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Abstract 

Quadrature formulas on the unit circle were introduced by Jones et al. in 1989. On the other hand, Bultheel et al. 
also considered such quadratures by giving results concerning error and convergence. In other recent papers, a more 
general situation was studied by the authors involving orthogonal rational functions on the unit circle which 
generalize the well-known Szegii polynomials. In this paper, these quadratures are again analyzed and results about 
convergence given. Furthermore, an application to the Poisson integral is also made. 

Key words: Quadrature formulas; Positive measures; Orthogonal rational functions 

1. Preliminaries 

In this paper we shall use the notation U = {z: Iz I = 11, D = (2: I z I < 1) and lE = (2: 
I t I > 1) for the unit circle, the open unit disc and the exterior of the unit circle. Let p be a 
finite Bore1 measure on [-r, T]. In order to estimate the integral 

r,If} = /T f(e”) dp(B) = Lff(z) +.(z) = _/f(z) h(Z) 
-?I 

(we have taken the freedom to write the previous integral in different forms, having in mind 
that integration will always be over the unit circle in one form or another), the so-called Szegii 
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quadrature formulas were introduced in [ll]. (See also [8] for a different approach.) Such 
quadratures are of the form 

Z,(f)= kAy’f(~j~)), xI”)#x(“), xj”)~Uaand Ay)>O,j=l,...,n, 
j=l 

(1.1) 

so that Z&f) = Z&Y for all f E A _(,, _ rhCn _ r). For every pair (p, q) of integers, p 6 q, Ap,4 will 
denote the linear space of all Laurent polynomials of the form 

&j, CjE@, 
i=p 

and A the space of all Laurent polynomials [10,13]. It is known that quadrature formulas (1.1) 
are of great interest to solve the trigonometric moment problem or equivalently the Schur 
coefficient problem (see [ll]). On the other hand, Waadeland [14] recently studied such 
quadratures for the Poisson integral, that is, when the measure p is given by 

da(B)=: 1_2;;db+ri’ !-E (0, I), 

or more generally, 

d&‘) = 
l- b-1’ d0 
,z_-y,2 2=, TED, z=eis. (1.2) 

Observe that by taking Y = 0, we have the normalized Lebesgue measure dh(8) = d8/27r. 
Szegii quadratures for such situations were also studied in [9]. Finally, in [4] aspects concerning 
error and convergence were analyzed. 

In this paper, formulas (1.1) will be considered again, but instead of Laurent polynomials, 
more general rational functions with prescribed poles not on T will be used, giving rise to the 
rational Szegii formulas which were earlier introduced in [2,5], where the so-called rational 
Szegii functions play a fundamental role. 

For completeness, let {ai}: c D be a given sequence and consider for y1= 0, 1,. . . the nested 
spaces Tn of rational functions of degree at most it which are spanned by the basis of partial 
Blaschke products {B,,J;, where B, = 1, B, = 5, B,_ 1 for II = 1, 2,. . . and the Blaschke factors 
are defined as 

By convention, we set cTJ] cxn 1 = - 1 for (Y, = 0. Sometimes, we shall also write 

Note that if all the (Y~ are equal to zero, the spaces pn collapse to the space ZZ,, of polynomials 
of degree n. 
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We also introduce the transformation f,(z) =f(l/.?), which allows to define for f,, ~2~ 
the superstar conjugate as 

f,*(z) =B,(z)f,*(z). 

Let now the sequence {4,: n = 0, 1,. . . ) be obtained by orthonormalization of the sequence 
{B,: n = 0, 1,. . .) with respect to the inner product induced by the measure p, namely 

(f, d, = iTT f(e’“)g(e’“) G(8). 
, 

-T 

These functions are uniquely 
n 

determined by the requirement that the leading coefficient k, in 

+nCz> = C kjBj(z> 
j=l 

is positive. We then have k, = +,*<(Y,>. 
Finally, in order to summarize the main result given in [5] for the rational Szegii formulas, let 

us introduce the function spaces of the form 

‘!Z p,4 =5$,* +2gq = 
i 

P 
-; PEIJP+Q , 

1 

p and 4 being nonnegative integers. 
wP=q 

Observe that Zn* = span(1, B,*, . . . , I?:} = span(1, l/B,, . . . , l/B,}. Therefore, 

1 1 
9 -- 

P.4 llB Bp,Bp_-l,..., B,7 , lT.eay =_qn. 

