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Cluster bias refers to measurement bias with respect to the clustering variable in

multilevel data. The absence of cluster bias implies absence of bias with respect to any

cluster-level (level 2) variable. The variables that possibly cause the bias do not have to be

measured to test for cluster bias. Therefore, the test for cluster bias serves as a global test

of measurement bias with respect to any level 2 variable. However, the validity of the

global test depends on the Type I and Type II error rates of the test. We compare the

performance of the test for cluster bias with the restricted factor analysis (RFA) test,

which can be used if the variable that leads to measurement bias is measured. It appeared

that the RFA test has considerably more power than the test for cluster bias. However,

the false positive rates of the test for cluster bias were generally around the expected

values, while the RFA test showed unacceptably high false positive rates in some

conditions.We conclude that if no significant cluster bias is found, still significant bias with

respect to a level 2 violator can be detected with an RFA model. Although the test for

cluster bias is less powerful, an advantage of the test is that the cause of the bias does not

need to be measured, or even known.

1. Introduction

The importance of establishing measurement invariance of research instruments is

widely recognized; a measurement instrument should function identically in different

groups of respondents (see Cheung & Rensvold, 1998; Meredith, 1993; Reise,

Widaman, & Pugh, 1993; Vandenberg & Lance, 2000). If measurement invariance

does not hold with respect to some variable (e.g., gender), then two respondents

with identical values on the latent trait that the test is supposed to measure may have

different expected scores, depending on their value on the other variable (e.g.,
depending on being a man or a woman). When a test is not invariant with respect to

gender, we call the test biased with respect to gender, and gender is then called a

violator (violator of measurement invariance; Oort, 1992). Measurement bias is also

referred to as differential item functioning (DIF) in the item response theory (IRT)

literature. Within structural equation modelling (SEM), the two prevalent models to

investigate measurement bias are multigroup models (Horn & McArdle, 1992; Little,

1997; S€orbom, 1974; Widaman & Reise, 1997) and multiple-indicator multiple-cause

(MIMIC) models (Muth�en, 1989) or, equivalently, restricted factor analysis (RFA; Oort,
1992, 1998). We will use RFA models to detect measurement invariance with
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DOI:10.1111/bmsp.12053

434



respect to specific violators in this study. The RFA method will be explained in

Section 1.3.

In the present study we consider the investigation of measurement invariance in two-

level data. Two-level data are data with a clustered structure, such as children in school
classes or patients in hospitals. Measurement invariance with respect to clusters can be

tested with a multigroup model with a large number of groups. This is, however, a

cumbersome strategy due to the large number of parameters involved. Alternative

approaches can be found by using a random effects approach as described by Verhagen

and Fox (2012) using multilevel random effects models in the IRT framework (De Jong,

Steenkamp, & Fox, 2007; Fox & Verhagen, 2010) or in the SEM framework (Jak, Oort, &

Dolan, 2013; Muth�en, 1990; Rabe-Hesketh, Skrondal, & Pickles, 2004; see Muth�en &

Asparouhov, 2013; for an overview of these and other methods). In this study we use the
method described by Jak et al. (2013) who introduced the term ‘cluster bias’ to refer to

measurement bias across clusters. Cluster bias can be interpreted as measurement bias

with respect to any cluster-level variable.

With two-level data, the lower level (e.g., student or patient level) is called level 1or the

within level. The higher level (e.g., class or hospital level) is called level 2 or the between

level. With two-level data, measurement bias can be present at the within level or at the

between level. Most applications of testing measurement invariance inmultilevel data are

about testing invariance with respect to specific variables at the between level. For
example, Davidov, D€ulmer, Schl€uter, Schmidt, andMeuleman (2012) usedmultilevel SEM

to test for measurement invariance across countries, and Muth�en, Khoo, and Gustafsson

(1997) tested for invariance across two school types. Spilt, Koomen, and Jak (2012) tested

for measurement bias with respect to both a specific level 1 variable (student gender) and

a specific level 2 variable (teacher gender), and also investigated cluster bias. In this paper

we focus on measurement bias at level 2. For methods to test for measurement bias with

respect to level 1 variables specifically, see Kim, Yoon, Wen, Luo, and Kwok (2015) and

Ryu (2014).
The purpose of this study is to compare the performance of twomethods to investigate

measurement bias at the between level. Onemethod is the test for cluster bias, which can

be considered a global test of measurement bias at the between level, in which the

violating variable(s) is (are) not necessarilymeasured or even known. The othermethod is

the RFA method, which requires the operationalization of possible violators of

measurement invariance, in order to include them as exogenous variables in multilevel

factor analysis. The principle of two-level SEM and these two approaches are explained

below.

