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Abstract 

A Monte Carlo program is presented that computes all four-fermion processes in e+e - annihilation. QED initial state 
corrections and QCD contributions are included. Fermions are taken to be massless, allowing a very fast evaluation of the 

matrix element. A systematic, modular and self-optimizing strategy has been adopted for the Monte Carlo integration, which 

serves also as an example for further event generators in high energy particle physics. 

PROGRAM SUMMARY 

Tittle af program: EXCALIBUR 

Catalogue number: ADAJ 

Program obtainable from: CPC Program Library, Queen's Uni- 
versity of Belfast, N. Ireland (see application form in this is- 
sue); R. Kleiss, NIKHEF-H, EO. BOX 41882, 1009 DB Amster- 
dam, The Netherlands, t30@nikhefh.nikhef.nl; R. Pittau, Instituut- 
Lorentz, University of Leiden, EO.B. 9506, 2300 RA Leiden, The 
Netherlands, rulgm0@leidenuniv.nl 

Licensing provisions: none 

Computer for which the program is designed and others on which 
it has been tested: 
Computers: HP and SUN workstations 

Operating systems under which the program has been tested: 
UNIX 

Programming language used: FORTRAN 77 

Memory required to execute with typical datu: about 170 kbytes 

No. of bits in a word: 32 

No. of lines in distributed program, including test data, etc.: 3784 

Keywords: decaying vector-boson production, all four-fermion pro- 
cesses, electroweak and QCD background, initial state QED radi- 
ation, multichannel Monte Carlo approach 

Nature of physical problem 
Heavy vector boson production will be investigated at e+e - col- 
liders in a wide range of energies. At LEP II. the relevant process 
is 

e+e - --, W + W- . (1) 

At higher energies other processes like 

e+e - ~ Z Z , (2) 

* This research has been partly supported by EU under contract number CHRX-CT-92-0004. 
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e+e - --~ W e r e  , (3) 

e+e - ~ Ze+e  - , (4) 

e+e - ~ Z/"e Ve , (5) 

become important. The detected experimental signal for all above 
processes is a four-fermion final state. Therefore, a Monte Carlo 
program being able to take into account both signal and back- 
ground electroweak diagrams for all four-fermion processes is 
required. QED initial state radiation and QCD background play 
also an important r61e and have to be included. 

Method of  solution 
An event generator is the most suitable choice for a program to be 
able to deal with the above physical problem, since each generated 
event is a complete description of the momenta of the produced 
particles and any experimental cut can be easily implemented. 
There are two basic difficulties. First of all the number of Feyn- 
man diagrams can be very large. Secondly, taking into account 
also the background diagrams, the peaking structure of the matrix 
element squared is very rich, so that a straightforward integration 

over the allowed phase space is impractical. The former problem 
can be solved by using spinorial techniques to compute the am- 
plitudes and taking massless fermions. The latter requires the use 
of a multichannel approach, where the integration variables are 
generated according to distributions that approximately reproduce 
the peaking behaviour of the integrand, so reducing the estimated 
Monte Carlo error. 

Since one wishes to take into account all possible final state 
(that means to have from 3 to 144 different Feynman diagrams, 
many of them leading to different peaks in the phase space), a 
systematic and automatic procedure for both the generation of the 
Feynman diagrams and the phase space integration is unavoid- 
able, together with an algorithm for the self-optimization of the 
predetermined probabilities used to choose the various channels. 

All that has been implemented in EXCALIBUR. This paper 
serves also as an example of the entire procedure to be used 
to build future event generators. 

Typical running time 
about 100 events per second on HE depending on the chosen 
physical process 

L O N G  W R I T E - U P  

1. Introduction 

In  the near future LEP II will  become operative in the energy region around 200 GeV. The physics  relevant 
at higher  energies will  be investigated at the next generat ion of  e+e - l inear  colliders. Many  interest ing physics  

issues can be s tudied and one  of  them is gauge -boson  production.  Around  200 GeV events with the s ignature  
of  two produced W's  have a large cross section, whi le  s ingle boson product ion processes become impor tant  
with increas ing energy [1 ]. One  can dis t inguish five sizeable reactions (Eqs. ( 1 ) - ( 5 ) )  in which gauge bosons  

are produced.  Due  to the fact that the massive bosons  are uns table  particles, all those processes end up with 
a detectable 4 - fe rmion  final state to which many  Feynman  diagrams can contribute.  Some of  them are related 
to the react ions ( 1 ) - ( 5 )  ( s ignal  d iagrams) ;  others are not  (background  diagrams) .  For  this reason a precise 

knowledge  of  all poss ib le  processes 

e + e -  ~ 4 fermions  (6)  