When all the (Y~ are equal to zero, then B,(z) = zk and one has SP,, = span{zk: 
-p + 1,. . . ) 41 = A -p,q. Furthermore, for w ET, set x,Jz, w> = 4n(~> + WC&,*(Z), so 
following holds (see [5]). 

Theorem 1. (i> ,yJz, w> has n simple zeros which lie on the unit circle. 

k= -p, 
that the 

(ii) Let x1,. . . , x, be the zeros of xn(z, w>. Then there exist positive numbers A,, . . . , A,, such 
that the formula I,jf> = Cr,,Ajf(xj) is exact, that is, Z,jf} =1&f} for all f E9n_I,n_l. 

In this case, z@~_ I,n_ 1 is said to be a maximal domain of validity. Moreover, it was also 
proved in [5] that the only quadrature formulas with such a maximal domain of validity are just 
those ones given in Theorem 1, where the weights Aj are given by 

Aj = /Lj(z) dP(z), (1.3) 

and Lj(z) EP~_~ =9,,n_1 is defined by the interpolation conditions Lj(xi) = aij. 
(Actually, a more general interpolating function space ZGZ’~,~, p and 4 being nonnegative 

integers such that p + q = n - 1, can be considered, so that the resulting quadrature formula 
does not depend on p and q. See [5].) 
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2. An alternative approach 

In this section we shall give an alternative approach to get the above quadrature formulas 
using Hermite interpolation in the space LZ~_ l,n_ 1 (compare with the approach given by 
Markov for the classical Gauss formulas [12] and with the one given in ,[4] for the Szegii 
formulas on the unit circle in the polynomial case). Writing A = {CZ~}~ and A = {l/O>: (Y~ EA}, 
it is easily seen that 9P,4 represents a Chebyshev system on any set XC C - (A UA), so that, 
given the distinct nodes {xi: j = 1,. . . , n} c C - (A UA), there exists a unique function Q E 
9 n_l,n_l, with 

Q(x,) =f(xJ, i = 1, 2 ,..., n, Q’(x,) =f’(xJ, i = 1, 2,. . .,n - 1. 

These are 2n - 1 constraints, which corresponds to the dimension of 3Pn_ l,n_ r. In order to 
determine such Hermite rational interpolants, we can write 

Q(Z) = 2 Hj,,(Z)f(xj) + ‘C’~j,,(Z)f’(xi), 
j=l j=l 

where Hi,, and Hj,r belong to LZ~_ I,n_l and satisfy the interpolation conditions 

Ifi,, =isij, 1 <i, j<n, Hil,O(xj)=O, l<i<n, l<j<n-1, 

H,,i(xj)=O, l<i<n-1, l<j<n, Hi',l(xj) = 6,j, l<i, j<n--1. 

Denoting N,(z) = I7;(z -Xi>, we set for i = 1, 2,. . . , IZ, 

w-4 = p(z) = - 
[ 1 n2,-2(xJ 

’ -‘i r2n-2(z)[Ni(xi)l 
2 E92n-27 

which satisfies L<‘)(xj) = 0, 1 < i fj < n. Define L,,,(z) = L(,~)(z) and 

Li,J z) = q=)(z) + Ai 
z -xi 
PL(2)(z) E_Y2n_2, for i = 1, 2 ,..., n - 1, 
z -x, 

with Ai E C chosen such that L$xi) = 1. Furthermore we set 

L,,r(z) = (xi -x,)zLf’(r) E_5?Zn_2, i = 1, 2 ,..., 12 - 1. 
n 

It is simple to check that 

Li,O(Xj)=6i,j, l<i, j<n, Li,,(xj) = OY l<j<n-l,l<i<n, 

and 

L,,r( xj) = O7 l<i<n--l,l<j<n, L;,,(xj) = 6i,j, 1 < i, j <n - 1. 

