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A b s t r a c t  

Let {~, } be a sequence in the unit disk D = {z e C:lz] < 1 } consisting of a finite number of points cyclically repeated, 
and let 5¢ be the linear space generated by the functions B.(z)= l-lk=O- Ctk(Z- ~)/l~kl(1 --~kZ). Let {~p.(z)} be 
orthogonal rational functions obtained from the sequence {B.(z)} (orthogonalization with respect t o  a given 
functional on ~) ,  and let {~.(z)} be the corresponding functions of the second kind (with superstar transforms 
¢p*(z) and ~*(z) respectively). Interpolation and convergence properties of the modified approximants 
R.(z, u., v.) = (u.¢.(z) -- v.tk*(z))/(u.tp.(z) + v.~p*(z)) that satisfy lu, I = Iv.[ are discussed. 

Keywords: Orthogonal rational functions; Rational interpolation 

I .  P r e l i m i n a r i e s  

We shall use the no t a t i on  T = {z e C: I z I = 1 }, D = {z e C:lz I < 1 } for the uni t  circle and  the uni t  
disk. The  kernel  D (t, z) is def ined by 

t + z  
- . ( 1 . 1 )  D (t,  z )  t - -  z 

Let /~ be a finite Borel  measu re  on  [ -  n, n]. The  integral  t r ans fo rm O.  is def ined as the 
C a r a t h 6 o d o r y  funct ion  

Ou(z ) = frD(t, z) d/~(t). (1.2) 

* Corresponding author. 
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(We use the simplified nota t ion above for (~D(ei°,z)dla(O), and analogously in similar 
cases.) 

The real part of a Cara th6odory function is a positive harmonic  function in D, and vice versa. 
(Recall the Riesz-Herglotz representat ion theorem. Note  that  the real part  of the kernel D(t, z) is 
the Poisson kernel.) 

The substar conjugate f ,  of a function f is defined as 

f ,(z) =f (1 /~ ) .  (1.3) 

When f is a rational function or a series expansion, this may also be written as 

f ,(z) =f(1/z), (1.4) 

where the bar denotes conjugat ion of the coefficients. The inner product  ( , ) ,  is defined on 
C(T) x C(T) by 

( f  g)u = fr f(t)9(t)dlt(t) = fr f(t)9,(t)d#(t). (1.5) 

Let {~,: n = 1, 2, ... } be an arbitrary sequence of (not necessarily distinct) points  (interpolation 
points) in D. We define the Blaschke factor ~.(z) as the function 

aS (~. - z) 
¢.(z) - Ic~.l ( 1 - ~ - - ~ ) '  n = 1, 2, . . . .  (1.6) 

(Here ~,/1%1 = - 1 if ~, = 0.) We also define 

n 

no(Z) = 1, 7t,(z) = 1"-I (1 - ~ z ) ,  n = 1, 2 . . . .  , (1.7) 
k = l  

trio(Z) = 1, tn,(z) = I~I ( z -  %), n -- 1, 2 . . . . .  (1.8) 
k = l  

The Blaschke products  B,(z) are defined by 

1~i o~.(z) Bo(z) = 1, B,(z) = ~k(Z) = q, rc.(z)' n 1,2, . . . ,  (1.9) 
k - - 1  

where 

q. = ( -  1)" ~1 ~ (1.10) 
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We shall also make  use of the functions B,\k(Z) defined by 

B. \ , ( z )  = 1, B, \k(z)  = B,(z) /Bk(Z)  = FI (i(z) for 0 ~< k < n, n = 1, 2 . . . . .  (1.11) 
j = k + l  

(The product  means the constant  1 when k = n.) 
We define the spaces 5O, and 5O,, by 

L~°. = Span{Bk: k = 0, 1, ... , n}, (1.12) 

L~,. = { f . : f e  5O,}, (1.13) 

and set 5O = U,~o5O, ,  5O. = U , ~ o ~ , .  • We may then write 

} £Y , = [ - - - ~ )  " p,  e l I ,  , (1.14) 

q,(z)  } 
= q .  r / .  , (1.15) 

w h e r e / / ,  denotes the space of all polynomials  of degree at most  n. 
F o r f ,  a 5°,  we define its superstar conjugatef .*  by 

f .* (z )  = B , ( z ) f . . ( z ) .  (1.16) 

Note  that  this t ransformat ion depends on n. It must  be clear from the context what  n is. Also note 
that  when f ,  e ~ ,  then f.* ~ ~ , .  

