UvA-DARE (Digital Academic Repository)

X-ray structural study of Ph2PbCl2(DMSO)2, Ph2PbCl2(HMPT)2 and Ph3PbCl(HMPT)

Yatsenko, A.V.; Aslanov, L.A.; Schenk, H.

DOI
10.1016/0277-5387(95)00076-5

Publication date 1995

Published in
 Polyhedron

Link to publication

Citation for published version (APA):

Yatsenko, A. V., Aslanov, L. A., \& Schenk, H. (1995). X-ray structural study of Ph2PbCl2(DMSO)2, Ph2PbCl2(HMPT)2 and Ph3PbCl(HMPT). Polyhedron, 14, 2371-2377. https://doi.org/10.1016/0277-5387(95)00076-5

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

X-RAY STRUCTURAL STUDY OF $\mathrm{Ph}_{2} \mathrm{PbCl}_{\mathbf{2}}(\mathrm{DMSO})_{2}$, $\mathbf{P h}_{2} \mathbf{P b C l}_{\mathbf{2}}(\mathbf{H M P T})_{2}$ AND $\mathbf{P h}_{3} \mathbf{P b C l}(\mathbf{H M P T})$

A. V. YATSENKO* and L. A. ASLANOV
Chair of General Chemistry, Chemistry Department, M. V. Lomonosov Moscow State University, 119899 Moscow, Russian Federation

and

Abstract

H. SCHENK

Laboratory for Crystallography, Amsterdam University, Nieuve Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 13 December 1994; accepted 18 January 1995)

Abstract

An X-ray structural investigation of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{DMSO})_{2}(\mathbf{I}), \mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{HMPT})_{2}$ (II) and $\mathrm{Ph}_{3} \mathrm{PbCl}(\mathrm{HMPT})$ (III) was carried out (DMSO $=$ dimethylsulphoxide, HMPT = hexamethyltriamide phosphoric acid). Complexes I and II have octahedrally coordinated $\mathrm{Pb}^{\text {IV }}$, but in III the coordination is trigonal-bipyramidal. Comparison with the analogous tin compounds indicates the relative shortening of $\mathrm{Pb}-\mathrm{C}$ bonds and lengthening of $\mathrm{Pb}-\mathrm{Cl}, \mathrm{Pb}-\mathrm{N}$ and $\mathrm{Pb}-\mathrm{O}$ bonds. This phenomenon can be explained in terms of rehybridization of orbitals of the central atom.

In our previous work the X -ray structures of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ complexes with nitrogen-donor ligands such as imidazole ${ }^{1}$ and dipyridine ${ }^{2}$ were described and some manifestations of the mutual influence of ligands in lead(IV) complexes were discussed. As a continuation of this study, an X-ray structural investigation of organolead chloride complexes with oxygen-donor ligands, $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{DMSO})_{2}(\mathbf{I})$, $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{HMPT})_{2}$ (II) and $\mathrm{Ph}_{3} \mathrm{PbCl}$ (HMPT) (III), was carried out (DMSO $=$ dimethylsulphoxide, HMPT $=$ hexamethyltriamide phosphoric acid).

EXPERIMENTAL

Synthesis and crystal preparation

$$
\mathrm{Ph}_{2} \mathrm{PbCl}_{2} \mathrm{D}_{2}[\mathrm{D}=\mathrm{DMSO}(\mathbf{I}) \text { and } \mathrm{HMPT}(\mathbf{I I})] .
$$ $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(0.5 \mathrm{~g})$ was boiled in $25 \mathrm{~cm}^{3}$ of chloroform with a three-fold excess of ligand with complete

[^0]dissolution in accordance with known procedure. ${ }^{3}$ Single crystals were grown by slow cooling.
$\mathrm{Ph}_{3} \mathrm{PbCl}(\mathrm{HMPT})$. A five-fold excess of HMPT was added to a benzene solution of $\mathrm{Ph}_{3} \mathrm{PbCl}$. After evaporation single crystals were obtained.

Data collection and structure determination

For data collection a CAD-4 diffractometer (MoK_{α} radiation, graphite monochromator, ω-scanning) was used. Crystal data and structure determination conditions are listed in Table 1. For structures I and III, only the independent part of the reciprocal space was investigated. In the case of structure II reflections in a hemisphere were collected and their intensities were averaged after correction crystal decomposition (50% loss of intensity of standard reflections). Empirical absorption corrections were made. ${ }^{4}$ Coordinates of the lead atoms were determined by the Patterson method and other non-hydrogen atoms were located from Fourier and difference Fourier maps. All non-hydrogen atoms were refined anisotropically, positions of

