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Difference Calogero-Moser systems and finite Toda 
chains 

J. F. van Diejen 
Department of Mathematics and Computer Science, Universiiy of Amsterdam, 
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands 

(Received 3 August 1994; accepted for publication 4 October 1994) 

Limits of a recently introduced n-particle difference Calogero-Moser system with 
elliptic potentials are studied. We obtain hyperbolic and rational difference 
Calogero-Moser systems with an eight-parameter external field and (finite) differ- 
ence Toda chains with four-parameter potentials acting on the boundary particles. 
Hamiltonians for a number of known integrable n-particle systems, such as 
Ruijsenaars’ relativistic Calogero-Moser and Toda models and their generaliza- 
tions associated with classical root systems, can be seen as special cases of the 
Hamiltonians considered in this paper. 0 1995 American Institute of Physics. 

1. INTRODUCTION * 

The finite Toda chain and the Calogero-Moser system (CM) are nowadays classic examples 
of integrable n-particle models in dimension one.‘-” In the CM system all particles interact 
pairwise by means of an inverse-square potential [or a (doubly)periodic generalization thereof], 
whereas in the Toda chain a particle interacts only with its nearest neighbors and the potential is 
of exponential type. Some years ago, Inozemtsev constructed a Lax pair representation for the 
classical n-particle dynamics generated by tbe generalized CM Hamiltoniat? 

H=1/2 c ej+ g C (@7(xj-xk) +@Cxj+Xk)) 
lSj<n I<j<k<n 

where @(a ) denotes the Weierstrasse p-function6 with primitive periods 20,) 2w2. A lot of 
interesting Calogero-Moser and Toda type Hamiltonians, for which Lax pairs have been reported 
in the literature,7-‘0 can be seen as limits of H (1.1). These limiting cases are characterized by 
Hamiltonians of the form: 

Calogero-Moser case 

H c&fz112 c e;+ c (u(Xj-xk)f&U(Xj+Xk))+ c w(xj); 
1cjel lSj<kGn 1SjS-n 

0.2) 
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FIG. 1. Potentials of generalized Calogero-Moser systems and finite Toda chains. 
. 

Toda case 

(1.3) 
=1/z 2 ej+ ‘C eza(xj-xj+I) 

l<jS?l ISj<n 

+s(e -2a(xl+x2)+e2cr(x~-l+x~))+~-(~l)+~+(X,), n33. 

The relevant potentials u , w and w + have been collected in the diagram in Fig. 1. The parameter 
E takes the value one or zero. If the external field potential w and the boundary terms w f are zero, 
then the Hamiltonians HCM (1.2) and H, (1.3) are connected with the simply-laced classical root 
systems: A,- t if E = 0, and D, if E = 1. In this paper we will refer to the two cases E = 0 and 
E = 1 as systems of type A and of type D, respectively, regardless of whether the fields w, w-C 
vanish or not. 

The Inozemtsev Hamiltonian H (1.1) corresponds to a type D Calogero-Moser system with 
potentials as in Block 1 of the diagram. (In Fig. 1 and in the rest of the paper we have used the 
convention oo= 0, o3 = - ot - w2 .) The arrows in the diagram represent limit transitions be- 
tween the Harniltonians. For instance, the transition from Block 1 to Block 3 (or l-+3, for short) 
corresponds to sending a period to infinity along the real axis (hyperbolic limit). The transition 
3-2 amounts to sending the center of mass to infinity: xj+xj+R (j= l,...,n), R--+m. Rational 
potentials are obtained by scaling cr to zero (2 +4 and 3-5). The transitions leading to Toda 
chains with generalized boundary potentials wc (viz. 1 +6 and 6-7) are explained in Ref. 10. 
It is important to remark here that, in the process of computing these limits, one has to rescale and 
reparametrize the coupling constants g, and renormalize the Hamiltonian by the subtraction of 
possibly divergent constants. 
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Lax pairs for the dynamics generated by the above Hamiltonians can be found in Refs.7, 8 
(Blocks 2, 4), Refs. 8, 9 (Blocks 3, 5), and Ref. 10 (Blocks 6, 7). The integrability of the 
Hamiltonian is not immediate from the existence of these Lax pairs (n independent conserved 
quantities do exist, but their involutivity remains to be shown). A proof of integrability for the type 
A Calogero-Moser systems of Block 3 and 4 can be found in Refs. 11 and 12. The (quantum) 
integrability of the type D Calogero-Moser Hamiltonians associated with the Blocks 1, 3, and 5 
was shown recently by means of an explicit construction of the integrals.‘3”4 For the Toda chains 
with boundary conditions corresponding to Block 6 and 7 the (quantum) integrability can be 
proved using the R-matrix formalism.15~‘6 For special values of the coupling constants g, the 
Hamiltonians of Fig. 1 can be associated with classical root systems (recall that W, wZ = 0 (i.e., 
g,= 0) corresponds to the simply-laced series A,,- t and 0,). In these special cases the existence 
of Lax pairs, and more information regarding the integrability of the systems, was already known 
from previous work.‘-4’17 

It is clear from the diagram that the Hamiltonians of type D are more general than the type A 
Hamiltonians: the latter are limits of the former. Nevertheless, from a physical point of view the 
type A models are more interesting than their type D counterparts. This is because for type A the 
interaction between the particles depends only on the differences of the particle positions, whereas 
for type D also terms depending on the sum of the particle positions appear in the Hamiltonian. 

In Refs. 18 and 19 we introduced a deformation of the Inozemtsev Hamiltonian H (1.1). 
Similar deformations of the type A versions of HCM (1.2) with w = 0 and HT (1.3) with w t = 0, 
were already introduced by Ruijsenaars et u~.*O-*~ At the quantum level the Hamiltonian of these 
deformed Calogero-Moser and Toda systems is given by a difference operator rather than a 
differential operator. For Ruijsenaars’ systems (which may be interpreted as relativistic generali- 
zations of the Calogero-Moser and Toda systems) both classical and quantum integrability was 
proved,2’Y22 whereas for our deformation of the Inozemtsev Hamiltonian to date only partial results 
have been obtained.‘8 

In this paper we study limit transitions similar to those in Fig. 1 for our difference counterpart 
of the quantum version of H (1.1). As a result we obtain difference counterparts of the Calogero- 
Moser and Toda Hamiltonians H cM (1.2) and H, (1.3) for each block of the diagram. The paper 
is organized as follows. 

In Sec. II we begin with an analysis of some special cases for which we have complete results 
as regards the integrability of the system. The models of interest in this section amount to differ- 
ence versions of the hyperbolic/rational CM systems with potentials as in Blocks 2-5 and with 
g2,g3=0. Starting point is a difference counterpart of the hyperbolic type D Calogero-Moser 
Hamiltonian corresponding to Block 3 (with g2,g3=0, this specialization is associated with the 
root system BC,). Explicit formulas representing a complete set of quantum integrals for this 
difference CM system were introduced in Ref. 18. Via limit transitions we arrive at the quantum 
integrals for difference versions of the quantum models corresponding to Blocks 2, 4 and 5 (again 
with g2,g3=O). 

In Sec. III we consider more general difference CM systems starting from the difference 
version of the Inozemtsev Hamiltonian H (1.1). This leads to difference versions of the quantum 
models corresponding to Blocks 2-5 for arbitrary values of g2 ,g3. As regards the integrability of 
the models in this section, only partial results have been obtained: apart from the Hamiltonian we 
found (to date) only one independent integral (which proves the integrability in the case of two 
particles). 

