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Abstract—The “almost-squares in almost-squares” (Asqas) prob-
lem is a rectangle packing problem in which a series of almost-
squares (rectangles of dimensions n× (n+1)) needs to be placed
inside an almost-square frame without open areas or overlaps.
Asqas-34, consisting of almost-squares 1× 2, 2× 3, . . . , 34× 35,
remains unsolved. This paper shows Asqas-34 is the only remain-
ing unsolved instance of Asqas, and describes several solutions
to Asqas-34, and the methods used to find them.

Keywords–Asqas; almost-squares in almost-squares; rectangle
packing problem.

I. INTRODUCTION

Rectangle Packing Problems come in a broad variety
and have quite a practical appeal besides their theoretical
interest. Minimum-waste fabric cutting in clothes manufacture,
maximum storage in warehouses, and optimal arrangement
of text and advertisements in newspapers all involve finding
the best arrangement of a set of rectangles [1]. While its
industrial relevance has been recognized for some time (see,
e.g., [2]–[4]), closely related bin packing problems also show a
quite remarkable and very interesting extension to scheduling
issues [5], where they provide a practical foothold for opti-
mization problems in logistics and planning.

Almost-square packing problems are a special class of
rectangle packing problems. A sequence of n almost-square
tiles (1 × 2, 2 × 3, . . . , n × (n + 1)) must be placed inside a
small as possible rectangular frame, with no overlap and as
little possible unused space. Most notable is the work of [6],
who optimally solved these problems up to n = 13 by hand,
and up to n = 26 by computer, meaning they found exact-
fit configurations within frames of appropriate dimensions.
Fig. 1 displays the Asqas-8 problem, which is the third of
five instances of almost-squares-in-almost-squares, having 8
consecutive almost-square tiles of 1×2, . . . , 8×9 to be placed
in an almost-square frame, in this case 15× 16.

In this paper, we present a solution to the n = 34
problem instance, which is not only a relatively large instance
of the almost-square packing problem, but also belongs to
the slightly more exclusive class of almost-squares-in-almost-
squares (Asqas) as well. This is a set of exactly five problem
instances for which it is known that a frame of exact fit could
have almost-square dimensions as well. The n = 34 instance
of almost-squares has exactly 13 exact-fit frames, of which
35 × 408 is the most eccentric and 119 × 120, the almost-
square one, is the most concentric. Erich’s packing center,

an extensive collection of open and solved packing problems
maintained by prof. Erich Friedmann of Stetson University
(see [7]) contains solutions to the first four instances of Asqas,
but leaves the fifth open. It is this instance that we solve, but
it is also the last open instance of Asqas, which we will firstly
show.

The structure of the paper is as follows. We discuss the five
instances of the Asqas problem in Section II. In Section III,
we describe how border sets can help to reduce the complexity
of the problem. This is used in Section IV to create borders
of the tiles. Finally, in Section V we solve the interior of the
border, which leads to the solution of the Asqas-34 problem.

II. THE FIVE INSTANCES OF
ALMOST-SQUARES-IN-ALMOST-SQUARES

There are exactly five instances of Asqas and its proof relies
on the observation that there is an intriguing bijective function
from Asqas to geometry and triangular numbers in number
theory closely reminiscent of homeomorphic topological con-
jugacies used in chaotic discrete dynamical systems [8]. Since
a sequence of n almost-square tiles (1×2, 2×3, . . . , n×(n+1))
must be placed inside an almost-square frame, the first check
should be whether such a frame actually exists for a given n, or
equivalently, whether the summed area of all the separate tiles
is equal to the area of an almost-square frame (of any size).
More formally put: an Asqas-instance of size n exists only if
there is a natural number p such that Equation (1) holds:

n∑
i=1

i(i+ 1) = p(p+ 1). (1)

As it turns out, there are exactly five values of n for
which the equation holds, and the proof is underpinned by
the existence of a near-trivial relation between the sequence
of almost-square tiles 1, . . . , n and the triangular numbers
1, . . . , n. Fig. 2 shows that summing the first n triangular
numbers (bottom row) leads to the nth tetrahedral number. If
this number happens to be a triangular number as well, then the
existence of an Asqas-instance with the same n is guaranteed
by a simple relation between summing triangular numbers
(TR) and summing almost squares (AS) – the kth triangle
is exactly half the area of the kth almost-square. Note that
the relation critically depends on the existence of a triangular
number for the nth tetrahedral number (in this case TR4 for
TH3) and there are only five tetrahedral numbers (TH1, TH3,
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Figure 1. Illustration of the Asqas-8 problem.