The theory of the function spaces described above is connected with the Nevanl inna-Pick  
interpolat ion problem with interpolat ion points {a,} (cf. [16, 17]). These function spaces were 
in t roduced by Djrbashian in 1969 (see [11]), and independently in [1, 2, 10]. The theory has 
recently been further developed in [3, 5, 6, 8] (cf. also [14]). For  connections between Nevan- 
l inna-Pick interpolat ion and system theory, see [9]. 

We shall in this paper  mainly be concerned with a special case, which we shall call the cyclic case. 
In this case the sequence {a. } consists of a finite number  p of points cyclically repeated. Thus  
~qp+k = ~k for k = 1, . . . ,  p, q = 0, 1, 2, . . . .  For  more  details on the cyclic case see [4, 7, 12]. 

When all the interpolat ion points coalesce at the origin, the space 5¢ reduces to the space of 
polynomials,  and the or thogonal  rational functions in 5O (see Section 2) are or thogonal  poly- 
nomials, Szeg6 polynomials.  For  a survey of this special situation, see e.g. [13]. 

2. Orthogonal rational functions 

Let the sequence {tp,: n = 0, 1, 2 . . . .  } be obtained by or thonormal iza t ion  of the sequence {B.: 
n = 0, 1, 2, ... } with respect to ( , ) ~ .  These functions are uniquely determined by the requirement  
that  the leading coefficient K. in 

~o.(z) = ~ KkBk(Z) (2.1) 
k=O 
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is positive. We then have K, = tp* (~,). The following orthogonality properties are valid: 

( f  q~.)u = 0  f o r f ~ 5 0 , - 1 ,  (2.2) 

(g,  4o*), = 0 for ge~ .50 ._  1 (2.3) 

(see [3, 5]). We define the functions 4o.(z, u, v) by 

4o,(z, u, v) = u4o.(z) + v4o*(z), u, v e C ,  (u, v) # (0, 0). (2.4) 

We note that 40.(z, u, v) belongs to 5°. (as a function of z). We call these functions paraorthogonal 
when lul --Ivl. 

We define the functions qs. of the second kind by 

Oo(Z) = 1, O. (z )  = f r D ( t , z ) [ c P , ( t ) -  q~.(z)]d/~(t), n = 1,2, . . . .  (2.5) 

For the functions ~h. and ~* various equivalent expressions can be given. Let us recall the following 
result (see [3, 5]). 

Theorem 2.1. For  n = 1, 2, ... the fo l lowing  f o rmu las  are valid: 

~k,(z) = D(t,  Z ) L ~ k ( t  ) cp,(t) -- q~.(Z) d#(t), k = O, 1 . . . . .  n - 1, (2.6) 

fT -'rB"'k(z) ] ~h*(z) = - D(t ,  z ) [ ~  ~p*(t) - ~p*(z) , k = 0, 1 . . . .  , n - 1. (2.7) 

We shall next prove a result valid in the cyclic situation. 

