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On the power of the test for cluster bias

Suzanne Jak"** and Frans J. Oort?

'Utrecht University, The Netherlands
National University of Singapore, Singapore
3University of Amsterdam, The Netherlands

Cluster bias refers to measurement bias with respect to the clustering variable in
multilevel data. The absence of cluster bias implies absence of bias with respect to any
cluster-level (level 2) variable. The variables that possibly cause the bias do not have to be
measured to test for cluster bias. Therefore, the test for cluster bias serves as a global test
of measurement bias with respect to any level 2 variable. However, the validity of the
global test depends on the Type | and Type Il error rates of the test. We compare the
performance of the test for cluster bias with the restricted factor analysis (RFA) test,
which can be used if the variable that leads to measurement bias is measured. It appeared
that the RFA test has considerably more power than the test for cluster bias. However,
the false positive rates of the test for cluster bias were generally around the expected
values, while the RFA test showed unacceptably high false positive rates in some
conditions. We conclude that if no significant cluster bias is found, still significant bias with
respect to a level 2 violator can be detected with an RFA model. Although the test for
cluster bias is less powerful, an advantage of the test is that the cause of the bias does not
need to be measured, or even known.

I. Introduction

The importance of establishing measurement invariance of research instruments is
widely recognized; a measurement instrument should function identically in different
groups of respondents (see Cheung & Rensvold, 1998; Meredith, 1993; Reise,
Widaman, & Pugh, 1993; Vandenberg & Lance, 2000). If measurement invariance
does not hold with respect to some variable (e.g., gender), then two respondents
with identical values on the latent trait that the test is supposed to measure may have
different expected scores, depending on their value on the other variable (e.g.,
depending on being a man or a woman). When a test is not invariant with respect to
gender, we call the test biased with respect to gender, and gender is then called a
violator (violator of measurement invariance; Oort, 1992). Measurement bias is also
referred to as differential item functioning (DIF) in the item response theory (IRT)
literature. Within structural equation modelling (SEM), the two prevalent models to
investigate measurement bias are multigroup models (Horn & McArdle, 1992; Little,
1997; Sorbom, 1974; Widaman & Reise, 1997) and multiple-indicator multiple-cause
(MIMIC) models (Muthén, 1989) or, equivalently, restricted factor analysis (RFA; Oort,
1992, 1998). We will use RFA models to detect measurement invariance with
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respect to specific violators in this study. The RFA method will be explained in
Section 1.3.

In the present study we consider the investigation of measurement invariance in two-
level data. Two-level data are data with a clustered structure, such as children in school
classes or patients in hospitals. Measurement invariance with respect to clusters can be
tested with a multigroup model with a large number of groups. This is, however, a
cumbersome strategy due to the large number of parameters involved. Alternative
approaches can be found by using a random effects approach as described by Verhagen
and Fox (2012) using multilevel random effects models in the IRT framework (De Jong,
Steenkamp, & Fox, 2007; Fox & Verhagen, 2010) or in the SEM framework (Jak, Oort, &
Dolan, 2013; Muthén, 1990; Rabe-Hesketh, Skrondal, & Pickles, 2004; see Muthén &
Asparouhov, 2013; for an overview of these and other methods). In this study we use the
method described by Jak et al. (2013) who introduced the term ‘cluster bias’ to refer to
measurement bias across clusters. Cluster bias can be interpreted as measurement bias
with respect to any cluster-level variable.

With two-level data, the lowerlevel (e.g., student or patient level) is called level 1 or the
within level. The higher level (e.g., class or hospital level) is called level 2 or the between
level. With two-level data, measurement bias can be present at the within level or at the
between level. Most applications of testing measurement invariance in multilevel data are
about testing invariance with respect to specific variables at the between level. For
example, Davidov, Diilmer, Schliiter, Schmidt, and Meuleman (2012) used multilevel SEM
to test for measurement invariance across countries, and Muthén, Khoo, and Gustafsson
(1997) tested for invariance across two school types. Spilt, Koomen, and Jak (2012) tested
for measurement bias with respect to both a specific level 1 variable (student gender) and
aspecific level 2 variable (teacher gender), and also investigated cluster bias. In this paper
we focus on measurement bias at level 2. For methods to test for measurement bias with
respect to level 1 variables specifically, see Kim, Yoon, Wen, Luo, and Kwok (2015) and
Ryu (2014).