is unavoidable  in order to make  compar ison with experiment  [2] .  
In addi t ion to these background effects, one wants to be able to study a n y  experimental  distr ibution,  taking 

into account  the dominan t  radiative corrections effects, and the possibi l i ty  to implement  a n y  experimental  cut. 
To solve these problems we wrote an event  generator, which can handle  all d iagrams leading to a specified 
4- fe rmion  final state (with,  o f  course, the opt ion of  a restriction to the signal d iagrams) ,  and that incorporates  
the LL O (re) and O (a2)  ini t ial  state radiat ion ( I S R ) ,  with exponent ia t ion of  the remain ing  sof t-photon effects 
[ 3 ]. Fur thermore,  with a four-quark final state, QC D diagrams are present  as well, g iv ing  non-neg l ig ib le  effects 
that have been also inc luded [4] .  
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It should be noted that even when cross sections do not dramatically change under inclusion of tiny effects, 
there are quantities that are very sensitive to any small correction. Among them is the average energy • radiated 
by the beams. A precise knowledge of • is required at LEP II when the reconstruction of the jet invariant mass 
distributions is performed to measure the W mass [4,5]. In addition, • is also very sensitive to the imposed 
experimental cuts [3], so that, once more, a Monte Carlo approach is to be preferred. 

In order to build a fast program we have taken the limit of vanishing fermion masses. Even if this implies 
the a b s e n c e  of diagrams where a Higgs boson couples to the fermions - and therefore we cannot compute the 
Higgs signal - we can at least estimate the background. On the other hand, the inclusion of the leading Higgs 
signal is trivial because only few diagrams account for it and, due to their helicity structure, do not interfere 
with all the others in the limit of massless fermions. However, this has not been implemented. 

In the rest of this paper we shall describe EXCALIBUR, our event generator to compute a l l  4-fermion processes 
in e+e - collisions, including QED initial state corrections and QCD diagrams. The general structure of the 
code is flexible enough to deal with physics at the energy scales from 100 GeV to 1 TeV. 

2. Theory and general features 

There are two sources of complications. First of all one has to generate and compute all possible Feynman 
diagrams contributing to any given final state. Then the Monte Carlo integration has to be performed. 

As explained in Ref. [2] the former problem can be efficiently solved by using spinorial helicity techniques. 
The amplitudes receive contributions from Abelian and non-Abelian graphs, with two distinct topological 
structures (see Fig. 1 ). In these so-called g e n e r i c  diagrams, all particles are assumed to be outgoing: assigning 
two fermion legs to be the initial-state fermions (by crossing), the actual Feynman diagrams are generated. 
The particles and antiparticles can each be assigned in six ways to the external lines (in principle). This gives 
36 possible permutations. The Abelian diagrams are built by selecting, for each permutation, only those cases 
in which the exchanged bosons, which may be W +, W-,  Z or y, give rise to existing and charge conserving 
vertices. In the non-Abelian diagrams, two of the vector bosons are fixed to be W + and W-,  and the third one 
can be Z or y. This procedure gives, for the Abelian graphs, a maximum of 144 different diagrams, and at 
most 8 for the non-Abelian diagrams. 

The spinorial structure of each diagram can always be written in such a way that a particular combination 
of axial and vector couplings factorizes for a given helicity assignment. For example, if ai and u i are the axial 
and vector couplings in the vertices of the abelian diagram of Fig. 1, the following equation holds 

~a( 1 )y#(vl  + a l y s ) u a ( 2 )  

×up(3)y.u(v2 + a2"y5) (151 +/~2 +/63)y~,(v3 + a 3 T s ) U p ( 4 )  

×fi~(5)T"(v4 + a 4 y s ) U o - ( 6 )  = ~ P(A/3,poc, o-r) A(A,p,o' ;  1 , 2 ,3 ,4 ,5 ,6 ) ,  
a,/3,r=+ 

(7) 

where 

~'( a~, p~, ~ )  = p~Pp~p~, v~v2"v~, 

P~ = ~ ( 1 + a~), v~ = v~ :k a~, 

V2~ = ( v 2 ~z a 2 ) ( v 3 -+- a 3 ) , V3:t: = v 4 + a 4 , 

A(A,p,o-; 1 ,2 ,3 ,4 ,5 ,6 )  = ~ ( 1 ) y ~ u a ( 2 )  

×up(3)'y~z(/~l +/~2 +/~3)yvUp(4) x a,~(5)3,%,~(6) . (8) 
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Fig. 1. Generic diagrams for four-fermion production. The fermion momenta and helicities, and the bosons are indicated. The bosons VI.2 
can be either Z, W +, or 7; V can be either Z or y. 