(2-l) 

(2.2) 

P-3) 

(2.4) 
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From (2.3) and (2.4), we can set for i = 1, 2, . . . , II - 1, 
2n-2 

H, ( 

[,O z 
) = ” (l-Ejz) o,_~(x.) 

2nn 2 

IJ (l -‘j’i) 

&) L,oW + PJ&>l ESn 

where pi is uniquely determined by the condition Hilo = 0 and 
2nP2 

wz,o(z) = 
I-I (’ -‘yiz) ~,_~(x ) 

2nn2 

II (l -‘jxn) 

m,,,(z\ L,,(z) E~n-l,n-l 

n 

satisfies the requirements (2.1). Similarly, the functions 
2n-2 

Hi,l(z) = 

II C1 -‘i’) w,_~(x.) 

2nn2 l &,1(z) l %-l,n-1 
I-I (1 - ‘yjXi) %dZ) 
n 

_ l,n-1, 

(2.5) 

satisfy the conditions (2.2). 
Once the interpolating function Q(z) EL%‘~_ I,n_ 1 has been characterized, one gets 

r:,{j-} =/Q(z) dp(z) = 2 A(j”)f(xj) + n~l~~)~‘(xj), (2.6) 
j=l j=l 

where A\!) = /Hi,,(z) dp and iy) = /‘Hi,,(z) dp. Therefore, fn{f) can be considered as a 
quadrature formula which makes use of values of the function f and its derivative. Clearly ZJfl 
has a domain of validity L%‘~_ I,n_ 1. However, an adequate choice of the nodes IXj} can greatly 
simplify formulas (2.6). Indeed, when {xj) are the zeros of 4, + PV~,*, I w I = 1, one has the 
following theorem. 

Theorem 2. The quadrature formula t{ f } given by (2.6) reduces to an n-point Rational SzegC (or 
an R-Szego”, for short > formula when the nodes are the zeros of 

4,+w4,*, Iwl =I. 

Proof. We write xn = 4, + w$,* = N,(z)/~~(z), N, E II,, and N,(xj) = 0, j = 1,. . . , n. Note 
that N, is not necessarily manic. By the characterization theorem for R-Szegii formulas 
(Theorem l), it suffices to show that i(r) = 0, for i = 1,. . . , n - 1. But 2:) = /H,,,(z) dp, where 
Hi,, is given by (2.5). Hence, we have to prove 

2n-2 

J 
II (l-zjz) z-x. 

n 
w,_l(z) z -xl G2W dP = 0. 
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From the definition of Ljz)(t), this integral can be written as (up to a constant factor) 

/ 

N,(z) N,-l(Z) N,(z) (1 - %+Y-l(Z) 
T-d-4 (2 -4%l(Z) 

dp=/---- 
%(Z) (z -+%-1(Z) 

dp = /x,(+ * (4 dE.L 

where 
= (x,, h),> 

h(z) = (1-v) . . - (1 -%-lZ)(Z -4 
(1 _,Fiz)Tn_l(z) =7-l and h(%) = 0. 

Thus, h belongs to TnP1 nT~b,J, L?,J(Y,J = IfcYn: f(a,J = 01. Now, by the orthomality 
properties for xn, it follows that (x,, h), = 0. 0 

Remark 3. Note that the same result can be obtained if the following interpolation problem is 
considered. Find Qi EL%?~_~,~_,, i = 1, 2,. . . , n, such that 

Q,(xj) =f(Xj)> .i= 1, 2>***,‘, Qc!(xj)=f’(xj), l<j<n, i#j. (2.7) 

We can conclude that an n-point R-Szegii formula Z,rf] is given by Z,(f) = /Q,(Z) d,u, where 
Qi is the unique solution to the interpolation problem (2.7) and {Xi} are the zeros of 

x,(z) = 4, + w$,*, I w I = 1. Certainly, the given approach could be useful in order to give an 
expression for the error Elf) = Z,(f) - ZJfl = Z,(f - 12,). 