The purpose of this study is to compare the performance of two methods to investigate
measurement bias at the between level. One method is the test for cluster bias, which can
be considered a global test of measurement bias at the between level, in which the
violating variable(s) is (are) not necessarily measured or even known. The other method is
the RFA method, which requires the operationalization of possible violators of
measurement invariance, in order to include them as exogenous variables in multilevel
factor analysis. The principle of two-level SEM and these two approaches are explained
below.

I.1. Measurement bias at level 2

With two-level SEM, the covariance matrix is modelled as the sum of the within level (level
1) and the between level (level 2) covariance matrices (Muthén, 1990; Rabe-Hesketh
et al., 2004):

z:total = Zbetween + Zwithin~ (1)

For example, consider data concerning the closeness of teacher—child relations,
obtained using a 5-item questionnaire, completed by teachers for several of their pupils.
The (pooled, within-class) differences between children are modelled by X ;nin. T€achers
also differ in the general closeness of their relations with children. The differences
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between teachers are modelled by X ciween- At the within and between levels, distinct
measurement models can be used to describe the covariances between the item scores. In
the present study we employ the linear factor model as the measurement model
(Mellenbergh, 1994).

1.2. The test for cluster bias

Testing for cluster bias can be seen as a global test for measurement bias with respect to all
possible level 2 violators. In the case of cluster bias, one or more indicators measure
different constructs in different clusters. In the closeness example from the previous
subsection, if cluster bias is present, this means that cluster-level variables other than
closeness are causing differences between the teachers’ scores. Jak et al. (2013) showed
that in the absence of cluster bias, for p observed variables and 2 common factors, the
following model holds:

!/
2b(:twc(:n :A(Dbctwcan )

Ewithin :A(DwithinAl + ®within- (2)
In this model, ®perween ANA Pyinin are B X kR covariance matrices, Owimin iSap X p
(diagonal) matrix with residual variances, and A is a p x k matrix with factor loadings.
The factor loadings are equal across the within and between level. Cluster bias appears as
residual variance at the between level, and can be modelled by estimating a (diagonal)
p x p matrix with residual variance at the between level (Operween), SO that Xperween = A
Dpeiween A T Operween- The test for cluster bias involves testing whether parameters in
Operween Ar€ Zero, in a model with equal factor loadings across levels. Although Jak et al.
(2013) showed which model holds if there is uniform cluster bias, it is not clear what the
correct model is with non-uniform bias. In addition, the cluster-bias model can test
whether measurement bias is absent, but cannot differentiate between uniform and non-
uniform bias. If Opeween 7# 0, this can be caused by a difference in factor loadings across
clusters (non-uniform bias) or by a difference in intercepts across clusters (uniform bias).
In this study we restrict ourselves to the evaluation of uniform measurement bias.
Testing for cluster bias is very useful in situations where it is important that a
measurement instruments functions identically across a large number of groups, but the
variables that potentially cause bias across groups are not measured. For example, Jak
(2014) tested the measurement invariance of a dyscalculia screening instrument, and
found that three scales showed measurement bias at the school class level. Inspection of
the item contents gave rise to the hypothesis that the instruction a teacher gives prior to
administering the test influences the test scores. However, the quality of the instruction
was not measured in the study, so this hypothesis could not be tested with an RFA model.

1.3. The RFA method

If the interest is in testing for measurement bias with respect to specific between level
variables that are measured in the study, these variables can be added to the model.
Measurement bias with respect to such variables can be investigated using RFA (Oort,
1992). The RFA model is statistically equivalent to MIMIC models to detect measurement
bias (Muthén, 1989), the only difference being that in MIMIC models, the violator variables
have causal effects on the common factor, whereas in the RFA model these variables are
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merely associated. In both models, all influence of the potential violator on the factor
indicators runs through the common factor. Uniform measurement bias is represented by
a direct effect of the violator on the indicators. Non-uniform bias would indicate that the
amount of bias is not equal across different values of the common factor, and is
represented by an interaction effect of the common factor and the violator on the
indicators. A disadvantage of the RFA (and MIMIC) method is that the detection of non-
uniform bias is not straightforward. However, recent developments using latent
interaction terms or moderated factor analysis provide a viable method to investigate
non-uniform bias in the extended RFA framework (Barendse, Oort, & Garst, 2010;
Barendse, Oort, Werner, Ligtvoet, & Schermelleh-Engel, 2012; see also Molenaar, Dolan,
Wicherts, & van der Maas, 2010). Still, because we want to be able to compare the RFA
method with the test for cluster bias, we do not consider non-uniform measurement bias
in this study. Henceforth, if we write ‘measurement bias’, this refers to umniform
measurement bias.

