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Abstract

This paper stipulates conditions for identifiability of the parameters of a cointegrated

VAR model under general linear restrictions, possibly including cross-equation restrictions.

An algorithm is given to obtain the maximum likelihood estimators under such restrictions

on both the cointegrating vectors and the adjustment parameters. Then the asymptotic

distribution of the estimator and of the likelihood ratio statistic for the over-identifying

restrictions is given. The importance of the observed information matrix for identification

issues is emphasized.
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1 Introduction

Since the introduction of the notion of cointegration, cf. Engle and Granger (1987), a possible

identification problem has been recognized. The fact that a number of stationary relationships

exist between the components of a vector process which is integrated of order 1 is not sufficient

to obtain unique estimates of the parameters characterizing these relationships. This has led

researchers to impose identifying and normalizing restrictions on the cointegrating vectors, see,

e.g., Stock (1987) and Boswijk (1994, 1995). In the cointegrating regression literature, cf.

Phillips and Durlauf (1986) and Phillips (1991), the relationships are solved for a subset of the

variables, leading to a reduced form system of equations. These can again be transformed into

a structural form, as in Park (1990) and Saikkonen (1993). In all cases, consistent inference on

the free parameters is only possible if some rank condition for identification is satisfied.

The identification problem in cointegrated systems is largely analogous to the simultaneous

equations model, and this analogy has been explored extensively by Johansen (1995a). He shows

that the classical rank condition for identifiability of a single equation in a system is somewhat

impractical, since it involves the true parameter value. He therefore derives a condition for

generic identification, i.e., identification for all parameter values except for a possible set of

Lebesgue measure zero. In case generic identification is satisfied, Boswijk (1996) proposes a

test for identifiability by testing whether the parameter vector lies in this measure-zero set of

non-identifiable points. This is related to a test for identifiability of a single structural equation

from a system of otherwise reduced form equations, see Koopmans and Hood (1953) and Cragg

and Donald (1993).

In the present paper we analyze the identification of cointegrated vector autoregressions

(VARs) under general linear restrictions, possibly including cross-equation restrictions 1 . This

allows more involved economic theory restrictions, obtained e.g. from models under rational

expectations, to be implemented in cointegration models. Moreover, it enables us to unify

and at the same time simplify the earlier results obtained for the case of equation-by-equation

restrictions only. Following Rothenberg (1971), we shall emphasize the central role of the

information matrix in the analysis of identifiability of (functions of) parameters. We shall

argue that in the present situation the observed information matrix provides a more natural

and appropriate measure than the expected information matrix.

The outline of the paper is as follows. In Section 2 we derive a rank condition for identi-

fiability of a whole system subject to linear restrictions. This condition involves the unknown

parameters, but we discuss how this potential problem may be solved. In Section 3 we pro-

vide an algorithm to obtain the maximum likelihood (ML) estimators of the parameters of a

vector error correction model subject to general linear restrictions on both the cointegrating
1After a first version of this paper was completed, I learned of related work by Pesaran and Shin (1994).
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vectors and the error correction coefficients. The algorithm can also be applied to systems

that are (partially) under-identified; in that case it provides only one of the many parameter

values maximizing the likelihood. With this estimator, identifiability of (linear combinations

of) the parameters is easily checked. In Section 4 the asymptotic distribution of the ML esti-

mator and of the likelihood ratio statistic for the over-identifying restrictions is derived, and

the consequences of lack of identifiability on these distributions are discussed. The fifth section

concludes.

2 The Rank Condition Revisited

Consider the pth order vector autoregression (VAR(p)) in error correction form, for an observed

n-vector time series {xt, t = 1, . . . , T}:

∆xt = αβ′xt−1 +
p−1∑

i=1

Γi∆xt−i + εt, (1)

where α and β are n × r parameter matrices, 0 < r < n, where Γi, i = 1, . . . , p − 1, are n × n

parameter matrices, and where {εt} is an independent N(0, Ω) sequence, with Ω positive defi-

nite. The starting values {x1−p, . . . , x0} are considered fixed. We assume that the characteristic

equation of (1) has exactly n − r roots equal to one and all other roots outside the unit cir-

cle, so that xt is cointegrated of order 1,1 (Engle and Granger, 1987; Johansen, 1991, 1995b).

Then the columns of β are the cointegrating vectors, spanning the cointegrating space, r is the

cointegrating rank, and α contains the adjustment coefficients (or error correction coefficients;

factor loadings). The system can be extended by deterministic components such as a constant,

seasonal dummies, or a linear trend. These are not considered explicitly here, but the analysis

below can easily be adapted to such extensions.

Defining wt = (∆x′t−1, . . . , ∆x′t−p+1)
′, and Γ = (Γ1, . . . ,Γp−1), the log-likelihood of the

model is given by:

lnL(α, β, Γ, Ω) = −Tn

2
ln 2π − T

2
ln |Ω|

−1
2

T∑

t=1

(∆xt − αβ′xt−1 − Γwt)′Ω−1(∆xt − αβ′xt−1 − Γwt).
(2)

It is clear that any parameter point (α0, β0) is observationally equivalent to the set of all points

(α1, β1) = (α0A−1′, β0A) with arbitrary non-singular r×r matrix A: all of these points result in

the same likelihood value. Therefore, any unique estimator of β (and α) must, either explicitly

or implicitly, satisfy a set of identifying restrictions. One popular choice is to normalize β with

respect to the first r components of xt, leading to β′ = [Ir : −B], where B is an r×(n−r) matrix,

representing the long-run effect of the last (n− r) components of xt on the first r components
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(without implying causality in one direction). Alternatively, Johansen’s ML estimator β̂ satisfies

the property that the columns of β̂ correspond to the ordered canonical correlations between

∆xt and xt−1 (conditional upon wt); this also leads to a unique choice among all values of β

that maximize the log-likelihood, provided that the canonical correlations are all distinct.

