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(Received 3 August 1994; accepted for publication 4 October 1994)

Limits of a recently introduced n-particle difference Calogero—Moser system with
elliptic potentials are studied. We obtain hyperbolic and rational difference
Calogero—Moser systems with an eight-parameter external field and (finite) differ-
ence Toda chains with four-parameter potentials acting on the boundary particles.
Hamiltonians for a number of known integrable n-particle systems, such as
Ruijsenaars’ relativistic Calogero—Moser and Toda models and their generaliza-
tions associated with classical root systems, can be seen as special cases of the
Hamiltonians considered in this paper. © 1995 American Institute of Physics.

I. INTRODUCTION N

The finite Toda chain and the Calogero—Moser system (CM) are nowadays classic examples
of integrable n-particle models in dimension one.!”* In the CM system all particles interact
pairwise by means of an inverse-square potential [or a (doubly)periodic generalization thereof],
whereas in the Toda chain a particle interacts only with its nearest neighbors and the potential is
of exponential type. Some years ago, Inozemtsev constructed a Lax pair representation for the
classical n-particle dynamics generated by the generalized CM Hamiltonian®

H=12 2 6+g 3 (p(x;—x0+o(x;+xp)

Isj=sn Isj<k=n
+ > (8o (x)) +g19( @ +x)) + grp(wy+x;) + 830 (W + wy +x))), (1.1)
1<j<n

where g(-) denotes the Weierstrasse g-function® with primitive periods 2w;, 2w,. A lot of
interesting Calogero—-Moser and Toda type Hamiltonians, for which Lax pairs have been reported
in the literature,’ "0 can be seen as limits of H (1.1). These limiting cases are characterized by
Hamiltonians of the form:

Calogero—Moser case

: Hey=12 2 6+ 2 (v(y—x)+ev(x+x))+ > wix); (1.2)

1<j=n 1<j<k<n Isj=sn
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1300 J. F. van Diejen: Difference Calogero—~Moser systems and Toda chains

o{z) = 9p(2)
(elliptic) w)= ¥ g plws +2) ; :
0<r<S 1 : :
' % g !
l : w-(z) = sh*(az) + ¥ (az) :
: 02 gs :
HE L2100 Rcirs rownvie sors yowall I
v(z) = gsh~*az) v(z) = gsh~¥(az) ; +(2) sh’(az) * ch'(az) |
1 il e=1(tpeD) ||
(byper- 2o —tax () = o0 + g1 ! !
bolic) w(z) =goe™ ¥ + g€ e = sh¥(az) = chiaz)| | :
+g2 8 + gy et +gach(20z) + g5 ch(4az)| | 3
l 2 l 3 4| wo(e) =goe ™ +gret™ |
:: wy(z) = g2 + g3 é
oz} =gz v(z) = g2~ : !
0 : € =0 (type A) 7]
(rational) w(z) =goz+ o1 2* w(z) = gz 3 + g1 2% U NP
101284932 4 o2t +g32° 5
ﬂpenods e=0(typc A) e=1 (type D)
Calogero-Moser systems Toda chains
FIG. 1. Potentials of generalized Calogero—Moser systems and finite Toda chains.
.
Toda case

Hp=(6}+ 63)12+e**x17 %)

+ e(e'2"‘(“1+"2)+e2“("1+‘2)+e‘z"‘(xl"‘ﬁ)+w_(x1)+w+(x2), n=2,
(L.3)
=12 2, 812-+ > e2alximxjen)

1<jsn 1<j<n

+ (e 2201t x) 4 o200 1t 5y oy (x) 4w (X,), n=3.

The relevant potentials v,w and w. have been collected in the diagram in Fig. 1. The parameter
& takes the value one or zero. If the external field potential w and the boundary terms w . are zero,
then the Hamiltonians H ¢y (1.2) and Hy (1.3) are connected with the simply-laced classical root
systems: A,_, if £=0, and D, if e=1. In this paper we will refer to the two cases £=0 and
e=1 as systems of type A and of type D, respectively, regardless of whether the fields w,w+
vanish or not.

The Inozemtsev Hamiltonian H (1.1) corresponds to a type D Calogero—Moser system with
potentials as in Block 1 of the diagram. (In Fig. 1 and in the rest of the paper we have used the
convention wy=0, w3=—w;—w,.) The arrows in the diagram represent limit transitions be-
tween the Hamiltonians. For instance, the transition from Block 1 to Block 3 (or 1—3, for short)
corresponds to sending a period to infinity along the real axis (hyperbolic limit). The transition
3—2 amounts to sending the center of mass to infinity: x;—x;+R (j=1,...,n), R—. Rational
potentials are obtained by scaling a to zero (2—4 and 3—5). The transitions leading to Toda
chains with generalized boundary potentials w . (viz. 1 -6 and 6—7) are explained in Ref. 10.
It is important to remark here that, in the process of computing these limits, one has to rescale and
reparametrize the coupling constants g, and renormalize the Hamiltonian by the subtraction of
possibly divergent constants.
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J. F. van Diejen: Difference Calogero-~Moser systems and Toda chains 1301

Lax pairs for the dynamics generated by the above Hamiltonians can be found in Refs.7, 8
(Blocks 2, 4), Refs. 8, 9 (Blocks 3, 5), and Ref. 10 (Blocks 6, 7). The integrability of the
Hamiltonian is not immediate from the existence of these Lax pairs (n independent conserved
quantities do exist, but their involutivity remains to be shown). A proof of integrability for the type
A Calogero—Moser systems of Block 3 and 4 can be found in Refs. 11 and 12. The (quantum)
integrability of the type D Calogero~Moser Hamiltonians associated with the Blocks 1, 3, and 5
was shown recently by means of an explicit construction of the integrals.'>'* For the Toda chains
with boundary conditions corresponding to Block 6 and 7 the (quantum) integrability can be
proved using the R-matrix formalism.'>!® For special values of the coupling constants g, the
Hamiltonians of Fig. 1 can be associated with classical root systems (recall that w,w.=0 (i.e.,
g,=0) corresponds to the simply-laced series A,_; and D,). In these special cases the existence
of Lax pairs, and more information regarding the integrability of the systems, was already known
from previous work.!=%!7

It is clear from the diagram that the Hamiltonians of type D are more general than the type A
Hamiltonians: the latter are limits of the former. Nevertheless, from a physical point of view the
type A models are more interesting than their type D counterparts. This is because for type A the
interaction between the particles depends only on the differences of the particle positions, whereas
for type D also terms depending on the sum of the particle positions appear in the Hamiltonian.

In Refs. 18 and 19 we introduced a deformation of the Inozemtsev Hamiltonian H (1.1).
Similar deformations of the type A versions of H¢y, (1.2) with w=0 and Hy (1.3) with w. =0,
were already introduced by Ruijsenaars ez al.?=%* At the quantum level the Hamiltonian of these
deformed Calogero—Moser and Toda systems is given by a difference operator rather than a
differential operator. For Ruijsenaars’ systems (which may be interpreted as relativistic generali-
zations of the Calogero—Moser and Toda systems) both classical and quantum integrability was
proved,?"?? whereas for our deformation of the Inozemtsev Hamiltonian to date only partial results
have been obtained.'®

In this paper we study limit transitions similar to those in Fig. 1 for our difference counterpart
of the quantum version of H (1.1). As a result we obtain difference counterparts of the Calogero—
Moser and Toda Hamiltonians H ¢y, (1.2) and Hy (1.3) for each block of the diagram. The paper
is organized as follows.