1.4. Combining the test for cluster bias and the RFA method

Jak, Oort, and Dolan (2014) describe a five-step procedure to investigate measurement
bias in multilevel data. In this procedure, step 1 involves testing the necessity of applying
multilevel analysis, step 2 consists of establishing a measurement model at level 1, step 3
involves testing for measurement bias at level 1, step 4 refers to testing for cluster bias, and
step 5 concerns explaining the cluster bias with observed level 2 variables using RFA
modelling. The present study focuses on steps 4 and 5 of this procedure.

Testing for measurement bias with respect to specific violators (step 5) is only
appropriate if there is variance in the indicators that is not explained by the common
factor(s). So, if there is no cluster bias, that is, if the residual level 2 variance is zero in step
4, investigating measurement bias with respect to possible between-level violators is
superfluous. The test for cluster bias thus serves as a global test of measurement invariance
at the between level. However, the cluster-bias test is subject to Type I errors (false
positives) and Type I errors (false negatives). If the power of the overall cluster-bias test is
larger than the power of the RFA test, then not detecting cluster bias will render the RFA
test unnecessary. In that case, the RFA test will not detect bias that the test for cluster bias
would not detect. However, if the power of the test for cluster bias is smaller than the
power of the RFA test, it is possible that a researcher will not detect cluster bias with the
cluster-bias test, but will detect measurement bias with respect to particular level 2
variables with the RFA test. In this study we use simulated data to compare the power and
false positive rates of the test for cluster bias and the RFA test in several conditions, varying
the size of the bias, the intraclass correlation (ICC) and the sample sizes at both levels. As
including the violating variable in the model adds information about the bias, we expect
the RFA method to be more powerful than the test for cluster bias.

2. Method

To compare the performance of the test for cluster bias and the RFA test, we generated 500
data sets for each of 54 conditions, according to a factorial design with the following
factors: bias effect size (none, small, large); size of ICC (.10, .20, .30); between-level
sample size (50, 100 clusters); and within-level sample size (2, 5, 25 observations per
cluster). In all conditions, the population model was a two-level, one-factor model with
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five indicators, with one observed covariate (violator) at the between level. Population
values are given in Figure 1. In the population, factor loadings are equal across levels, and
there is no residual variance at the between level.

2.1. Size of intraclass correlation

For conditions with ICC = .10, .20 and .30 respectively, 10, 20 and 30% of the variance in
an unbiased indicator is at the between level. Biased indicators have larger ICCs because
the variance caused by the violator adds to the between-level variance of an indicator. The
range of the ICCs was identical to the population values in the study of Maas and Hox
(2005) and is based on an empirical investigation of ICCs in health research (Gulliford,
Ukoumunne, & Chinn, 1999).

o Ty

\Y ‘EBETWEEN

Between

. ) 0 6 0
Within w11 Gsz Wf3 w44 w55

EwrTHIN
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Figure 1. Two-level measurement model with population parameter values. Note. In conditions
with ICC = .10, Oyw1—0wss = 1.25, Oy = 4.00 and B = 0/.159/.363 with 0, 1 and 5% bias,
respectively. In conditions with ICC = .20, Oy ,—0yss = 0.50, Oy,; = 2and B = 0/.112/.257 with
0, 1 and 5% bias, respectively. In conditions with ICC = .30, Oy;1;—0wss = 0.33, Oy = 1 and
B = 0/.092/.210 with 0, 1 and 5% bias, respectively.
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2.2. Bias effect size

Uniform bias was introduced in the first indicator, by including a direct effect of the
violator on this indicator. Small-sized bias was defined as a direct effect of a size which
corresponds to 1% of the total variance of the indicator being caused by the violator. Large-
sized bias was defined as a direct effect which amounts to 5% of the total variance being
caused by the violator. The absolute values of the direct effects depend on the size of the
ICC (see Figure 1). We only considered conditions with bias in one of the five indicators,
corresponding to 20% of the indicators being biased. Cheung and Rensvold (1998) stated
that usually only one or two items per construct are biased. We chose an amount of biased
items that is similar to the conditions with many (20%) biased items in the study of Magis
and Facon (2012), and similar to the simulation study of Kim and Yoon (2011) who
imposed bias in one out of six items.