Here we have disregarded the particle/antiparticle distinction since it is already implied by the assignment of 
the external momenta. The helicity labels A, p, o" = + determine the helicity of both external legs on a given 
fermion line. Using the Weyl-van der Waerden formalism for helicity amplitudes [6] (or, equivalently, the 
Dirac formalism of [7] ), the expression A can easily be calculated [2]. It turns out that, for each permutation 
of the fermion momenta, all helicity combinations can be computed using only four independent complex 
functions. 

The numerator in the non-Abelian diagrams can also be written in terms of the function A: 

t/a(1)y,~ua(2) fip(3)yuup(4) t/~(5)y~u,~(6) 

x 2 {glZa (Pl + P2) ~' + gaU(P5 + P6) u + g~U(P3 +/)4) ~'} 

= A ( M p ,  o-; 1 , 2 ,3 ,4 ,5 ,6 )  - A(rr, p, M5 ,6 ,3 ,4 ,  1,2) . (9) 

Thus, for massless fermions, every helicity amplitude consists of a sum of very systematic, and relatively 
compact, expressions. 

When four quarks are present in the final state, one has to add the concomitant QCD production channels, 
and also the production of a quark pair and two gluons, since both types of final states will appear as jets. The 
former contribution, which we call interfering QCD background, is easily implemented once all electroweak 
diagrams have been computed as shown before. In fact, it is enough to add gluons wherever photons connect 
quark lines [4] (of  course the correct QCD coupling and colour structure should be taken into account). 
Finally, the latter process can be efficiently computed using the recursion relations of Ref. [8]. Since it does 
not interfere with the other diagrams, we have written a separate event generator to get this contribution [9]. For 
the sake of brevity we do not describe it here. However, we point out that, as for the Monte Carlo integration, 
it has been built following exactly the same strategy used in EXCALIBUR. 

The problem of the integration over the final fermion momenta can be solved using a multichannel approach 
[ 10,2]. If  f(q~) denotes the matrix element squared and d ~  the 8-dimensional massless phase space integration 
element, one has to compute 
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tr = / f ( R )  dR  O(cuts) , ( 10) 

where O(cuts) stands for any kind of experimental cut that, in a Monte Carlo approach, is implemented by 
simply putting f ( R )  = 0 in the unwanted region of the phase space. 

In order to reduce the variance of the integrand, and therefore the Monte Carlo error, it is convenient to 
introduce an analytically integrable function g (R) ,  called the local density, that exhibits approximately the 
same peaking behaviour of f ( R )  and is unitary, that is, a normalized probability density: 

f g(R)  d R =  1 (11) 

By multiplying and dividing the integrand by g(R) ,  the cross section can be rewritten as follows 

tr = / w(R(p )  ) dp O(cuts) , ( 12) 

where the new integrand 

w (R(p ) )  - f ( R )  (13) 
g (R)  

is a smoother function of the new set of variables {Pi} defined by 

d p = g ( R ) d R ,  0 < p i <  1, (14) 

so that the variance of w(p) is smaller than the variance of f ( R ) .  
When the peaking structure of the matrix element squared is very rich one set of new integration variables 

{Pi} can only describe well a limited number of peaks. Therefore a multichannel approach is required in which 

N N t "  

g(R) = Z Oli gi(t~)) , ~ Ol i = 1 , I g i (R)dR = 1 , (15) 
, I  i=l i=1 

and where every gi(R) describes a particular peaking structure of f ( R ) .  Note that the conditions on the ai and 
gi(qb) ensure unitarity of the algorithm, i.e. probability is explicitly conserved at each step of the algorithm, 
without additional normalization factors at any stage. The numbers ai are called a-priori weights and, although 
their numerical values are in principle unimportant, they can be used, in practice, to reduce the Monte Carlo 
error [ I 1 ]. 

In EXCALIBUR we have dealt with the problem of the construction of the gi(R) in a very modular and 
systematic way. Firstly, we have singled out all possible kinematical diagrams occurring in a four-fermion final 
state (see Fig. 2). They are pictures, inspired by the Feynman diagrams, which represent the various peaking 
structures of the matrix element and indicate which variables are most appropriate to a given gi(R). The 
explanation of the pictures will be given in Subsection 3.1. Secondly, we have written all building blocks (that 
is subroutines) necessary for the calculation. Finally, we have put them together to form the gi(R). 

