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Abstract 

Due to the unrecognizability of certain manifolds there must exist pairs of triangulations of these manifolds that can 

only be reached from each other by going through an intermediate state that is very large. This might reduce the reliability 
of dynamical triangulation, because there will be states that will not be reached in practice. We investigate this problem 
numerically for the manifold S5, which is known to be unrecognizable, but see no sign of these unreachable states. 

1. Introduction 

Although the basis of it was laid in 1982 [ 11, the 
dynamical triangulation model of quantum gravity has 
in the last few years received a lot of interest. See e.g. 
[2,3]. In this model, the path integral over euclidean 
metrics is defined by a sum over simplicial complexes. 
This sum can then be approximated using Monte Carlo 
techniques, where a computer program generates ap- 
propriately weighted configurations of simplices. 

To generate all these configurations we need an 
algorithm that is ergodic, i.e. a set of moves that 
can transform any triangulation into any other trian- 
gulation with the same topology. A well known set 
of moves that satisfy this condition are the so-called 
(k, Z) moves, whose ergodicity was shown in [ 41. 

2. Noncomputability 

Unfortunately, the number of moves we need to get 
from one configuration to another can be very large. 

’ E-mail: bas@phys.uva.nl. 

To be more precise, the following theorem holds: if the 
manifold under consideration is unrecognizable, then 
for any set of local moves the number of moves needed 
to get from one configuration of N simplices to another 
such configuration is not bounded by a computable 
function of N. This was shown in Ref. [5]. We will 
explain some of the terms in this theorem in a way that 
is not mathematically precise, but hopefully intuitively 
clear. See [5] for details. 

A manifold is unrecognizable if, given a triangula- 
tion A of this manifold, there does not exist an algo- 
rithm that, given as input an arbitrary triangulation B, 
can decide whether A and B are homeomorphic. The 
definition of unrecognizability is not important for the 
rest of this article, it is only important to know that for 
some manifolds the above theorem holds. Certain four 
dimensional manifolds are unrecognizable, but for the 
sphere s’, which is usually used in dynamical trian- 
gulation, this is not known. It is known, however, that 
the five dimensional sphere S5 is unrecognizable. 

Local moves are moves that involve a number of 
simplices that is bounded by a constant, in other words 
a number that does not grow with the volume of the 
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configuration. 

A computable function is a function from N to N 

that can be computed by a large enough computer. Al- 
though the computable functions are only an infinites- 

imally small fraction of all the functions from N to 

N, most functions one can think of are computable. A 

fast-growing example of a computable function would 
be N!! . . .! with N factorial signs. 

The above theorem might seem a terrible obstacle 

for numerical simulation, but the theorem says nothing 

about the behaviour of the number of moves needed to 

generate any particular size of configuration. In fact, 
take any function g(n) with the property that it is 
not bounded by a computable function. Replacing any 

finite number of values of this function will result in 
another function g’(n) that is also not bounded by a 

computable function. 

3. Barriers 

From the theorem stated above it follows that for an 

unrecognizable manifold the maximum size Ni,t( N) 
of the intermediate configurations needed to inter- 
polate between any two configurations of size N is 

also not bounded by a computable function of N. If 

Nint( N) did have such a bound, a bound on the num- 

ber of possible configurations of size less than or equal 
to Nint ( N) would be a bound on the number of moves 

needed, which would violate the theorem. A simple 

computable bound on the number of configurations of 

size N is ( (d + 1) N) !, where d is the dimension of 

the simplices. 
It was pointed out in [6] that this means that for 

such a manifold there must exist barriers of very high 

sizes between certain points in configuration space. 
Although the situation is not clear from the theorem, it 

seems natural that these barriers occur at all scales. We 
can then apply the following method, which was for- 
mulated in [ 61. We start from an initial configuration 
with minimum size. For 9 and S’, there is a unique 
configuration of minimum size with 6 and 7 simplices 
respectively. We increase the volume to some large 
number and let the system evolve for a while, which 
might take it over a large barrier. Next, we rapidly de- 
crease the volume, hoping to trap the configuration on 
the other side of this barrier. 

We can check whether this has happened by trying 

to decrease the volume even more. If this brings us 
back to the initial configuration, we have gone full cir- 

cle and cannot have been trapped at the other side of 

such a barrier. Conversely, if we get stuck we are ap- 

parently in a metastable state, i.e. at a point in config- 

uration space where the volume has a local minimum. 