Theorem 2.2. In  the cyclic case wi th  p points  the fo l lowing  fo rmulas  are valid f o r  
n = p + l , p + 2  . . . .  : 

~h.(z) = D(t ,  zj - -  (2.8) LB, \qp( t  ) q~,(t) - qg.(z) d#(t) where qp < n, 

f r  "FBqP(Z)Lt~qpt r ' 1 ~ * ( z )  = - O(t ,  Z)l-ff----7~,~ , ~p*(t) - qa*(z) d#(t) where  qp < n. (2.9) 

Proof. We may write 

n 

= Fl   j(z) = 
j=n-qp+ 1 

The results now follow by using k = qp in (2.6) and (2.7). 

qP 
I~ ~j(z) = Bqp(z). 

j= l  

[] 



A. Bultheel et al./ Journal of Computational and Applied Mathematics 57 (1995) 77-86 81 

We define the functions ¢,(z, u, v) of the second kind by 

O,(z,  u, v) = uO. (z )  - v~O*(z), u, v e C ,  (u, v) ¢ (0, 0). (2.10) 

Theorem 2.3. In the cyclic case with p points the fol lowing formulas  are valid for  
n = p + l , p + 2 , . . . :  

O.(z, u, v) = D(t, ZjLB~v(t) ~o.(t, u, v) - ~o.(z, u, v) d/~(t) where qp < n, (2.11) 

f r  , [-B,\qp(Z) ] (2.12) ~, (z ,  u, v) = D(t, z) - -  v) -- ¢p.(z, u, v) d/~(t) where qp < n. LB.\q~(t ) q~.(t, u, 

Proof. Follows by combining (2.7) and (2.8) (resp. (2.6) and (2.9)) for the situation k = qp. [] 

3. Interpolation by rational approximants 

We shall in this section study interpolation properties of the rational functions 

R,(z ,  u, v) - O,(z,  u, v) (3.1) 
~o. (z, u, v) 

given by (2.4) and (2.10) to the function - Qu(z) defined in (1.2). 
Let us recall the following result (see [8]). 

Theorem 3.1. The  funct ion O,(z)  has in D the fol lowin9 Newton  series expansion: 

f2~,(z) = [/~o +2m=1 ~ #mZa)m-l (Z) l '  (3.2) 

where the general moments  Pm are 9iven by 

f d#(t) /~,, = m = 0, 1, 2 . . . . .  (3.3) 
~o)m(t)' 

In the following we shall use the notation q(n), r(n) as defined below: 

n = q(n)p  + r(n), r(n) e {1, . . . ,  p}. (3.4) 

Theorem 3.2. The  rational funct ion R . (z ,  u, v) interpolates the funct ion - f2~,(z) in the sense that for  
n >p:  

~9.(z, u, v) + q~,(z, u, v)f2u(Z) = f , ( z ) z o ) . -  l (z), (3.5) 

where f . ( z )  is analytic in D. 
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Proof. One can easily establish the identity 

n - 1  2(.Dm_I(Z) t + z [1  zco.-x(z)~ zco._l(z) 
1 + 2m=lZ CO,.(t) t --  Z too.- l(t)_] tco.- l( t)"  

(3.6) 

Hence, after integrating (3.6) with measure/t ,  we get 

n-1 f T {  [ zO)n-I(Z)-] z('On-I(z)~ 
/to + 2 m=lE/t mZ(J)m-l(Z) = D(t, z) 1 t--~._~(-f)J tco._l(t)J d/t(t)" (3.7) 

By combining (2.11) and (3.7) we then obtain (since q(n)p < n) 

I n-1 1 ~k.(z,u,v)+ ¢p.(z,u,v) / t o + 2  ~ /tmZCO,.-I(Z) m=l 

fT . . . .  FBq(n)p(Z) Z(.On- 1 (Z) = tptr, z l l - -  (p.(t,u, V) 
L Bq(.)p(t) to)._ 1 (t) 

(p.(z, u, v)] d/t (t) 

f r  1 - q).(z,u,v)zco.-x(z) trO._l(t) d/t(t) (3.8) 

and hence 

I n--1 1 O.(z, u, v) + (p.(z, u, v) / t o + 2  Y'. /t,.zco,.- l (Z) m=l 
= - / t ' . r p . ( z ,  u, v)z~o._l(Z) + coq~.)~(z)~.(z), (3.9) 

where 

f r  1 /t;' = too.-1 (t---~) dp(t) (3.10) 

and 

T z r~.- I z 1 a.(z) = O(t, z)F lzq(.)p(t) fPn(t, U, V) -- llk=q(n)p+ l~Z -- O~k) Lnq(.)p(Z)e)q(.)p(t) te) ._l( t)  ¢p.(z, u,v) d#(t). (3.11) 