2.3. Between-level sample size

We considered conditions with 100 and with 50 clusters. One hundred is the minimum
number of clusters for which the chi-square statistic follows its expected asymptotic
distribution to a reasonable approximation (Hox, Maas, & Brinkhuis, 2010). As in practice
the numbers of clusters are often smaller than 100, we also considered conditions with 50
clusters.

2.4. Within-level sample size

A within-level sample size of 25 corresponds to the typical size of a school class (Elffers,
2012; Thoonen, Sleegers, Peetsma, & Oort, 2011). Group sizes of five are common in data
from organizational research where it is a typical size of a working team (Jackson & Joshi,
2004; Koman & Wolff, 2008). Cluster sizes of two correspond to a typical cluster size in
data from family research (Duncan, Alpert, & Duncan, 1998; Voorpostel & Blieszner,
2008).

2.5. Data generation

We generated continuous multivariate normally distributed data using the same
procedure as Jak et al. (2013), using the mvtnorm package in R (Genz et al., 2012). An
example R script can be found in Data S1.

2.6. Likelihood ratio test and Wald test

The likelihood ratio test (LRT) and the Wald test were used to test the significance of
parameters. The likelihood ratio equals the difference in minus twice the log-likelihoods of
amodel with and without the parameter(s) of interest. This difference follows a chi-square
distribution with degrees of freedom equal to the difference in numbers of parameters
between the two models, assuming the parameter of interest is zero. If the chi-square is
significant, given the chosen alpha level, then the hypothesis of the parameter(s) of
interest being zero is rejected. In the present study we used the default estimator for
multilevel data in Mplus (Muthén & Muthén, 2007), which is the robust maximum
likelihood estimator. This estimator is called ‘robust’ because it provides a test statistic and
standard errors that are robust against non-normality of the data. Mplus provides a test
statistic that is asymptotically equivalent to the Yuan—Bentler test statistic (75; Yuan &
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Bentler, 2000). The differences in minus twice the log-likelihoods of models that are
estimated using the robust maximum likelihood estimator theoretically need a correction
to approximate the chi-square distribution (Satorra & Bentler, 2001). However, simulation
studies have shown that conducting the LRT with this correction often leads to
untrustworthy results and that the corrected LRT does not perform better than the
uncorrected LRT (Cham, West, Ma, & Aiken, 2012 Jak et al., 2013). Moreover, we
generated multivariate normal data, and in that case it is found that the unscaled LRT
performs better than the scaled LRT (Hox et al., 2010). In this study we therefore apply
the uncorrected LRT.

The Wald test is based on the parameter estimate divided by its standard error, and tests
the hypothesis that the parameter is zero. Mplus provides standard errors using Huber—
White sandwich estimators (Huber, 1967; White, 1982). Hox et al. (2010) found that
when normality holds, the normal standard errors are more accurate than the robust
standard errors. The robust standard errors are, however, the only standard errors
available in Mplus, and will therefore be used in this simulation study.

As the Wald test is asymptotically equivalent to the LRT (Engle, 1984), we expect the
two tests to do equally well in terms of power and false positive rates.

2.7. Testing for level 2 bias with the cluster-bias test and the RFA test

Table 1 gives an overview of the three models and the three outcomes that we consider in
the simulation study. We gave each combination a label (A, ..., D to organize the
presentation of the results. We looked at the power, the false positive rate, and the false
positive rate with a misspecified model, for each of three tests: the test for cluster bias and
two versions of the RFA test. Examples of Mplus scripts to fit the cluster bias and RFA
models are provided in Data S1. We explain the individual cases below.