3. An application to the Poisson integral 

We shall now characterize the n-point R-Szegii formulas for the measure j_~ induced by the 
Poisson integral kernel given by (1.2). In this sense, the first step is obtaining the orthonormal 
system ($,}, IZ = 0, 1,. . . . (Djrbashian [7] already discussed how to find the corresponding 
orthogonal functions for some special cases.) We know &, = 1 and for 12 = 1, 2,. . . , 4, has to 

verify the conditions (i) 4, ~9~ -Pn _ i, ( $,, $n>cL = 1 and (ii) ( 4,, B, jIr = 0, k = 0, 1, . . . , IZ - 1. 

From (i) one finds 

d%dz)(l - 1 r I’) 
b#%> 4)CL = ~4n(z)w dE.L = / Bk(Z)(Z _r)(l _ fz) dh 

l- ]r12 

/ 
4,(z) = 

27ri r&(Z)(Z - r)(l - Yz) dz* 

The denominator B,(z)(z - r)(l - Tz) vanishes at z = ai, i = 1, 2,. . . , k, and z = r, which are 
all inside the unit disc D and the other zero l/Y is in E. If this integral has to vanish, 4, should 
be zero at z = (Y~, i = 1, 2,. . . , k, and z = r. This gives in combination with condition (i) that 4, 
should have the following form: 

AI(z) = kl 
b - mzc4 

~9~ and k, ~0. 
Z-ff, 

(3-l) 



A. B&heel et al. /Journal of Computational and Applied Mathematics 50 (1994) 159-170 165 

For 0 < k < n - 1, it is easily seen that 

where B,,, = BJB,, and thus B,,, (a,) = 0. The constant k, is determined by 

l- Id2 1 - l a, I 2 

[ I 1’2 
~=(~,,#,J,=I~,I~~_, 

a, 
,27 sothat Ik,'= 

l- lrl2 * 

The leading coefficient is found as follows: 

l-F2 1 
4,*(Z) =kn - 

1-6,~ B,(t) ’ 

so that 

and thus m = k, 
1 -E,Y 

l- lc$12’ 

Since the leading coefficient has to be positive, 

k, = 
1’2 

exp(iy,), yn = -arg(l - %J). 

We can check some particular cases. 
(1) r = 0 delivers the Lebesgue measure. Then, 

y,= -arg(l-- 
ZBM 

(Y,Y) = -arg(l) = 0 and 4,(z) = /m=cr,, 
n 

This corresponds with the result in [7]. When all the (Y~ are equal to zero, we recover the 
well-known result that 4,(z) = 2”. 

(2) Y =a,. One then has 

y, = - arg( 1 - I an12) =0 and c#~,(z)=B,(z). 

(3) r # 0, (Ye = 0, k = 1, 2,. . . . Then, 

$,(z) = (z - mdz) 
Z 

= (z _ r)Zn-l =zn - yzn-1. 

This was obtained in [14]. 
The equation x,( Z) = 4,(z) + Gc$~( z) which provides the nodes takes the form 
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or equivalently, 

[(z-~)~]+w~‘~~~ =O, withkv=G;EIf. 