(If q(n)p = n - 1, the product means the constant 1.) 
We are going to prove that a.(~k) = 0 for q(n)p + 1 ~< k ~< n - 1. Let q(n)p + 1 ~< k ~< n - 1, if 

n(q) < n - 1. Then 

1 frD(t,:tk) nq(")p(t) q~,(t,u,v) d#(t). ~.(~k) = ~,)p(~k) ~o~(.~p(t) (3.12) 
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We note that 

7 1 + D(t,  ~ k ) l  . = C - -  - -  -- c ~ . ( t ) L ( t ) ,  
L~q(.)p(t)_], 1 - akt ~q(.)p(t) 

where L ( t ) ~  ~ . _  a and c is a constant, while also 

~q(n)p(t) _ . ,  

~q(n)p(t) 

Because we may note that 

(1 4- ( t  - 

(1 -- akt)nq(.)e(t ) -- (1 -- akt)Ttq~.)p(t)' 

where Sq(.)p(t) is a polynomial of degree q(n)p,  that (1 - ~kt)nq~.)p(t) is a factor in n.( t) ,  and that 
(t - ek) is a factor in COq(.)p(t), thus 

(-Oq(n)p(t)J, 

and hence 

G.(~k) -- nq(.)p(~k) ~o.(t, U, V), LCOq(.)p(t) j . /"  = 0. (3.13) 

Analogously we find ~.(0) = 0. 
We have now seen that the second term on the right-hand side of (3.9) in addition to having the 

factor COq~.)p(z) also has the extra factor z and the extra factors (z - ~k) for q(n)p  + 1 <<. k <<. n - 1 
(since ~.(0) and ~.(~k) = 0 for the values of k indicated). 

It follows that the second term on the right of (3.9) is of the form A . ( z ) z c o . _  l(Z). Thus 

[ 1 O,(z ,  u, v) + ~o,(z, u, v) # o + 2  2 I~mZO)m-l(Z) =O,(Z)Ze),-I(Z),  O,(z) analytic. (3.14) 
m = l  

Since 

Qu(z) + #o + 2 2 ~mZ~O,~-I(Z) = h, (z) z co. _ l (z), h,(z)  analytic, (3.15) 
m = l  

we conclude that (3.5) holds. []  

4. Convergence of  rational approximants 

We recall that we call the function (p.(z, u, v) paraorthogonal  when ]u] = ]vl. Paraorthogonal  
functions give rise to quadrature  formulas. Let us recall the following result (see [3, 6]). 

Theorem 4.1. The  zeros o f  cp.(z, u, v ) for  lul = Ivl are all simple and lie on T. Le t  the zeros be denoted 
by ¢~")(u, v), k = 1, . . . ,  n. Then  there exis t  positive constants  2[")(u, v) such that  the quadrature 
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formula 

rL( t )  dp(t) = 

is valid for LeLP , -1  + ~ ( , -  1).. 

A. Bultheel et al./Journal of Computational and Applied Mathematics 57 (1995) 77-86 

2~n)(U, v)L(~nt(u,  v)) (4.1) 
k = l  

We shall in the rest of this section again consider only the cyclic case with p points, and use the 
same notation as in Section 3 and Theorem 4.1. 