To investigate the power of the test for cluster bias and the RFA test, we considered the
conditions in which bias was introduced in indicator 1. Cluster bias is tested in a model, as
depicted in Figure 2 (case A). In a one-factor model with equal factor loadings across
levels, we tested the significance of the between-level residual variance of indicator 1,
with the between-level residual variance of the other indicators fixed at zero.

With the RFA test, we included the violating variable at the between level as an
exogenous variable that is correlated with the common factor. Subsequently, we tested
the significance of the direct effect of the violator on indicator 1. We used the RFA test in
two ways; see Figure 2 (cases B and C) for a graphical representation of these models. In
the first model we fixed all the residual variance at the between level at zero,
hypothesizing that the violator explains all cluster bias (case B). In the second model,

Table 1. An overview of the combinations of tests and outcomes

True positive False positive False positive rate
Outcome test rate (power) rate with misspecified model
Test for cluster bias Case A Case D Case G
RFA test Case B Case E Case H
RFA test accounting Case C Case F Case I

for cluster bias

Note. In addition, in case J, we investigated false positives by testing the residual variance in
indicator 1, while the bias was already accounted for in the RFA model.
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Case A. Test for cluster bias Case B. RFA test Case C. RFA test, accounting for cluster bias
- ¢ O ¢ QD
Y e .

Between @GiNa Yz Ya Yy Ys Y1 T v2 Y3 Yi ¥s Y1 Y2 Y3 C ¥y Y5
- .

Within

Figure 2. The three models used to investigate the power of three tests (corresponding to cases A,
B and O).

residual variance was freely estimated for all indicators, allowing for possible cluster bias
in the indicators that is not explained by the violator (case C).

We investigated the false positive rates of all tests in three ways. Firstly, we tested for
bias in the conditions where no bias was introduced (cases D, E and F). Secondly, we
tested for bias in indicator 2 (an unbiased indicator), in conditions where the bias was in
indicator 1 (cases G, Hand D). So in these cases we investigate the false positive rates with a
misspecified model.

In the conditions with bias in indicator 1, we investigated a third type of false positives
(case ). In these cases we accounted for the bias by letting the violator have a direct effect
on indicator 1. We then tested the residual variance in indicator 1. As the violator is the
only cause of the cluster bias, significance of the residual variance represents a false
positive result.

We test against levels of significance of alpha of 5 and 10%. The test for cluster bias
involves testing a variance parameter, which cannot be negative by definition. Therefore,
in line with Stoel, Garre, Dolan, and van den Wittenboer (2006), we employ one-tailed
levels of significance of .05 and .10 with the test for cluster bias. Direct effects can be
either negative or positive, so with the RFA tests we use two-tailed tests. This implies that
in order to obtain an alpha level of .05 we used a critical chi-square value of y2;, = 2.71
with the test for cluster bias and 2, = 3.84 with the RFA tests. With an alpha level of .10,
these critical values are 2, = 1.64 for the test for cluster bias and y2;, = 2.71 for the RFA
tests. Critical values for the Wald tests are obtained in the same manner (with o = .05,
Zeie = 1.28 for the cluster-bias test and 1.64 for the RFA test, and with ot = .10,z = 0.84
for the cluster-bias test and z. = 1.28 the RFA test).

2.7.1. Expectations about the cluster-bias model versus the RFA model

Because inclusion of the violating variable adds information into the analysis, we expect
the RFA tests to have more power than the test for cluster bias. This is also in line with the
finding that in multilevel regression, the cross-level interaction between a level 1 and a
level 2 variable can be statistically significant, even if the associated random slope variance
is not significant (Snijders & Bosker, 1999).! With respect to the false positive rates we

!'We would like to thank one of the reviewers for this suggestion.
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expect the RFA models to do worse than the cluster-bias model when the model is
misspecified, and the RFA model with residual variance for all indicators to do better than
the RFA model without residual variance.

3. Results

In order to save space, we only report tables with results from the conditions with
ICC = .10andICC = .30, with alphalevels of 5%. The results in conditions with ICC = .20
are shown in the figures. The complete set of tables, including results with alpha levels of
10%, can be found in Supporting information. We consider a power level of .80 or greater
as acceptable.