Table 1. Crystallographic data for I-III

	I	II	III
Compound	$\mathrm{Ph}_{2} \mathrm{PbCl}_{2}\left(\mathrm{DMSO}_{2}\right.$	$\mathrm{Ph}_{2} \mathrm{PbCl}_{2}\left(\mathrm{HMPT}_{2}\right.$	$\mathrm{Ph}_{3} \mathrm{PbCl}_{2}(\mathrm{HMPT})$
Formula	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{PbS}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~Pb}$	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{OPPb}$
Crystal	$0.15 \times 0.2 \times 0.25$	$0.15 \times 0.15 \times 0.4$	$0.25 \times 0.25 \times 0.3$
dimensions (mm)	$P 2_{1} / n$	$P 2_{1} / n$	$P 2_{1} / n$
Space group	$9.680(2)$	$11.667(3)$	$9.449(3)$
$a(\AA)$	$15.944(3)$	$16.472(4)$	$15.563(4)$
$b(\AA)$	$13.159(4)$	$17.403(6)$	$18.322(6)$
$c(\AA)$	$92.89(2)$	$98.59(3)$	$93.70(2)$
$\beta\left({ }^{\circ}\right)$	4	4	4
Z	1.927	1.588	1.614
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	88.5	54.3	65.0
$\mu\left(\mathrm{~cm}^{-1}\right)$	25	25	25
$\left.\theta_{\text {max }}{ }^{\circ}\right)$			
Number of reflections	2767	5416	3625
with $I>3 \sigma(I)$	0.028	0.044	0.038
R	0.032	0.049	0.043
R_{w}			

hydrogen atoms were calculated geometrically and these atoms were used for structure factor calculations, but not refined. All calculations were performed using the SDP package. ${ }^{5}$ Scattering factors were taken from the International Tables of X-ray Crystallography. ${ }^{6}$ Full supplementary material has been deposited.

For $\mathrm{Ph}_{3} \mathrm{PbCl}(\mathrm{HMPT})$, parameters of the monoclinic unit cell $a=9.43, b=15.62, c=18.35 \AA$, $\beta=93.3^{\circ}$ and space group $P 2_{1} / n$ have been re-
ported (the structure determination was not carried out), ${ }^{7}$ which are very close to our results.

RESULTS AND DISCUSSION

Structure description

Molecular structures of the investigated compounds are displayed in Figs $1-3$; the important

Fig. 1. A perspective view of I showing the atom labelling scheme.

Fig. 2. A perspective view of II showing the atom labelling scheme.

Fig. 3. A perspective view of III showing the atom labelling scheme.
bond lengths and angles are presented in Table 2. Contrary to $\mathrm{Ph}_{2} \mathrm{~Pb}(\mathrm{NCS})_{2}(\mathrm{HMPT})_{2}{ }^{8}$ and to $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ (imidazole) ${ }_{2},{ }^{1}$ with an all-trans arrangement of ligands around the lead atom, in structures I and II the donor molecules DMSO and HMPT and chlorine atoms are placed cis to each other, with trans-positioned phenyl groups (the terms cis and trans will be used below with respect to the $\mathrm{MD}_{2} \mathrm{Hal}_{2}$ plane). The difference in energies of cisand trans-isomers seems to be insignificant, which is in accordance with the simultaneous presence of both isomers in the structure of $\mathrm{Et}_{2} \mathrm{SnCl}_{2}(\mathrm{TPPO})_{2}$ (TPPO $=$ triphenylphosphine oxide). ${ }^{9}$ However, the bond lengths in polyhedra with cis and trans coordination are markedly different. Taking into consideration the fact that the donor properties of the chloride ion are close to those of isothiocyanate, we propose that in trans $-\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{HMPT})_{2}$ the $\mathrm{Pb}-\mathrm{O}$ bond lengths should be approximately the same as in $\mathrm{Ph}{ }_{2} \mathrm{~Pb}(\mathrm{NCS})_{2}(\mathrm{HMPT})_{2}$, i.e. $2.35-2.36 \AA$, and the $\mathrm{Pb}-\mathrm{Cl}$ bond lengths should be 2.69-2.70 \AA as in trans $-\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ (imidazole) ${ }_{2}$. In the cis-structures I and II we have $2.60 \AA$ for $\mathrm{Pb}-\mathrm{Cl}(0.09 \AA$ shorter) and $2.52 \AA$ for $\mathrm{Pb}-\mathrm{O}(0.16 \AA$ longer $)$
bonds. This redistribution of bond lengths in linear $\mathrm{Cl}-\mathrm{Pb}-\mathrm{O}$ moieties is caused by the higher elec-tron-donating capacity of the chloride anion in comparison with HMPT, DMSO and other analogous donor molecules, and by the hypervalent character of these bonds, which are formed by participation of only one lead p-orbital per three-atom group, whereas s-electrons do not play a significant role. ${ }^{10}$