The transition to difference Toda chains with boundary potentials is discussed in Sec. IV If the 
potentials acting on the boundary particles are set to zero, then our chain reduces to the nonperi- 
odic relativistic Toda system (type A) or to a DL’) -type counterpart of this system (type D). 

Remarks: i. Special cases of the systems under consideration were introduced at the level of 
classical mechanics by Schneide?4 (external field couplings to the relativistic CM system), 
Inozemtsev25 (external field couplings to the relativistic CM system and its type D counterpart in 
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the case of two particles), and Suri~*~ (boundary potentials for the relativistic Toda chain). It turns 
out that all models in Refs. 24-26 can be seen as limits of the models studied here. 

ii. Two important models have not been included in the diagram: the A,- t-type CM system 
with elliptic potentials (no external field) and the periodic Toda chain (type Ah!,). It does not 
seem possible to view these two models as special (limiting) cases of the Inozemtsev system 
associated with Block 1 of the diagram. It is, therefore, quite remarkable that for their difference 
versions such a relation does exist: the quantum relativistic CM system with elliptic potentials (the 
difference version of the elliptic CM system related to the root system A,- r) is a limit of our 
difference version of the Inozemtsev system with Hamiltonian H (1. 1);18 fiuthermore, the periodic 
relativistic Toda chain, in turn, is a limit of the relativistic CM system with elliptic potentials.23 
(The second relation also holds at the nonrelativistic level.*O) 

II. INTEGRABLE DIFFERENCE CALOGERO-MOSER SYSTEMS WITH HYPERBOLIC OR 
RATIONAL POTENTIALS 

We start with the commuting quantum integrals for a difference version of the (type D) 
hyperbolic CM system associated with the root system BC,. By sending the center of mass to 
infinity we arrive at the quantum integrals for a (type A) model consisting of Ruijsenaars’ quantum 
relativistic CM system coupled to an external field. Rational potentials are obtained by scaling the 
(imaginary) period of the hyperbolic potentials to infinity. 

A. Type D 

In Ref. 18 we studied the quantum integrability of a one-dimensional n-particle Hamiltonian 
of the form 

I;r, = 2 (VA: e-+‘i V!tj - V,j>, (2.1) 

with 

V,j=W(EXj)II u(EXj+X&J(EXj-Xk). 
k+j 

(2.2) 

One has 

(eecB’if)(x 1 ,...,&I) =f(x1 ,***Jj-1 *Xj+iEph,Xj+l ,eee,Xn), .3=&l, 

so fii, is a second order (analytic) difference operator. It turns out that for particular potentials u, 
w the above Hamiltonian has n independent commuting quantum integrals given by higher-order 
difference operators of the form 

ii,’ c UJC,l- ,J, vi:;@ -~~“Jv~~J;Jc, I= l,..., II, JC{l,...,n},pIsL 
ej=Zl, jeJ 

(2.3) 

with 

GsJ=C EjGj 9 

jsJ 
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VeJ;K=II w(sjxj) II ( U &jXj+&j~Xj~)U(&jXj+&j~Xj,+i~~) 

jeJ j,j’eJ 
j<j’ 

X Tz.  u(&jXjfXk)U(&jXj-xk), 

iej 
k.zJ 

(2.5) 

u K,P = c ( - 1 I4 VEll $x1 K(Iz\‘,);Kvz. . . vE(lq\lq-l);K\lq (2.6) 
B$iI,t...SI&K, lsqsp 

IZql=p, Ei=?l,iEIq 

( U[,a= 1). For 1= 1, the operaJor Z?r J2.3)-(2.5) reduces to B, (2. l), (2.2). 
The dicerence operators HI , . . . . H, do not commute for arbitrary functions u and w. In fact, 

requiring [HI ,H/,] = 0 for 1 # 1’ leads to functional equations for these potentials. Some solu- 
tions of the functional equations were obtained indirectly, using previous work related to multi- 
variable q-polynomials:27 

Hyperbolic potentials (type D) 

u(z)= 
sh a(,~+z) 

sh(cuz) ’ 

w(z) = 
shcr(po+z) ch a(,~.,+z) sh ~P;+Y+z) ch c+L;+Y+z) 

sh( az) ch(az) sh a( y+z) ch a(~+z) ’ (2.7) 

Rational potentials (type D) 

u(z)= $2) w(z)z( T)( PA;Jz+zj, (2.8) 

where we have introduced the (dependent) parameter 

y= i@i.l2. (2.9) 

Very recently we realized that for a potential u as in (2.7), (2.8), the function lJK,p (2.6) can be 
rewritten in a much simpler form: 

UK.p = ( - 1)’ rr W(EiXi)ifjIEI U(EiXi+ti’Xi’)U(--EiXi-&i’Xi’-2Y) 
iEI 

i<i’ 

X g, U(EiXitXk)U(&iXi-Xk) 

keK\I 

(2.10) 

The equivalence of (2.6) and (2.10) hinges on functional equations for the potential u that are 
stated and proved in an appendix. In the next subsection, when we compute the limit resulting in 
our type A difference CM systems with external fields, it will be convenient to use (2.10) rather 
thm (2.6) for UK,p. 

To see that the Hamiltonian fi, (2.1), (2.2), with potentials given by (2.7) or (2.8), constitutes 
a difference counterpart of a type D Calogero-Moser Hamiltonian one substitutes 
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cL=iPg, i-b= i&7, 9 f-G=iPg: 

(r= O,l), and expands in the step size parameter p: 

~,w)=~,,oP* +4P*L 

with 

(2.11) 

(2.12) 

Bi,a= C Gj + C (v(xj+xk)+v(xj-xR)) + C O(Xj) fconstant, (2.13) 
ISj+l I=Sj+kSn lSj<n 

and 

(Hyperbolic case), 

v(z)= g(g-h) 
z2 ’ 

o(z) = g”oGo- fi) 
Z2 

(Rational case), 

where go=go+g(,, it =gl +g;. It follows that the differential operator Z?,,. (2.13), which 
amounts to a quantization of the type D Calogero-Moser Hamiltonian HCM (1.2) with potentials 
taken from*Block 3 (and g2,gs=O) or Block 5 (and gt ,g2,g3=t) of Fig. 1, can be obtained as 
a limit of HI by sending the step size to zero: &Tl,o= limp,oP-2’H, . More generally, one has for 
the higher-order integralsI 

ril(p)=I;T1,op*i +0(p), iil,o= c n ii; +1.0., 
JC{l,...,n) j =J 

IJI=l 

where 1.0. stands for terms of lower order in the partials Gj. 
Remarks: i. For every difference system in this paper there exists an associated classical 

n-particle system (see also Refs. 18 and 19). To pass from the quantum to the classical system one 
substitutes real variables ej for the partials ~j and sets fi. equal zero (SO 7’0, cf. Eq. (2.9)). The 
commutativity of our difference operators then implies the Poisson commutativity of the corre- 
sponding classical quantities.‘* 

ii. The rational potentials are a limit of the hyperbolic potentials: by sending LY to zero Eq. 
(2.7) goes over in Eq. (2.8). A more general external field is obtained if, before scaling cy to zero, 
the coupling constants ,~i ,p{ arf shifted over a half-period (turning ch LY(~~‘)+z) into 
sh LY(/..LLL(~‘)+z)). Then lima+o~-2’ H, leads to operators with rational potentials given by 

PfZ u(z)= y-, w(z)= (ruo+z)(P, +z)(&+ Y+d(P;+ y+z) 
z(y+z) 

(2.15) 

The potentials (2.8) are recovered after multiplication of l?, by (P~,u~)-’ and sending p t ,,LL~ to 
infinity. If one substitutes ,LL= ipg, &“= iPgg’ and ,u\‘)= ll(ipg(,‘)) in the Hamiltonian fit 
(2.1), (2.2) with u, w taken from (2.15), then expansion of - p*g ,glfi, in j? leads to a Hamil- 
tonian that consists of the rational version of fi l,. (2.13) coupled to a harmonic external field: 

v(z) = g(yh) 
z ’ 

w(z) = soGo-n) 
Z2 

+ g’y z* (2.16) 
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(S,= g,+ g:). Thus, the model with rational potentials as in (2.15) amounts to a difference version 
of the type D Calogero-Moser system with potentials taken from Block 5 of the diagram in the 
introduction and g2 ,g3 = 0. 