In Sec. II we begin with an analysis of some special cases for which we have complete results
as regards the integrability of the system. The models of interest in this section amount to differ-
ence versions of the hyperbolic/rational CM systems with potentials as in Blocks 2-5 and with
82,83=0. Starting point is a difference counterpart of the hyperbolic type D Calogero—Moser
Hamiltonian corresponding to Block 3 (with g,,g3=0, this specialization is associated with the
root system BC,). Explicit formulas representing a complete set of quantum integrals for this
difference CM system were introduced in Ref. 18. Via limit transitions we arrive at the quantum
integrals for difference versions of the quantum models corresponding to Blocks 2, 4 and 5 (again
with g,,g,=0).

In Sec. III we consider more general difference CM systems starting from the difference
version of the Inozemtsev Hamiltonian H (1.1). This leads to difference versions of the quantum
models corresponding to Blocks 2-5 for arbitrary values of g,,g3. As regards the integrability of
the models in this section, only partial results have been obtained: apart from the Hamiltonian we
found (to date) only one independent integral (which proves the integrability in the case of two
particles).

The transition to difference Toda chains with boundary potentials is discussed in Sec. I'V. If the
potentials acting on the boundary particles are set to zero, then our chain reduces to the nonperi-
odic relativistic Toda system (type A) or to a Dfll)-type counterpart of this system (type D).

Remarks: i. Special cases of the systems under consideration were introduced at the level of
classical mechanics by Schneider’ (external field couplings to the relativistic CM system),
Inozemtsev® (external field couplings to the relativistic CM system and its type D counterpart in

J. Math. Phys., Vol. 36, No. 3, March 1995

Downloaded 25 Oct 2006 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



1302 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains

the case of two particles), and Suris?® (boundary potentials for the relativistic Toda chain). It turns
out that all models in Refs. 24—26 can be seen as limits of the models studied here.

ii. Two important models have not been included in the diagram: the A, _ -type CM system
with elliptic potentials (no external field) and the periodic Toda chain {type Af,l_)l). It does not
seem possible to view these two models as special (limiting) cases of the Inozemtsev system
associated with Block 1 of the diagram. It is, therefore, quite remarkable that for their difference
versions such a relation does exist: the quantum relativistic CM system with elliptic potentials (the
difference version of the elliptic CM system related to the root system A,_;) is a limit of our
difference version of the Inozemtsev system with Hamiltonian H (1.1);'® furthermore, the periodic
relativistic Toda chain, in turn, is a limit of the relativistic CM system with elliptic potentials.”®
(The second relation also holds at the nonrelativistic level.'”)

Il. INTEGRABLE DIFFERENCE CALOGERO-MOSER SYSTEMS WITH HYPERBOLIC OR
RATIONAL POTENTIALS

We start with the commuting quantum integrals for a difference version of the (type D)
hyperbolic CM system associated with the root system BC, . By sending the center of mass to
infinity we arrive at the quantum integrals for a (type A) model consisting of Ruijsenaars’ quantum
relativistic CM system coupled to an external field. Rational potentials are obtained by scaling the
{(imaginary) period of the hyperbolic potentials to infinity.

A. Type D
In Ref. 18 we studied the quantum integrability of a one-dimensional n-particle Hamiltonian
of the form
Bi= 3 (VR PVE, -v,), @.1)
e=x]
with
. h 4
0’:_1'—5;«’ Vsj=w(£xj)n v(ex;+x)v(ex;—x). (2.2)
Y k#j
One has

(e_eﬂaif)(xl ,...,X") =f(x1 ""’xj'—l ,Xj'i'ib‘,Bﬁ,Xj.;, 1 ,...,x,,), g=*x 1,

so H 1 is a second order (analytic) difference operator. It turns out that for particular potentials v,
w the above Hamiltonian has n independent commuting quantum integrals given by higher-order
difference operators of the form

no_ 12 _—gh, 02 _
= Uje jinV.5 e Po=vV_" ., [I=1,..,n, (2.3)
seSh= I =Y grie &J;J¢ ’
ej=il,jel
with
581=2 £;6;, (2.4)
jeJ

J. Math. Phys., Vol. 36, No. 3, March 1995

Downloaded 25 Oct 2006 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. F. van Diejen: Difference Calogero—Moser systems and Toda chains 1303

VSJ;K=H w(e;x;) H vigjx;tepxp)v(ex;+epx;+iph)

jed Ji'el
i<’
XH viex;+x)v(e;x;—x), (2.5)
€,
kjejl
Ugp= > (=D Verou Veuyn iy Ve, ik, (2.6)

Ogllg"'gquK, lsgsp
[ l=p, &;=%1, iel,

(U;o=1). For I=1, the operator H, (2.3)-(2.5) reduces to H, (2.1), (2.2).

The difference operators A 1 ,...,fIn do not commute for arbitrary functions v and w. In fact,
requiring [f] ] H 1]=0 for I # I’ leads to functional equations for these potentials. Some solu-
tions of the functional equations were obtained indirectly, using previous work related to multi-
variable g-polynomials:?’

Hyperbolic potentials (type D)

_ sh a(u+z)
YO e
_sha(po+z) ch a(ug+z) sh a(pg+y+z) ch a(u;+y+z) 27
wlz)= sh(az) ch(az) sh a(y+2z) ch a(y+z) ’
Rational potentials (type D)
utz otz mot vtz
_ , — , 2.8
v(z)="— w(z) Z P (2.8)
where we have introduced the (dependent) parameter
y=iph/2. (2.9)

Very recently we realized that for a potential v as in (2.7), (2.8), the function Uk, (2.6) can be
rewritten in a much simpler form:

UK,p=('~1)p H w(aix,-)H v(e,-x,--i-s,-,x,-,)v(—s,-x,-—sifx,»r—2'y)
ICK.[|=p iel ii'el
g,=*l,iel i<i
X H v(ex;+xv(ex;—xp) |. (2.10)
iel

€
keK\I

The equivalence of (2.6) and (2.10) hinges on functional equations for the potential v that are
stated and proved in an appendix. In the next subsection, when we compute the limit resulting in
our type A difference CM systems with external fields, it will be convenient to use (2.10) rather
than (2.6) for Ug . A

To see that the Hamiltonian H; (2.1), (2.2), with potentials given by (2.7) or (2.8), constitutes
a difference counterpart of a type D Calogero—Moser Hamiltonian one substitutes

J. Math. Phys., Vol. 36, No. 3, March 1995
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1304 J. F. van Diejen: Difference Calogero—-Moser systems and Toda chains

u=ipg, wp.=ipg,, wn,=ifg; (2.11)

(r=0,1), and expands in the step size parameter 3:

H(B)=H, o +0(B%), 2.12)
with
Ho= 2 A,Z- + > (v(xj+x) +v(x;—xp) + > w(x;) +constant, (2.13)
1<j=<n I<j#k<n I<sj<n
and
g(g—h)a? go(go—H)a®  g1(§—h)a? )
v(z)= ez w(z)= e lch; (o) (Hyperbolic case),
- Zo(Go—h
v(z)= §_(ii_) w(z)=&gzoz—) (Rational case),

where g§o=go+ g0, 81=81+g;. It follows that the differential operator H 10 (2.13), which
amounts to a quantization of the type D Calogero—Moser Hamiltonian H -y, (1.2) with potentials
taken from Block 3 (and g,,83=0) or Block 5 (and g; ,gz,g3—0) of Fig. 1, can be obtained as
a limit of A 1 by sending the step size to zero: H 1,0= hmﬁ_*oﬁ ‘g 1 - More generally, one has for
the higher-order integrals'®

ﬁl(ﬂ)=1:11,0321 +o(pBY), Hl’0=1c12 I1 é,z +lo., (2.14)

where l.0. stands for terms of lower order in the partials 9j.