In structure III, $\mathrm{Pb}-\mathrm{C}$ bonds are formed in accordance with the model mentioned above by $s p^{2}$ hybridized orbitals, and bonds in the linear fragment are also hypervalent, so the $\mathrm{Pb}-\mathrm{Cl}$ and $\mathrm{Pb}-\mathrm{O}$ bond lengths in II and III are almost the same. In real structures the geometry of $\mathrm{Cl}-\mathrm{Pb}-\mathrm{O}$ fragments differs from linearity by $2-15^{\circ}$. In I and II this is due to the distortion of the equatorial plane (increasing $\mathrm{Cl}-\mathrm{Pb}-\mathrm{Cl}$ angle and decreasing $\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ angle), which is usual for similar structures, and in III it is due to different orientation of the phenyl rings. Two of them are perpendicular to the PbC_{3} plane, the third is almost parallel to it, and the $\mathrm{Pb}-\mathrm{Cl}$ and $\mathrm{Pb}-\mathrm{O}$ bonds are slightly bent to this ring.

Table 2. Selected bond lengths (\AA) and angles ($\left(^{\circ}\right.$) for structures I-III

$\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{DMSO})_{2}$					
$\mathrm{Pb}-\mathrm{Cl}(1)$	2.637(2)	$\mathrm{Pb}-\mathrm{O}(2)$	2.543(6)	$\mathrm{S}(1)-\mathrm{O}(1)$	1.509(6)
$\mathrm{Pb}-\mathrm{Cl}(2)$	2.580 (2)	$\mathrm{Pb}-\mathrm{C}(11)$	2.165 (8)	$\mathrm{S}(2)-\mathrm{O}(2)$	$1.518(7)$
$\mathrm{Pb}-\mathrm{O}(1)$	$2.482(6)$	$\mathrm{Pb}-\mathrm{C}(21)$	2.164(8)		
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{Cl}(2)$	95.39(7)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{O}(2)$	164.5(2)	$\mathrm{O}(2)-\mathrm{Pb}-\mathrm{C}(11)$	84.7(3)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{O}(1)$	175.3(2)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{C}(11)$	97.4(2)	$\mathrm{O}(2)-\mathrm{Pb}-\mathrm{C}(21)$	81.6(2)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{O}(2)$	99.9(2)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{C}(21)$	94.7(2)	$\mathrm{C}(11)-\mathrm{Pb}-\mathrm{C}(21)$	165.5(3)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{C}(11)$	92.8(2)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{O}(2)$	82.1 (2)	$\mathrm{Pb}-\mathrm{O}(1)-\mathrm{S}(1)$	124.8(3)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{C}(21)$	94.0(2)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(11)$	83.1 (3)	$\mathrm{Pb}-\mathrm{O}(2)-\mathrm{S}(2)$	142.3(4)
$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{O}(1)$	82.9(1)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(21)$	90.5(2)		
$\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(\mathrm{HMPT})_{2}$					
$\mathrm{Pb}-\mathrm{Cl}(1)$	2.605(3)	$\mathrm{Pb}-\mathrm{O}(2)$	2.506(7)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.479(6)
$\mathrm{Pb}-\mathrm{Cl}(2)$	2.603(2)	$\mathrm{Pb}-\mathrm{C}(21)$	$2.178(13)$	$\mathrm{P}(2)-\mathrm{O}(2)$	$1.473(7)$
$\mathrm{Pb}-\mathrm{O}(1)$	$2.536(6)$	$\mathrm{Pb}-\mathrm{C}(31)$	$2.135(16)$		
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{Cl}(2)$	97.85(9)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{O}(2)$	172.3(2)	$\mathrm{O}(2)-\mathrm{Pb}-\mathrm{C}(21)$	87.1(3)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{O}(1)$	174.4(2)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{C}(21)$	93.4(3)	$\mathrm{O}(2)-\mathrm{Pb}-\mathrm{C}(31)$	85.4(6)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{O}(2)$	89.8(2)	$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{C}(31)$	93.2(6)	$\mathrm{C}(21)-\mathrm{Pb}-\mathrm{C}(31)$	170.1(6)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{C}(21)$	93.0(4)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{O}(2)$	85.1 (2)	$\mathrm{Pb}-\mathrm{O}(1)-\mathrm{P}(1)$	159.0(4)
$\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{C}(31)$	93.4(5)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(21)$	84.7(4)	$\mathrm{Pb}-\mathrm{O}(2)-\mathrm{P}(2)$	164.3(4)
$\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{O}(1)$	87.4(2)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(31)$	88.2(5)		
$\mathrm{Ph}_{3} \mathrm{PbCl}$ (HMPT)					
$\mathrm{Pb}-\mathrm{Cl}$	2.614(3)	$\mathrm{Pb}-\mathrm{C}(11)$	2.189(10)	$\mathrm{Pb}-\mathrm{C}(31)$	2.194(9)
$\mathrm{Pb}-\mathrm{O}(1)$	2.500(7)	$\mathrm{Pb}-\mathrm{C}(21)$	$2.175(9)$	$\mathrm{O}(1)-\mathrm{P}(1)$	$1.476(8)$
$\mathrm{Cl}-\mathrm{Pb}-\mathrm{O}(1)$	174.5(2)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(11)$	87.5(3)	$\mathrm{C}(11)-\mathrm{Pb}-\mathrm{C}(31)$	122.6(4)
$\mathrm{Cl}-\mathrm{Pb}-\mathrm{C}(11)$	95.4(3)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(21)$	82.8(3)	$\mathrm{C}(21)-\mathrm{Pb}-\mathrm{C}(31)$	120.9(4)
$\mathrm{Cl}-\mathrm{Pb}-\mathrm{C}(21)$	91.8(2)	$\mathrm{O}(1)-\mathrm{Pb}-\mathrm{C}(31)$	89.2(3)	$\mathrm{Pb}-\mathrm{O}(1)-\mathrm{P}(1)$	167.6(5)
$\mathrm{Cl}-\mathrm{Pb}-\mathrm{C}(31)$	93.1(3)	$\mathrm{C}(11)-\mathrm{Pb}-\mathrm{C}(21)$	115.4(3)		