B. Type A: The relativistic CM system in an external field 

Let us now discuss how one arrives at the quantum integrals of a relativistic CM system in an 
external field, by sending the center of mass to infinity in the hyperbolic type D system of the 
previous subsection. If we substitute 

PO-+PO-R- 
xi+xj+R, 

,q+p,+id(2a)-R, 

p;+,su;)- y+R, p~-+p~--id(2a)- y+R, 
(2.17) 

in the difference operators I?[ (2.3) with hyperbolic potentials (2.7) (and I!J,,~ taken from Eq. 
(2.10)), then for R-P~ we have (it is assumed throughout that cr>O): 

U(&jXj+&$k)’ 

sh a(p+&(Xj-Xk)) 

sh CY&(Xj-Xk) ’ if Ej=-Ek=&, 

-4v7 if Ej=Ek=&, 

and 

w(~j~j)+Xw( 1 -e-2a(k%+xJ))( 1 -e-20(fil+xj)), if cj= + 1, 

-+x;‘(l- e24P(jexj))( 1 -e2aCP~-x,)), if &j=-l, 

(2.18) 

(2.19) 

where 

It thus follows that our commuting difference operators turn into operators of the form 

I&= 7 -P(4+-^e,Jp IJ+I+ J-la J- ,J+ ;J: nJ: ’ (2.20) 

J,r-lJ-=0 

I= l,..., n (and J+ ,J-C(l)..., n}), where 

V J,  ,J- ;K= n W+(Xj) JJ W-(-Xj) jg+ U(xj-xj')u(xj-xj'+2Y) 

jeJ+ jeJ- 
j’EJ- 

’ jg+ u(xj-xk)jgm u(xk-xj), 

kcK ksK 

(2.21) 
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u KJT=(-~)~ c 
I+,I-CK,I,nI-=0 

X~K~,~Z+~,~I-~ fl W+(Xi) n w-(-Xi) 

I~+l+lZ-l=p 
iEl+ icxl- 

X jjJ U(Xi-Xf!)U(Xit-Xi-2y) 
i!J 

U(Xi-Xk) n 
+ id- 

i’EI_ keK\(I:“I-) kEK\(I+UI-) 

(2.22) 

with 

Hyperbolic potentials (type A) 

u(z)=sh a(p+z)/sh(az), (2.23) 

and 

A,KI.I~+,.ILI= ‘w u 
I~+l-i~-IA(IKI-i~+l-,~-,~~l~+l-l~-,) 

If we divide ii, by (2~)~’ and send LY to zero, then we obtain operators of the same form as in 
Eqs. (2.20)-(2.22), but now with 

Rational potentials (type A) 

u(z>=(p+z)/z, w+(z)=(p0+z)(p*+z), w-(z)=(P~+z)(P;+d~ (2.24) 

Both in the hyperbolic and the rational case the operator k, (2.20)-(2.22) reduces for I= 1 to 

fi, = 2 Wy2(Xj)n u'"(xj-xk) exp( -phj) n ~1'2(xk-xj)w!!2(-xj) 

'<j%,l i k+j k+j 

+W\n(-Xj)n u"*(xk-xj) exp(Pij) n U1”(Xj-Xk)W:12(xj) 

kfj k+j 

+ U(x* ,...,X”), (2.25) 

with 

U=- C A,A~-*w+(xj)ll u(xj-xk) +A,‘Ai-“W-(-Xj)n u(xk-xj) 1 
l<jQ k+j kfj 1 

(2.26) 

This is the Hamiltonian of a type A difference Calogero-Moser system consisting of the relativ- 
istic CM system coupled to an external field. To switch off the external field Awe set p. ,,ut = R, 
&, ,pi = -R, and send R to infinity (in the rational case we first renormalize Hl by multiplying it 
by R-*‘). For the operator fi, this limit amounts to setting w+ ,w- = 1. Specifically, the Hamil- 
tonian fit (2.25), (2.26) then reduces, apart from an additive constant, to the Hamiltonian of the 
relativistic CM system introduced by Ruijsenaars.*l To compare our expression for the Hamil- 
tonian with that of Ref. 2 I, one should notice that for w + , w - = 1 the function U (2.26) (with u 
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given by (2.23) or (2.24)) is constant in Xi, j= I,..., n. The proof hinges on Liouville’s theorem: U 
is both entire in Xj (generically simple poles congruent to Xj=Xk , k # j, caused by the zeros in 
the denominators of u cancel each other as a consequence of the permutation symmetry) and 
bounded in xj (U has bounded asymptotics for xj-+m). A more detailed version of this type of 
reasoning can be found in the appendix below, where it was used to demonstrate the equality of 
(2.6) and (2.10). 

Remarks: i. In general the difference operators fi, are not formally self-adjoint (and the 
corresponding classical integrals are not real-valued). If we assume a and /3 to be real, then the 

(I) (,) type D difference operators (2.3)-(2.8) become formally self-adjoint by picking p,po ,,u, 
E iR, whereas for the type A difference operators (2.20)-(2.24) one is led to the constraint ,X 
E iRand&=-Lo, ,uU;=-,&~. 

ii. Sending the step size parameter p to zero in our type A difference model corresponds to the 
nonrelativistic limit: the relativistic Ruijsenaars system with external field goes over in the non- 
relativistic Calogero-Moser system with external field. Specifically, if we substitute /J = ipg, 
po = ( ipgo - log(flko)+id2)/2a, p;)=(iflgo+log(&)+iw/2)/2a, m=(iPgl-log(-PkJ 
-id2)/2cu, and pi=(ipg,+log(-pkl)-id2)/2 a in the hyperbolic version of the Hamiltonian 
fi, (2.25), (2.26), then the expansion in p is of the form (2.12) with 

l<jSn 
u(xj-xk) $- c O(xj) + constant (2.27) 

Isj+kSn ‘~j~,l 

and 

o(z)=,~?~ exp(-2az)+gi exp(-4az), 

where ~o=2(ko+k,)(go+g,-2ah) and g”l=(ko+kI)2. In the rational case we substitute 
p=iipg and ,u;=p,= ll(ipg,), r = 0,l. After multiplying the Hamiltonian by - /?*gag 1 (cf. 
Remark ii of Sec. II A), expansion in p leads to I? 1o (2.27) with potentials given by 

u(z) = g(g-h) z* ’ w(z) = (go+d2 z2. 