1.1. Measurement bias at level 2

With two-level SEM, the covariancematrix ismodelled as the sumof thewithin level (level

1) and the between level (level 2) covariance matrices (Muth�en, 1990; Rabe-Hesketh
et al., 2004):

Rtotal ¼ Rbetween þ Rwithin: ð1Þ

For example, consider data concerning the closeness of teacher–child relations,

obtained using a 5-item questionnaire, completed by teachers for several of their pupils.

The (pooled,within-class) differences between children aremodelled byΣwithin. Teachers

also differ in the general closeness of their relations with children. The differences
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between teachers are modelled by Σbetween. At the within and between levels, distinct

measurementmodels can be used to describe the covariances between the item scores. In

the present study we employ the linear factor model as the measurement model

(Mellenbergh, 1994).

1.2. The test for cluster bias

Testing for cluster bias can be seen as a global test formeasurement biaswith respect to all

possible level 2 violators. In the case of cluster bias, one or more indicators measure

different constructs in different clusters. In the closeness example from the previous

subsection, if cluster bias is present, this means that cluster-level variables other than

closeness are causing differences between the teachers’ scores. Jak et al. (2013) showed
that in the absence of cluster bias, for p observed variables and k common factors, the

following model holds:

Rbetween ¼KUbetweenK
0;

Rwithin ¼KUwithinK
0 þHwithin:

ð2Þ

In this model, Φbetween and Φwithin are k 9 k covariance matrices, Θwithin is a p 9 p

(diagonal) matrix with residual variances, and Λ is a p 9 k matrix with factor loadings.
The factor loadings are equal across the within and between level. Cluster bias appears as

residual variance at the between level, and can be modelled by estimating a (diagonal)

p 9 pmatrix with residual variance at the between level (Θbetween), so that Σbetween = Λ
Φbetween Λ0 + Θbetween. The test for cluster bias involves testing whether parameters in

Θbetween are zero, in a model with equal factor loadings across levels. Although Jak et al.

(2013) showed which model holds if there is uniform cluster bias, it is not clear what the

correct model is with non-uniform bias. In addition, the cluster-bias model can test

whether measurement bias is absent, but cannot differentiate between uniform and non-
uniform bias. IfΘbetween 6¼ 0, this can be caused by a difference in factor loadings across

clusters (non-uniform bias) or by a difference in intercepts across clusters (uniform bias).

In this study we restrict ourselves to the evaluation of uniform measurement bias.

Testing for cluster bias is very useful in situations where it is important that a

measurement instruments functions identically across a large number of groups, but the

variables that potentially cause bias across groups are not measured. For example, Jak

(2014) tested the measurement invariance of a dyscalculia screening instrument, and

found that three scales showed measurement bias at the school class level. Inspection of
the item contents gave rise to the hypothesis that the instruction a teacher gives prior to

administering the test influences the test scores. However, the quality of the instruction

was not measured in the study, so this hypothesis could not be tested with an RFAmodel.