In this paper, we consider (generalizing the formulation of Stock, 1987, Engle and Granger,

1987, Boswijk, 1995, and Johansen, 1995a, inter alia), identifying restrictions of the form

vecβφ = Hφ + h, (3)

where βφ denotes the matrix of cointegrating vectors with the identifying restrictions imposed

(which is distinguished from an arbitrary matrix β spanning the cointegrating space); further-

more, H is a known nr× k matrix of full column rank, h is a known nr× 1 vector, and φ ∈ Rk

is an unrestricted parameter vector. Typically, both H and h contain zero and unit elements.

The vector h corresponds to normalization restrictions on the vectors of βφ. The restrictions

can be rewritten in more conventional format as follows. For an arbitrary n ×m matrix A of

full column rank (n > m), we define A⊥ to be an m× (n−m) matrix of full column rank such

that A′A⊥ = 0. Letting R = H⊥, an nr × (nr − k) matrix, and s = R′h, an nr × 1 vector, the

restrictions (3) correspond to

R′vecβφ = s. (4)

A special case arises if there are no cross-equation restrictions. In that case, H and R satisfy:

Condition 1 The matrices H and R are block-diagonal, i.e.,

H =




H1 · · · 0
...

. . .
...

0 · · · Hr


 , R =




R1 · · · 0
...

. . .
...

0 · · · Rr


 .

Partition h, s and φ conformably with H and R, and let βφ = (βφ1, . . . , βφr); then Condition

1 implies

βφi = Hiφi + hi ⇔ R′
iβφi = si, i = 1, . . . r.

Johansen (1995a) analyzes identification of the unrestricted parameters under Condition 1,

and without any normalizations imposed (hence, with both hi and si set to zero). He argues

that the conventional formulation of the rank condition for identification of φi, viz.

rank(R′
iβφ) = rank(R′

i[H1φ1, . . . , Hrφr]) = r − 1,

is rather impractical, since it requires knowledge of the other parameter vectors φj , j 6= i, which

are still to be estimated, and which may in fact be under-identified themselves. Therefore,

Johansen provides an operational criterion for generic identification, i.e., identification for all
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φ ∈ Rk, except for a set of Lebesgue measure zero. However, for larger r his method requires

quite a lot of computations; moreover, it is not applicable in the presence of cross-equation

restrictions.

Therefore, we now analyze identification of in the general context (3)-(4). Let sp(A) denote

the column space of an arbitrary matrix A. Further, let B denote the parameter space of β, i.e.,

the space of all n× r matrices of full column rank that satisfy the (possibly over-) identifying

restrictions (3)-(4), each together with all n× r matrices that span the same column space:

B = {β ∈ Rn×r : sp(β) = sp(βφ), φ ∈ Rk, rank(βφ) = r}.

We now state the main result on identifiability of φ. Proofs of all theorems are given in the

appendix.

Theorem 1 Consider the model (1), together with the restrictions (3)-(4). For a particular

parameter value β ∈ B, the parameter vector φ is identifiable if and only if

rank(H ′[Ir ⊗ β⊥]) = k ⇔ rank(R′[Ir ⊗ β]) = r2. (5)

For an arbitrary known m× k matrix F , the linear function Fφ is identifiable if and only if

sp(F ′) ⊆ sp(H ′[Ir ⊗ β⊥]). (6)

Remarks (a) The rank condition (5) is a condition for global identification, since only linear

restrictions on β are considered. This can be seen from the proof, where it is shown that under

condition (5), each β ∈ B corresponds to a unique φ ∈ Rk. If instead of (3), a set of non-

linear restrictions are considered, i.e., if vecβφ = h(φ), where h : Rk 7→ Rrn is a continuously

differentiable function with Jacobian matrix H(φ) = ∂h/∂φ′, then a similar rank condition

holds, viz. rank(H(φ)′[Ir ⊗ β⊥]) = k. This condition, however, is only sufficient for local

identification: each β ∈ B now corresponds to a φ ∈ Rk which is only unique in a neighbourhood

of φ; see Rothenberg (1971).

(b) The second result of Theorem 1 determines the class of estimable 2 linear functions of

φ. This is particularly useful if only r1 < r cointegrating vectors are subjected to identifying

restrictions, with the remaining r2 = r − r1 vectors unrestricted. If F = [Ik1 : 0] selects the

k1 components of φ corresponding to the first r1 cointegrating vectors, then (6) requires the

matrix consisting of the first k1 rows of H ′[Ir⊗β⊥] to have full row rank k1. This is essentially
2Formally, the notion of estimable functions in statistics refers to the possibility of unbiased estimation,

whereas here we are concerned with consistent (and unique) ML estimation. However, as argued by Richmond

(1974), the two notions are very similar, so that we may call a function estimable if the corresponding parameter

is identifiable.
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a limited information identifiability result. Note that if F = Ik, then sp(F ′) = Rk, so that (6)

implies to (5), as expected.