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in comparable lead and tin complexes (averaged; Δ is the difference between values for lead and tin)

Compound	Parameter	Pb	Sn	Δ
$\mathrm{Ph}_{2} \mathrm{MCl}_{2}(\mathrm{DMSO})_{2}{ }^{\text {a }}$	$\mathrm{M}-\mathrm{Cl}$	2.609^{\prime}	2.494^{11}	0.12
	$\mathrm{M}-\mathrm{O}$	2.513	2.318	0.20
	M-C	2.165	2.117	0.05
	$\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$	95.4	95.2	0.2
	$\mathrm{C}-\mathrm{M}-\mathrm{C}$	165.2	167.2	-2.0
$\mathrm{Ph}_{2} \mathrm{MCl}_{2} \mathrm{Dipy}^{\text {a }}$	$\mathrm{M}-\mathrm{Cl}$	2.632^{2}	2.510^{19}	0.12
	M-N	2.521	2.360	0.16
	M-C	2.167	2.152	0.02
	$\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$	111.5	103.5	8.0
	$\mathrm{C}-\mathrm{M}-\mathrm{C}$	177.3	173.5	3.8
$\mathrm{Ph}_{2} \mathrm{M}(\mathrm{NCS})_{2}(\mathrm{HMPT})_{2}{ }^{\text {b }}$	$\mathrm{M}-\mathrm{N}$	2.418^{8}	$2.236{ }^{8}$	0.18
	$\mathrm{M}-\mathrm{O}$	2.345	2.184	0.16
	M-C	2.155	2.138	0.02
$\left[\mathrm{R}_{2} \mathrm{MN}_{2} \mathrm{Cl}_{2}\right]^{\text {c }}$	$\mathrm{M}-\mathrm{Cl}$	2.700^{1}	2.484^{20}	0.22
[$\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ (imidazole) ${ }_{2}$ and	$\mathrm{M}-\mathrm{N}$	2.45	2.314	0.14
$\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{SnCl}_{2}\left(4,4^{\prime}-\mathrm{Me}_{2}\right.$ Dipy $)$]	$\mathrm{M}-\mathrm{C}$	2.18	2.163	0.02
	$\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$	160.9	163.2	-2.3
	$\mathrm{C}-\mathrm{M}-\mathrm{C}$	129.1	106.3	22.8
$\mathrm{Ph}_{2} \mathrm{M}(2,6$-pyridinedicarboxylate)	$\mathrm{M}-\mathrm{N}$	2.452^{21}	2.338^{22}	0.11
monohydrate ${ }^{d}$	M-O(carboxyl)	2.468	2.347	0.12
	$\mathrm{M}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.472	2.271	0.20
	$\mathrm{M}-\mathrm{C}$	2.143	2.124	0.02
	C-M-C	172.8	172.4	0.4
$\mathrm{Ph}_{3} \mathrm{MCl}\left(\mathrm{OPR}_{3}\right)^{e}$	$\mathrm{M}-\mathrm{Cl}$	2.614	2.489^{23}	0.13
[$\mathrm{Ph}_{3} \mathrm{PbCl}(\mathrm{HMPT})$ and $\mathrm{Ph}_{3} \mathrm{SnCl}\{$ bis	$\mathrm{M}-\mathrm{O}$	2.499	2.346	0.15
(diphenylphosphonyl)ethylene\}]	$\mathrm{M}-\mathrm{C}$	2.186	2.142	0.04
	$\mathrm{C}-\mathrm{M}-\mathrm{Cl}$	93.4	95.1	-1.7
$\mathrm{Ph}_{3} \mathrm{M}(\mathrm{OH})^{\prime}$	$\mathrm{M}-\mathrm{O}$	$2.37{ }^{24}$	2.197^{24}	0.17
	$\mathrm{M}-\mathrm{O}^{\prime}$	2.44	2.255	0.18
	$\mathrm{M}-\mathrm{C}$	2.18	2.137	0.04