QED corrections are implemented using the structure-function formalism [12,3]. Each of the incoming 
fermions is assumed to have its energy degraded by the emission of photons parallel to the beam. For the 
energy distribution of the fermion after radiation we take a structure function q> that incorporates the leading 
log 69 ( a )  and (9 (a 2) initial state radiation with exponentiation of the remaining soft-photon effects. Its 
expression can be found in [3]. Our model for the total radiative cross section is then 

1 1 

O'(S) = / / dXl dx2 riO(x1 ) tit~(x2) o'O(XlX2S) , ( 1 6 )  
, . t  , /  

0 0 
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where o'0 is the non-radiative cross section and xl,  x2 represent the energy content of the incoming fermions 
after radiative emission. This provides an adequate description of the leading QED effects. 

3. Program structure 

We shall now describe in some detail the salient features and strategies adopted in EXCALIBUR. The Program 
consists of two parts: the evaluation of the matrix element and the event generation. Both steps require an 
initialization, according to the chosen final state. Roughly speaking it means that the Feynman diagrams and the 
kinematical channels have to be built. This initialization is done in SUBROUTINE SETPR0, the matrix element 
is evaluated in SUBROUTINE DIAGA and SUBROUTINE MATRIX, while nearly all the rest is devoted to the event 
generation and Monte Carlo integration. 

3.1. Subroutine SETPRO 

We already described the algorithm used to construct the Feynman diagrams through a big do loop over 
all 36 permutations of the six fermion momenta. In SUBROUTINE SETPR0 the variable KPEKM(I:6,1:36) 
explicitly contains all these permutations, and IPHASE (1 : 36) the corresponding relative phase. The constructed 
Abelian (non-Abelian) diagrams are stored in JJ(l :16,NDAB) (JN(I : l t ,NNAB)) ,  where the first index 
contains information about the particles involved in the process, the vector boson propagators and the momenta 
assignment, and the second one enumerates each diagram. In the output each constructed diagram is printed out 
together with its list number. For particular studies or checks, we give the possibility to switch off diagrams. 
This can be achieved by putting the variables KA0(I) = 0 (K10(J) = 0), for the corresponding unwanted 
Abelian (non-Abelian) diagrams (I=I:NDAB, J=I:NNAB). SUBROUTINE SETPR0 also contains the the input 
parameters of the program. They are a (ALPHA), as (ALS, relevant for 4-quarks final states), Mz (ZM), Mw 
(WM), sin 2 #w (STH2), Fw (WW) and Fz (WX). The statistical factor STATFAC and the colour factor FCOL are 
evaluated according to the chosen final state. Furthermore, the coupling combinations V/± of Eq. (8) (and those 
occurring in the non-Abelian case) are computed. It may happen that, for a particular helicity combination, one 
or more of the V/± are zero. In the latter cases there is no point in computing the corresponding function A 
(see Eq. (7 ) ) .  As a result, less than four independent complex functions are required to evaluate the spinorial 
part of the diagram. In order to have a fast evaluation of the matrix element those cases have to be excluded. 
This is achieved by introducing two occupation matrices NC (1 : 36) and N0C (1 : 36, 1 : 4). For each of the 36 
permutation, NC is set zero if the corresponding permutation does not give any Feynman diagram, and, if it 
does, NOC indicates which complex functions are needed. Through COMMON/AtLEA3/these matrices are passed 
to SUBROUTINE DIAGA, where only those helicity combination for which N0C and NC are different from zero 
are computed. 

Two more operations are performed in SUBROUTINE SETPR0, namely the choice of the kinematical channels 
for the Monte Carlo integration and the computation of the QCD interfering background. 

We singled out a maximum number of 26 kinematical channels. They are given in Fig. 2, together with 
the name of the corresponding subroutines in EXCALIBUR, and are inspired by all possible occurring Feynman 
diagrams. Fermionic lines have an arrow, a wavy line represents a photon and a dashed line can be either Z 
or W (this gives 26 channels). Solid lines connect topological equivalent points. That is a t-channel solid line 
means isotropic angular distributions between the connected fermions while a s-channel solid line stands for 
photon or massive vector boson propagators. Since they only give rise to an s dependent behaviour, the peaking 
structure relevant for the integration over the final momenta is not affected by them. As an example, with those 
conventions it is easy to recognize that the last channel RAMB04 represents an isotropic 4-body decay. If the 
inspiring Feynman diagrams exist, the variables NCHA (1 : 26,1 : 48) are set equal to one, where the first index 
runs over the possible channels and the second one labels the permutation of the final momenta. The number 
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Fig. 2. Kinematical diagrams in EXCALIBUR. 
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48 is explained as follows. There are 24 permutations of the four final momenta but, for some channel, the 
case where the initial state labels 1 and 2 refer to e + and e -  respectively must be distinguished from the case 
where they refer to e -  and e +. This gives 48 possible permutations. Depending on the topology, there are 
symmetries among the final momenta that have to be taken into account in order to have a minimum number 
of kinematical channels. For example, in channel NONAB1, permutation 3456 of the final momenta is equivalent 
to permutation 5634. This symmetrization is automatically performed by the program. When the initialization 
in SUBROUTINE SETPR0 is completed, variable NCT indicates the number of found kinematical channels. In 
the output file they are printed out together with a list number I. An array has been introduced (NCT0), such 
that putting NCT0(I)= 0 excludes channel with number I (I=I:NCT) when the Monte Carlo integration is 
performed. This can be used to increase the speed of the program, by switching off those channels for which 
the procedure of self-optimization (see below) gives very small a-priori weights. 