(c) The conditions (5) and (6) obviously suffers from the same problem as mentioned above,

viz. that they cannot be checked without knowledge of β (or β⊥). However, if the restrictions

are just-identifying (k = r(n− r)), then the parameter space B is simply the space of all n× r

matrices of full column rank (possibly except for a set of points of Lebesgue measure zero in

this space). Thus, we could check generic identification simply by substituting an arbitrary

n×r matrix of full column rank for β and check whether the rank condition is satisfied (e.g., by

checking whether the smallest eigenvalue of [Ir⊗β]′RR′[Ir⊗β] equals zero). More interestingly,

we may substitute β̂ (Johansen’s ML estimator) for β, and check the rank condition for this

choice. A violation of the rank condition may now occur for two reasons: either because φ is not

generically identified, or because it is generically identified but happens to lie in the measure-

zero set of non-identifiable parameter points (which, of course, happens with zero probability).

However, this distinction is irrelevant for practical purposes, as in either case there is no unique

ML estimator of φ.

(d) If the system is over-identified, then the above method is no longer valid, because β̂

will lie in B with probability zero, and the rank condition may be satisfied for almost all n× r

matrices outside B, but at the same time violated for almost all matrices within B. Consider

the following example with n = 3, r = 2, k = 1, and with β′φ1 = (1, φ, 0)′ and β′φ2 = (0, 1, 0). It

is immediately clear that φ is not generically identified. In this case we have R = diag(R1, R2),

with

R′
1 =


 1 0 0

0 0 1


 , R′

2 = I3.

Now if β is restricted to lie in B, it can easily be checked that rank(R′
1β) = 1 and rank(R′

2β) =

2, which implies rank(R′[I2 ⊗ β]) = 3 < r2. However, the unrestricted estimator β̂ satisfies

rank(R′
1β̂) = 2 with probability 1, so that the lack of identification would not be detected.

Therefore, in the presence of over-identifying restrictions generic identification should be checked

by substituting an arbitrary element of B. This could be done by selecting an arbitrary k-vector

φ and constructing the corresponding βφ from it. The analogue of the above method is to use

an ML estimate of β under the restrictions. Note that the cointegration space, and hence an

arbitrary matrix β spanning it, is always identified, even if φ is not identified. This follows

since the model (1) is linear in Π = αβ′, and sp(β) = sp(Π′). An algorithm to obtain the

restricted ML estimate of β (which is also valid if φ is not identified) is given in Section 3.

This is again more useful, because we want to check whether a unique ML estimate is available

for the specific case under consideration, rather than for an arbitrary point in the parameter
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space. Alternatively, if Condition 1 is satisfied, Johansen’s (1995a) method to check generic

identification can be used; however, this technique does not seem to be easily generalized to

the case of cross-equation restrictions.

(e) Theorem 1 provides a sufficient condition for identifiability of βφ, where the matrix of

adjustment coefficients is unrestricted. If restrictions are imposed on α, these may be identifying

too, in which case less restrictions on β are required. As an extreme example, consider the

restriction α′ = [α′1 : Ir], where α1 is an (n − r) × r matrix. This restriction is considered by

Breitung (1994), who uses it to derive a particular simultaneous equations representation of

the model (1). Under this restriction, no further restrictions on β are required: it is uniquely

determined by β′ = [0 : Ir]Π. However, although such restrictions lead to a unique estimator of

β (just like Johansen’s reduced rank regression estimator), there is no reason to interpret the

individual vectors of β̂ as specific long-run relationships. Thus, identification is obtained only

in a purely mathematical sense, and not in any interpretational sense. Moreover, as we shall

see in Section 4, such identifying restrictions do not lead to a super-consistent estimator.

(f) The results of Theorem 1 can be straightforwardly applied to the classical simultaneous

equations model

Byt + Czt = ut ⇔ yt = Πzt + vt,

where yt is a g-vector of endogenous variables, zt is a m-vector of exogenous variables, ut is a

g-vector of structural disturbances, B and C are structural coefficient matrices of appropriate

order, which satisfy certain identifying restrictions, and finally Π = −B−1C and vt = B−1ut are

the reduced-form coefficient matrix and disturbance vector, respectively. Defining x′t = (y′t, z′t)

and β′φ = [B : C], the model in structural form reads β′φxt = ut. Notice that the column space

of βφ is spanned by β = [Ig : −Π]′, corresponding to the reduced from β′xt = vt, and the

orthogonal complement is spanned by β⊥ = [Π′ : Im]′. If the identifying restrictions on βφ are

again formulated as (3)-(4), then the rank condition for identifiability reads

rank


H ′


Ig ⊗


 Π

Im








 = k,

or

rank


R′


Ig ⊗


 B′

C ′








 = rank


R′


Ig ⊗


 Ig

−Π′








 = g2,

with k the dimension of φ. The second formulation of the rank condition is well-known, see,

e.g., Richmond (1974). Notice that this condition can be checked with the estimated reduced

form matrix, but in the presence of over-identifying restrictions, this should be the restricted

reduced form estimator (which, again, is identified even if φ is not identified).
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3 Maximum Likelihood Estimation

Consider again the log-likelihood (2). Since no restrictions will be imposed on the parameter

matrix Γ, it will be useful to concentrate the log-likelihood. Define the observation matrices

X0 = (∆x1, . . . ,∆xT )′, X1 = (x0, . . . , xT−1)′, and W = (w1, . . . , wT )′. Next, let M = IT −
W (W ′W )−1W ′ and define the moment matrices

Sij =
1
T

X ′
iMXj , i, j = 0, 1.

Using well-established results from partitioned regression, it is easily checked that the concen-

trated log-likelihood equals (apart from a constant term):

ln L(α, β,Ω) = −T

2
ln |Ω| − T

2
trΩ−1(S00 − S01βα′ − αβ′S10 + αβ′S11βα′). (7)

Johansen (1988,1991) further concentrates (7) with respect to α and Ω, and derives from that

a maximum likelihood estimator of β, based on reduced rank regression methods. However, for

our purposes the expression (7) will be most convenient.