Using B,(z) = ~,~~(z)/o,(t), we get 

X,(z) = (z - ‘)%%I(; ;z;%I(z)(l - fz) _ :;I; ) Nn E nn, 

n n 

The nodes xi satisfy N,(xj) = 0. When r = 0, one obtains 

(3.3) 

(3.4) 

Note that when (yi = 0, this reduces to z” = --IV and the nodes xi are uniformly distributed 
on T, see [9]. Let us suppose that n = 2, (Ye = (Ye = i; then (3.4) gives 

2z2 - (1+ w)z + 2w = 0, 

and the interpolation nodes x1, x2 will be: 
for w = -1: x1 = 1, x2= -1; 
for w = 1: x1 = t<l + ai>, x2 = +<l - ai); 
for w = -i: x1 = +[<l + 0) - (1 - J’l)i], x2 = +[<l - fi> - (1 + d7)il; 
for w = i: x1 = +[(l - J7) + (1 + J;T)i], x2 = $[<l + J-7) + (1 - fijiI. 
For the weights, one has in the general case 

1 x,(z) 1 --(Y,z 
Aj=/Lj(z) dp(z)= --/-- 

l- ]r12 

27ri rz-xj l-cU,xj xA(xj)(z-r)(l-Yz) dz 

1 x,(r) 1 - %r =p 
xA(xj) r-xj 1 -Z,xj’ 

where X,(Z) = N,(z)/T,(z) is given by (3.3). Since x,(r) = w(1 - 1 r 1 2)/(1 - (Y,r), we find 

~(1 - I r I ‘) 

On the other hand, since x,(Xj) = 0, we get x~(Xj) = N,(Xj)/~~(Xj) where 

&L4 = (2 - rh,sl (2) + w?T&z)(l - Yz). 

Use N,(xj) = 0, to find from (3.5) that 

(3.5) 

am = -(l -Z,Xj)(Xj-r) 
TnOn-l(xj> 

W(l_tij) ’ 
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which implies 

Aj=Tn l- I y I 2 o,_l(xj) 
l-rxj zq(Xj) . 

(3.6) 

Now use 

1 
and o;(x~) = ok( xi) f ~ 

j=1 xj-ffj 
to obtain from (3.5) and (3.6) 

n-l 1 
- 

Aj=(l- Iy(2)/(1-tij) l+(Xj-Y) C 
ffk T(r -xj) 

~- I 1 - 
k=l xj - (Yk 1-(YkXj l-tij ' 

so that for 

Aj = ( 

j = 1, 2,. . . , 12, 

I1 - I y I “)/ 
[ 

l- 
n-l 1-la,12 

I y I 2 + I xj -’ I 2kF1 I x, _ (yk I 2 

J 1 7 (3.7) 

where the positivity of the weights is clearly exposed. Again, when all the (Y~ are equal to zero, 
one gets 

l- Ii-I2 

Ai= l- Ir12+(n-1)IXj-Y12' 
j=l,2,...,n. 

If we set xi = exp<iej> are Y E (0, l), then I xj - r I 2 = Iexp(iOj) - r I 2 = 1 + r2 - 2r cos ej. 

Therefore, 

l- ]?-I2 
Aj= 

l- Ir12+(II-1)(1+r2-2r COS e,)' 
j=l,2 

'.""' 
(3.8) 

The same expression was obtained in [14] for the polynomial case. 
If r = 0 (Lebesgue measure), it follows from (3.8) that Aj = n-l for j = 1,. . . , II. That means 

that the corresponding SzegB formula for the polynomial case has all its nodes equally spaced 
on the unit circle and all its weights are equal to n-l. (Compare with the results given in [9].) 