The interfering QCD background is added as an extra contribution proportional to the ratio as/otQQ'  (the 
variable GRAP), for those amplitudes where a photon connects two quarks of charge Q and Q'. 

This concludes the description of SUBROUTINE SETPR0. Since all possible initializations are performed there, 
the structure of the rest of the program can be simple and fast. 

3.2. Subroutines DIAGA and MATRIX 

In SUBROUTINE DIAGA numerators and denominators of all found Feynman diagrams for which N0C and 
NC are non-vanishing are computed at once using the Weyl-van der Waerden formalism. It means that, for 
each generated event, SUBROUTINE DIAGA is called just once and not n times, where n is the total number of 
Feynman diagrams. As for the computational speed, this is very important. 

In SUBROUTINE MATRIX (SQUAREM) the matrix element squared (SQUAREM) is calculated by putting together 
the numerators and denominators computed in SUBROUTINE DIAGA and the coupling combinations of Eq. (8) 
evaluated in SUBROUTINE SETPR0. Since computing the colour factor and QCD interfering background in a 
four-quark final state with colour labels i, j, l and m requires the part of the amplitude proportional to BijSl,, to 
be distinguished from that proportional to BilBjm [4], the constructed amplitudes in SUBROUTINE MATRIX take 
care of both contributions separately. 

3.3. Phase space generation and integration 

In the MAIN of EXCALIBUR the variables XR1 and XR2, representing the energy content xl and x2 of the 
incoming fermions after radiative emission (Eq. (16)) ,  are generated. Then, the initial configuration of the 
momenta in the center o f  mass frame o f  the event after ISR is set calling SUBROUTINE MOMSET and the cuts 
imposed on the momenta in the Lab frame are rewritten in terms of cuts in the center of mass frame. The 
kinematical channels are called using SUBROUTINE ADDRESS(LFLAG,NC,NN,DJ). When LFLAG is set 0, the 
channel number NC, with the momenta permutation labelled by NN, is used for generating the momenta and 
computing the local density DJ. If LFLAG= 1 the actual momenta configuration is used to compute DJ. The 
choice of the channel to use is performed, as in Ref. [ 10], on the basis of the actual values of the a-priori 
weights o~ i by defining the cumulative numbers fli = ai + ' . .  +a i ,  taking a random number uniformly distributed 
between 0 and 1 and choosing channel i if fli-x < z < fli. 

In SUBROUTINE MOMARRAY the generated four momenta are put in a big array PM ( 0 : 4 , 0 : 9 0 0 )  and stored in 

C0MMON/MOMENTA/R00TS,XRi,XR2,PM(0:4,0:900) 

(ROOTS is the center of mass energy of the event). The first index refers to the component of the momenta 
(0 represents the energy and 4 is the four-momentum squared). As for the second index, the following self- 
explanatory conventions are used: 
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PM(I,34)  ~ PM(I,43)= PM(I ,3)+PM(I,4)  etc. 
PM(I,643) ---- PM(I,346) -- . . .  = PM(I ,6)+PM(I ,4)+PM(I ,3)  etc. 

Besides, but only if the first digit refers to an incoming momentum (notice the correspondence 7 ~ 1, 8 --~ 2) 

PM(I,734) -- PM(I ,1 ) -PM(I ,3 ) -PM(I ,4 )  etc. 
PM(I,851) -- PM(I,2)-PM(I,5)-PM(I,I) etc. 

Each channel is constructed in a very modular way by putting together basic subroutines that describe different 
parts of its peaking structure. In Ref. [2] an example of the construction of channels BKEMB2 and CONVER2 of 
Fig. 2 is given. There are 10 of these basic subroutines. They are the building blocks of the whole generation 
procedure. For the sake of brevity we do not list them here. They are well commented in the program. We only 
notice that, in building the kinematical channels, every t-channel exchanged massive vector boson is always 
assumed to give a fiat angular distribution between the initial and the final fermion. This is done in order 
to avoid proliferation in the number of channels. In our experience, this gives a very good approximation at 
center of mass energies up to 500 GeV, a good approximation at higher energies up to 1 TeV and may cause 
large Monte Carlo errors at 2 TeV. Of course the Monte Carlo program remains correct, but higher statistics 
runs are required. However, adding channels to map this high energy kinematical behaviour is trivial, because 
EXCALIBUR already contains all needed ingredients. 