As in the previous section, the identifying restrictions on are expressed as (the distinction

between β and βφ is no longer important in the sequel):

vecβ = Hφ + h. (8)

Similarly, we impose homogeneous linear restrictions on α:

vecα′ = Gγ, (9)

where G is a known nr× l matrix of full column rank, and γ ∈ Rl is an unrestricted parameter

vector. Although non-homogeneous restrictions could be imposed on α as well, in practice these

are less relevant, since most restrictions on α will be exclusion restrictions, corresponding to

weak exogeneity of some of the variables for some of the cointegrating vectors, see Johansen

(1992) and Boswijk (1995). Note that if G = Inr, then α is unrestricted.

An obvious requirement of H, h and G is that they are not in conflict with the cointegrating

rank r. For example, if we would set G to 0, then α = 0 for all γ ∈ Rl, which violates the

assumption rankα = r. More formally, we require:

Condition 2 The matrices H and G and the vector h in (8)-(9) are such that rankα = rankβ =

r for all (φ′, γ′)′ ∈ Rk+l, except for a possible set of Lebesgue measure zero.

If Condition 2 is not satisfied, then the parameter space is void, and the maximum likelihood

estimators of φ and γ are not defined. Note that the condition can easily be checked by

substituting an arbitrary k-vector for φ and an l-vector for γ.
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Theorem 2 Consider the log-likelihood (7), subject to (8) and (9), satisfying Condition 2. The

maximum likelihood estimators of φ, γ and Ω, each conditional upon the remaining parameters,

are given by

φ̂(γ, Ω) =
[
H ′(α′Ω−1α⊗ S11)H

]−1

× (
H ′(α′Ω−1 ⊗ In)vecS10 −H ′(α′Ω−1α⊗ S11)h

)
,

(10)

γ̂(φ, Ω) =
[
G′(Ω−1 ⊗ β′S11β)G

]−1
G′[Ω−1 ⊗ β′]vecS10, (11)

Ω̂(φ, γ) = S00 − αβ′S10 − S01βα′ + αβ′S11βα′. (12)

Fisher’s expected information matrix is block-diagonal with respect to θ = (φ′, γ′)′ and Ω; the

observed information matrix for θ (excluding terms with zero expectation) is given by

Jθ = T


 H ′(α′Ω−1α⊗ S11)H H ′(α′Ω−1 ⊗ S11β)G

G′(Ω−1α⊗ β′S11)H G′(Ω−1 ⊗ β′S11β)G


 . (13)

Corollary 1 The maximum likelihood estimators of φ̂, γ̂ and Ω̂ may be obtained from the

following iterative procedure, starting from a set of initial values {φ̂0, γ̂0, Ω̂0}:

φ̂j = φ̂(γ̂j−1, Ω̂j−1), γ̂j = γ̂(φ̂j , Ω̂j−1), Ω̂j = Ω̂(φ̂j , γ̂j), j = 1, 2, . . .

Remarks (a) Rothenberg (1971) analyzes the connection between (local) identifiability of a

parameter vector and non-singularity of Fisher’s information matrix. He focuses on the expected

information matrix, but in cointegration models, which are non-ergodic (in certain directions),

the observed information matrix should be used instead. From (13), we observe that the blocks

on the diagonal are non-singular, provided that α, β, G and H all have full column rank.

This means that given α, φ is always identified; similarly, γ is always identified given β. This

is reflected in the fact that (10) and (11) provide unique estimators of φ and γ, each given

the other (and given Ω). However, if both φ and γ are unknown, then what is required for

identification is that the full information matrix is non-singular. This matrix can be expressed

as

Jθ = T [(α⊗ In)H : (In ⊗ β)G]′ (Ω−1 ⊗ S11) [(α⊗ In)H : (In ⊗ β)G] , (14)

so that the rank condition for local identifiability of θ becomes

rank [(α⊗ In)H : (In ⊗ β)G] = k + l. (15)

If G = Inr, then this condition reduces to rank[(α⊗In)H : (In⊗β)] = k+nr. The matrix (In⊗β)

has full column rank nr; if we eliminate these columns by pre-multiplying with (In⊗β⊥)′, then

(15) requires

rank [(α⊗ β⊥)H] = rank
[
(α⊗ In−r)(Ir ⊗ β⊥)′H

]
= k. (16)
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Since (α ⊗ In−r) has full column rank, (14)-(16) provide an alternative derivation of the rank

condition (5).

(b) Following Johansen and Juselius (1992) and Johansen (1995a), the procedure in Corol-

lary 1 may be called a switching algorithm, since we switch between optimization over φ, γ and

Ω. This idea has a long-standing tradition in econometrics; examples based on the same idea are

the Cochrane- Orcutt method (if iterated until convergence), or Zellner’s seemingly unrelated

regression equation estimator. Johansen (1995a) discusses the pros and cons of a switching al-

gorithm in comparison with Newton-type algorithms. The most important advantage is that in

each step the optimization is explicit; no special care has to be taken of singularity problems or

step lengths. Since the likelihood increases with each step, the procedure will always converge

eventually. On the other hand, this convergence may take quite some time, since the direction

in which we move may be far from optimal. For example, if the log-likelihood is a quadratic

function of two scalar parameters a and b, then a switching algorithm will be very slow if the

contour ellipses of the log-likelihood lie in the direction of the diagonal (a = b) line; in this case

Newton-Raphson will of course yield the optimum in one step.