1.3. The RFA method

If the interest is in testing for measurement bias with respect to specific between level

variables that are measured in the study, these variables can be added to the model.
Measurement bias with respect to such variables can be investigated using RFA (Oort,

1992). The RFA model is statistically equivalent to MIMIC models to detect measurement

bias (Muth�en, 1989), the only difference being that inMIMICmodels, the violator variables

have causal effects on the common factor, whereas in the RFA model these variables are
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merely associated. In both models, all influence of the potential violator on the factor

indicators runs through the common factor. Uniformmeasurement bias is represented by

a direct effect of the violator on the indicators. Non-uniform bias would indicate that the

amount of bias is not equal across different values of the common factor, and is
represented by an interaction effect of the common factor and the violator on the

indicators. A disadvantage of the RFA (and MIMIC) method is that the detection of non-

uniform bias is not straightforward. However, recent developments using latent

interaction terms or moderated factor analysis provide a viable method to investigate

non-uniform bias in the extended RFA framework (Barendse, Oort, & Garst, 2010;

Barendse, Oort, Werner, Ligtvoet, & Schermelleh-Engel, 2012; see also Molenaar, Dolan,

Wicherts, & van der Maas, 2010). Still, because we want to be able to compare the RFA

method with the test for cluster bias, we do not consider non-uniform measurement bias
in this study. Henceforth, if we write ‘measurement bias’, this refers to uniform

measurement bias.

1.4. Combining the test for cluster bias and the RFA method

Jak, Oort, and Dolan (2014) describe a five-step procedure to investigate measurement

bias in multilevel data. In this procedure, step 1 involves testing the necessity of applying

multilevel analysis, step 2 consists of establishing a measurement model at level 1, step 3
involves testing formeasurement bias at level 1, step 4 refers to testing for cluster bias, and

step 5 concerns explaining the cluster bias with observed level 2 variables using RFA

modelling. The present study focuses on steps 4 and 5 of this procedure.

Testing for measurement bias with respect to specific violators (step 5) is only

appropriate if there is variance in the indicators that is not explained by the common

factor(s). So, if there is no cluster bias, that is, if the residual level 2 variance is zero in step

4, investigating measurement bias with respect to possible between-level violators is

superfluous. The test for cluster bias thus serves as a global test ofmeasurement invariance
at the between level. However, the cluster-bias test is subject to Type I errors (false

positives) and Type II errors (false negatives). If the power of the overall cluster-bias test is

larger than the power of the RFA test, then not detecting cluster bias will render the RFA

test unnecessary. In that case, the RFA test will not detect bias that the test for cluster bias

would not detect. However, if the power of the test for cluster bias is smaller than the

power of the RFA test, it is possible that a researcher will not detect cluster bias with the

cluster-bias test, but will detect measurement bias with respect to particular level 2

variables with the RFA test. In this studywe use simulated data to compare the power and
false positive rates of the test for cluster bias and the RFA test in several conditions, varying

the size of the bias, the intraclass correlation (ICC) and the sample sizes at both levels. As

including the violating variable in the model adds information about the bias, we expect

the RFA method to be more powerful than the test for cluster bias.

2. Method

Tocompare theperformanceof the test for cluster bias and theRFA test,we generated 500

data sets for each of 54 conditions, according to a factorial design with the following

factors: bias effect size (none, small, large); size of ICC (.10, .20, .30); between-level

sample size (50, 100 clusters); and within-level sample size (2, 5, 25 observations per

cluster). In all conditions, the population model was a two-level, one-factor model with
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five indicators, with one observed covariate (violator) at the between level. Population

values are given in Figure 1. In the population, factor loadings are equal across levels, and

there is no residual variance at the between level.

2.1. Size of intraclass correlation

For conditions with ICC = .10, .20 and .30 respectively, 10, 20 and 30% of the variance in

an unbiased indicator is at the between level. Biased indicators have larger ICCs because

the variance caused by the violator adds to the between-level variance of an indicator. The

range of the ICCs was identical to the population values in the study of Maas and Hox

(2005) and is based on an empirical investigation of ICCs in health research (Gulliford,

Ukoumunne, & Chinn, 1999).

Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5

ξBETWEEN

ξWITHIN

V

.50

θW11 θW22 θW33 θW44 θW55

1.00

ΦW11

β

1.00

0

Between

Within

.50
.50 .50 .50

.50
.50 .50 .50 .50

Figure 1. Two-level measurement model with population parameter values. Note. In conditions

with ICC = .10, hW11–hW55 = 1.25, ΦW11 = 4.00 and b = 0/.159/.363 with 0, 1 and 5% bias,

respectively. In conditions with ICC = .20, hW11–hW55 = 0.50,ΦW11 = 2 and b = 0/.112/.257 with

0, 1 and 5% bias, respectively. In conditions with ICC = .30, hW11–hW55 = 0.33, ΦW11 = 1 and

b = 0/.092/.210 with 0, 1 and 5% bias, respectively.
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2.2. Bias effect size

Uniform bias was introduced in the first indicator, by including a direct effect of the

violator on this indicator. Small-sized bias was defined as a direct effect of a size which

corresponds to 1%of the total variance of the indicator being caused by the violator. Large-
sized bias was defined as a direct effect which amounts to 5% of the total variance being

caused by the violator. The absolute values of the direct effects depend on the size of the

ICC (see Figure 1). We only considered conditions with bias in one of the five indicators,

corresponding to 20% of the indicators being biased. Cheung and Rensvold (1998) stated

that usually only one or two items per construct are biased.We chose an amount of biased

items that is similar to the conditions with many (20%) biased items in the study of Magis

and Facon (2012), and similar to the simulation study of Kim and Yoon (2011) who

imposed bias in one out of six items.

2.3. Between-level sample size

We considered conditions with 100 and with 50 clusters. One hundred is the minimum

number of clusters for which the chi-square statistic follows its expected asymptotic

distribution to a reasonable approximation (Hox, Maas, & Brinkhuis, 2010). As in practice

the numbers of clusters are often smaller than 100, we also considered conditionswith 50

clusters.

2.4. Within-level sample size

A within-level sample size of 25 corresponds to the typical size of a school class (Elffers,

2012; Thoonen, Sleegers, Peetsma, &Oort, 2011). Group sizes of five are common in data

from organizational research where it is a typical size of a working team (Jackson & Joshi,

2004; Koman & Wolff, 2008). Cluster sizes of two correspond to a typical cluster size in

data from family research (Duncan, Alpert, & Duncan, 1998; Voorpostel & Blieszner,
2008).

2.5. Data generation

We generated continuous multivariate normally distributed data using the same

procedure as Jak et al. (2013), using the mvtnorm package in R (Genz et al., 2012). An

example R script can be found in Data S1.

2.6. Likelihood ratio test and Wald test

The likelihood ratio test (LRT) and the Wald test were used to test the significance of

parameters. The likelihood ratio equals thedifference inminus twice the log-likelihoods of

amodelwith andwithout the parameter(s) of interest. This difference follows a chi-square

distribution with degrees of freedom equal to the difference in numbers of parameters

between the two models, assuming the parameter of interest is zero. If the chi-square is

significant, given the chosen alpha level, then the hypothesis of the parameter(s) of
interest being zero is rejected. In the present study we used the default estimator for

multilevel data in Mplus (Muth�en & Muth�en, 2007), which is the robust maximum

likelihood estimator. This estimator is called ‘robust’ because it provides a test statistic and

standard errors that are robust against non-normality of the data. Mplus provides a test

statistic that is asymptotically equivalent to the Yuan–Bentler test statistic (T2; Yuan &
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Bentler, 2000). The differences in minus twice the log-likelihoods of models that are

estimated using the robust maximum likelihood estimator theoretically need a correction

to approximate the chi-square distribution (Satorra&Bentler, 2001). However, simulation

studies have shown that conducting the LRT with this correction often leads to
untrustworthy results and that the corrected LRT does not perform better than the

uncorrected LRT (Cham, West, Ma, & Aiken, 2012 Jak et al., 2013). Moreover, we

generated multivariate normal data, and in that case it is found that the unscaled LRT

performs better than the scaled LRT (Hox et al., 2010). In this study we therefore apply

the uncorrected LRT.

TheWald test is based on theparameter estimate divided by its standard error, and tests

the hypothesis that the parameter is zero. Mplus provides standard errors using Huber–
White sandwich estimators (Huber, 1967; White, 1982). Hox et al. (2010) found that
when normality holds, the normal standard errors are more accurate than the robust

standard errors. The robust standard errors are, however, the only standard errors

available in Mplus, and will therefore be used in this simulation study.