3.1. Power

Results of the true positive rates of the three tests are shown in Table 2. The true positive
rates for all models are higher in the conditions with a higher ICC, but the patterns of true
positives of the different models across sample-size conditions are similar. Figure 3 shows
the results from the condition with ICC = .20 graphically. We first discuss the results of
the conditions where ICC = .20. With large bias, all bias is detected by all three models,
provided the total sample size is large (100 or 50 clusters with 25 observations per cluster).
With smaller samples, the two RFA tests still have adequate power, but the power of the
test for cluster bias drops considerably with 50 clusters of five observations per cluster,
and to even lower levels with two observations per cluster. The power of the Wald test is
generally greater than the power of the LRT in all conditions.

With small-sized bias, the test for cluster bias detects 86% (with the LRT) or 90% (with
the Wald test) of the bias in the condition with the largest sample size, and detects <10% of
the bias in conditions with small sample sizes. The two RFA tests perform better, with
acceptable power in conditions with 25 observations per cluster, and in the condition
with 100 clusters with five observations. With just 50 clusters of five observations, the RFA
tests detect around 58% (LRT) and around 70% (Wald test) of the bias, which drops to
around 20 and 40% with 50 clusters of two observations per cluster. Overall, the power of
the RFA tests is considerably greater than the power of the test for cluster bias. The power
of the two RFA test with residual variance is similar to the power of the RFA test without
residual variance.

A larger ICC was associated with higher power for all tests. With ICC = .10, the test for
cluster bias only had acceptable power levels when the bias was large, and the total
sample size was large (100 or 50 clusters of 25 observations). With small bias, the power
was only acceptable with 100 clusters of 25 observations. With ICC = .30, 100 clusters
with five observations also led to acceptable power for the test for cluster bias. Although a
larger ICC leads to more power, the sample-size conditions in which the two RFA tests had
acceptable power rates were identical across ICC conditions.

3.2. False positive rates

In conditions without bias, the expected false positive rate is the chosen alpha level of
significance. Observed false positive rates for all tests in conditions with ICC = .10 and
ICC = .30are given in Tables 3 and 4. With the Wald test, almost all false positive rates are
>.05, while with the LRT most false positive rates are around or under the expected .05.
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Figure 3. Power (cases A, B and C). True positive rates of the test for cluster bias and the two RFA
tests with various sample sizes in conditions with large bias (top) and small bias (bottom), with
the LRT (left) and the Wald test (right) in the condition with ICC = .20. Nofe. On the x-axis,
B100_W25 refers to the condition with 100 clusters with 25 observations per cluster, B50_W25 to
the condition with 50 clusters with 25 observations per cluster, and so on.

We do not see any structural differences between the ICC conditions or between the
cluster-bias and RFA tests.

3.3. False positive rates with misspecified models

We obtained interesting results in conditions where we introduced the bias in indicator 1,
but we tested bias in indicator 2. In this case the model is effectively misspecified. The
results in the three ICC conditions are very similar. Here we will discuss the results from
the ICC = .20 conditions, which are depicted in Figure 4.

The test for cluster bias shows the smallest false positive rates, followed by the RFA test
with residual variance. The RFA test without residual variance has the largest false positive
rates. The Wald test shows larger false positive rates than the LRT in all conditions.

When the bias was small, the false positive rates of the test for cluster bias were
generally acceptable for the LRT, but between 5 and 11% for the Wald test. An exception is
the condition with 50 clusters of five observations, in which the LRT has a false positive
rate of .17. The RFA test without residual variance identified indicator 2 as biased in 42%
(LRT) and 54% (Wald test) of the samples in the condition with the largest sample size.
With smaller sample sizes these percentages drop considerably, and with 50 clusters with
two observations the false positive rates are around 6% for all LRTs, and around 18% with
the Wald test. The RFA test with residual variance also showed unacceptably large false
positive rates, but smaller than the RFA test without residual variance.