Remarks: i. For every difference system in this paper there exists an associated classical
n-particle system (see also Refs. 18 and 19). To pass from the quantum to the classical system one
substitutes real variables 6; for the partials 9j and sets £ equal zero (so y=0, cf. Eq. (2.9)). The
commutativity of our difference operators then implies the Poisson commutativity of the corre-
sponding classical quantities.'®

ii. The rational potentials are a limit of the hyperbolic potentials: by sending « to zero Eq.
(2.7) goes over in Eq. (2.8). A more general external field is obtained if, before scaling « to zero,
the coupling constants u;,u; are shifted over a half-period (turning ch a( ;L(l')+z) into
sh a( ,u(l’)—i-z)). Then lima_,oa””l:l ; leads to operators with rational potentials given by

="z ()= (Mo+z)(m+z)(p«o+7+z)(#1+7+z)
viz)= z wlzZ z2(y+2)

(2.15)

The potentials (2.8) are recovered after multiplication of H 1 by ()™ ! and sending u,, “y to
infinity. If one substitutes u=iBg, u\ =iBgl’ and u!"’= 1/(t,Bg(')) in the Hamiltonian H,
(2.1), (2.2) with v,w taken from (2. 15) then expansion of — ~Bg.g1H, in B leads to a Hamil-
tonian that consists of the rational version of H 1,0 (2.13) coupled to a harmonic external field:

—# 50(8o—H
v(z) = 5(%2—), w(z) = % + g2 z? (2.16)

J. Math. Phys., Vol. 36, No. 3, March 1995
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J. F. van Diejen: Difference Calogero—Moser systems and Toda chains 1305

(§,=8,%g,). Thus, the model with rational potentials as in (2.15) amounts to a difference version
of the type D Calogero—Moser system with potentials taken from Block 5 of the diagram in the
introduction and g,,g3=0.

B. Type A: The relativistic CM system in an external field

Let us now discuss how one arrives at the quantum integrals of a relativistic CM system in an
external field, by sending the center of mass to infinity in the hyperbolic type D system of the
previous subsection. If we substitute

Mo— mo— R, M= timl/(2a)—R,

xj—x;+R, (2.17)

J mo— o= ¥+R, pi—ui—im/(2a)—y+R,

in the difference operators H, (2.3) with hyperbolic potentials (2.7) (and Uy , taken from Egq.
(2.10)), then for R—o we have (it is assumed throughout that a>0):

sh a(p+e(x;—x;))

v(gx;tex)— hasG—xp) if &;=—g,=¢,
—(A,)5, if ;=¢g,=¢, (2.18)
and
w(ex;) =N, (1—e 2ot x)) (1 — g =2alum+x)y - jf g;i=+1,
=N, (1200 R)) (1= 2ok =5)) | if g =1, (2.19)
where
A, = e, A, = e®(HotHot TR =27),

It thus follows that our commuting difference operators turn into operators of the form

q,= e 12 ~B(b;,~ G )12
H, ihl“%-lsl U nre d=l =V g genge€ T - Vi_a, S NIe (2.20)
J.nJ_=6
I=1,.,n (and J, ,J_C{1,...,n}), where
Vigow=I1 weG) IT wo(=xp) TT v(x=x;)0(x;—x;+27)
. . Jjel 4
jedy jed.
jled_
XH v(xj—xk)H v(xg—x;), (2.21)
jel 4 jel
kekK keK

J. Math. Phys., Vol. 36, No. 3, March 1995
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1306 J. F. van Diejen: Difference Calogero—Moser systems and Toda chains

Ug,=(-1y 3 Mzt ITw e I wo (=)
I, 0_CKJI,.NI_=0 iel iel
Ll +]1_|=p * B

X H v(x;—x;)v(xp—x;—27) H v (x;—x¢) H v(xe—x) |,

iel, iel iel_
el ke KNI, UI2) ke KNI, UI)
(2.22)
with
Hyperbolic potentials (type A)
v(z)=sh a{u+z)/sh(az), (2.23)

w+(z)=(1 _e—2a(.uo+z))(1 __e—2a(/-L1+z))’ W-(Z)'—‘(l _eZa(y.(')+z))(1 _e2a(y;+z)),
and

Lol =121y (K =12 =11 _DAr =1
NigLiz L =N '+|| |)\<|1|+|| DAlzl=1r-D)

If we divide & ; by (2)? and send « to zero, then we obtain operators of the same form as in
Egs. (2.20)-(2.22), but now with

Rational potentials (type A)

v()=(pn+z)z, we(@)=(pmot)p+2z), w_()=(uotz)(ui+z), (2.24)

and )\U ,)\w,)\“q TR [—1
Both in the hyperbolic and the rational case the operator H ; (2.20)-(2.22) reduces for I=1 to

A= 2 [ wP)Il v"x—x) exp(—B8) I v x—x)w(~x))

1<j<n k#j k#j

+wi(—x) ] v"(x—x)) exp(B8)) 11 u”(x,-—x»wi?(xj))

k#j k#j
FU(X] yee0rXn)s (2.25)

with

U=- 2 (XWRZ—IW.‘.(.XJ')H U(.xj'-xk) +A;1K:’_nw_(_xi)l_[ v(xk—xj)).

k#j k#j

I<jsn
(2.26)

This is the Hamiltonian of a type A difference Calogero—Moser system consisting of the relativ-
istic CM system coupled to an external field. To switch off the external field we set po,u; =R,
1o m1=—R, and send R to infinity (in the rational case we first renormalize 24 ; by multiplying it
by R™2)). For the operator H; this limit amounts to setting w.. ,w_= 1. Specifically, the Hamil-
tonian H 1 (2.25), (2.26) then reduces, apart from an additive constant, to the Hamiltonian of the
relativistic CM system introduced by Ruijsenaars.! To compare our expression for the Hamil-
tonian with that of Ref. 21, one should notice that for w, ,w_=1 the function U (2.26) (with v

J. Math. Phys., Vol. 36, No. 3, March 1895
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J. F. van Digjen: Difference Calogero—Moser systems and Toda chains 1307

given by (2.23) or (2.24)) is constant in x;, j=1,...,n. The proof hinges on Liouville’s theorem: U
is both entire in x; (generically simple poles congruent to x;=x, k # J, caused by the zeros in
the denominators of v cancel each other as a consequence of the permutation symmetry) and
bounded in x; (U has bounded asymptotics for x;—). A more detailed version of this type of
reasoning can be found in the appendix below, where it was used to demonstrate the equality of
(2.6) and (2.10).