As the Wald test is asymptotically equivalent to the LRT (Engle, 1984), we expect the

two tests to do equally well in terms of power and false positive rates.

2.7. Testing for level 2 bias with the cluster-bias test and the RFA test
Table 1 gives an overview of the threemodels and the three outcomes thatwe consider in

the simulation study. We gave each combination a label (A, . . ., I) to organize the

presentation of the results. We looked at the power, the false positive rate, and the false

positive rate with amisspecifiedmodel, for each of three tests: the test for cluster bias and

two versions of the RFA test. Examples of Mplus scripts to fit the cluster bias and RFA

models are provided in Data S1. We explain the individual cases below.

To investigate the power of the test for cluster bias and the RFA test, we considered the

conditions inwhich bias was introduced in indicator 1. Cluster bias is tested in amodel, as
depicted in Figure 2 (case A). In a one-factor model with equal factor loadings across

levels, we tested the significance of the between-level residual variance of indicator 1,

with the between-level residual variance of the other indicators fixed at zero.

With the RFA test, we included the violating variable at the between level as an

exogenous variable that is correlated with the common factor. Subsequently, we tested

the significance of the direct effect of the violator on indicator 1. We used the RFA test in

two ways; see Figure 2 (cases B and C) for a graphical representation of these models. In

the first model we fixed all the residual variance at the between level at zero,
hypothesizing that the violator explains all cluster bias (case B). In the second model,

Table 1. An overview of the combinations of tests and outcomes

Outcome test

True positive

rate (power)

False positive

rate

False positive rate

with misspecified model

Test for cluster bias Case A Case D Case G

RFA test Case B Case E Case H

RFA test accounting

for cluster bias

Case C Case F Case I

Note. In addition, in case J, we investigated false positives by testing the residual variance in

indicator 1, while the bias was already accounted for in the RFA model.

440 S. Jak and Frans J. Oort



residual variance was freely estimated for all indicators, allowing for possible cluster bias

in the indicators that is not explained by the violator (case C).

We investigated the false positive rates of all tests in three ways. Firstly, we tested for

bias in the conditions where no bias was introduced (cases D, E and F). Secondly, we

tested for bias in indicator 2 (an unbiased indicator), in conditions where the bias was in

indicator 1 (casesG,H and I). So in these caseswe investigate the false positive rateswith a

misspecified model.

In the conditions with bias in indicator 1, we investigated a third type of false positives
(case J). In these cases we accounted for the bias by letting the violator have a direct effect

on indicator 1. We then tested the residual variance in indicator 1. As the violator is the

only cause of the cluster bias, significance of the residual variance represents a false

positive result.

We test against levels of significance of alpha of 5 and 10%. The test for cluster bias

involves testing a variance parameter, which cannot be negative by definition. Therefore,

in line with Stoel, Garre, Dolan, and van den Wittenboer (2006), we employ one-tailed

levels of significance of .05 and .10 with the test for cluster bias. Direct effects can be
either negative or positive, so with the RFA tests we use two-tailed tests. This implies that

in order to obtain an alpha level of .05 we used a critical chi-square value of v2crit ¼ 2:71
with the test for cluster bias and v2crit ¼ 3:84with the RFA tests.With an alpha level of .10,

these critical values are v2crit ¼ 1:64 for the test for cluster bias and v2crit ¼ 2:71 for the RFA
tests. Critical values for the Wald tests are obtained in the same manner (with a = .05,

zcrit = 1.28 for the cluster-bias test and 1.64 for the RFA test, andwith a = .10, zcrit = 0.84

for the cluster-bias test and zcrit = 1.28 the RFA test).

2.7.1. Expectations about the cluster-bias model versus the RFA model

Because inclusion of the violating variable adds information into the analysis, we expect

the RFA tests to havemore power than the test for cluster bias. This is also in line with the

finding that in multilevel regression, the cross-level interaction between a level 1 and a

level 2 variable can be statistically significant, even if the associated random slope variance

is not significant (Snijders & Bosker, 1999).1 With respect to the false positive rates we

Case A. Test for cluster bias Case B. RFA test

Between

Within

Figure 2. The three models used to investigate the power of three tests (corresponding to cases A,

B and C).