Thus, we recover the quantum versions of the nonrelativistic Calogero-Moser Hamiltonians of 
Block 2 and 4 in the introduction with g, ,g3 = 0. (The linear term in the rational external potential 
of Block 4 may be obtained from the harmonic part by a translation of the center of mass.) 

iii. MORE GENERAL DIFFERENCE CALOGERO-MOSER SYSTEMS 

In this section generalizations of the-systems in Section II are studied. We start with an elliptic 
generalization of the type D operators H1 , H, from Section II A. This elliptic system was intro- 
duced in Ref. 18. (The Hamiltonian amounts to a difference version of H (l.l).) It will be 
explained how limit transitions similar to those considered above lead to hyperbolic and rational 
difference CM systems of type A and D with a more general external field ponential than the 
systems in the previous section. All systems below are given by a Hamiltonian HI (a difference 
operator of order 2) and an additional independent quantum integral I?,, (a difference operator of 
order 2n). So, the quantum integrability of these generalized external field models follows for 
n = 2. To keep our treatment self-contained, some preliminaries regarding sigma functions are 
recalled in Sec. III A. 
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1308 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 

A. Sigma functions 

This subsection summarizes some useful properties of the Weierstrass a-function. For a more 
detailed treatment the reader is referred to, e.g., Whittaker and Watson.6 

For our purposes it is convenient to introduce the o-function as a function of the form 

=eKZ 

m (1 -e2aze-4muo,) (1 -e-2aze-4maw, 

‘Cu-‘sh(az) n: 
> 

(1 -e-4mam1)2 9 (3.1) 
m=l 

with a=i7r/(2w2) and Im(02/wi)>0 (so Re(aot)>O). In this paper the actual value of con- 
stant K is not very important; however, to keep agreement with the literature one should take 
K = 5( 02)/( 2 02), where l(z) denotes the Weierstrass l-function.6 

The c-function is entire and odd in z, and it has (simple) zeros in the points of the lattice 

r=20,2+2w2z. (3.2) 

It is not difficult to verify from Eq. (3.1) that CT(Z) is quasi-periodic in z with primitive quasi- 
periods 2~0, and 20~: 

cT(zf26+)= -e2+++z4T(z), (3.3) 

where ~1=2~~I+im/(2~2) and v2=2~w2. The constants v1 , v2 satisfy Legendre’s relation 

77102-17201 = i7rl2. (3.4) 

It is convenient to distinguish a third (dependent) half-period w3 = - o1 - w2. Equation (3.3) then 
holds for r= 1,2,3, with v3= - vl- 7~~. By shifting the argument over the half-periods w, three 
associated sigma functions are introduced: 

(+,(z)=e - “%( o,+z)/a( or), r= 1,2,3. (3.5) 

The sigma functions are related to the Weierstrasse g-function via 

~.r(P++Z)(+AP-zZ) =&4(h+f4%+zN~ 
d2 

u,(zb,( -z> 
-Din ur(z)=@(z+w,), r=0,1,2,3 

(3.6) 

(with the convention aa = a(z) and oo= 0). Another useful relation is the duplication formula 

a(2z)=2a(z)crt(z)a2(z)~rs(z). (3.7) 

In the second identity of Formula (3.6) the above choice of K is important: for other values than 
K= 5( w2)/(202) the two sides of the equation differ by a constant. 

It is immediate from Eqs. (3.1), (3.5) that the sigma functions degenerate into hyperbolic 
functions when wi becomes infinite. One has the following asymptotics for oi +co: 

u(z)-e Kz2a-1 sh( az)( 1-4 sh2( Lyz)e-4awi + O(e-8aoi)), 

u,(z)-eKZ2( l-4 sh2( nz)e-2aoi - 8 sh2( az)e-4nw1 + 0(e-6”oi)), 

(3.8) 

(3.9) 
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J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 1309 

u2(z)-eKzZ ch(cuz)( 1+4 sh2(~z)e-4nol+O(e-8aw1)), 

~,(z)-eKZZ(1+4 sh2(az)e-2nwr-8 sh2(cuz)e-4aol+O(e-6awl)). 

(3.10) 

(3.11) 

B. Elliptic potentials (type D) 

The elliptic generalization of 
by18 

the type D difference CM Hamiltonian from Sec. II A is given 

fil= C V~~e-FBhjV'n -ej + U(Xl ,...J,), 
lSj<n 
c=-tl 

(3.12) 

V,j=W(EXj)n U(&Xj+X&U(EXj-Xk), 

k+j 

with 

Elliptic potentials I 

u(z)= 
dp+z) 

dd ’ w(z)= rI 
(T,(p,+z) a,(& + y+z) 

(3.13) 
osr=s3 u,(z) a,(r+d ’ 

and 

u= c cr rI (+r(P- Y+xj) ar(P- Ymxj) 

OsrG3 I=Sj=GZ a,(- Y+xj) (+r(- Ymxj) ’ 
(3.14) 

c,=%G+7w-2r~r1 n: 4Pqs)- Ybs(P;r(,))r r= 0,...,3, 
ossc3 

where we have introduced permutations ro= id, rrl = (Ol)( 23), rr2= (02)( 13), and 7r3 = (03) 
(12). Comparison of Eq. (3.12) with (2.1) reveals that, in passing from hyperbolic/rational poten- 
tials to elliptic potentials, the structure of the terms in the Hamiltonian of degree + 1 in the 
differences exp(Pij) has remained the same, whereas the structure of the part of degree zero (i.e., 
the function U) has changed considerably. 

In Ref. 18 we found an independent difference operator of order 2n that commutes with our 
elliptic difference CM Hamiltonian if 

c (Pr+P:)=o- (3.15) 
osrs3 

This quantum integral is given by an elliptic generalization of the operator I?,, that has the same 
form as in Sec. II A (but now with u and w taken from (3.13)): 

ii,= c 
JC{l,...,n} 

lJJCVyiiJC eePieJ V’/2,,i,c, 

ej=+l, jsJ 

(3.16) 

with 
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1310 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 

V~J;K=~ W(EjXj) n U(EjXj+Ej,Xj,)U(EjXj+&jrXjrf2Y) 
jeJ j,j’gJ 

j<j’ 

X n U(EjXjfXk)U(EjXj-Xk), 
jsJ 
kaK 

(3.17) 

uK= c (-l)‘K’, W(ekXk) n ( u &kXk+Ek’Xk’)U(--kXk-&k,Xk’-2Y). 
q=Tl,kaK keK k,k’eK 

k<k’ 

(3.18) 

To see that &, (3.12)-(3.14) is indeed a difference version of the Inozemtsev Hamiltonian H 
(l.l), one reparametrizes the coupling constants as in Eq. (2.11) and expands in the step size 
parameter ,L? (using the second identity in Eq. (3.6)): 

n n 
HI =constant + Hl,o p2 +4P2). (3.19) 

with 

‘l,O= c 6;’ g(g-h) c (@(xj+Xk)+@(Xj-Xk)) 
'<j<,, 1 Sj+krn 

+ osFc3 i,(i,-h)@(or+Xj), (3.20) 

and g,=g,+g: . Thus, for p--+0 a quantization of the Hamiltonian H (1.1) arises. 
We will see in the next subsection that for o, -+a the operators Z?i and l!Za reduce to 

operators with hyperbolic potentials. These are essentially the same as the corresponding operators 
in Sec. II A. Hyperbolic (and rational) difference CM systems with more general external field 
potentials are obtained when, before sending periods to infinity, the coupling constants p, and 
p: are shifted over the half-periods o, (cf. Remark ii. in Sec. II A for a similar state of affairs in 
the transition from hyperbolic to rational potentials). The relevant parameter shift 