(c) The switching algorithm does not require φ and γ to be identified: as long as both

H and G have full column rank and Condition 2 is satisfied, the procedure will never break

down due to singularity problems, and will eventually lead to some values of φ and γ that

maximize the likelihood; of course, these are not unique if φ and γ are not identified. However,

the corresponding estimated cointegrating space is unique, since this space is always identified.

Thus the algorithm provides us with the ML estimate of the cointegrating space under the

(possibly) over-identifying restrictions; since this estimate β̂ lies in the parameter space B, we

can use it to check the rank condition (5). Note that if α is restricted (G 6= Inr), it is possible

that this condition is violated, whereas (14) is satisfied. If that is the case, φ and γ are identified,

but φ̂ is not super-consistent; we shall return to this in the next Section. Observe that because

identification is not required, the algorithm can also be applied to limited information systems,

where only a subset of the vectors is restricted, see Remark (b), Section 2.

(d) Given that the switching algorithm may be relatively slow, the choice of starting values

is an important one. As shown in the proof of Theorem 1, the defining equation for φ, for a

given β spanning the cointegrating space, is

(Ir ⊗ β⊥)′Hφ = −(Ir ⊗ β⊥)′h. (17)

From Johansen’s ML estimate β̂, we can calculate the unrestricted ML estimate of β⊥ as the

eigenvectors corresponding to the (n− r) zero eigenvalues of the matrix β̂β̂
′
. Substituting this

estimate in (17), we can try to solve the equation for φ. If the system is exactly identified
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(k = r(n − r)), so that (Ir ⊗ β̂⊥)H is a non-singular k × k matrix, then the starting value

φ̂0 = −[(Ir ⊗ β̂⊥)′H]−1(Ir ⊗ β̂⊥)′h is the ML estimate, and no further iterations are required.

If, on the other hand, there are over-identifying restrictions so that r(n−r) > k, then a possible

starting value is the one that minimizes the length of the vector (Ir ⊗ β̂⊥)′(Hφ + h), i.e., the

least-squares estimate

φ̂0 = −[(Ir ⊗ β̂⊥)′H]+(Ir ⊗ β̂⊥)′h,

where A+ denotes the Moore-Penrose inverse of A. The same formula may be used if the rank

condition is violated, although in that case φ̂0 is only one of the many possible choices for φ

that minimize the vector (Ir ⊗ β̂⊥)′(Hφ + h). For that case, it should be stressed that the

choice of H and h should be such that the system is suitably normalized. If, e.g., h = 0, then

φ̂0 = 0, so that the starting value for the cointegrating matrix would be zero, in which case

the algorithm breaks down. More generally, one should check whether φ̂0 corresponds to a full

rank matrix; if not, an alternative starting value should be chosen. However, this problem only

arises in systems that are under-identified or violate Condition 2.

4 Asymptotic Properties

We now consider the asymptotic properties of the ML estimator defined in Theorem 2. Let

m = rankJθ, and let C denote a semi-orthogonal (k + l) × m matrix (hence C ′C = Im),

partitioned as C = [C1 : C2], where

sp(C) = sp


 H ′(α′ ⊗ In)

G′(In ⊗ β′)


 , sp(C1) = sp


 H ′(Ir ⊗ β⊥)

0


 .

To check that the column space of the second right-hand side matrix is contained in the column

space of the first right-hand side matrix, post-multiply the first matrix by (In ⊗ β⊥), yielding

 H ′(α′ ⊗ β⊥)

0


 =


 H ′(Ir ⊗ β⊥)

0


 (α′ ⊗ In−r).

Note that C spans the column space of Jθ in (14), whereas C1 determines the linear functions

of φ that satisfy (6). If the information matrix is non-singular, then m = k + l, and C⊥ is

void; otherwise, it is easily seen that the information on C ′
⊥θ is zero, so that this function is

not identifiable. Therefore, Theorem 3 only provides the asymptotic distribution of C ′θ̂. First,

we make the assumption of cointegration (of order 1,1) explicit, as well as a further assumption

that will be required below:

Assumption 1 The vector time series {xt, t = 1, . . . , T} is generated by (1) with {εt} ∼
IN(0,Ω), for particular parameter matrices α, β (of order n × r), Γi, i = 1, . . . , p − 1, and

positive definite Ω, such that
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1. rankα = rankβ = r, and

2. the characteristic equation |Γ(z)(1 − z) − αβ′z| = 0 has exactly (n − r) roots equal to 1

and all other roots outside the unit circle, where Γ(z) = In −
∑p−1

i=1 Γiz
i.

Assumption 2 The true values of β and α can be expressed as (8) and (9) for some (possibly

non-unique) value of θ0 which is a regular point of Jθ, i.e., there exists an open neighbourhood

N(θ0) such that

∀θ ∈ N(θ0) : rank(Jθ) = m.

Let
∫

V >0
N(0, V )dP (V ) denote a mixed normal distribution, i.e., a distribution that is

N(0, V ) conditional upon the random matrix V ; the integral is over all positive definite matrices

V (denoted by V > 0).

Theorem 3 Under Assumptions 1 and 2, and as T →∞,

TC ′
1(θ̂ − θ) D→

∫

V1>0
N(0, V1)dP (V1),

√
TC ′

2(θ̂ − θ) D→ N(0, V2),
(18)

independently, where V1 and V2 are a random and a fixed matrix, respectively, defined by

(
T−2C ′

1JθC1

)−1 D→ V1,
(
T−1C ′

2JθC2

)−1 P→ V2. (19)

The likelihood ratio statistic LR for the over-identifying restrictions satisfies

LR
D→ χ2(d), (20)

where d, the degree of over-identification, is given by d = r(n− r) + rn−m.