Remarks: i. In general the difference operators H ; are not formally self-adjoint (and the
corresponding classical integrals are not real-valued). If we assume « and B to be real, then the
type D difference operators (2.3)-(2.8) become formally self-adjoint by picking u, ul
e iR, whereas for the type A difference operators (2.20)-(2.24) one is led to the constraint u
e iRand po=—fo, p1=— .

ii. Sending the step size parameter B to zero in our type A difference model corresponds to the
nonrelativistic limit: the relativistic Ruijsenaars system with external field goes over in the non-
relativistic Calogero—Moser system with external field. Specifically, if we substitute u=iBg,
po=(iBgo—log(Bko)+im2)2c,  pg=(iBgo+log(Bke)+im2)2e,  py=(iBg,—log(—pk)
—iw/2)2a, and u=(iBg,+log(—Bk;)—im/2)/2« in the hyperbolic version of the Hamiltonian
H ; (2.25), (2.26), then the expansion in B is of the form (2.12) with

f11'0= 2 @]2- + Z v(xj—x;) + 2 w(x;)  +constant (2.27)
I<j=n Isj#k<n 1<j=n
and
glg—h)a? 3 .
v(z)= “az) w(z)=g, exp(—2az)+g, exp(—4az), (2.28)

where g0—2(k0+k1)(g0+g1—2aﬁ) and g,=(ko+k;)% In the rational case we substitute
u=iBg and u,=p,=1/(iBg,), r=0,1. After multiplying the Hamiltonian by — B%gog; (cf.
Remark ii of Sec. I A), expansion in 8 leads to H 10 (2.27) with potentials given by

wz) = 73—, @)= (go+81)% 2% (2.29)

Thus, we recover the quantum versions of the nonrelativistic Calogero-Moser Hamiltonians of
Block 2 and 4 in the introduction with g,,g3=0. (The linear term in the rational external potential
of Block 4 may be obtained from the harmonic part by a translation of the center of mass.)

Iil. MORE GENERAL DIFFERENCE CALOGERO-MOSER SYSTEMS

In this section generalizations of the systems in Section II are studied. We start with an elliptic
generalization of the type D operators H s H from Section II A. This elliptic system was intro-
duced in Ref. 18. (The Hamiltonian amounts to a difference version of H (1.1).) It will be
explained how limit transitions similar to those considered above lead to hyperbolic and rational
difference CM systems of type A and D with a more general external field potential than the
systems in the previous section. All systems below are given by a Hamiltonian H ; (a difference
operator of order 2) and an additional independent quantum integral H (a difference operator of
order 2n). So, the quantum integrability of these generalized external field models follows for
n=2. To keep our treatment self-contained, some preliminaries regarding sigma functions are
recalled in Sec. III A.
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1308 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains

A. Sigma functions

This subsection summarizes some useful properties of the Weierstrass o-function. For a more
detailed treatment the reader is referred to, e.g., Whittaker and Watson.®
For our purposes it is convenient to introduce the o-function as a function of the form

. w0 h2
g'(z)=€Kz a_lsh(aZ)H (1—528(27()1—6!:()01—)-),
m=1

2aze—4maw1) (1 _e—-2aze—4mawl)

> (l—e
=e"22a_lsh(az) H (

m=1

(1_e—4maw1)2 4 (31)

with a=i7/(2w,) and Im(w,/w,)>0 (so Re(aw,)>0). In this paper the actual value of con-
stant « is not very important; however, to keep agreement with the literature one should take
k={(w;)/(2w,), where {(z) denotes the Weierstrass {-function.®

The o-function is entire and odd in z, and it has (simple) zeros in the points of the lattice

I=2w,Z+2w,Z. (3.2)

It is not difficult to verify from Eq. (3.1) that o(z) is quasi-periodic in z with primitive quasi-
periods 2w, and 2 w,:

o(z+2w,)=—e?M @t Dg(7), (3.3)
where %, =2xw;+im/(2w;) and 7,=2kw,. The constants 7, , 7, satisfy Legendre’s relation
NWyr— M = im/2. (3.4)
It is convenient to distinguish a third (dependent) half-period w;= — w, — @,. Equation (3.3) then
holds for r=1,2,3, with 3= — 7, — 7,. By shifting the argument over the half-periods , three
associated sigma functions are introduced:
o (z)=e "o(w,t2)lo(w,), r=123. (3.5)

The sigma functions are related to the Weierstrasse g-function via

r + r B dz
i (:, (ijr‘j((_’z : 9 2 W) ()—p(wr+D)r 7 o) =p(xtw,), r=0123

(3.6)

(with the convention o(z) = o(z) and wy=0). Another useful relation is the duplication formula

0(22)=20(z)0(2)05(z) 03(2). 3.7
In the second identity of Formula (3.6) the above choice of « is important: for other values than
k= {(w;)/(2w,) the two sides of the equation differ by a constant.

It is immediate from Egs. (3.1), (3.5) that the sigma functions degenerate into hyperbolic
functions when @, becomes infinite. One has the following asymptotics for w;—:

o'(z)~e"22a_1 sh(az)(1—4 sh?(az)e™**@1+ (e~ 82@1)), (3.8)
a'l(z)~e"12(1 —4 sh’(az)e™2%“1—8 sh?(az)e *2@1+ O(e~ 8291y, (3.9)
J. Math. Phys., Vol. 36, No. 3, March 1995
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J. F. van Digjen: Difference Calogero-Moser systems and Toda chains 1309
2
o5(z)~e** ch(az)(1+4 sh’(az)e %91+ 0(e~801)), (3.10)

0'3(z)~e"12( 1+4 sh®(az)e ~2291—8 sh?(az)e 4“1+ O(e~0%91)). (3.11)

B. Elliptic potentials (type D)

The elliptic generalization of the type D difference CM Hamiltonian from Sec. IT A is given

by|8
H= 2 V% ~eh9; W2 U(x) e x,), (3.12)
1sj<n
e=1i1
V€j=w(sxj)H v(ex;+xv(ex;—xy),
k#j
with
Elliptic potentials I
o(u+z) o (pr+2) o, +y+2)
v(z)=——, w(z)= , 3.13
RATe) AT G139
and
o (p—y+x;) o{pn—v—x;)
U= c 3.14
0553 'lg‘" o(=y+x) o(-v—x) (.14
e,=2(o(w)o(u=2)" 1T outn=Moduy ), r=0,..,3,
[IEEX]

where we have introduced permutations my=id, 7;=(01)(23), 7,=(02)(13), and m;=(03)
(12). Comparison of Eq. (3.12) with (2.1) reveals that, in passing from hyperbolic/rational poten-
tials to elliptic potentials, the structure of the terms in the Hamiltonian of degree *1 in the
differences exp(BG ) has remained the same, whereas the structure of the part of degree zero (i.e.,
the function U) has changed considerably.

In Ref. 18 we found an independent difference operator of order 2n that commutes with our
elliptic difference CM Hamiltonian if

> (wetpl)=0. (3.15)
Osr<3

This quantum integral is given by an elliptic generalization of the operator lfI,, that has the same
form as in Sec. II A (but now with v and w taken from (3.13)):

- " - 12
H,= JC{lE,n} UjeV oy e € Be; V . ene (3.16)

j—ile

with
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1310 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains

VEJ;K=H W(ij]) H U(ijj-"'ejl.x]-l)u(sl'x]"*' Sjl.xj'r+2'y)

jed jj'ed
i<y’
X H] U(8ij+xk)U(8ij—‘xk), (3.17)
je
kek

U= 2 (=TT wew) T viepterxi)v(—eme—epxe —27).
ep=*1,kek kek kik'ek
k<k’

(3.18)

To see that A 1 (3.12)-(3.14) is indeed a difference version of the Inozemtsev Hamiltonian H
(1.1), one reparametrizes the coupling constants as in Eq. (2.11) and expands in the step size
parameter 8 (using the second identity in Eq. (3.6)):

H,=constant + ﬁl.o B +o(B?), (3.19)

with

Hyp= 2 éjz'*' glg—h) 2 (o (xj+xp)+o(x;—x;))

lsjsn Isj#k=sn
+ 2, B Re(0 ), (3.20)
1;;;n

and §,=g,+g, . Thus, for 8—0 a quantization of the Hamiltonian H (1.1) arises.