As far as the self-optimization of the integration is concerned, a detailed description of the iterative algorithm 
implemented in EXCALIBUR may be found in Ref. [ 11 ]. Here we point out that two variables have to be chosen 
by the user, namely the maximum number of iterations ISTEPMAX (in the input list) and the number of point 
NOPT used for the self-optimization (in the MAIN of the program). Then, for each iteration, NOPT/ISTEPMAX 
points (including zero-weight events) are used to compute the a-priori weights. We found that, with 4-5 
hundred thousand points, a good choice is NOPT= 100 000 and ISTEPMAX= 10. However, when very stringent 
cuts are applied, the majority of the events falls outside the allowed region, so that the ratio NOPT/ISTEPMAX 
may be a very small number. This causes a bad estimate of the best a-priori weights to be used. In those cases 
it is convenient to either increase NOPT or decrease ISTEPMAX. 

In the input list one has to specify the set of standard cuts as specified in the next section. Any other type 
of cut must be implemented directly in SUBROUTINE CUTS (LNOT), where 

C[3MMON/AREAIO/PM1 ( 0 : 4 , 1 : 6 ) ,  PM4(12:65),  0MCT1 (1 : 6 ,3 :  6) 

contains the four momenta computed in the Lab frame (PM1), the invariant mass squared among all possible 
particles pairs (PM4) and the quantities 1 -cosOi j  (0MCT1). If the event is rejected LNOT= 1, and the weight 
is put equal to zero. 

Finally, all weights (computed as in Eq. (13)) are collected using SUBROUTINE INB00K and the Monte 
Carlo results called through SUBROUTINE 0UTBOK. 

4. Input 

The meaning of the input parameters is the following: 

NPROCESS (INTEGER) 

The number of processes to be computed. 

N (INTEGER) 

The number of points for the Monte Carlo integration. 
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ISTEPMAX (INTEGER) 
The number of iterations for optimizing the a-priori weights. 

0UTPUTNAME (CHARACTER* 15) 
The name of the output file. 

KREL (INTEGER) 
It selects the signals. If KREL = 0 all Feynman diagrams are taken into account. If KREL= 1-5 only those leading 
to reactions of Eqs. ( 1 ) - (5 ) .  

LQED (I NTEGER) 
It includes (1) or excludes (0) ISR. 

ROOTSMUL (REAL*8) 
The total energy of the colliding e + and e - .  All energies are in GeV. 

SHCUT (REAL*8) 
Minimum value of the invariant mass squared of the event after QED radiation. 

ECUT (3) (REAL*8) 
Minimum energy of particle number 3. 

ECUT (4) (REAL*8) 
Minimum energy of particle number 4. 

ECUT (5) (REAL*8) 
Minimum energy of particle number 5. 

ECUT (6) (REAL*8) 
Minimum energy of particle number 6. 

SCUT (3 ,4 )  (hEAL*8) 
Minimum value of (p(3)  + p(4))2 .  All invariant masses are in GeV z. 

SCUT (3 ,5 )  (R~AL*8) 
Minimum value of (p (3)  + p(5))2 .  

SCUT (3 ,6 )  (REAL*8) 
Minimum value of (p (3)  + p(6))2 .  

SCUT(4,5) (REAL,8) 
Minimum value of (p(4)  + p(5))2 .  

SCUT (4 ,6 )  (I~AL*8) 
Minimum value of (p(4) + p(6))2 

SCUT (5,6) (REAL*8) 
Minimum value of (p(5)  + p(6))2 .  

CMAX (i, 3) (REAL*8) 
Maximum value of cos 0 between particle 1 and 3. 

CMAX(I 4) (REAL*8) 
Maximum value of cos 0 between particle 1 and 4. 
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CMAX ( I, 5) (REAL*8) 
Maximum value of cos 0 between particle 1 and 5. 

CMAX(I, 6) (REAL*8) 
Maximum value of cos 0 between particle 1 and 6. 

CMAX (2 ,3 )  (REAL*8) 
Maximum value of cos 0 between particle 2 and 3. 

2MAX (2 ,4 )  (REAL*8) 
Maximum value of cos 0 between particle 2 and 4. 

7MAX (2,5) (REAL*8) 
Maximum value of cos 0 between particle 2 and 5. 

?,MAX (2,6) (REAL*8) 
Maximum value of cos 0 between particle 2 and 6. 