Pr+PL,- 0,) P:+PcL:-%P (3.21) 

leads, after rewriting and apart from multiplicative constants, to operators H, (3.12) and fin 
(3.16)-(3.18) with 

Elliptic potentials II 

u(z)=cT(p+zz)I~(z), Fv(z)=((+(2z)a(2y+22))-’ n dPcc.,+z) (+(P:+Y+d, 
osrc3 

(3.22) 

and 

u= c cr l-I ur(P- Y+xj) ar(P- Ywxj) 

osrs3 1 SjSn ur( - Y+xj) ar( - Ypxj) ’ 
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C,=(wp)(T(CL-2r)>-1 n &s- Yb(cL:.)? r=o, 
osss3 

exp(-417,4~8(d 
n u,(P.,- Y)~+,.(P;), r= 123 

= wPb(P-2~) ocsc3 

To arrive at the potentials (3.22), (3.23) we used the duplication-formula (3.7) to rewrite the 
denominator of w, and we used Eqs. (3.3), (3.5) (taking into account also Legendre’s relation 
(3.4)) to rewrite expressions of the form oJz- w,) in terms of a,,(,,(~). 

C. Generalized external fields for the hyperbolic and rational systems of type D 

The sigma functions degenerate into elementary functions when periods are sent to infinity. 
For o1 =a~ one has (cf. Expansions (3.8)-(3.11)): 

o(z)=eKZ2sh(az)/cr, ul(z)=eKZZ, 02(z)=exZ2ch(crz), u3(z) = eKZ2, (3.24) 

with a= id(2qJ and K= 5(w2)/(202)( = - a*/6). If one substitutes (3.24) for the sigma func- 
tions, then in U (3.14) the exponentials exp(Kz2) give rise to an overall multiplicative constant, 
whereas in u, w (3.13) factors of the form exp(az+b) emerge. After commuting these factors to 
one side of the differences exp(e/30j), the same multiplicative constant appearing in U also arises 
in front of the terms V$ eXp(-EPOj)V!!!j . It is not difficult to verify that in &, (3.16)-(3.18) the 
factors exp( &) also give rise to an overall multiplicative constant. In the latter case, however, one 
needs to invoke Condition (3.15) to get rid of the Tj-dependence >f factors induced by w. 

It thus follows that for wi=m the operators Hk (3.12) and H, (3.16)-(3.18) with potentials 
(3.13), (3.14) reduce, apart from multiplicative (in Hi also additive) constants, to operators with 
potentials given by 

u(z)= 
shc++z) 

sh(az) ’ 

w(z) = 
sha(po+z) cha(p2+z) sha(&+ y+z) ch@;+ y+z) 

sh( crz) ch(az) sha( y+z) cha(y+z) ’ 
(3.25) 

and 

u=co J-J sha(p- y+Xj) sha(p-y-Xj) 

l<jSn 
sha( - y+Xj) sha( - Y-Xi) 

+c2 rI 

cha(p- Y+Xj) Cha(p- Y-Xi) 

lSj<n 
cho( - y+Xj) Cha( - Y-Xj) ’ 

(3.26) 

For these potentials the operators fit and fi, coincide, apart from a constant term in fit and an 
interchange of parameters p:“++p$“, with the corresponding operators from Sec. II A. For 2, 
this is immediate, whereas for I?, this follows because U (3.26) differs from the function 
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1312 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 

- ~j,EVEj (with V~j as in (3.12)) only by a constant. (This is again seen by invoking Liouville’s 
theorem after having verified that the difference of the two functions is free of poles and bounded 
in Xj, j= I;...,n). 

Notice that in the hyperbolic limit Condition (3.15) is no longer needed to ensure the com- 
mutativity of 2, and fi’, because the dependence on p, ,p; , r= 1,3 has dropped out. 

Next, we turn to the more general difference CM system that one obtains as hyperbolic limit 
of the system with elliptic potentials (3.22), (3.23) (which arose from the parameter shift 
#) r +,u:‘)- w,). The calculation is again based on the sigma function asymptotics (3.8)-(3.11). 
In the case of u and w we just substitute (as before) the leading part of the asymptotics: 
cr.(z) = exp( &)sh( az)la. For the function U, however, the computation of the hyperbolic limit is 
now more cumbersome because higher order terms in the asymptotics contribute (cf. Remark i. 
below for further details). After subtracting (divergent) additive constants emerging in Cl, and 
dividing by overall multiplicative constants caused by the factors exp(&), the limit o t --+a leads 
to operators of the form fir (3.12) and Z?‘, (3.16)-(3.18) with 

Hyperbolic potentials with generalized external jield (type D) 

u(z)=sha(Lc+z)lsh(az), 

w(z)=(a6sh(2~z)sh2a(y+z))-’ r] sha(/.++z) sh+;+y+z), 
04rs3 

and 

lJ=co Tz. 
sha(p- Y+Xj) sha(p- Y-Xj) 

ISjSn 
sha( - y+Xj) sha( - Y-Xj) 

+c1 rI 
cha(p-Y+Xj) cha(p-y-xj) 

lsj+, 
Cho( - Y+Xj) cha( - Y-Xi) 

+ C (c2Ch(2axj)+c3Ch(4axj)) 
ISjGn 

where 

co=(2a6sh(q)shd(~-2Y))-1 fl sha(/qy)sh(q.j), 
osss3 

cl=(2a6sh(q)sha(~-2y))-’ fl cha(ps-y)ch(cr,uj), 
o*sc3 

c3= -2-4cu-6ch(2ay), ,--=2-a,-6 sh(q)sha(p-22). 

(3.27) 

(3.28) 
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In the present case, sending the period o1 to infinity has not diminished the number of coupling 
constants parametrizing the external field. Thus, we need Condition (3.15) to ensure the commu- 
tativity of fit (3.12) and fi, (3.16)-(3.18). 

In order to demonstrate that the potentials (3.27), (3.28) generalize those in Eqs. (3.25), (3.26), 
we substitute 

P.,,P.I,=R, p2+p2fi42ff), &+&--iTl(2a), ~3,&= -R. 

The limits 

lim (2a)6e-4”Rl;r,, 
R-tW 

lim (2 o)6ne-4naRAn, 
R-+m 

recover the operators with potentials (3.25), (3.26). 
Sending (Y to zero leads to a rational degeneration of the system with potentials (3.27), (3.28). 

For u, w we obtain (after division of w by a factor 4) 

Rational potentials with generalized external field (type D) 

u(z)=(LL+z)Iz, w(z)=z-*(y+z)-l n: (p,+z) (PL:+Y+d. (3.29) 
orrs3 

It is clear that the resulting operator fin (3.16)-(3.18) generalizes the one in Remark ii. of Sec. 
II A. To determine the corresponding Hamiltonian l?i we must also compute the rational version 
of U (3.28). The calculation, which consists of expanding (3.28) in a and subtracting all divergent 
(constant) terms, is rather cumbersome and has only been done for n = 2,...,5 (by computer). As a 
result we obtained a function of the form 

u=co JJ lCj<n (yT2.g (Yp.z) --.. 