We will see in the next subsection that for w;— the operators H 1 and I:I,, reduce to
operators with hyperbolic potentials. These are essentially the same as the corresponding operators
in Sec. IT A. Hyperbolic (and rational) difference CM systems with more general external field
potentials are obtained when, before sending periods to infinity, the coupling constants u, and
., are shifted over the half-periods w, (cf. Remark ii. in Sec. II A for a similar state of affairs in
the transition from hyperbolic to rational potentials). The relevant parameter shift

Br— = @, ey~ (3.21)

leads, after rewriting and apart from multiplicative constants, to operators H ; (3.12) and fl,,
(3.16)-(3.18) with

Elliptic potentials II

v(2)=0o(u+z)o(z), wiz)=(c(22)a(2y+22))"' I] o(u,+2) o(ul+y+2),
0<rs<3

(3.22)

and

v=3 oI olp—y+x;) olpn—y—x;)

o (—y+x) o(—y-x;) ’ (3.23)

0srs3 1sjsn
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J. F. van Diejen: Difference Calogero—-Moser systems and Toda chains 1311

e, =Qo(wa(u—2y"" Il olu—~no(ul), r=0,
O0<ss<3
_exp(—49,0,)0%(,)

20(p)o(pu~27y) I olu—vo u), r=123

0O=<s=<3

To arrive at the potentials (3.22), (3.23) we used the duplication-formula (3.7) to rewrite the
denominator of w, and we used Egs. (3.3), (3.5) (taking into account also Legendre’s relation
(3.4)) to rewrite expressions of the form o(z—w,) in terms of o, (4(z).

C. Generalized external fields for the hyperbolic and rational systems of type D

The sigma functions degenerate into elementary functions when periods are sent to infinity.
For w;= one has (cf. Expansions (3.8)-(3.11)):

0(z)=e"zzsh(az)/a, a'l(z)=e"zz, 0'2(z)=e"120h(az), 0'3(z)=e"22, (3.24)

with a=im/(2w,) and k= {(w,)/(2w,)(= — a/6). If one substitutes (3.24) for the sigma func-
tions, then in U (3.14) the exponentials eXp(KZZ) give rise to an overall multiplicative constant,
whereas in v, w (3.13) factors of the form exp(az+b) emerge. After commuting these factors to
one side of the differences exp(sﬂe ), the same multiplicative constant appearing in U also arises
in front of the terms V1 2 exp(— 3[30 yvir «j - 1t is not difficult to verify that in H (3.16)-(3.18) the
factors exp(xz?) also glve rise to an overall multiplicative constant. In the latter case, however, one
needs to invoke Condition (3.15) to get rid of the x xj-dependence of factors induced by w.

It thus follows that for w,=0o the operators H (3.12) and H, (3.16)-(3.18) with potentials
(3.13), (3.14) reduce, apart from multiplicative (in H , also additive) constants, to operators with
potentials given by

sha(u+2z)

U(Z)=—Sm—,

sha(uy+2z) cha(u,+2z) sha(us+ y+z) cha(u,+y+z)

w(z)= sh(az) ch(az) sha(y+z) cha(y+z) (3.25)
and
B sha(u— y+x;) sha(u—y—x;)
U=cq l_-[\n sha(—vy+x;) sha(—vy—x;)
+ey 11 cha(pn—y+x;) cha(u—y—x;) (3.26)

cha(—vy+x;) cha(—y—x;) ~’

1<j=<n
co=2sha(uo— y)cha(u,— y)sh(aug)ch(am;)/ (sh(ap)sha(u—27)),

cy=2cha(po— y)sha(u, — y)ch(apg)sh(ap;)/(sh(apm)sha(pn—2v)).

For these potentials the operators H 1 and f],, coincide, apart from a constant term in H 1 and an
interchange of parameters [L(ll)H/f;,), with the corresponding operators from Sec. Il A. For H,
this is immediate, whereas for H, this follows because U (3.26) differs from the function

J. Math. Phys., Vol. 36, No. 3, March 1995
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1312 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains

¢; (With V; as in (3.12)) only by a constant. (This is again seen by invoking Liouville’s
theorem after havmg verified that the difference of the two functions is free of poles and bounded
inx;, j=1,.,n).

Not1ce that in the hyperbolic limit Condition (3.15) is no longer needed to ensure the com-
mutativity of H 1 and H because the dependence on u,,u, , r=1,3 has dropped out.

Next, we turn to the more general difference CM system that one obtains as hyperbolic limit
of the system with elliptic potentials (3.22), (3.23) (which arose from the parameter shift
w— '~ w,). The calculation is again based on the sigma function asymptotics (3.8)-(3.11).
In the case of v and w we just substitute (as before) the leading part of the asymptotics:
o(z)= exp(Kzz)sh( az)/ a. For the function U, however, the computation of the hyperbolic limit is
now more cumbersome because higher order terms in the asymptotics contribute (cf. Remark i.
below for further details). After subtracting (divergent) additive constants emerging in U, and
dividing by overall multiplicative constants caused by the factors exp(kz?), the limit w,— leads
to operators of the form H ; (3.12) and H (3.16)-(3.18) with

Hyperbolic potentials with generalized external field (type D)

v(z)=sha(u+z)/sh(az), (3.27)

w(z)=(a’sh(Raz)sh2a(y+z))~! H sha(u,+z) sha(u,+y+z),

0<sr<s3

and

Uee H sha(u—y+x;) sha(u—y—x;)
0 . sha(—vy+x;) sha(—y—x;)

e H cha(u—y+x;) cha(u—y—x;)
! cha(—vy+x;) cha(—y—x;)

1=<j<n

+ E (cach(2ax;) +csch(4ax;))

Isj<n

+cy X ch(2ax;)ch(2axy), (3.28)

1<j<k=<n

where

co=(2a’sh(ap)sha(u—29))"" [ sha(u,—y)sh(an;),

O=ss=3

=(2a%sh(ap)sha(u—29)"" [1 cha(u,—y)ch(an)),

O=<s=3

c;=2"%a"% X (ch2a(p,—y)+ch(2apl)),

0=s=<3

c3=—2"%a"%h(2ay), c4=2"2a Ssh(au)sha(u—27).
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J. F. van Diejen: Difference Calogero-Moser systems and Toda chains 1313

In the present case, sending the period w; to infinity has not diminished the number of coupling
constants parametrizing the external field. Thus, we need Condition (3.15) to ensure the commu-
tativity of A, (3.12) and H, (3.16)-(3.18).