Corollary 2 For an arbitrary known m× k matrix F ,

1. F (φ̂−φ) = Op(T−1) if and only if condition (6) is satisfied, so that sp([F : 0]′) ⊆ sp(C1);

2. F (φ̂− φ) = Op(T−1/2) if and only if sp([F : 0]′) ⊆ sp(C) = sp(Jθ).

Remarks (a) Theorem 3, together with Corollary 2, determines whether a certain linear com-

bination of φ (and γ) can be estimated consistently, i.e., whether it is identifiable. Letting the

matrix F equal the identify matrix, we observe from the corollary that φ̂ may be consistent even

if the rank condition (5)-(6) is not satisfied, provided that there are sufficient restrictions on α,

so that sp([F : 0]′) ⊆ sp(Jθ); see also Remark (e), Section 2. However, φ̂ is only super-consistent

if the rank condition (5) is satisfied.
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(b) In order to analyze the role of Assumption 2, consider the following example where

n = 4, r = 2, k = 2 and l = 8 (α is unrestricted), and where

βφ =




1 0

φ1 1

0 φ21

0 φ22




.

It is easily seen that φ and hence θ is generically identified, which implies that Jθ has rank

11 almost everywhere in the parameter space; the corresponding degree of over-identification

equals 1. If φ2 = (φ21, φ22)′ = 0 however, then φ1 is not identified, and this is reflected in the

rank of Jθ reducing to 10. A parameter point θ0 with φ2 = 0 is not a regular point of Jθ: any

open neighbourhood of θ0 contains parameter points with φ2 6= 0. This implies that the LR

statistic for the over-identifying restrictions does not have an asymptotic χ2(1) distribution,

which would be the case if θ0 were a regular point. In fact, from the analysis of Boswijk

(1996) it follows that the asymptotic distribution of LR is stochastically dominated by a χ2(1)

distribution.

(c) In a generically identified model, Assumption 2 is violated only in the measure-zero

set of non-identifiable parameter points. For the specific case where α is unrestricted and H

is block-diagonal (Condition 1) a test for this hypothesis is analyzed by Boswijk (1996) . A

generalization of such a test to the present context would entail a test for the null hypothesis

H0 : rank


 H ′(α′ ⊗ In)

G′(In ⊗ β′)


 ≤ k + l − 1.

If α is unrestricted, this reduces to

H0 : rank
(
H ′(Ir ⊗ β⊥)

) ≤ k − 1 ⇔ rank
(
R′(Ir ⊗ β)

) ≤ r2 − 1.

In principle, such restrictions can be tested in generically identified models. In practice however,

it is not clear how to construct likelihood ratio or even Wald statistics for these hypotheses,

because they are not formulated as explicit smooth restrictions g(α, β) = 0.

(d) The results of Theorem 3 are not directly applicable, because the matrices C1 and C2

depend upon the true value. The best we can do is evaluate the observed information matrix

in the ML estimate, and determine its rank and column space. First, the rank can be used

to obtain the correct number of degrees of freedom of the LR test for the over-identifying

restrictions, provided that both θ̂ and θ are regular points of Jθ. Second, the column space will

indicate whether a linear function of θ̂ is unique, in the sense that it is the only one maximizing

the likelihood. If it is, then an estimate of its covariance matrix may be obtained from the

13



information matrix. In particular, letting Aθ denote a linear function of interest, identifiability

requires that A = BC ′ for some matrix B of full row rank. In that case AJ+
θ A′ may be used

as an asymptotic covariance matrix of Aθ̂ , where

J+
θ = C(C ′JθC)−1C ′,

the Moore-Penrose inverse of Jθ. Note that AJ+
θ A′ = B(C ′JθC)−1B′, which is the inverse of the

concentrated information on BC ′θ = Aθ. Letting Ĵθ denote the estimated observed information

matrix, AĴ+
θ A′ is a consistent estimate of the covariance matrix of Aθ̂, in the sense that

(AĴ+
θ A′)−1/2A(θ̂ − θ) D→ N(0, I),

still provided that Aθ is identifiable.

5 Discussion

In this paper we have analyzed conditions for identifiability of the parameters characterizing

the cointegrating vectors and adjustment coefficients in cointegrated VAR models. The condi-

tions that have been derived are always expressed in terms of the parameters, which has the

disadvantage that it does not enable the researcher to check generic identifiability, cf. Johansen

(1995a). As a solution to this problem we may substitute the restricted ML estimates in the

conditions, and thus check whether the ML estimate is unique. If not, then this may be caused

either by the fact that the model is not generically identified, or because the ML estimate is

a singular point. In both cases neither a unique ML estimate is available, nor an estimate of

its variance, since the estimated information matrix will be singular. Note that in such cases

it is still possible that some functions of the parameter vector are identifiable; conditions for

this have also been derived. A second and complementary way to investigate identifiability is

to test the hypothesis that the parameter lies in the set of non-identifiable structures; this is

analyzed in Boswijk (1996).