In the special case Y = (Y,, (3.7) yields 

Aj = (’ - I a, I “)/ 1 (3.9) 

Concluding example: assume that (Ye = (Y for k = 1, 2,. . . , n and take also Y = (Y. Then, 

&(z) =&Z(z), 4,*(z) = I, x,=&+W$,*=B,(z)+w. 
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Because now B, = 5” with 5(z) = (Z/I LY I)((Y - t)/(l - Ezl, the nodes xi are solutions of 

a-z n 

( i Ialn 
1 =-Iv --n 

=GEE. 
CY 

Setting rj = (G)““, j = 1, 2,. . . , 
from (3.9) 

n, we get xj = (a - rj)/(l - ‘YY~). As for the weights, one gets 

Aj=‘T j=1,2 ,..., n. 
n 

4. Convergence 

Let JJf}, II = 1, 2,. . .) be a sequence of R-Szegii formulas (take into account that for each 
~1, In{f} represents a one-parameter family of quadrature formulas), that is, 

1,{f} = k Am)f( xjn)), xin) #XI”), i #j, xj”) E T and A$?) > 0, j = 1, 2,. . . , n, 

j=l 

where the weights A:?’ are given by (1.3). In this section, we shall study the convergence of 
such quadratures for any function f in the class R,(U) of the integrable functions on T with 
respect to the measure p. For this purpose a first result we shall need is the following. 

Lemma 4. Let us define S?,, =gn,, =2’, +Tn* and $2 =Zm; then 9 is dense in the class C(U) of 
continuous functions on U, iff C(1 - I a, I) = 00. 

Proof. This is a direct consequence of the “closure criterion” discussed in [l, Addendum A.2, 
p.2441. q 

We are now ready to prove a first result asserting the convergence in the class C(U). Indeed, 
one has the following theorem. 

Theorem 5. Let f be a continuous function on U; then 

if C(1 - I a, I) = 00. 

Proof. Let E be a given real positive number. Take 

E 
E’C - 

2PO ’ 
where pO = / dp(t). 

By Lemma 4, there exists R, •9~ such that 

I f(z)-RN(t)1 <E’, Vz~li-. 



A. B&heel et al. /Journal of Computational and Applied Mathematics 50 (1994) 159-170 169 

Assume II > N and write Z,(f) = Cy= r Aj”)f(x(“‘); then, 

ZJf] - ZJ.0 = Z/.&U - RN1 + Z,IR, -f I* 
Hence, 

” 

I Z,(f} - Z,{f} I G / I f(z) -RN(z) I dp( z) + 2 AS”’ I f( .j@) - Rn( .jn)) I < 2j.4 = E. 
j=l 

(Recall that A(p) > 0 j = 1 I ’ 3 2 7”‘, II, and Ejn_rA:F) = z+) 0 

Assume now f a complex function defined on the unit circle U which is integrable with 
respect to the measure p. We can write 

f(z) =f,(e) + if,(e), z = exp(ie), 

where fj(8), j = 1, 2, are real-valued functions defined on the interval [-T, 

suppose f is a continuous function, or equivalently fj, j = 1, 2, are continuous 
Theorem 5, we can write 

lim m{f,} = Z,(fj), j = 1, 2. 
n-m 

(4.1) 
n]. Let us first 
functions. From 

(4.2) 

Now paralleling rather closely the arguments given in [6, pp. 127-1291, it can be seen that (4.2) 
is also valid for integrable functions, because any sequence of integration rules with positive 
weights which converges for all continuous functions converges for all integrable functions with 
respect to a finite Bore1 measure p on [-T, T]. 

Let now f E R,(T). From (4.1), one can write 

Z,(f] = Z,(fI> + iZ,rf,I and Z,V] = Z,IfJ + iZ,M. (4.3) 

Thus, by (4.2) and (4.3) the next corollary immediately follows. 

Corollary 6. Under the same hypothesis as in Theorem 5, one has 

;n$.f} = Z&f}, for any fE R.(T). 

Remark 7. When all the (Y~ are equal to zero, then the Blaschke condition C(1 - I a,, 1) = cc) 

holds trivially, and the convergence of the Szegii quadrature formulas introduced in [ll] is 
guaranteed in the class R,(T) (see also [4] for a direct proof). On the other hand, in the special 
case when the sequence {cy,} consists of a finite number p of points cyclically repeated (see, 
e.g., [3]), the Blaschke condition also holds and therefore the convergence of the corresponding 
quadrature process is assured. 
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