With large bias in indicator 1, the RFA test without estimated residual variance
identified indicator 2 as biased in almost all cases (94% with the LRT and 96% with the
‘Wald test) with the largest sample size, while the RFA test with residual variance identified
25 and 40% of the cases as biased, and the test for cluster bias falsely detected bias in only
23 and 31% of the cases. With smaller sample sizes the false positive rates for all tests
decreased, leading to acceptable false positive rates for the test for cluster bias (with the
LRT), but not for the RFA tests. In the RFA models, the significant direct effects on
indicator 2 were all negative.
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Figure 4. False positives with a misspecified model (cases G, Hand I). False positive rates of the test
for cluster bias and the two RFA tests with various sample sizes in conditions with large bias (top) and
small bias (bottom) for ICC = .20, with the LRT (left) and the Wald test (right). The bias was in
indicator 1, while we tested bias in indicator 2. Note. On the x-axis, B100_W25 refers to the
condition with 100 clusters with 25 observations per cluster, B50_W25 to the condition with 50
clusters with 25 observations per cluster, and so on.

3.4. False positive rates when accounting for bias

The false positive rates when testing for cluster bias, when the bias is already accounted
for by the violator, are given in Table 5. The false positive rates seem to increase when the
within-level sample size decreases. The false positive rates of the LRT are generally under
the nominal level of significance and tend to become closer to 5% as the within sample size
decreases. The false positive rates of the Wald test are generally higher than the expected

Table 5. False positive rates (case J) of the LRT and Wald test in conditions with bias, using the
cluster-bias test after accounting for the bias in the RFA model, based on 500 replications per
condition, o = 0.05

Cluster bias

ICC = .10 ICC = .30
Size bias N between N within LRT Wald test LRT Wald test
Large 100 25 .014 .040 .040 .064
5 .032 .058 .042 .070
2 .030 .078 .048 .086
50 25 .030 .058 .026 .036
5 .022 .054 .018 .048
2 .032 .066 .052 .096
Small 100 25 .026 .046 .038 .076
5 .038 .056 .044 .066
2 .038 .094 .040 .090
50 25 .026 .042 .030 .048
5 .036 .050 .010 .048

2 .034 .058 .028 .076
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value, and become more inaccurate as the within sample size decreases. The false
positives are generally higher in the ICC = .30 condition than in the ICC = .10 condition.

3.5. The effect of cluster size

The results show that the true and false positive rates of all tests vary with the total sample
size. To check whether the within-level or between-level sample size has a larger effect on
the performance of the cluster-bias test, we additionally investigated the effect of the
within sample size relative to the between sample size. We expected that the false positive
rates would increase with smaller cluster sizes, because more random error would be
aggregated to the between level. For each ICC condition, we investigated the false positive
rates and the power to detect small bias of the three tests in four conditions with a total
sample size of 1,250 (50 clusters with 25 observations, 125 clusters with 10 observations,
250 clusters with 5 observations, and 625 clusters with 2 observations). The results from
the ICC = .10 and ICC = .30 conditions are shown in Table 6. Figure 5 shows the false
positive rates and true positive rates as obtained with the LRT and the Wald test in the four
conditions with ICC = .20 (the results were very similar in the other two ICC conditions).
With the Wald test, but not with the LRT, there seems to be an upward trend in the false
positive rates of the test for cluster bias, but not for the RFA tests. However, the false
positive rates of the test for cluster bias are still below the nominal level of significance in
all conditions, except for the condition with 625 clusters with two observations (where
the false positive rate is 7%). The RFA tests detect almost all bias in all conditions, but the
power of the test for cluster bias shows a gradual decrease when cluster size becomes
smaller.

4. Discussion

The results of the simulation study show that the inclusion of the violating variable in
the analysis adds considerably to the likelihood of detecting the bias. So, in fitting a
series of models in order to investigate measurement bias in multilevel data (Jak et al.,
2014), the finding that cluster bias is absent does not exclude the possibility that this
is a false negative and that significant bias with respect to a level 2 violator may be
found using an RFA model. Of course, the RFA model requires the availability of a
violating variable. So, although the test for cluster bias is less powerful, an advantage
of the test is that the cause of the bias does not need to be operationalized, or even
known.