CMAX (3 ,4 )  (REAL*8) 
Maximum value of cos 0 between particle 3 and 4. 

CMAX (3,5) (REAL*8) 
Maximum value of cos 0 between particle 3 and 5. 

CMAX (3,6) (REAL*8) 
Maximum value of cos 0 between particle 3 and 6. 

CMAX (4,5) (KEAL*8) 
Maximum value of cos O between particle 4 and 5. 

CMAX (4,6) (REAL*8) 
Maximdm value of cos 0 between particle 4 and 6. 

CMAX (5 ,6 )  (REAL*8) 
Maximum value of cos 0 between particle 5 and 6. 

PAR(3) (CHARCTER*8) 
Produced fermion with label 3 (to be chosen among ' E L ' ,  'NE' ,  'MU', 'NM' 
'CQ' ,  'BQ' ,  ' T Q ' ) .  

PAR (4) (CHARCTER*8) 
Produced antifermion with label 4. 

PAR(5) (CHARCTER*8) 
Produced fermion with label 5. 

PAR(6) (CHARCTER*8) 
Produced antifermion with label 6. 

447 

,'TA','NT','DQ','UQ','SQ', 

5. Test Run Output 

To conclude our description, we give an example of a typical calculation that can be performed with 
EXCALIBUR. One should be able to reproduce this output within the estimated Monte Carlo error (small 
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differences may occur because the quasi-random number generator used in the program is not strictly portable). 
Using an input file as follows 

i number of energy points 
250000 number of Monte Carlo points 

10 number of iterations in a.p.weights optimization 
output output program name 
0 krel (signal: 0,1,2,3,4,5) 

i lqed (0 or I) 

190.d0 total energy (GeV) 
O.dO cut on reduced inv. mass squared after ISR 

O.dO ecut3 

O.dO ecut_4 
20.dO ecut_5 

20.dO ecut6 
O.dO scu t_34  
O.dO scu t_35  
O.dO scu t_36  
O.dO scut_45 
O.dO scut46 

lO0.dO scut_56 
1.dO cmax_13 
l.dO cmax_14 
0.gdO cmax_15 

0.9dO cmax_16 
l.dO cmax_23 
l.dO cmax_24 

0.9dO cmax_25 
0.gdO cmax_26 
l.dO cmax_34 
l.dO cmax_35 

l.dO cmax_36 
1.dO c m a x 4 5  
1.dO cmax_46 
0.9dO cmax_56 
mu produced fermion (3) 
nm produced antifermion (4) 
uq produced fermion (5) 
dq produced antifermion (6) 

and the values ALPHA = I . / 1 2 8 . ,  ZM = 91.16, WM= 80.22, STH2= 0.226 ,WW= 2.03, WZ= 2.53 we g~  the 
following output file 

output 

All Feynman diagrams 

sqrt(s) = .190000D+03 
n_points = 250000 
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e n e r g y  c u t s  w i t h  e c u t _ 3  = . 0  

e c u t _ 4  = . 0  

e c u t _ 5  = 2 0 . 0  

e c u t _ 6  = 2 0 . 0  

cut on s*xlr*x2r = .0 

mass cuts with scut_34 = .0 

scut_35 = .0 

scut_36 = .0 

scut_45 = .0 

scut_46 = .0 

scut_56 = i00.0 

angle cuts with cmax_13 = 1.0 

cmax_14 = 1.0 

cmax_lS = .9 

cmax_16 = .9 

cmax_23 = 1.0 

cmax_24 = 1.0 

cmax_25  = .9  

cmax_26  = .9  

cmax_34 = 1.0 

cmax_35 = 1.0 

cmax_36 = 1.0 

cmax_45 = 1.0 

cmax_46 = 1.0 

cmax_56 = .9 

I.S.K. INCLUDED 

s^2_thet = .226000D+00 

Z-mass = .911600D+02 

Z-width = .253000D+01 

W-mass = .802200D+02 

W-width = .203000D+01 

i/alpha = .128000D+03 

alpha_s = .I03000D+O0 

process: antiel(1) el(2) ---> mu(3) antinm(4) uq(5) antidq(6) 

abelian diagrams phase 

1: [el(1),el(2)] Z [mu(3),mu,nm(4)] W [uq(5),dq(6)] 

2: [el(1),el(2)] G [mu(3),mu,nm(4)] W [uq(5),dq(6)] 