In order to demonstrate that the potentials (3.27), (3.28) generalize those in Egs. (3.25), (3.26),
we substitute

pi =R, o patinl/(2e),  py—p,—inl/(2e),  ps,us=—R.
The limits
lim (2a)% **RH,, lim (2a)%%e~4"Rg,
R R—o»

recover the operators with potentials (3.25), (3.26).
Sending « to zero leads to a rational degeneration of the system with potentials (3.27), (3.28).
For v, w we obtain (after division of w by a factor 4)

Rational potentials with generalized external field (type D)

v()=(n+2)z, w@=z"y+2)"' [ (u,+2) (ul+y+2). (3.29)

0=r=<3

It is clear that the resulting operator H, (3.16)-(3.18) generalizes the one in Remark ii. of Sec.
II A. To determine the corresponding Hamiltonian H; we must also compute the rational version
of U (3.28). The calculation, which consists of expanding (3.28) in « and subtracting all divergent
(constant) terms, is rather cumbersome and has only been done for n=2,...,5 (by computer). As a
result we obtained a function of the form

U=, T1 (u—7+xj)(u—7—xj)

—ytx; —y—x;

1<j=n

+ X (Clsz' +c2xf +Csx16') tey X sz-xi, (3.30)

1<j<n Isj<k<n

with constants cg,...,c4 that depend in a rather complicated way (especially c,) on the coupling
constants g, i, , M4, :

co=Cu) p-29"" TI (u—»u!,

0=<s=<3

cl=a0+a1'y+a272+a3y3,

=14 D (= 7)*+ ) +(n—Du(ui2—y) =512,

0=r=<3
c3=—1/2, ca=3u(pl2— 7). (3.31)
with
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1314 J. F. van Diejen: Difference Calogero—Moser systems and Toda chains

ao=2"* 2 (ul-pH)?=27 B (et plpltupnl?)

0=r=<3 Osr<s=3

—27%n=1)p? 2 (ui+u)-272n—1)(n-2)u*,

0=r=<3

a==271 X (H+p)+27? T p P+ uD 427 - Dp D (p2tpl?)

0=r=<3 O0=r,s<3 0=r=<3

+27 M n—1)p? X (),

O0=r=3

a=2"" 2 pi-27' X pp—(-Dp X p,—2"'(n—1)(2n-5)u,

0=r=<3 0=r<s=3 0=r=3

az==2"'n—-Dp— X pu,.

0=<r<3

Undoubtedly this formula for U also holds for n>>35.
Remarks: i. To determine the hyperbolic degeneration of U (3.23), we used Egs. (3.8)—(3.11)
to derive the following asymptotics for w;—;

c,~koa™® I sha(u,—y)sh(apl), r=o,

0=<s=<3

~Kkoa" %2 8exp(4aw)(1 —2ke 2% +0(e~ %)), r=1,

~xoa™® JI cha(u,—y)ch(an]), r=2,
O=<s=<3
~ ko~ %2 8exp(4aw,)(1 +2K,.e72%9 + O(e429)), =3,
(3.32)

with K= (2sh(ap)sha(pn—27))"" exp(kSoeses(il+pm*—2vu) —26(p1—27), K1=So<s<s
(ch2alus—y) +ch(Qap,)) ; and

olp—v+x;) o(pu—y—x;)
o— ’)'"'xj) o~ ')'_xj)

(3.33)

sha(u—y+x;) sha(u—y—x;)
sha(—=y+x;) sha(—y—x;)

0 N r=0,

~No(l —N\jch(2ax;)e”2*“1+ (constant —Nych(4ax)))e™ 4
+0(e~%)), r=1,
cha(pu—y+x;) cha(u—y—x;)

—ho cha(—y+x;) cha(—y—x;) ~’ r=2,
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~No(1 +Xjch(2ax;)e”>*“1+ (constant —Aych(4ax;))e ™41
+0(e"%2n)),  r=3,

with Ag=exp(2ueu(u—2v)), A=8sh(au)sha(u—27y), A,=16ch(2ay)sh(au)sha(u—27v).

Substituting Eqs. (3.32), (3.33) into U (3.23) leads, after subtracting a divergent constant term
of order O(e***1) and omitting of multiplicative constants stemming from the exponentials
exp(xz%), to the hyperbolic limit given in Eq. (3.28).

ii. A further limit of the system with hyperbolic potentials (3.27), (3.28) leads to the n
-particle version of a two-particle system studied in Ref. 25. If we set
mr1=— (ot ud)2+im/Qa)+R, pi=—(mo+pdR2—im/(2a)—R, p,=p5=0 and
p3=—p3=imw/(2a) in the operators with potentials (3.27), (3.28), then the limits
limg_, 2% %" 2P H, and limg_,.2¢" oM~ 2R [ result in operators of the form H,
(3.12) and H, (3.16)- (3 18) with potentials given by

v(z)=sha(u+z)/sh(az), w(z)=sha(uo+z)sha(pg+ y+z),
U=—cha(po+pg+y) 2 ch(2ax)). (3.34)
1<j=n

For n=2 the Liouville integrability of the corresponding classical system was proved by
Inozemtsev.?

D. Generalized external fields for the hyperbolic and rational systems of type A

We have seen that the type D difference CM systems in the previous subsection form a
generalization of the systems in Sec. I A. It should, therefore, not come as a surprise that sending
the center of mass to infinity leads to more general external fields for the relativistic CM system
than the ones given in Sec. II B. If we substitute

x;—x;+R, = p,— R, M=, — Y+R, (3.35)

in operators H 1 (3.12) and I:I,l (3.16)-(3.18) with hyperbolic potentials (3.27), (3.28), then for
R—» we have:

sha(,u,-l—a(xj—xk))

, if €;=—¢g=¢g,

v(gx;+ex)~ j

shae(x;—x)
~explaesp), if e;=¢,=0¢, (3.36)

and

w(ex;)~2" 206072 0= r=ali] ~ 7D ghaR II sha(u,+x;), if e;=+1,

0=r=<3

=2 6= a2, oxrealis= V2) ghaR I sha(u,—x;), if &;=—1
0=r=<3
(3.37)
It is not difficult to derive the corresponding asymptotics for U (3.28) (cf. Remark i. for further

details). It then follows that for R— o we obtain, after the usual renormalizations (i.e., the division
by and subtraction of divergent constants), operators of the form
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1316 J. F. van Diejen: Difference Calogero—Moser systems and Toda chains

A= 23 [ wPapII v'2x—x0) exp(—B6) I1 vV(xi—x)w(—x))
1sjsn k+#j k¥j

w2 (=TI 0= x)) exp(88) TT v"2(x;= x)w Px)) | + Uxy,nxn),

k#j k#j
(3.38)
and
o eyl -B(b;, -6 )y
H, ot UJ+nJ_V1+,J_;JinJ°_e e 9= VJ_,J+;JgnJ”_ (3.39)
JNI_@
with
Vi, uw= 1T wetxp) II wo(=x) I vG=x00(x=x;+27)
jel, jed_ jedy
jled_
X,H v(xj_xlc)'H v(x—x;),
jedy jed_
kek kek
U= 2 (N wid I w0
K:OK_—=® kek, keK._
x 1] v(xe=xe)v(e—x—=27 1,
kekK,
Kek_
where
Hyperbolic potentials with generalized external field (type A)
v(z)=sha(u+z)/sh(az),
wio()=a"* [I sha(u,+z), w_(z)=a"* II sha(u!+z), (3.40)
0=r=3 O=r=3
>‘w = expa(EOSrSS(ﬁu‘r_*-/"‘: - 7)/2) » and
U=2"2a"* > (sh’a(p,—y—x;—N)+sh®a(u!— y+x;+1))
O0=<r=3
I<sjsn
—27'a"%ch(2ay) 2 sh*a(2x;+\)
Isjsn
+a *sh(au)sha(u—27) 2 shza(xj+xk+)\), (3.41)

|<sj<k=n
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A=Zo<,<3(ptr— M)A
For a—0 we obtain the corresponding rational system. The renormalized limit leads to
operators H, (3.38) and H, (3.39) with

Rational potentials with generalized external field (type A)

v()=(p+2)z, wi@= I1 (w42, w-(2)= IT (u+2). (3.42)

0=r=3 0=r=<3

A,=1, and

U=12"" 2 ((r—y—x=N*+ (= y+x;+0)%)
0<r<3
1<j<n

— 3 (PCx AN +N)Y6) +p(p—27) > (xtx+N)E (343)

1<j<n 1<j<k=n

=S o< es(ttr— p))/4.