$\mathrm{Ph}_{3} \mathrm{M}(\mathrm{NCS}){ }^{\text {r }}$	$\mathrm{M}-\mathrm{N}$	2.45^{2}	2.22^{25}	0.23
	$\mathrm{M}-\mathrm{S}$	2.91	2.92	0.01
$\mathrm{Ph}_{3} \mathrm{M}(\mathrm{NCO})^{r}$	$\mathrm{M}-\mathrm{N}$	$2.38{ }^{17}$	2.122^{26}	0.26
	$\mathrm{M}-\mathrm{O}$	2.65	2.807	-0.16
$\mathrm{Me}_{3} \mathrm{M}(\text { acetate })^{r}$	$\mathrm{M}-\mathrm{O}$	2.326^{27}	2.205^{28}	0.12
	$\mathrm{M}-\mathrm{O}^{\prime}$	2.554	2.390	0.16
	$\mathrm{M}-\mathrm{C}$	2.181	2.128	0.05
$\mathrm{Cs}_{2} \mathrm{MCl}_{6}{ }^{\text {g }}$	$\mathrm{M}-\mathrm{Cl}$	2.510^{29}	$2.423{ }^{30}$	0.09
$\mathrm{Cat}_{2}\left[\mathrm{PhMCl}_{5}\right]^{9}$	$\mathrm{M}-\mathrm{C}$	$2.19{ }^{18}$	2.163^{18}	0.03
$\left(\mathrm{Cat}=\mathrm{Cs}\right.$ for $\mathrm{Pb}, \mathrm{NMe}_{4}$ for Sn)	$\mathrm{M}-\mathrm{Cl}_{\text {cis }}$	2.626	2.489	0.14
	$\mathrm{M}-\mathrm{Cl}_{\text {trans }}$	2.461	2.427	0.03
$\mathrm{Ph}_{4} \mathrm{M}^{h}$	$\mathrm{M}-\mathrm{C}$	2.209^{2}		0.07
			2.139^{31}	
		2.194^{14}		0.06
$\mathrm{Ph}_{3} \mathrm{M}\left(2-\left(\mathrm{NMe}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)^{h}$	M-S	2.510^{32}	2.429^{33}	0.08
	$\mathrm{M}-\mathrm{C}$	2.213	2.146	0.07
$\mathrm{Ph}_{2} \mathrm{M}\left(\mathrm{S}_{2} \mathrm{C}_{4} \mathrm{O}\right)^{h}$	M-S	2.495^{34}	2.402^{35}	0.09
	$\mathrm{M}-\mathrm{C}$	2.195	2.137	0.06
$\mathrm{K}_{4} \mathrm{MO}_{4}{ }^{\text {a }}$	$\mathrm{M}-\mathrm{O}$	2.073^{36}	$1.956{ }^{37}$	0.12
$\mathrm{I} . \mathrm{i}_{8} \mathrm{MO}_{6}{ }^{\text {g }}$	$\mathrm{M}-\mathrm{O}$	2.182^{38}	2.092^{39}	0.09
$\mathrm{Li}_{2} \mathrm{MO}_{3}{ }^{g}$	$\mathrm{M}-\mathrm{O}$	2.162^{40}	2.069^{41}	0.09
$\mathrm{MO}_{2}{ }^{g}$	M-O	2.163^{42}	2.054^{43}	0.11
$\left[\mathrm{MO}_{8}\right]^{i}\left[\mathrm{Cu}_{6} \mathrm{~Pb}_{1}(\mathrm{Cl}, \mathrm{Br})_{1} \mathrm{O}_{7.5}\right.$ and $\left.\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{4}\right]$	$\mathrm{M}-\mathrm{O}$	$2.28{ }^{44}$	$2.16{ }^{45}$	0.12

Types of environments of metal atoms are as follows: ${ }^{a}$ octahedral with trans Ph and cis X and D ; ${ }^{b}$ all-trans octahedral; 'octahedral with cis Ph and D and trans X ; ${ }^{d}$ pentagonal-bipyramidal ; ${ }^{\circ}$ trigonal-bipyramidal ; ${ }^{\prime}$ polymeric trigonal-bipyramidal ; ${ }^{g}$ octahedral; ${ }^{h}$ tetrahedral; ${ }^{i}$ eight-coordinated.
${ }^{j}$ This work.

