1) + 2~b(l+ 2)] (A.14) 
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