Another advantage of the test for cluster bias is that the false positive rates were
generally acceptable, while the RFA tests had high false positive rates in conditions where
the bias was in an indicator other than the one actually subject to the test. The high false
positive rates with the RFA test show that when the model does not account for
measurement bias, the common factor is contaminated by the bias. For example, suppose
that the trait of interest is closeness of the relation between teachers and students, and
indicator 1 is biased by gender of the teacher, meaning that for equal levels of closeness,
women on average attain higher scores on this indicator than men do. Indicator 1 is then
not only an indicator of closeness, but also an indicator of gender (and gender-related
characteristics). Not accounting for this bias results in the contamination of the closeness
factor with gender. The interpretation of the factor is then closeness and (probably to a
smaller extent) being a woman. Indicator 2 is actually not an indicator of gender, so an
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Figure 5. The effect of smaller cluster size. Power (top) and false positive rates (bottom) of the test
for cluster bias and the two RFA tests using the LRT (left) and the Wald test (right), with various
cluster sizes leading to a total sample size of 1,250 and ICC = .20. Note. On the x-axis, B50_W25
refers to the condition with 50 clusters with 25 observations per cluster, B125_W10 to the condition
with 125 clusters with 10 observations per cluster, and so on. The dotted line indicates the nominal
alpha level.

effect of gender on indicator 2 will be negative in order to compensate for the
contamination of the common factor.

The false positive rates of the RFA test without residual variance were higher than the
rates of the test with residual variance. This makes sense, as by estimating residual
variance in the indicators, we account for part of the bias. Although false positive rates of
the RFA test with residual variance are still higher than the chosen level of significance,
based on the false positive rate, the RFA test with residual variance is preferred.

The Wald test generally showed more power to detect bias than the LRT. However, the
Wald test also showed larger false positive rates in all conditions. In practice, one should
never base conclusions about measurement bias on a significant test result only. The size
of the bias as well as the possibility of interpreting the bias should be taken into account. In
the RFA model, the size of the bias can be judged by looking at the size of the standardized
direct effect of the violator on the indicator. In the cluster-bias model, the size of the bias in
an indicator can be represented by the percentage of variance due to cluster bias (level 2
residual variance) in the total variance or in the total level 2 variance. More important than
size and significance is theory. Only if detected bias can be interpreted substantively can
the finding be taken as a real instance of measurement bias. Theory should always be used
to counter false positive results, especially if the Wald test is used. The difference between
the results from the LRT and the Wald test may also stem from the fact that the simulation
study considered multivariate normal data. If inspection of the data supports multivariate
normality, using normal theory rather than robust standard errors may be preferable (Hox
et al., 2010).

In practice, researchers may employ an iterative bias detection procedure. In an
iterative procedure, a researcher starts by including a direct effect in the indicator that
improves model fit most. The choice of which direct effect to include first can be based on
testing direct effects on all indicators one by one, or by inspecting modification indices
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from the model without any direct effects. In our example, if bias were tested in the
unbiased indicator, while the bias in indicator 1 was already accounted for, the factor
would not be contaminated, and indicator 2 would not be marked as biased. In a
simulation study, Barendse et al. (2012) showed that an iterative RFA procedure led to less
false positive results than a single-run RFA procedure. Using modification indices or
iterative testing is data-driven, however, and always bears the risk of capitalizing on
chance characteristics of the data (MacCallum, Roznowski, & Necowitz, 1992). One may
therefore adjust the nominal significance level to a more conservative value, and one
should always take the substantive interpretation of possible bias into account.

This simulation study showed that with data with ICCs around .20, in order to have
adequate power to detect large bias with the cluster-bias test, one needs a total sample
size of at least 500, with sufficiently large cluster sizes. To detect small bias, the cluster-
bias test needs a total sample size of at least 2,500, with cluster of sufficient size. If one
can use the RFA test, smaller samples are sufficient to obtain adequate power. With large
bias, a total sample size of 100 would be enough. With small bias, total sample sizes of
500 or more are required. With smaller ICCs larger sample sizes are needed to obtain
adequate power. It should be noted that this holds assuming that the size of the bias is
proportional to the ICC.

In conclusion, although the test for cluster bias has several advantages, this study
showed that including the presumed cause of level 2 bias in the model to detect
measurement bias is a more powerful approach than the test for cluster bias. We also
showed that the RFA test with residual variance leads to less false positive results than the
RFA test without residual variance. If a researcher’s goal is to investigate measurement bias
with respect to (level 1 and) level 2 violators, we advise following the five-step approach
(Jak et al., 2014) and testing for level 2 bias in step 5, while taking cluster bias into
account. This study also showed that the power of the test for cluster bias is larger with a
smaller number of clusters with a larger size than for more clusters with a smaller size.
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