TH8, TH20 and TH34) which have a corresponding triangular
number. For this reason, there are exactly five Asqas-instances.

The area of any almost-square k is exactly twice the area
of the corresponding triangular number k. Since the sum of
the areas of the first n almost-squares should be expressible
in p(p + 1) for the problem instance to exist, the question
easily translates to whether the sum of the first n triangular
numbers yields a new triangular number. However, the sum
of the first n triangular numbers is most commonly known
as a tetrahedral number, since ‘stacking’ subsequent triangles
yields a tetrahedron, and as such the question becomes “which
tetrahedral numbers are also triangular numbers?”. The answer
is given by [9]: only the 1st, 3rd, 8th, 20th, and 34th tetrahedral
numbers have corresponding triangular numbers (the 1st, 4th,
15th, 55th, and 119th respectively). This ensures us that Asqas-
34 is both the largest and the only remaining unsolved instance
of Asqas.

A point worth noting is that a similar approach has been
adopted for assessing instances of consecutive squares-in-
squares; the sum of the series (1× 1, 2× 2, . . . , n× n) gives
a square pyramidal number Pn. Only two numbers are both
square and pyramidal: P1 = S1 = 1 and P24 = S70 =
4,900 [10], the first being trivial and the second, consisting of
the first 24 consecutive squares having no solution at all [11].
This instance is a special cases of ‘perfectly squared squares’
(see [12], [13]) and a nice visual overview can be found at [14].

III. BORDER SETS AND ELIGIBLE BORDER SETS

When considering any tight configuration of tiles in a
frame as a sequence, the number of possible arrangements
is equal to n!. In the almost-square case, tiles can be put
either horizontally or vertically, doubling the possibilities for
each individual tile, and as such increasing the total number
of configurations by a factor 2n. For the case of Asqas-34,
the number of possible arrangements is therefore equal to
Expression (2):

34! · 234 = 507,206,086,632,656 · 1034 ≈ 5 · 1048. (2)

Roughly speaking, any number of states exceeding 1020 be-
comes too cumbersome for calculation on a single computer
within reasonable time.

Our heuristic approach is mainly fed by the observation
that for Asqas-20, larger tiles are situated in the border of
the frame. Asqas-20 has 54,992 solutions having a total of
9,812 different borders. Fig. 3 shows that the number of tiles
in these borders follows a narrow distribution (left), with larger
tiles more prevalent than smaller tiles (right), and some of the
larger tiles (14 × 15, 17 × 18, 18 × 19 and 19 × 20) being
present in the border of almost every solution. For this reason,
it makes sense to start looking for solutions to Asqas-34 with
larger tiles in the border.

For this purpose, without loss of generality, we split the
set of tiles of the n = 34 instance into ‘border sets’ of b tiles,
and the remaining ‘interior sets’ of 34 − b tiles. The number
of any possible border sets of size b then equals

(
34
b

)
and

each of these has b! · 2b of possible configurations, whereas
the complementary interior set is left with 34 − b tiles, with
(34− b)! · 234−b configurations. As such, the size of the state-
space can better be viewed as in Expression (3):(

34

b

)
· b! · 2b · (34− b)! · 234−b, (3)

for any b in the range 1 to 34. The initial drawback is that for
our approach to be complete, we have to repeat this procedure
for every b = 1, 2, . . . , 34 and as such multiply the gross
calculations with 34. This however, turns out to be a small
investment with a huge return. Firstly, it allows us to filter
out ‘eligible border sets’ from which potentially valid borders
can be constructed from non-eligible border sets with relative
computational ease. The second advantage is rather practical:
the compartmentation of the state space allows designated
areas to be marked as ‘covered’, and even if no solution was
to be found it would serve as progress for other teams working
on the subject. But the third advantage, directly related to the
second, is that by compartmenting the state space into borders
of size b and interiors of size 34−b, we can start an optimized
complete search in the area of the smallest border sets – which
have the largest tiles on average. This assumption however, was
not thoroughly investigated and therefore starting here was a
clear cut heuristic: an educated guess.

Sifting eligible border sets from discardable non-eligible
border sets was done simply on the global constraint of
perimeter: every set has a maximum perimeter (pmax) and a
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Figure 2. Relation between the sum of almost squares and triangular numbers.