3: [el(1),el(2)] Z [uq(5),uq,dq(6)] W [mu(3),nm(4)] 

ph= 1 

ph= 1 

ph= 1 
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4: Cel(l),el(2)1 G Cuq(5),uq,dq(G)l W Cmu(B>,nm(4)1 ph= 1 
5: [mu(S) ,nm(4)1 W Cuq(5),dq,dq(G)l Z Cel(l),el(2)1 ph= 1 
6: [mu(3),nm(4)1 W Cuq(5),dq,dq(6)1 G bl(l),el(2)1 ph= 1 
7: Cuq(51,dqCG)l W Cel(l),ne,el(2)1 W i%u(3),nm(4)1 ph= 1 
8: [uq(5),dq(6)1 W Cmu(S),nm,nm(4)1 Z [el(l),el(2)1 ph= 1 

non-abelian diagrams phase 

1: Cuq(5),dq(G)l Cel(l),el(2)1 Cmu(3),nm(4)1 (WZW) ph= 1 
2: Cuq(S),dq(G)l Cel(l),el(2)1 Cmu(3),nm(4)1 (WGW) ph= 1 

kinematical diagrams 

channel permutation 

1: annihi2Cwm) 123456 
2: annihi2Cwm) 124356 
3: annihi2Cwm) 125634 
4: annihi2(wm) 126534 
5: conver3(wm) 125634 
6: nonabl(wm) 123456 
7: rambo4 123456 

********** weights analysis ********** 

*** variable number 1 *****f****** 

sum(w**O) .25000013+06, sum(w**l) .135757D+06 
sum(w**2) .254349D+O6, sum(w**3) .803758D+06 
sum(w**4) .434411D+07 
maximum .221013D+02, max.in buffer .14867OD+O2 
no.weights=O 59062, no.weights<O 0 
estimator x: .543028D+OO 
estimator y: .289008D-05 
estimator z: .730267D-15 
average estimate : .543028D+OO 

+\- . 170002D-02 
variance estimate: .289008D-05 

+\- .270235D-07 
efficiency for all weights 2.457 % 
efficiency for non-zero weights : 3.217 % 
overshoot factor of histogram : 1.487 
the distribution of the non-zero weights: 
50, log scale; entries under,inside,over: 0 190928 10 

.1487E+Ol .1631E+O6 i******************************i 

.2973E+Ol .2157E+05 i************************* i 

.4460E+Ol .4936E+04 i********************** i 

.5947E+Ol .1089E+O4 i****************** i 
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.7433E+01 .1470E+03 

.8920E+01 .3600E+02 

.1041E+02 .1600E+02 

.1189E+02 . l lOOE+02 

.1338E+02 .7000E+O1 

.1487E+02 .5000E+O1 

i********* i 
i******* i 

i****** i 

i***** i 
i***** i 

differences in the computation 
of the a-priori weights: 

diff( i)= 
diff( 2)= 
diff ( 3)= 
diff ( 4)= 
diff(5) = 
diff ( 6)= 
diff( 7)= 
diff ( 8)= 
diff( 9)= 
diff ( i0)= 
diff( ii)= 
di~f ( 12)= 

1 .95407687917905  
.891414805616945 
.7677390572607608 
.6967978248575471 
.5755243287941117 
.7280986181406474  
.5755417220460467 
.8925286045906328  
.5632310939026423 

.598279075660049 

.5921705560137981 

.5181929881140225 

a-priori weights: 

1 : .899493D-03 
2 : .165631D-03 
3 : .114732D-03 
4 : .460900D-03 
5 : .881i37D+00 
6 : .117221D+00 
7 : .817789D-06 

After information about input parameters and imposed cuts, the program prints out the used Feynman 
diagrams and kinematical channels. Then, the analysis of  the weights giving the Monte Carlo estimate of  the 
cross section (variable number 1 ) follows. In particular various sums of  the weights to powers 0 -4  are given as 
well as the maximum weight and that one in the buffer (that is in the interval of  values used in the histogram 
that shows the weight distribution). The quantity x is the estimator of  the average of  the distribution defined, 
for N weights wi, as 

~ i  wi (17) 
N ' 

y is the estimator of  the variance 

N N ( N  1) ' 

and z is an estimator for the variance of  the variance, so that the error on the average and variance estimates 
are v/~ and v~- respectively. In the example o" = 0.5430 fl= 0.00170 pb. As usual the efficiency is defined as 
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( w ) / m a x ( w )  and the overshoot factor is the ratio between the m a x i m u m  weight  and the m a x i m u m  weight  
writ ten in the buffer. In the his togram the 190928 non-zero weights are displayed according to their abundance  

in bins.  Final ly,  the variables D of  Ref. [ 1 l ] ( that  measure,  at each step in the opt imizat ion  procedure,  how 

well the actual set o f  a-priori  weights  approximates  the behaviour  of  the opt imal  set) are pr inted out, together 

with the found  best set o f  a-priori  weights. 
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