It should be stressed that identification has only been considered here in the mathematical

sense, indicating uniqueness, and related to the traditional statistical problem of estimable func-

tions of parameters. Hendry (1993) lists two more attributes of identification, viz. “ ‘correspondence

to the desired entity’, and ‘satisfying the assumed interpretation (usually of a theory model)’ ”

(Hendry, 1993, p.11). Although we haven’t paid any explicit attention to these connotations of

identification, we have noted that some classes of restrictions to obtain uniqueness may not pro-

vide interpretability, whereas others will in fact be inspired by such considerations. For example,

one could argue that Johansen’s (1988) reduced rank regression estimator is unique, provided

that we restrict the ith vector in β to correspond to the ith canonical correlation between ∆xt

and xt−1 (in addition to some normalization restriction). However, there is no guarantee that

14



these vectors are interpretable or correspond the “the desired entity” (e.g., a money demand

function or a purchasing power parity relationship). Therefore, explicit identifying restrictions

are preferable if the individual cointegrating vectors are to be interpreted.
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Appendix: Proofs

Proof of Theorem 1: Regardless of any identifying restrictions, the cointegrating space, and

hence an arbitrary basis for this space, is identifiable; Johansen’s maximum likelihood estimator,

which is unique up to rotations which span the same space, provides a consistent estimator of

this space. Thus the question is whether a unique value of φ can be obtained from β (or β⊥,

which can be derived from β) and the restrictions (3)-(4). In other words, the question is

whether φ is an estimable function of β.

Since the restricted matrix of cointegrating vectors βφ should span the cointegrating space,

it should satisfy β′⊥βφ = 0. Vectorizing this condition yields

(Ir ⊗ β⊥)′vecβφ = (Ir ⊗ β⊥)′(Hφ + h) = 0,

so that the defining equation for φ is

(Ir ⊗ β⊥)′Hφ = −(Ir ⊗ β⊥)′h. (A.1)

This system only has a unique solution if the r(n− r)× k matrix (Ir ⊗ β⊥)′H is of full column

rank, i.e., if rank ((Ir ⊗ β⊥)′H) = k.

Suppose that (Ir ⊗ β⊥)′H has a deficient column rank; then there exists a non-null vector

x such that (Ir ⊗ β⊥)′Hx = 0. Because H has full column rank, Hx 6= 0 for all x 6= 0; since

this vector lies in the null space of (Ir ⊗ β⊥)′, it can be expressed as (Ir ⊗ β)y for some non-

null vector y. For that same y, we have R′(Ir ⊗ β)y = R′Hx = 0, so that R′(Ir ⊗ β) has a

deficient column rank. The same argument can be reversed, so that a deficient column rank

of (Ir ⊗ β⊥)′H implies and is implied by a deficient column rank of R′(Ir ⊗ β). This in turn

implies that a full column rank (k) of the former matrix is equivalent to a full column rank (r2)

of the latter matrix.

Let K denote the null space of (Ir ⊗ β⊥)′H (possibly void). If φ is a solution of (A.1), then

so is (φ + x) for any x ∈ K. Thus Fφ is observationally equivalent to the set of all points

{F (φ + x), x ∈ K}. If (and only if) condition (6) is satisfied, then Fx = 0,∀x ∈ K, so that this

set contains only one point; thus in that case F is identifiable. ¤

Proof of Theorem 2: Using trAB = trBA = (vecA′)′vecB for matrices A and B of con-

formable orders, the derivatives of the log-likelihood with respect to φ and γ are:

∂ lnL

∂φ
= TH ′vec(S10Ω−1α)− TH ′vec(S11βα′Ω−1α), (A.2)

∂ ln L

∂γ
= TG′vec(β′S10Ω−1)− TG′vec(β′S11βα′Ω−1). (A.3)

Substituting (8) in (A.2) and solving for φ yields (10); similarly, (9) and (A.3) lead to (11). The

expression for Ω̂(φ, γ), as well as the block-diagonality of the information matrix are standard
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results for ML estimation of multivariate regression models with Gaussian disturbances, see,

e.g., Magnus and Neudecker (1988) (note that (12) equals the average outer product of the resid-

ual vector). The diagonal blocks of the information matrix simply follow from differentiation.

For the off-diagonal block, we have

∂ ln L

∂φ∂γ′
= −TH ′(Ω−1α⊗ S11β)G + TH ′(Ir ⊗ [S10 − S11βα′]Ω−1)KG, (A.4)

with K the commutation matrix of appropriate order, so that vecα = Kvecα′ (cf. Magnus and

Neudecker, 1988). The matrix in square brackets in (A.4) has expectation zero if evaluated in

the true value; it also vanishes asymptotically if the observed information matrix is suitably

standardized, which is why it is omitted from (13). ¤

Proof of Theorem 3: Define the orthogonal matrix A = [A1 : A2], where A1 = [In⊗β⊥], and

A2 = [In ⊗ β(β′β)−1/2]; note that the matrix β⊥ may be taken semi-orthogonal without loss of

generality. Next, write the observed information matrix as

Jθ =


 H ′(α′ ⊗ In)

G′(In ⊗ β′)


AA′(Ω−1 ⊗ S11)AA′


 H ′(α′ ⊗ In)

G′(In ⊗ β′)



′

= BJ̃θB
′, (A.5)

where

B =


 H ′(Ir ⊗ β⊥) H ′(α′ ⊗ β(β′β)−1)

0 G′


 ,

J̃θ =


 (α′Ω−1α)⊗ (β′⊥S11β⊥) (α′Ω−1)⊗ (β′⊥S11β)

(Ω−1α)⊗ (β′S11β⊥) Ω−1 ⊗ (β′S11β)


 . (A.6)

In a similar fashion, the score vector in (A.2)-(A.3) can be summarized and rewritten as

qθ =
∂ ln L

∂θ
= T


 H ′(α′ ⊗ In)

G′(In ⊗ β′)


AA′vec

(
(S10 − S11βα′)Ω−1

)
= Bq̃θ,

where

q̃θ = T


 vec((β′⊥S10 − β′⊥S11βα′)Ω−1)

vec((β′S10 − β′S11βα′)Ω−1)


 .