Contrary to the fairly symmetrical coordination polyhedron of II, complex I has additional features of distortion of the equatorial plane: due to the different orientation of DMSO molecules, the $S(1)$ atom has an intramolecular contact with $\mathrm{Cl}(2)$ [torsion angle of $\mathrm{S}(1)-\mathrm{O}(1)-\mathrm{Pb}-\mathrm{Cl}(2)$ is 37.0°] and $\mathrm{S}(2)$ is receded from $\mathrm{Cl}(1)$ [angle of $\mathrm{S}(2)-\mathrm{O}(2)-\mathrm{Pb}-\mathrm{Cl}(1)$ is 122.5°]. The $\mathrm{S}(1) \cdots \mathrm{Cl}(2)$ distance of $3.49 \AA$ is $0.2 \AA$ shorter than the sum of van der Waals radii and the attraction between these atoms leads to the decrease of the $\mathrm{Cl}(2)-\mathrm{Pb}-\mathrm{O}(1)$ angle, which is 17° smaller than the opposite $\mathrm{Cl}(1)-\mathrm{Pb}-\mathrm{O}(2)$. This interaction also causes the difference in $\mathrm{Pb}-\mathrm{O}-\mathrm{S}$ angles. The $\mathrm{Pb}-\mathrm{Cl}$ and $\mathrm{Pb}-\mathrm{O}$ bonds in I differ by 0.057 and $0.061 \AA$, respectively, shorter distances being associated with the ligands involved in $\mathrm{S} \cdots \mathrm{Cl}$ interaction. The analogous tin complex $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (DMSO), can be prepared in two crystal forms, one of which is isomorphous with \mathbf{I}. ${ }^{11}$ In this structure the $\mathrm{S} \cdots \mathrm{Cl}$ contact also exists on one side of the equatorial plane ($\mathrm{S} \cdots$ Cl distance of $3.44 \AA$), but on the other side similar interaction is absent. The geometry of the cquatorial plane is distorted here in a way similar to that observed in I: $\mathrm{O}-\mathrm{Sn}-\mathrm{Cl}$ angles differ by 11.5° and the $\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{Sn}-\mathrm{O}$ distances by 0.038 and $0.076 \AA$, respectively. In the other crystal form, $\mathbf{S} \cdots \mathrm{Cl}$ contacts are absent and chemically equivalent bond lengths and angles in the tin environment are almost identical. ${ }^{12}$

Comparison of lead and tin complexes

As one can see in Table 3, the differences between $\mathrm{Pb}-\mathrm{L}$ and $\mathrm{Sn}-\mathrm{L}$ bond lengths in mixed-ligand complexes are not equal : the replacement of tin by lead leads to the lengthening of $\mathrm{M}-\mathrm{Cl}, \mathrm{M}-\mathrm{O}$ and M-N bonds by $0.11-0.20 \AA$ and $\mathrm{M}-\mathrm{C}$ bonds by $0.02-0.05 \AA$. The fact that hypervalent bonds are lengthened more in comparison with covalent bonds is not substantial evidence of their weakening, since according to Pauling's equation: ${ }^{13}$
$d(n)=d(1)-C \log (n) \quad$ (where n is the bond order).
We can derive the difference of bond lengths assuming that $n=n^{\prime}$:

$$
\Delta=d-d^{\prime}=d(1)-d(1)^{\prime}-\left(C-C^{\prime}\right) \cdot \log (n)
$$