Notice that the condition on the coupling constants of the external field ensuring the commu-
tativity of A, and H, has changed as a consequence of the reparametrization (3.35). This condi-
tion now reads =g« <3(@,+ @) —4y=0.

Remarks: i. The behavior for R— o of the function U (3.28) (after Substitution (3.35)) can be
derived with the aid of the asymptotics

co~ KkoePR(1— ke 2R+ 0 (e ~*R)),
¢~ Koe R(1+ ke 2R+ 0(e™*7F)), (3.44)

Co~ ke 2R+ 0(e™2R),

where
Ko=2"9a'5(sh(au)sha(ﬂ—27))"eXPa( > (wl—w) s
Osr=<r
K= D (2B 4 o= 2el =) ’y=2"5a"6 > (e~ 20— 4 g20lu, =7y,
0=<r=<3 0=sr=<3
(3.45)
and
sha(u—y+x;+R) sha(u—y—x;—R)
sha(—y+x;+R) sha(—y—x;,—R)
~(1 _)\le—Zaxje—ZaR _)\ze—4axje—4ak +O(e—6aR)),
cha(p—y+x;+R) cha(u—y—x;—R)
cha(—y+x;+R) cha(—y—x;—R)
~(1 +\je2%%g~2aR — ) p=daxjgm4aR 4 g(¢~02kK)), (3.46)
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with
A =4sh(apu)sha(pw—27), A=8ch(2avy)sh(au)sha(pu—27y). (3.47)

ii. The external field couplings to the relativistic Calogero—Moser system introduced in Refs.
24 and 25 can be seen as special {limiting) cases of the fields considered here.

IvV. DIFFERENCE TODA CHAINS

In this section it is explained how difference Toda chains with boundary conditions arise as
limits of the type D difference CM system with elliptic potentials of Sec. I B.

We start with the type D difference CM operators H, (3.12) and H, (3.16)-(3.18) with
potentials given by Egs. (3.13), (3.14). To arrive at Toda type difference operators we substitute

xj—x;+ o (j—1)/(n—1), p—utwy—wf(n—1), 4.1)
and send w; to infinity. The Hamiltonian then becomes
H = wl_/z(xl)v”z(xl+x2)v”2(x1—xz)e“"’élv”Z(xz——xl)v”z(—xl—xz)wl_’z(—xl)
+W1—/2(_x1)U1/2(_X1_xz)vllz(xz‘xl)e'galvllz(xl_xz)Ullz(xl"‘xz)WI—/z(xl)
+W£r/2(x2)0”2(x1+x2)vllz(xz—xl)eﬁﬂézvm(xl_xz)vl/z(_xl—xz)wyz(—xz)

172

+wy (—xz)vl’z( —X;—x)v 1/2(951 __x2)e/302”l/z(xz_xl)vl/z(xl +x2)w1/2(x2)

+ U(xy,X32), (4.2)
if n=2,

H = w(x))v"?(x, +x2)e_'851v”2(x2—x1)w1_/2(—xl)
F w2 = x )0 (= x1) BP0 2 (x, + x,)w 2 (x,)
+u'2(x+x5)0 llz(xz“xl)e_ﬂézv V2(x3=x,)0 2 (—x,~ x3)
+v 1/2("1‘72_1\73)0 1/2(x3_x2)eﬂézv 1/2(x2_xl)v 1/2(961 +x3)
+w£f2(x3)v I/Z(xg—xz)e"ﬂaw 2 —xz—x3)w5_/2( —X3)

+wl/?

(—x3)0 "2 (—xy3—x3)eP%0 2 (x3— x) w2 (x3)
+ U(xl ’x2’x3)9 (4‘3)
if n=3, and
Hi= w(x )0 2(x; +x)e BOp 2 (x,— x ) w2 (~x;)
+wl2(=x vV x,— x1) Pl 2 (x+ x) w2 (x))

+u 2 (x; +x,) v 2 (x,— x) Je TPO0 2 (x5 - x,)

+02(x3—x,)eP%0 2 (xy—x ) o (x + x,)

+ 2 ( Y2(x;=x;-1)e PO 2 (x; —x;)
3€jsn-2
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+v llz(xj+1~xj)eﬂof'l)”2(xj—xj_1))
+ vl/2(x”_ 1 _'xn—Z)e—Bo"_]v”z(xn_xn— 1)01/2(_xn—1_xn)
+v llz(ﬂxn— 1 _xn)vllz(xn_xn—l)eBOH_IU”z(xn— 1 _xn-—Z)

172 172 —-Bo,. 172 172
+W+ (x,,)v (xn_xn—l)e A "vl (_xn—l_xn)w+ (—xn)

+ W}i-n( “X,,)U 1/2( —Xp-1 —xn)eﬂénv 1/z(xn—xn-I)W!l-/z(xn)
+ U(Xp,erXn)s (4.4)
if n>3, with
v(z)=(1 +e—2“(“+z)),
_ sha(uo+z) cha(p,+2) sha(ug+ y+z) cha(u;+y+z)
w-(2)= sh(az) ch(az) sha(y+z) cha(y+z) °
_ sha(p;+1z) cha(uy+2z) sha(ui+y+2z) cha(pus+y+z) “5)
w(2)= sh(az) ch(az) sha(y+z) cha(y+z) ° )
and
U (1+e—2a(,u—'y)e—'2ax2)(1+e—2n'(;4—‘y)e2a’x2)5,,_2
=¢o sha(— y+x)sha(—y—x)
(1 + e—2a(,u— y)eZax"_ l)(l + e—2a(p.-— V)e—z"‘xn—l)‘snﬂ
+
€1 sha(— y+x,)sha(—y—x,)
(1 _e—2a(;4—7)e—2ax2)( 1 _e—-2a(y.—'y)62ax2)é‘n‘2
ter cha(— y+x)cha(—y—x,)
(1 __e—2a(y—y)e2ax,,,1)( 1 __e—2a(,u.—'y)e—2axn_l)5n,2
+ .
€3 cha(—y+x,)cha(—~vy—x,) ’ (4.6)
where §; ; denotes the Kronecker delta and
co=2sha(uo— y)cha(p,— v)sh(aug)ch(aps;),
c1=2sha(pu, — y)cha(uz— y)sh(aui)ch(aps;),
cy=2che(pmo— y)sha(pu, — y)ch(aug)sh(ans),
c3=2cha(p;— y)sha(us— y)ch(ep)sh(aps;). 4.7)

The corresponding quantum integral H, is obtained by substituting in Egs. (3.16)-(3.18):
w_(gx;), 1if j=1
w(ep)— | expl ae; 2 gerea(—1) (0, +p))|, if 1<j<n,
wil(e,x,), if j=n
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1320 J. F. van Diejen: Difference Calogero-Moser systems and Toda chains

and
(1+e72mr575-0),if k=j—1
v(x;—x)— (1+e72ee¥n=x)) - if p=2 and (j,k)=(1,2),
1, otherwise

(1+e-2embxitnly - if (j,k) or (k,j)=(1,2)

1, otherwise

’

v(-xj+xk)_’(

(1+e 2o %-17%))  if (j,k) or (k,j)=(n—1,n)

1, otherwise

U(_Xj_‘xk)—*

(together with a similar substitution for the ‘shifted’ potentials v(&;x;+ &;x,+27)). Commuta-
tivity holds again provided X<, <3(1t,+ #,)=0.