+c2xj4 +c3x$ +c4 c T 2 x,xk 9 
lGj<kcn 

(3.30) 

with constants c o ,...,c4 that depend in a rather complicated way (especially c t) on the coupling 
constants y,pr ,p; : 

co=(2pL)-‘(P-2Y)-’ I-I L%-Y)LL; 9 
o=ssc3 

cs=1/4 2 (( P,-YY)~+P:~) +(n-l)p(LcQ--yY) -5~~12, 
ocrs-3 

c3 = - 112, c4=3,442- y). (3.31) 

with 
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1314 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 

ao=2-4 c (t+P;2)2-2-3 c (Pu,Ps+P~Pj2+PL:2P~2) 
OS63 osr<s<3 

-2-2(n- 1)p2 C (pt+p:2)-22-2(n- l)(n-2)p4, 
ocr=z3 

al=-2-’ C ( p)+p:3)+2-2 C p,(pF+p;2)+2-1(n-l)ru C (4+14~) 
ocrc3 osr,sr3 osrs3 

+2-‘tn- 1)p2 C th+~L:), 
osrs3 

a2=2-’ C j.Lccp-2-l 2 f-w,-tn- l)p C p.,-2-‘(n- 1)(2n-5)p2, 
o=srs3 osr<ss3 ocrs3 

a3=-2-‘(n-l)p- 2 p,. 
osrs3 

Undoubtedly this formula for U also holds for n>5. 
Remarks: i. To determine the hyperbolic degeneration of U (3.23), we used Eqs. (3.8)-(3.11) 

to derive the following asymptotics for o, -+a: 

c,- Koff -6 n sha(p.,-y)sh(cupi), r=O, 
ocss3 

-KoCZ-62-8eXp(4cuwl)(l -2Kle-20wl +O(e-4a01)), r=l, 

-K@ -6 n cha(p.,-y)ch(crp.j), r=2, 
oess3 

-Koa-62-8exp(4cro,)(1 +2KIe-2aw1 +O(e-4L1@l)), r=3, 

(3.32) 

with ~~=(2sh(cz~)sha(,!~-2~))-’ exp(Kso ~s~3(~~+~~2-2~~~)-2~~(~-2~)), 
(ch2a(p, - 7) + ch( 2 czpi)) ; and 

K1 =cosss3 

-A0 
sh~(~- Y+Xj) shCU(CL-Y-Xj) 

sha( - y+Xj) sha( - Y-Xj) ’ r=O, 

--ho( 1 -X,ch(2axj)e- 2aol+(constant -X2Ch(4axj))<-4”“’ 

+ O(e-6awl)), r= 1, 

-A0 
cha(p- y+Xj) cha(p-Y-Xj) 

cha( - y+Xj) cha( - Y-Xj) ’ 
r=2, 

(3.33) 
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-X0( 1 +Atch(2crxi)e -2nwl+ (constant -A2ch(4axi))e-4u”‘r 

+O(e -6ao*)), r= 3, 

with Ao=exp(2K&-2Y)), Ar=8sh(n~)sh+-2Y), A2=16ch(2ay)sh(a~)sha(~-22). 
Substituting Eqs. (3.32), (3.33) into U (3.23) leads, after subtracting a divergent constant term 

of order O(e4aw 1) and omitting of multiplicative constants stemming from the exponentials 
exp(&), to the hyperbolic limit given in Eq. (3.28). 

ii. A further limit of the system with hyperbolic potentials (3.27), (3.28) leads to the n 
-particle version of a two-particle system studied in Ref. 25. If we set 
pl=-(,uO+p~)/2+i~l(2a)+R, ,u;=-(,x0+&)/2-id(2a)-R, p2=f4=o and 
~3 = - & = i 9r/( 2 ff) in the 

24Cu6e@(y-2R)Ijl 
operators with potentials (3.27), (3.28), then the limits 

limR,, and limR,~2’4”‘~‘6n’enn’y-2R’~~ result in operators of the form l?, 
(3.12) and fi,, (3.16)-(3.18) with potentials given by 

u(z)=sha(p+z)/sh(oz), w(~)=shrw(~~+z)sha(,u~+ y+z), 

(3.34) 

For n = 2 the Liouville integrability of the corresponding classical system was proved by 
Inozemtsev.25 

D. Generalized external fields for the hyperbolic and rational systems of type A 

We have seen that the type D difference CM systems in the previous subsection form a 
generalization of the systems in Sec. II A. It should, therefore, not come as a surprise that sending 
the center of mass to infinity leads to more general external fields for the relativistic CM system 
than the ones given in Sec. II B. If we substitute 

Xj~Xj+ R, ~r-+ru,--R, I+CL:- -d-R, (3.35) 

in operators l?, (3.12) and I?,, (3.16)-(3.18) with hyperbolic potentials (3.27), (3.28), then for 
R-+m we have: 

U(&jXj+Efl&- 
Sha(p+&(Xj-Xk)) 

Sho&(Xj-Xk) ’ 
if Ej=-&kc&, 

-exp(aspu), if &j=&k=E, (3.36) 

and 

w(ejxj)-2-2a-6e a ,p+&L:-~~y/2)~4uR n sha(pr+Xj). if ej= + 1, 
OSFz3 

-~-&-6~-“x 0<rrd&--‘@)~4~R n Sha(P: -Xj>, if &j=-1. 
ocrs3 

(3.37) 

It is not difficult to derive the corresponding asymptotics for U (3.28) (cf. Remark i. for further 
details). It then follows that for R --+ m we obtain, after the usual renormalizations (i.e., the division 
by and subtraction of divergent constants), operators of the form 
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kfj k#j 

(3.38) 

and 

iin= 2 
J, ,J-C{l,,.., n} 

UJC MC v 
l/2 F ,-PC&+-^e,Jv’” 

+ - J+‘J- ‘J:nJ- 
J- ,J, ;J: r-IJ: (3.39) 

J+nJ,O 

with 

V J, ,J- ;K= II w+(xj) II W-(-Xj) jlJ+ U(xj-xjf)U(Xj-Xj,+2Y) 
jeJ+ jsJ- 

j’eJ_ 

keK kczK 

UK= c 
K+UK-=K 

A:+‘-‘“- fl w+(xk) n w-(-xk) 

K+nK-=0 
kcK+ ksK_ 

x ,rK u(Xk--k’)U(Xk’-Xk-2Y) 
+ 

k’eK- 

where 

Hyperbolic potentials with generalized external jield (type A) 

w+(z)=@-4 n sha(,q+z), w-(~)=a-~ T]I sha(&+z), (3.40) 
osrs3 OGvs3 

A, = ew4~0~,&-++~~ - W) , ad 

(3.41) 
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A=&crr3(pr- &/4. 
For a-+0 we obtain the corresponding rational system. The renormalized limit leads to 

operators fit (3.38) and I?,, (3.39) with 

Rational potentials with generalized external field (type A) 

u(z)=(p+z)lz, w+(z)= IT (pr+Z), w-(z)= rI (PU:+z)~ (3.42) 
o=srr3 osrs3 

A,,,= 1, and 

- C (y2(2Xj+A)2+(2Xj+A)4/6) +/L(,U-ZY) C (xj+xk+A)2, (3.43) 
ISjSn lSj<k=Zn 

X=X Osrc3(&- I-04. 
Notice that the condition on the coupling constants of the external field ensuring the commu- 

tativity of ki, and I!?,, has changed as a consequence of the reparametrization (3.35). This condi- 
tion now reads CoGrG3(~r+~U:)-4~=0. 