In the case when constants C and C^{\prime} are different, the difference Δ will depend on the value of n. However, in compounds containing equal ligands around a metal atom with different coordination numbers, the D values are fairly close : $0.07-0.12 \AA$ with e.s.d.s of bond lengths $0.003-0.008 \AA$. One can see in the example of coordination polyhedra
$\left[\mathrm{MO}_{m}\right](m=4,6,8)$ that the value of Δ does not tend to grow with the decrease of $n(\mathrm{M}-\mathrm{O})$ from 1 to $2 / 3$ and $1 / 2$, and remains in the limits 0.09 $0.12 \AA$. In this case, the above-mentioned essential lengthening of $\mathrm{Pb}-\mathrm{Cl}, \mathrm{Pb}-\mathrm{N}$ and $\mathrm{Pb}-\mathrm{O}$ bonds with insignificant (less than in tetraphenyl derivatives) lengthening of $\mathrm{Pb}-\mathrm{C}$ gives unambiguous evidence of their relative weakening in lead complexes. We point out that $\mathrm{Pb}-\mathrm{C}$ bond distances in octahedral complexes $\mathrm{Ph}_{2} \mathrm{PbX}_{2} \mathrm{D}_{2}$ are $0.035-0.055 \AA$ shorter than in $\mathrm{Ph}_{4} \mathrm{~Pb},{ }^{14}$ whereas in tin complexes such a shortening is not observed.

It may be concluded that the rehybridization of valent orbitals in lead complexes is more effective; namely, the above-mentioned concentration of s electrons on $\mathrm{Pb}-\mathrm{C}$ bonds is realized in larger extent and/or the gap between s - and p-levels of the lead atom is larger in comparison with tin. The high oxidation capacity of Pb^{4+} and the high stability of Pb^{2+} favour the last assertion. The result of more effective rehybridization is the decrease of electronwithdrawing capacity of the $\mathrm{Ph}_{2} \mathrm{~Pb}^{2+}$ and $\mathrm{Ph}_{3} \mathrm{~Pb}^{+}$ groups, i.e. the increase of $\mathrm{Pb}-\mathrm{X}$ bond ionicity in phenyl halides and pseudohalides (leading to the formation of polymeric structures in $\mathrm{Ph}_{2} \mathrm{PbCl}_{2},{ }^{2,15}$ $\mathrm{Ph}_{3} \mathrm{PbCl}^{16}{ }^{16} \quad \mathrm{Ph}_{3} \mathrm{PbBr},{ }^{16} \quad \mathrm{Ph}_{3} \mathrm{PbNCS},{ }^{2} \quad$ and $\mathrm{Ph}_{3} \mathrm{PbNCO}^{17}$) and greater redistribution of electron density in hypervalent fragments. In cis-complexes of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ with DMSO and Dipy, $\mathrm{Pb}-\mathrm{D}$ bonds are lengthened more than $\mathrm{Pb}-\mathrm{Cl}$, whereas in alltrans $\quad \mathrm{Ph}_{2} \mathrm{~Pb}(\mathrm{NCS})_{2}(\mathrm{HMPT})_{2} \quad \Delta(\mathrm{M}-\mathrm{O}) \quad$ and $\Delta(\mathrm{M}-\mathrm{N})$ are fairly close. The relative weakening of $\mathrm{Pb}-\mathrm{D}$ bonds is not accompanied by an increase of tetrahedralization of the residual moiety ($\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles are almost equal) as found in similar cases, since the concentration of s-electrons on $\mathrm{Pb}-\mathrm{C}$ bonds occurs simultaneously.

As a result of structural investigation in RMCl_{5}^{2-}-containing salts $(\mathrm{M}=\mathrm{Sn}, \mathrm{Pb}),{ }^{18}$ we conclude that effects of the mutual influence of ligands (cis-weakening and trans-strengthening) in lead complexes manifest themselves more distinctly than in tin complexes. This fact can also be explained in terms of the more effective rehybridization.

Acknowledgement-This investigation has been supported by the Netherlands Organization for Scientific Research (NWO).