If we set the coupling constants u,,u, equal to zero then the boundary potentials become
trivial: w_ ,w,.=1 and U=0. The resulting operators can be associated with the loop algebra
D(I) the classical version of the Hamiltonian (8,— 8;, y—0) coincides up to a canonical gauge
transformation with the Hamiltonian of the Dd) type discrete time Toda chain introduced by
Suris.?® For this special case the classical integrablhty of the model follows for arbitrary particle
number from the R-matrix construction in Ref. 26. Recently, also the quantum integrability of the
Dﬁ,l)-type specialization of our difference Toda chain was shown with the aid of the the R-matrix
method.?® Via limit transitions similar to those between Block 6 and 7 of the diagram in the
introduction we arrive at the other types of boundary conditions considered by Refs. 26 and 28.
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APPENDIX: SOME FUNCTIONAL IDENTITIES

In this appendix it is shown that the functions U , in (2.6) and (2.10) are equal for potentials
v of the form (2.7), (2.8), without restrictions on the external potential w. The point is that
equality of (2.6) and (2.10) is implied by the following identity for v(z) (p=1,2,...):

(-7 ]I I vomyy I vy

0G & 5 i—{l ..... D} 1<q'=q i’ €I\ ,telqr\lq,_l
I=g=<p i<i’ i"e{l..pN
== Il o(=yi=yu) (A1)
i,i’ e{l,...p}
i<i

(where Iy=). To see that Eq. (A1) is indeed sufficient for equality to hold, one has to compare
the terms in (2.6) and (2.10) corresponding to a fixed index set / =1,CK, with the signs ¢;,
i e I chosen in a fixed configuration. One infers that after dividing by a common factor of the
form

H w(gx;) H v(gx;+epx;r) H v(ex;txpv(ex;—x;)

ii'el
el e oy
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(which eliminates the dependence on w), equality of the corresponding terms amounts to Eq. (A1),
where we have set £;x; + y=y; and renumbered such that I={1,...,p} (recall |I|=p).

It remains to verify that v(z) (2.7), (2.8) satisfies (A1). For p=1,2 this is easy to check: for
p=1 the equation is trivial (as in both sides the product is empty) and for p=2 it reduces to the
identity —v(y,+y ) +v(y1—y)tv(y,—y1)=v(—y;—y,), which hinges on the property of
v(z) (2.7), (2.8) that v(z) +v(—z) is constant in z. In order to demonstrate (A1) for general p, it
is convenient to rewrite the equation in a simpler form by performing induction on p. Notice to
this end that for a fixed (non-empty) index set I, =JC{1,...,p} the corresponding terms in the Lh.s.
of (A1) split in a product of

- II v(y;+y;) H v(y;—Yi)

ivi'el ke{]li:{P}\J
J<j
and an expression that has the same form as the 1.h.s. but with 7, taken to be {1,....p}\J (instead
of {1,...,p}). If we replace the second part by the corresponding r.h.s. of (A1) using induction on
p, and we take the sum over all possible choices of the index set J, then we arrive at an equation

of the form
2 OV IT vty I voi=y0) II v(=ye—ye)=0 (A2)
IC{1,.p} jni'ed i:i kK &

j<j' k<k'
(where we have brought all terms to one side: the term in (A2) corresponding to J=(J originates
from the r.h.s. of (Al)).

Equations (A1) and (A2) form equivalent systems. For p<?2 the equations are exactly the
same whereas for p>2 the latter is combinatorially much simpler than the former. Our proof that
the potentials v (2.7), (2.8) satisfy (A2) (and thus (A1)) relies on Liouville’s theorem. The terms
in the Lh.s. of (A2) have (generically) simple poles caused by the zeros in the denominators of
v(z) at (rational case) or congruent mod i/ to (hyperbolic case) one of

y;i—y=0 with jeJand ke&J (type 1)
y;+y;=0 with j.Jj'eld (type 2.a) (A3)
yitye=0 with kk'&J (type 2.b).

Residues at poles of type 1 cancel in (A2) because of the permutation symmetry. Similarly, a
residue at y;+y;»=0 of type 2.a (i,i’ € J) or type 2.b (i,i" ¢ J) cancels pairwise against the
residue of the term corresponding to the index set obtained by bringing the pair {i,i'} from J to
J¢ (type 2.a) or vice versa (type 2.b). We conclude that the Lh.s. of (0.2) is an entire function of
Yis-syp - Furthermore, from the limits

limv(z)=1 (rational), lim v(z)=exp(xau) (hyperbolic), (A4)

7—® Re(az)— £

it follows that the Lh.s. is also bounded in these variables. By Liouville’s theorem it must then be
a constant function independent of y;, i=1,...,p. To see that this constant is indeed equal to zero
one observes that the Lh.s. of (A2) is odd in y;. (A sign flip y;— —y; in the terms of (A2) amounts
to pulling the index i from J to J¢ or vice versa, and multiplying the resulting term by —1 to
compensate for the sign change caused by the decrease/increase of the cardinality of J by one.)

Remarks: i. Using the limits (A4) it is also possible to compute directly that the constant in the
Lh.s. of (A2) is zero. By setting y =Ry with y;>y,>--->5,>0 and sending R— +® we obtain
for the Lh.s.
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p

S o(-h=3 (—1)"(’;) =(1-1) =0.

Jc{1,....p} q=0
in the rational case and

S (— )M SR genlelkel i<k ~ Welkel >R o= Fp-1a)p-1I=1)

JC{t,...p}

= E (_1)|Jl oK (2 ,-e,‘l’—i) - E“J(p—k))

=(e~aP=D_gaulp=1)y. . (g~ _gar)(1—1) =0.

in the case of hyperbolic potentials (where in the latter situation we assumed @ to be positive).
ii. In Ref. 18 we conjectured the commutativity of the difference operators H, (2.3)-(2.6) with

elliptic potentials of the form
o(p,+2)\ [ olpot+v+z) ol(pug+y+z)
o,(z) o(y+z) o(y+z)

v(z)=%s%, wi)=| 11

0=r=3

, (AS)

where (ug+ p,) + Zo<,<34,=0 and s=1,2, or 3. (For n<4 the commutativity was checked by
computer.) This difference system is a special case of the elliptic system in Sec. III B correspond-
ing to u=w; and u, =0 for r # 0,s. It is not hard to check by the above method that also v(z)
(AS5) is a solution of Eq. (A2): the Lh.s. is again entire, odd, and bounded (because doubly
periodic) in y;. This means that also for the potentials (A5) one may replace the functions Uy,
(2.6) by the simpler form (2.10).
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