Remarks: i. The behavior for R--+m of the function U (3.28) (after Substitution (3.35)) can be 
derived with the aid of the asymptotics 

co- Koe 8aR( 1 - Kle-2aR+ O(e-4”R)), 

cl-KOe 8aR( 1 + Kre-2aR+ 0(e-4”R)), (3.44) 

K1= c (e2a(~,-~)+e-2a(~C(:-7)), K2=2 -*CT-~ C (e- 2n(Pr-Y)+e2"(CL:-Y9, 

o=zra3 OS63 

(3.45) 

and 

sha(p-y+Xj+R) sha(p-Y-xi-R) 
sha(- y+Xj+R) sha(-Y-Xi-R) 

“(1 -Ate -2axje-2aR -Aze -40xje-4aR +qe-6aR>), 

cha(p- Y+Xj+ R) cha(p- y-xj-R) 
Cha(-y+Xj+R) cha( - y-xj- R) 

-( 1 +Ale-2axje -2nR -A2e-4aXje-4aR +o(e-6"R)), (3.46) 

J. Math. Phys., Vol. 36, No. 3, March 1995 

Downloaded 25 Oct 2006 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



1318 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 

with 

Ai=4sh(ap)sha(p-2$, A2=8ch(2~~)sh(~,u)sh+-2Y). (3.47) 

ii. The external field couplings to the relativistic Calogero-Moser system introduced in Refs. 
24 and 25 can be seen as special (limiting) cases of the fields considered here. 

IV. DIFFERENCE TODA CHAINS 

In this section it is explained how difference Toda chains with boundary conditions arise as 
limits of the type D difference CM system with elliptic potentials of Sec. ‘31-I B. 

We start with the type D difference CM operators H, (3.12) and H, (3.16)-(3.18) with 
potentials given by Eqs. (3.13), (3.14). To arrive at Toda type difference operators we substitute 

Xj+Xj+W,(j-l)l(n-I), ~~--f~++~-0il(n-l), (4.1) 

and send oi to infinity. The Hamiltonian then becomes 

ii1 = w’12(x1)u1”(x1 +x2)u1’2(x1 -x2)e-pi%1’2(x2-xI)u”2( -x1 -x2)wY2( -x1) 

+w!2( -x1)u1’2( -x1 -x2)u1’2(x2-xl)ege1u1’2(xl -x2>u”2(x1+x2)w!2(xl) 

+w~2(x~)u”2(x~+x2)u1’2(x~-xl)e~p~~u1’2(x~-x2)u1’2(-x~-x2)w:/2(-x2) 

+ wy2( -~~)ul’~( -x1 -x2)u1’*(x1 -x2)epe~u1’2(x2-x1)u”2(x1 +x2)~:/~(x~> 

+ W*,Xz). (4.2) 

if n = 2, 

ii, = w!!2(x1)u1’2(x1 +x2)e-pi~u”2(x2-x1)wf_/2( -x1) 

+ wY*( -x1)u1’*(x2-xl)ePilul’*(xl +x2)wt12(xI) 

+u~‘~(~~+x~)u~‘~(x~-~~)e~~~~u~‘~(x~-~~)u~’~(-x~-x~) 

+u1’2(-x2--x3)u1’2(x3-x2)ep~2u1’2(x2-xl)u”2(x~+x2) 

+W;2(&1’2(X3-X2)@i3d’2( -x2-+)&!*( -x3) 

+w:/2(-x3)u1’2(-x2-x3)epi3u”2(x3-x2)w:/2(x3) 

+ u(x, ,+,x3), (4.3) 

if n=3, and 

A,= w~2(x1)u1’2(x1+x2)e-Bi~u1’2(x2-X~)W1/2(-X~) 

+ w’/*( -x1)u112(x2-x,)ea’lu1’2(xl +x2)w’12(x1) 

+u1’2(xX+x.Ju1’2(x2-xl)e-pi2u1’2(x3-x2) 

+u112(x3-x2)eP%1’2(x2-x1)u”2(x1+x2) 

+ C (U”2(Xj-Xj-l)e-‘ijU”2(Xj+l-Xj) 
3SjSn-2 
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+U1’2(x.+1-x.)eS~ju”2(x.- ._ )) I XI 1 
+~~~~~x~~~-x~~2~~-~~n-lu~~~~x,x,-I)u~~~(-x.~I-x.~ 

+U1’2(--X,_1-X,)U1’2(X,-x,-,)ePi,-lv”2(x,-1-x,-2) 

+W~2(X,)U1’2(X”-X,-l)e-~ew1’2(-xn-l-X,)W:12(-X,) 
+wY2( -x,)LP2( -X,-l-x,)e@b1’2(xn-X,~1)W~2(X,) 
+ w, ,...,x,), (4.4) 

if n>3, with 

u(z)=(l +t?-2++z)), 

w-(z)= 
sha(pa+z> cha(p2+z) sha(&+ Y+Z) ch&;+ Y+z) 

sh(crz) ch( nz) sha( yf z) cha(yfz) ’ 

w+(z) = 
shc&+z) chcr&+z) sha(p.l+y+z) ch+u;+y+z) 

sh(az) ch( az) sha( y+z) cha(yfz) ’ (4.5) 

and 

fJ=co(l+e 
-wP-~paxz)( 1 +e-2+-&+xZ)~n,2 

shcr( - y+xt)sha( - y-xl) 

+c t1+e- wn9e2~+1)( 1 +,-2a(~-y)e-2ax,-1)6”,2 

1 sha( - y+x,)sha( - y-x,) 

+c (l-e- w-$+=2)( 1 -e-wP-r)e2~~2)&,2 

2 chcu( - y+xl)ch”( - y-x1) 

+c (l-e- 2ab-?+e2a~“-1)( 1 -e-2a(~-Y)e-2ax,-1)6”,2 

3 chcu( - y+x,)cha( - y-x,) , (4.6) 

where ~i,j denotes the Kronecker delta and 

co=2sha(po- y)cha(p2- Y)sh(a/&)ch(a&), 

c2=2cha(po- y)sha(p,- r>ch(a&)sh(&), 

c3=2ch+1-~)sh~(~3-~)ch(cu~;)sh(a&. (4.7) 

The corresponding quantum integral A,, is obtained by substituting in Eqs. (3.16)-(3.18): 

w-(elxl), if j=l 

W(&jXj)~ exp 
i 

cvsjC 0 src3(-l)‘(p,+p:) 

W+(E,X,L if j=n 
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(l+e- 2u(p+xj-xpl) 
17 if k=j-1 

U(Xj-Xk)-’ (1 +p4P+xl--x2)) 9 if n=2 and (j,k)=(1,2), 

1, otherwise 

(l+e 
utxj+Xk)+ 1 

i 

-2a(p+Xl+x2)), if (j,k) or (k,j)=( 1,2) 

otherwise , 
7 

(lfe- 2a(/.L-.x,-,-x ) 

u( -xj--x/J+ 1 
i 

n >v if (j,k) or (k,j)=(n- 1,n) 

7 otherwise 

(together with a similar substitution for the ‘shifted’ potentials u (EjXj -I- ekxk f 2 7)). Commuta- 
tivity holds again provided COGrs3(pr+ pi) = 0. 