REFERENCES

1. A. V. Yatsenko, H. Schenk and L. A. Aslanov, J. Organomet. Chem. 1994, 474, 107.
2. A. V. Yatsenko, S. V. Medvedev and L. A. Aslanov, Crystal and Molecular Structures of Five- and Six-
coordinated Lead(IV) Compounds. Deposited in VINITI (Russia), 27.08.1987 N.6302-V, 20 pp.
3. K. Hills and M. C. Henry, J. Organomet. Chem 1965, 3, 159.
4. A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Cryst. 1968, A24, 351.
5. B. A. Frenz, Enraf-Nonius Structure Determination Package, SDP Users Guide (1985).
6. International Tables for X-ray Crystallography, Vol. 4, pp. 72-79. Kynoch Press, Birmingham (1974).
7. R. Makhija, M. Trudeau and G. Donnay, J. Appl. Cryst. 1975, 8, 495.
8. M. Onyszchuk, I. Wharf, M. Simard and A. Beauchamp, J. Organomet. Chem. 1987, 326, 25.
9. A. I. Tursina, L. A. Aslanov, V. V. Chernyshev, S. V. Medvedev and A. V. Yatsenko, Koord. Khim. 1985, 11, 1420.
10. R. S. Tobias, Inorg. Chem. 1970, 9, 1296.
11. L. Coghi, C. Pelizzi and G. Pelizzi, Gazz. Chim. Ital. 1974, 104, 873.
12. L. Coghi, M. Nardelli, C. Pelizzi and G. Pelizzi, Gazz. Chim. Ital. 1975, 105, 1187.
13. L. Pauling, J. Am. Chem. Soc. 1947, 69, 542.
14. H. Preut and F. Huber, Acta Cryst. 1993, C49, 1372.
15. M. Mammi, V. Busetti and A. Del Pra, Inorg. Chim. Acta 1967, 1, 419
16. H. Preut and F. Huber, Z. Anorg. Allg. Chem. 1977, 435, 234.
17. T. N. Tarkhova, E. V. Chuprunov, L. V. Nikolaeva, M. A. Simonov and N. V. Belov, Kristallografiya 1978, 23, 506.
18. A. V. Yatsenko, S. V. Medvedev and L. A. Aslanov, Zh. Strukt. Khim. 1989, 30, 119.
19. P. G. Harrison, T. J. King and J. A. Richards, J. Chem. Soc., Dalton Trans. 1974, 1723.
20. V. G. Kumar Das, Y. C. Keong, Chen Wei, P. G. Smith and T. C. W. Mak, J. Chem. Soc., Dalton Trans. 1987, 129.
21. H. Preut, F. Huber and E. Hoffman, Acta Cryst. 1988, C44, 755.
22. M. Gielen, E. Joosen, T. Mancilla, K. Jurkschat, R. Willem, C. Roobol, J. Bernheim, F. Huber, E. Hoffman, H. Preut and B. Mahieu, Main Group Met. Chem. 1987, 10, 147.
23. C. Pelizzi and G. Pelizzi, Inorg. Nucl. Chem. Lett. 1980, 16, 451.
24. C. Glidewell and D. C. Liles, Acta Cryst. 1978, B34, 129.
25. A. M. Domingos and G. M. Sheldrick, J. Organomet. Chem. 1974, 64, 257.
26. T. N. Tarkhova, E. W. Chuprunov, M. A. Simonov and N. V. Bclov, Kristallografiya 1977, 22, 1004.
27. G. M. Sheldrick and R. Taylor, Acta Cryst. 1975, B31, 2740.
28. H. Chin and B. R. Penfold, J. Cryst. Molec. Struct. 1973, 3, 285.
29. A. V. Yatsenko, S. V. Medvedev, E. G. Zajceva and L. A. Aslanov, Dokl. AN SSSR 1986, 289, 1395.
30. T. B. Brill, R. C. Gearhart and W. A. Welsh, J. Magn. Reson. 1974, 13, 27.
31. V. K. Belsky, A. A. Simonenko, V. O. Reikhsfeld and I. E. Saratov, J. Organomet. Chem. 1983, 244, 125.
32. L. G. Kuz'mina, Yu. T. Struchkov, E. M. Rokhlina, A. S. Peregudov and D. N. Kravtsov, Zh. Strukt. Khim. 1983, 24, 106.
33. L. G. Kuz'mina, Yu. T. Struchkov, E. M. Rokhlina, A. S. Peregudov and D. N. Kravtsov, Zh. Strukt. Khim. 1982, 23, 108.
34. M. Drager and N. Kleiner, Z. Anorg. Allg. Chem. 1985, 522, 48.
35. M. Drager, Chem. Ber. 1981, 114, 2051
36. B. Brazel and R. Hoppe, Z. Anorg. Allg. Chem. 1983, 505, 99.
37. R. Marchand, Y. Piffard and M. Tournoux, Acta Cryst. 1975, B31, 511.
38. B. Brazel and R. Hoppe, Z. Anorg. Allg. Chem. 1984, 515, 81.
39. R. Hoppe and R. M. Braun, Z. Anorg. Allg. Chem. 1977, 433, 181.
40. B. Brazel and R. Hoppe, Z. Naturfor. 1982, B37, 1369.
41. J. L. Hodeau, M. Marezio, A. Santoro and R. S. Roth, J. Solid State Chem. 1982, 45, 170.
42. P. D'Antonio and A. Santoro, Acta Cryst. 1980, B36, 2394.
43. H. Seki, N. Ishizawa, N. Mizutani and M. Kato, J. Ceram. Assoc. Japan 1984, 92, 219.
44. E. Dubler, A. Vedani and H. R. Oswald, Acta Cryst. 1983, C39, 1143.
45. C. D. Garner, D. Sutton and S. C. Wallwork, J. Chem. Soc. A 1967, 1949.

[^0]: * Author to whom correspondence should be addressed.