Theorem 4.2. Let l ul = I vl, and assume n > p. Then R.  (z, u, v) has the partial fraction decomposition 

n 

R,(z,  u, v) = - • 2~)(u, v ) D ( ~ ) ( u ,  v), z). (4.2) 
m = l  

Proof. Consider the func t ionf ( t )  defined by 

f ( t )  = D(t, z )[Bp(z)  1 mBp(t) (p,(t, u, v) - q~,(z, u, v) . (4.3) 

The function q~,(z, u, v) can be written as 

~p.(z, u, v) - p" (z, u, v) 
7r.(z) ' (4.4) 

where p, (z, u, v) e/-/,. It follows that 

f ( t )  = (t + z)[cop(z)np(t)p,(t, u, v)n,(z)  - COp(t)np(Z)n,(t)p.(z, u, v)],  (4.5) 
(t - z)cop(t)rCp(Z)rr.(t) 

hence since t - z is a factor in the numerator:  

f ( t )  = Pp+,- l (Z, t)(1 - ~ . t )  
cop(t)Tz,(t) ' (4.6) 

where Pp+,_ ~ belongs to lip+._ 1 as a function oft.  (Note that (1 - ~ t )  is a factor both in TOp(t) and 
in rc,(t), and also in the numerator.) 

It follows that we may write 

f ( t )  = P p + . - l ( z ,  t) 
cop (t)7z,_ 1(0'  (4.7) 

hencef( t )  E 5e,_ 1 + ~ p ,  ~ 5e,_ 1 -~ "~(n-1)*, by partial fraction decomposition. (Note that cop(t) 
and n , - l ( t )  have no common factors.) Since f ( ¢ ~ ) ( u , v ) ) = - - D ( ¢ ~ ? ( u , v ) , z ) q ~ . ( z , u , v ) ,  as 
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~0,(~)(u, v), u, v) equals zero, application of Theorem 4.1 and formula (2.11) yields 

4 , . ( z ,  u, v)  = - u, v) v), z),  
m = l  

which is equivalent to (4.2). []  

(4.8) 

Since (4.1) is valid for L = 1, the following equality holds: 

v) = 
m = l  

(4.9) 

Theorem 4.3. Let  lu, I = Iv, f for  n = 1, 2, . . . .  Then the sequence {R.(z, u,, v.)} converges locally 
uniformly on D to - I2 u (z). 

Proof. It easily follows by (4.2) and (4.9) that the functions R.(z, u, v), l ul = I vl, are uniformly 
bounded on every compact  subset of D, and thus form a normal family. So there exist subsequences 
o f  {R.(z, u,, v.)} converging locally uniformly on D. Let v,(t, u., v,) be the measure on T having 
masses 2~)(u., v,) at the points ¢~)(u,, v,). By Theorem 4.2 we may then write 

R,(z,  u,, v,) = - frO(t, z) dr,(t ,  u,, v,). (4.10) 

A standard argument  shows that a subsequence of {R,(z,  u,, v,)} converges locally uniformly on 
D to a function F(z) if and only if the corresponding subsequence of {v,(t, u., v.)} converges to 
a measure v such that F(z) = - (2,(z). 

Fur thermore  Sr dv,(u, ,  v,, t)/~,,(t) converges to Sr dv(t)/~m(t) for m = 0, 1, 2 . . . . .  On the other 
hand Theorem 3.2 shows that R.(z,  u,, v,) + f2u(z) = 9.(z)z~o,-  1 (z), where 9,(z) is analytic in D. It 
follows from this and (4.10) that ~rdv,(t ,  u,, v,)/~o,,(t) = ~rdp(t)/egm(t) for m = 0, 1, . . . ,  n - 1. 

Consequently ~r dv(t)/eo,.(t) = ~r dp(t) /~, . ( t )  for m = 0, 1, 2, ... (cf. [7, 8] where related prob- 
lems are treated). It is known that the measure giving rise to the moments  #,. = Sr dp(t)/ogm(t) is 
unique when Zm% 1 (1 - let, I) = ~ (this follows e.g. from the convergence result in [3, Section 21]). 
This is the case in the cyclic situation. Thus v = # and the whole sequence {R,(z,  u,, v,)} converges 
to - f2u(z). [] 

For  convergence properties of the rational approximants R,(z,  O, 1) and R,(z,  1, 0) see [3]. For  
a more detailed study of convergence of multipoint Pad6 approximants, see especially [15]. 
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