Let N(θ0) denote a neighbourhood of the true value where rankJθ = m. For any θ ∈ N(θ0),

let Cθ denote a semi-orthogonal matrix of full column rank spanning sp(Jθ), such that in

the true value, Cθ = C. Choose Cθ⊥ such that [Cθ : Cθ⊥] is orthogonal. Now consider the

reparametrization λ = f(θ), where (for θ ∈ N(θ0)) ∂f/∂θ′ = [Cθ : Cθ⊥]′; partition λ = (λ′1, λ
′
2)
′

conformably with [Cθ : Cθ⊥]. Note that for θ ∈ N(θ0), this reparametrization is one to one,

because the derivative is non-singular; and because this derivative matrix is orthogonal, the

inverse transformation θ = f−1(λ) has derivative [Cθ : Cθ⊥]. Therefore,

qλ =
∂ ln L

∂λ
=


 C ′

θqθ

C ′
θ⊥qθ


 =


 qλ1

0


 ,
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Jλ =
∂2 ln L

∂λ∂λ′
= [Cθ : Cθ⊥]′Jθ[Cθ : Cθ⊥] =


 Jλ1 0

0 0


 ,

i.e., the parts of the score vector and the information matrix that correspond to λ2 are all equal

to zero. This in turn implies that all point λ (corresponding to N(θ0)) that have the same

value of λ1 are observationally equivalent, i.e., λ2 is not identifiable. Thus we may restrict λ2

to an arbitrary value (e.g. zero), without restricting the log-likelihood. The information matrix

for the remaining free parameters, Jλ1 = C ′
θJθCθ, is non-singular by construction, so that λ1

is identified. From this, consistency of the (hypothetical) ML estimator λ̂1 can be proved, so

that we can use a Taylor series expansion around the true value (so that Cθ = C):

ΥT (λ̂1 − λ1) = ΥT C ′(θ̂ − θ) + op(1) =
[
Υ−1

T C ′JθCΥ−1
T

]−1 Υ−1
T C ′qθ + op(1),

where ΥT is a scaling matrix chosen such that the normalized sore vector and observed in-

formation matrix converge (recall that Jθ is equal to minus the Hessian matrix, except for an

asymptotically negligible term with expectation zero). Letting m1 = rankC1 and m2 = rankC2

(m = m1 +m2), it will follow from the subsequent derivations that ΥT = diag(T ·Im1 ,
√

T ·Im2)

is a suitable choice.

Partition B = [B1 : B2] in an obvious fashion, and note that sp(B) = sp(C) and sp(B1) =

sp(C1). This implies that we may express B as B = CD, and therefore C ′B = D, where D is a

matrix of appropriate order, with full row rank, partitioned as D = (Dij), i, j = 1, 2 (note that

D21 = 0). This leads to

ΥT C ′(θ̂ − θ) =
[
Υ−1

T DJ̃θD
′Υ−1

T

]−1
Υ−1

T Dq̃θ

=
[
(Υ−1

T DΥ̃T )(Υ̃−1
T J̃θΥ̃−1

T )(Υ̃−1
T D′Υ−1

T )
]−1

(Υ−1
T DΥ̃T )(Υ̃−1

T q̃θ),

where we have defined the scaling matrix Υ̃T = diag(T · Ir(n−r),
√

T · Inr). From the general

results of Johansen (1991), it can be deduced that

Υ̃−1
T J̃θΥ̃−1

T
D→




(α′Ω−1α)⊗
∫ 1

0
FF ′dt 0

0 Ω−1 ⊗ Σββ


 ,

Υ̃−1
T q̃θ

D→




vec
∫ 1

0
FdB′

N(0, Ω−1 ⊗ Σββ)


 ,

where F (t) is an (n−r)-vector Brownian motion process on [0, 1] with positive definite covariance

matrix, and B(t) is an r-vector Brownian motion process, independent of F (t), with covariance

matrix (α′Ω−1α). Furthermore, Σββ = Var[β′xt|wt]. Because Υ−1
T DΥ̃T → diag(D11, D22), it

follows that
[
Υ−1

T C ′JθCΥ−1
T

]−1 D→

 V1 0

0 V2


 , (A.7)
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with

V1 =
(

D11

(
α′Ω−1α⊗

∫ 1

0
FF ′dt

)
D′

11

)−1

, V2 =
(
D22(Ω−1 ⊗ Σββ)D′

22

)−1
,

and

ΥT C ′(θ̂ − θ) D→




V1D11vec
∫ 1

0
FdB′

V2D22N(0, Ω−1 ⊗ Σββ)


 =




∫

V1>0
N(0, V1)dP (V1)

N(0, V2)


 , (A.8)

which proves (18)-(19). The independence of the two components in (A.8) follows from the

block-diagonality of the limiting variance in (A.7).

Finally, the limiting χ2 distribution of the LR statistic follows from (mixed) normality of

the estimators of the identified components of α and β in the unrestricted model, see Johansen

(1991, Appendix C). It follows from (A.5)-(A.6) that the number of identified parameters in

the unrestricted model is r(n − r) + nr. This can also be seen from the rank condition in

(5): if G = Inr, then α contains nr unrestricted parameters, and the rank condition limits the

number of identified parameters in β to r(n− r). Since the number of identified parameters in

the restricted model is m (in a neighbourhood of the true value), the number of effective over-

identifying restrictions is d = r(n− r)+nr−m. These can be expressed as smooth restrictions

g(α, β) = 0, with a derivative Dg(α, β) which is of full column rank, provided that the true

value is not a singular point of Jθ. This proves (20). ¤
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