Figure 3. Distribution of the number of tiles in Asqas-20.

minimum perimeter (pmin). The maximum perimeter is the
greatest distance that any set of tiles can cover when placed
along the inside of the frame in constructing a border from
that set. It assumes the largest tiles to be put in the corners
and all others with their long sides on the frame. As such,
pmax is the sum of all the long sides of tiles in the set,
plus the short sides of the four largest tiles in the set. The
minimum perimeter assumes the opposite: placing the smallest
tiles of the set in the corners of the frame and all others
with their short sides on the frame, and as such is the sum
of the short sides of all tiles in the set, plus the long sides
of the four smallest tiles. The total length of the Asqas-34
frame is 119 + 119 + 120 + 120 = 478 and as such any set
which has pmin ≤ 478 ≤ pmax was to be marked eligible; all
others were discarded. It is easy to see there are no eligible
3-border sets (too short) and no eligible 31-border sets (too
long), but it should be noted that for various reasons, many of

the eligible border sets have no validly constructable borders
at all. The perimeter-approach has the great advantage of being
computationally very effective, allowing the number of eligible
border sets to be greatly reduced in a few days on a single
stand-alone computer. On an abstract level, this procedure
somewhat resembles the approach described by [15], using
global constraints for packing rectangles as it “it leads to
improvement in execution times”, which of course, in terms
can make an unsolvable problem solvable.

IV. MAKING BORDERS OF 12 TILES

The reduction from all border sets to eligible border sets
only greatly varied with the number of tiles involved in a
set, but was most drastic at its extremes. Table I shows that
the number of border sets with b tiles is exactly

(
34
b

)
, but

only a small fraction of these meet the eligibility-criterion of
having enough but not too much length to potentially construct
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TABLE I. NUMBER OF BORDER SETS IN THE REDUCTION.

set size #sets #eligible sets (cont.) (cont.) (cont.)
≤ 11 var. 0 21 927,983,760 788,458,963

12 548,354,040 30 22 548,354,040 502,691,341
13 927,983,760 18,014 23 286,097,760 256,326,310
14 1,391,975,640 749,552 24 131,128,140 104,965,820
15 1,855,967,520 10,072,560 25 52,451,256 33,285,209
16 2,203,961,430 64,774,105 26 18,156,204 7,530,562
17 2,333,606,220 238,039,950 27 5,379,616 1,053,473
18 2,203,961,430 552,324,976 28 1,344,904 69,036
19 1,855,967,520 863,895,027 29 278,256 933
20 1,391,975,640 958,043,855 ≥ 30 var. 0

a border of 478 units long. The percentage eligible sets is
smallest at its extremes, for b = 12 and b = 29.

As our heuristic assumed that a solution of the Asqas-34, if
existent, was likely to have larger tiles situated in the border,
and the smaller sets necessarily consist of larger tiles, these
two factors led us to explore all eligible border sets consisting
of 12 tiles. There are only 30 of those sets, having a total
of 30 · 12! · 212 = 58,859,716,608,000 ≈ 5.9 · 1013 possible
borders, a number small enough to exhaustively compute on
a stand-alone computer with a simple backtracking algorithm.
Fig. 4 shows that the number of valid borders per eligible 12-
set differs considerably, but roughly follows the fluctuations of
pmax. Sets have been numbered #1 – #30 following tile size (#1
having the largest tiles) but the number of valid borders shows
no relation to this numbering (horizontal axis). Remarkably
enough, the inset shows that when plotted in a log-normal
scale the distribution of sets almost follows a straight line with
a slope of −0.12 and intercept 6.13 (correlation coefficient:
−0.994).

Of the 5.9 · 1013 possible configurations, only 4,425,341
actually turned out to be valid borders (see Fig. 4). The border-
construction algorithm was complete, and effectively ignored
flip-isomorphic borders and partial-flip-isomorphic borders.
Two borders are flip-isomorphic if a complete horizontal or
vertical flip changes one into the other, and two borders
are partial-flip-isomorphic if flipping two adjacent tiles in
the border leaves the shape of the interior unchanged. It is
worth noting that it is theoretically quite possible that other
isomorphic borders were still present in our set, and the only
way to ensure this is storing the exact polygon shape of the
remaining interior and the accompanying set of interior tiles.
We never bothered, for the storage capacity and checking
algorithm needed for this mechanism to work appears to
greatly exceeded its practical benefit, if any.