If we set the coupling constants ,u~ ,pi equal to zero then the boundary potentials become 
trivial: w _ ,w + = 1 and U= 0. The resulting operators can be associated with the loop algebra 
Dk’) : the classical version of the Hamiltonian (I?. -+ ej, y-0) coincides up to a canonical gauge 

(I) transformation with the Hamiltonian of the D, -type discrete time Toda chain introduced by 
Suri~.~~ For this special case the classical integrability of the model follows for arbitrary particle 
number from the R-matrix construction in Ref. 26. Recently, also the quantum integrability of the 
Dk’)-type specialization of our difference Toda chain was shown with the aid of the the R-matrix 
metbod.28 Via limit transitions similar to those between Block 6 and 7 of the diagram in the 
introduction we arrive at the other types of boundary conditions considered by Refs. 26 and 28. 
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APPENDIX: SOME FUNCTIONAL IDENTITIES 

In this appendix it is shown that the functions I!J~,~ in (2.6) and (2.10) are equal for potentials 
u of the form (2.7), (2.8), without restrictions on the external potential w. The point is that 
equality of (2.6) and (2.10) is implied by the following identity for u(z) (p= 1,2,...): 

F 0sr,s... Zq={l,...,p} 
(-II4 rI II utYi+YP> 

1 sqsp 
lsq’cq i,i’eZqt\Zqt-l 

i,IlJ _ u(Yi-Yir) 
4 9’ 1 

i<i’ i’ E {l,...,p}\lq’ 

=(-1)P I-J u(-yj-yj,) 641) 
i,i’e{l,...,p} 

i<i’ 

(where Zo=O). To see that Eq. (Al) is indeed sufficient for equality to hold, one has to compare 
the terms in (2.6) and (2.10) corresponding to a fixed index set Z=Z,CK, with the signs ci, 
i E I chosen in a fixed configuration. One infers that after dividing by a common factor of the 
form 

n w(eixi),fI,, U(EiXif&i’Xi’) PI U(EiXjfXk)U(&iXi-Xk) .I iel 
i<i’ keKU 
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(which eliminates the dependence on w), equality of the corresponding terms amounts to Eq. (Al), 
where we have set EiXi + y=yi and renumbered such that Z={l,...,p} (recall ]Z~=P). 

It remains to verify that u(z) (2.7), (2.8) satisfies (Al). For p = 1,2 this is easy to check: for 
p = 1 the equation is trivial (as in both sides the product is empty) and for p = 2 it reduces to the 
identity -u(yl+y2)+u(yl-y2)+u(y2-yl)=u(-yl-y2), which hinges on the property of 
u(z) (2.7), (2.8) that u(z) + u ( - z) is constant in z. In order to demonstrate (Al) for general p, it 
is convenient to rewrite the equation in a simpler form by performing induction on p. Notice to 
this end that for a fixed (non-empty) index set I1 =.ZC{ l,...,p} the corresponding terms in the 1.h.s. 
of (Al) split in a product of 

- II u(Yj+Yjr) ,IIJ utYj-Yk) 
j,j’eJ 

j<j’ k E { l,...,p}\J 

and an expression that has the same form as the 1.h.s. but with I, taken to be { l,...,p}\.Z (instead 
of { l,...,p}). If we replace the second part by the corresponding r.h.s. of (Al) using induction on 
p, and we take the sum over all possible choices of the index set .Z, then we arrive at an equation 
of the form 

2 (-l)‘J’ n ub’j+Yjf) ]GJ u(Yj-Yk) ,F*, U(-Yk-Yk’)=O W9 
JC{l,...,p} j,j’EJ 

j<j’ keJ k<k’ 

(where we have brought all terms to one side: the term in (A2) corresponding to .Z=0 originates 
from the r.h.s. of (Al)). 

Equations (Al) and (A2) form equivalent systems. For pG2 the equations are exactly the 
same whereas for p>2 the latter is combinatorially much simpler than the former. Our proof that 
the potentials u (2.7), (2.8) satisfy (A2) (and thus (Al)) relies on Liouville’s theorem. The terms 
in the 1.h.s. of (A2) have (generically) simple poles caused by the zeros in the denominators of 
u(z) at (rational case) or congruent mod i r/a to (hyperbolic case) one of 

Yj-Yk'o with jE.Zand k@J (type 1) 
yj+yj,=O with j,j’ E J (type 2.4 (A3) 
yk+yk’=o with k,k’ $ J (type 2.b). 

Residues at poles of type 1 cancel in (A2) because of the permutation symmetry. Similarly, a 
residue at yi+yi,=O of type 2.a (i,i’ E J) or type 2.b (i,i’ $ .Z) cancels pairwise against the 
residue of the term corresponding to the index set obtained by bringing the pair {i, i ‘} from .Z to 
.Zc (type 2.a) or vice versa (type 2.b). We conclude that the 1.h.s. of (0.2) is an entire function of 
Yl ,...vYp * Furthermore, from the limits 

lim u (z) = 1 (rational), lim u(z) = exp( 2 a,u) (hyperbolic), (A4) 
Z'W Re(az)+k-m 

it follows that the 1.h.s. is also bounded in these variables. By Liouville’s theorem it must then be 
a constant function independent of yi , i = 1 ,...,p. To see that this constant is indeed equal to zero 
one observes that the 1.h.s. of (A2) is odd in yi. (A sign flip y i-+ - yi in the terms of (A2) amounts 
to pulling the index i from .Z to .Zc or vice versa, and multiplying the resulting term by - 1 to 
compensate for the sign change caused by the decrease/increase of the cardinality of .Z by one.) 

Remarks: i. Using the limits (A4) it is also possible to compute directly that the constant in the 
1.h.s. of (A2) is zero. By setting y = Ry” with y1 >y”z>. . . > y,> 0 and sending R--+ + 00 we obtain 
for the 1.h.s. 
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c (-1)‘J’ =k (-1)4 “, 
0 

=(l-1)P =o. 
JCIl,...,Pl q=o 

in the rational case and 

2 (- l)lJl ,~l4cl4-l) ew(Ifj=J,keJ,j<k)l - IcisJ.keJ,i>k)l) ,-~f:(p-iJl)(p-iJI-l) 

JC{ 1 ,...,p} 

= 2 (- l)lJl eaP (2 jsJ”-j) - Ck+J(P-k)) 
JC{ l,...*p} 

=(,-wL(P-u~,wL(P-~) )...(e-“P-e”P)(l-l) =O. 

in the case of hyperbolic potentials (where in the latter situation we assumed 5 to be positive). 
ii. In Ref. 18 we conjectured the commutativity of the difference operators H, (2.3)-(2.6) with 

elliptic potentials of the form 

ff,(z) u(z)= - a&+z) 
I( 

a(&+ y+z) o-,(/4 + Yfd 
dz) ’ (+A4 dy+z) 

(‘45) 

where (P~+P~)+~o~,~~= 0 and s= 1,2, or 3. (For ns4 the commutativity was checked by 
computer.) This difference system is a special case of the elliptic system in Sec. III B correspond- 
ing to /L = w, and p; = 0 for Y # 0,s. It is not hard to check by the above method that also u(z) 
(A5) is a solution of Eq. (A2): the 1.h.s. is again entire, odd, and bounded (because doubly 
periodic) in yi. This means that also for the potentials (A5) one may replace the functions lJK,p 
(2.6) by the simpler form (2.10). 
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