This was tried in [ 61 for 9, but no metastable states 
were found. To judge the significance of this, it is 

useful to investigate the situation for a manifold which 

is known to be unrecognizable. It is rather difficult to 

construct a four dimensional manifold for which this 

is known, but if we go to five dimensions this is easy, 
because already the sphere S5 is not recognizable. 

4. Results 

Because my program for dynamical triangulation 

was written for any dimension, it was not difficult 
to investigate S5. The description by Catterall in [ 71 
of his dynamical triangulation program for arbitrary 
dimension turned out to be a very close description of 

mine, presumably because both were based on ideas 
put forward in [ 891. The Regge-Einstein action in the 

five dimensional model is 

S = ~5h’s - ~gh’j (1) 

where Ni is the number of simplices of dimension i. 
This is not the most general action linear in Ni in five 

dimensions as this would take three parameters, but 

for the purposes of this paper this is not relevant. 

I generated 26, 24 and 8 configurations at NS = 
8000, 16000 and 32000 simplices respectively. These 

were recorded each 1000 sweeps, starting already af- 
ter the first 1000 sweeps, were a sweep is Ns accepted 
moves. All configurations were made at curvature cou- 
pling ~3 = 0, making each configuration contribute 
equally to the partition function, in other words mak- 
ing them appear equally likely in the simulation. Look- 
ing at the number of hinges N3, the system seemed to 
be thermalized after about 6000 sweeps, irrespective 

of the volume. 
The critical value of ~5 (the bare cosmological con- 

stant) below which the volume diverges was measured 
as explained in [ 10,111. It turned out to be 0.8252(4), 
0.8366( 5) and 0.8446( 8) for the three volumes used. 
The last error cannot be trusted, because of the low 

statistics at the largest volume. 
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Fig. 1. A typical cooling run starting at Ns = 32000, using ~5 = 2. 
The horizontal units are 1000 accepted moves. The vertical axis 
is the number of Ssimplices. The inset is a blowup of a small 
part of the curve. 
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Fig. 2. As Fig. 1, but with KS = 3. 

Starting with these configurations, the volume was 

decreased by setting ~5 to a fixed number larger than 
the critical value. We call this process cooling, be- 
cause it attempts to reach a configuration of minimum 

volume and thereby minimum action. 
For each configuration we cooled four times with 

~5 = 2 and two times with ~5 = 3. For both values of 
~5 used one of the runs is shown in Figs. 1 and 2. In the 

insets we can see the typical volume fluctuations that 

occurred. These were of the order 30 at ~5 = 2 and 6 at 
~5 = 3. The volume would first decrease very quickly 
until it reached roughly a quarter of the starting value 
and then started to decrease much slower. In all cases 
the initial configuration of 7 simplices was reached. 
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Fig. 3. Number of moves needed for cooling at KS = 2 as a function 
of the number of sweeps at the large volume of 16000 simplices. 
Horizontal units are 1000 sweeps, vertical units are 1000 accepted 
moves. 

We also tried to use ~5 = 4. The same behaviour of fast 

and slow cooling was seen, but the latter was so slow 

that due to CPU constraints these had to be stopped 
before either a stable situation or the minimal volume 

was reached. 
There is an important difference between four and 

five dimensions. In four dimensions there is a move 

that leaves the volume constant. Therefore the system 
can evolve at constant volume. In five dimensions this 

is not possible, because all moves change the volume. 

In this case the volume has to fluctuate for the config- 

uration to change. This is why much larger values of 

the cosmological constant (such as were used in [ 61) 
would effectively freeze the system. 

Initially, before the system was thermalized, there 
was a strong positive correlation between the time 

used to evolve the system at large volume and the 
time needed to cool the system back to the initial con- 

figuration. The rates of fast and slow cooling did not 
change, but the volume at which the slow cooling set 
in became larger. Some of these times are shown in 

Fig. 3 for the case of 16000 simplices. This trend does 
not continue and the cooling times seem to converge. 

5. Discussion 

So, contrary to expectation, no metastable states 
were seen. Small volume fluctuations were necessary, 
but these gave no indication of the high barriers ex- 
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petted. References 
It is not clear why we don’t see any metastable 

states. There are several possibilities. First the barri- 
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go to extremely large volumes before cooling. Sec- 
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volume for the volumes we looked at and the size of 
the intermediate configurations needed still grows very 
slowly for the volumes considered, even though this 
size is not bounded by a computable function. Third, 
the metastable regions in configuration space might be 
very small and the chance that we see one is therefore 
also very small. 
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Recognizability is not the only thing that matters. 
Even if S“ is recognizable, this says little about the 
actual number of (k, I) moves needed to interpolate 
between configurations, except that this number might 
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