The total number of 4,425,341 borders constructable from
any 12 tiles is fairly comprehensive, but each of them
still needed its remaining 22 tiles to be arranged in at
most 22! · 222 configurations, yielding a total of 4,425,341 ·
471,440,074,852,053 · 1013 = 208,628,309,228,586 · 1020 ≈
2 · 1034 possible configurations to explore, still far too many
to analyze on a stand-alone computer. From here, we put our
faith in all the optimizations we could think of for solving the
interior, the computational power of third and fourth generation
Distributed ASCI Supercomputers (DAS-3 and DAS-4), and
the correctness of our heuristic intuition.

V. SOLVING THE INTERIOR

A pilot run showed that the calculation time for decid-
ing whether any given valid border had a solvable interior,
e.g., contained a complete Asqas-34 solution, was extremely
unevenly distributed. Whereas the vast majority of borders
was decided in a few minutes at most, approximately one in
thousand took nearly a day to be completely puzzled out. In
a worst-case scenario, this would stall even a supercomputer
of 100 calculating nodes for over a month with all the quickly
decidable borders waiting behind it. To effectively manage this
risk, to maximize the number of analyzed borders or, ulti-
mately, to find a solution to Asqas-34, we set up a small server
with 4,439 text files, each containing at most 1, 000 border
configurations, effectively covering all 4,425,341 borders of 12
tiles. The text files’ content was arranged in accordance with
the 30 different sets, but the files were randomly distributed
over 80 nodes of DAS-3 grid computers and up to 90 nodes of
DAS-4 grid computers located throughout The Netherlands and
Belgium, each node running several instances of the interior
solver (see Fig. 5 for the computational setup).

Each instance of the interior solver comprised an optimized
complete backtracking algorithm that, on startup, retrieved one
text file with 1,000 borders from our server, read the first
border from the file, placed the 12 tiles inside the frame
and commenced an exhaustive backtracking routine using the
remaining 22 tiles to solve the interior. The tiles were placed
starting on the first empty position bottom-left, and starting
off with the largest tile standing up first. It optimized in three
ways: firstly, whenever the first row was not completed, the
search for the border was cut off and dismissed as unsolvable.
Second, if a row was completed, it was checked for “impossi-
ble gaps”, mostly high and narrow spaces which could not be
filled by any combination of tiles. Third, rectangles were not
reversed, meaning that any two consecutively placed tiles in
the interior forming a rectangle were not checked in reverse
order. This has an optimizing effect but the apparent drawback
of missing solutions that only differed by a partial swap of
two tiles. That effect however, was nearly insignificant as the
number of solutions turned out to be so small they could be
hand-checked.

The text file server tracked the progress per file, but also
per border to minimize the “redo” time in case results came
back incomplete.

The employed DAS3- and DAS4-nodes were located at
VU and UvA universities in Amsterdam, Technical University
Delft, Leiden University (LIACS), the astronomical ASTRON
center in Drenthe, and at the Lab for Perceptual Dynamics
of the Catholic University in Leuven, Belgium. Each DAS-3
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Figure 4. Number of valid borders per eligible 12-set.

Figure 5. Setup for the solving the Asqas-34 problem.

node can simultaneously run up to four instances of an interior
solver, each DAS-4 node up to eight. It is very hard to give
an exact run-time estimate since each of these computers is
used in a great variety of tasks, has highly volatile availability,
occasionally malfunctions, was temporarily shut down for
maintenance or were refused reservations for unknown reasons.
So although we have completed the entire 12-set, it is quite

hard to give an accurate run time estimate.

For a project of this scale, we can give a reasonable upper
bound estimate: the entire set was exhaustively investigated
in 80 days, running between 800 and 1,000 instances of the
interior solver in parallel for between 96 and 116 hours a week.
In this time, it found exactly 15 unique solutions to the Asqas-
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Figure 6. Two solutions to Asqas-34.

34 problem, which are its only solutions with 12 tiles in the
border. Nonetheless, solutions with 13 or 14 border tiles are
known to exist, because they can be constructed from one of
the found solutions. Fig. 6 depicts two solutions to Asqas-34.
Note that as both solutions have isomorphic solutions from a
complete horizontal or vertical flip, the left hand solution holds
potentially three others solutions from flipping either pair of
highlighted tiles. The right hand solution can be transformed
into at least 255 other solutions by flipping tiles or groups
of tiles (highlighted and darkened), some of which have more
than 12 tiles in the border.
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