1We would like to thank one of the reviewers for this suggestion.
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expect the RFA models to do worse than the cluster-bias model when the model is

misspecified, and the RFAmodel with residual variance for all indicators to do better than

the RFA model without residual variance.

3. Results

In order to save space, we only report tables with results from the conditions with

ICC = .10 and ICC = .30,with alpha levels of 5%. The results in conditionswith ICC = .20

are shown in the figures. The complete set of tables, including results with alpha levels of

10%, can be found in Supporting information.We consider a power level of .80 or greater
as acceptable.

3.1. Power

Results of the true positive rates of the three tests are shown in Table 2. The true positive

rates for all models are higher in the conditions with a higher ICC, but the patterns of true

positives of the differentmodels across sample-size conditions are similar. Figure 3 shows

the results from the condition with ICC = .20 graphically. We first discuss the results of
the conditions where ICC = .20. With large bias, all bias is detected by all three models,

provided the total sample size is large (100or 50 clusterswith 25observations per cluster).

With smaller samples, the two RFA tests still have adequate power, but the power of the

test for cluster bias drops considerably with 50 clusters of five observations per cluster,

and to even lower levels with two observations per cluster. The power of theWald test is

generally greater than the power of the LRT in all conditions.

With small-sized bias, the test for cluster bias detects 86% (with the LRT) or 90% (with

theWald test) of the bias in the conditionwith the largest sample size, and detects <10%of
the bias in conditions with small sample sizes. The two RFA tests perform better, with

acceptable power in conditions with 25 observations per cluster, and in the condition

with 100 clusterswith five observations.With just 50 clusters of five observations, theRFA

tests detect around 58% (LRT) and around 70% (Wald test) of the bias, which drops to

around 20 and 40%with 50 clusters of two observations per cluster. Overall, the power of

the RFA tests is considerably greater than the power of the test for cluster bias. The power

of the two RFA test with residual variance is similar to the power of the RFA test without

residual variance.
A larger ICCwas associatedwith higher power for all tests.With ICC = .10, the test for

cluster bias only had acceptable power levels when the bias was large, and the total

sample size was large (100 or 50 clusters of 25 observations). With small bias, the power

was only acceptable with 100 clusters of 25 observations. With ICC = .30, 100 clusters

with five observations also led to acceptable power for the test for cluster bias. Although a

larger ICC leads tomore power, the sample-size conditions inwhich the twoRFA tests had

acceptable power rates were identical across ICC conditions.

3.2. False positive rates

In conditions without bias, the expected false positive rate is the chosen alpha level of

significance. Observed false positive rates for all tests in conditions with ICC = .10 and

ICC = .30 are given in Tables 3 and 4.With theWald test, almost all false positive rates are

>.05, while with the LRT most false positive rates are around or under the expected .05.
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We do not see any structural differences between the ICC conditions or between the

cluster-bias and RFA tests.

3.3. False positive rates with misspecified models

Weobtained interesting results in conditionswherewe introduced the bias in indicator 1,

but we tested bias in indicator 2. In this case the model is effectively misspecified. The

results in the three ICC conditions are very similar. Here we will discuss the results from
the ICC = .20 conditions, which are depicted in Figure 4.

The test for cluster bias shows the smallest false positive rates, followedby theRFA test

with residual variance. TheRFA testwithout residual variance has the largest false positive

rates. The Wald test shows larger false positive rates than the LRT in all conditions.

When the bias was small, the false positive rates of the test for cluster bias were

generally acceptable for the LRT, but between 5 and 11% for theWald test. An exception is

the condition with 50 clusters of five observations, in which the LRT has a false positive

rate of .17. The RFA test without residual variance identified indicator 2 as biased in 42%
(LRT) and 54% (Wald test) of the samples in the condition with the largest sample size.

With smaller sample sizes these percentages drop considerably, andwith 50 clusters with

two observations the false positive rates are around 6% for all LRTs, and around 18% with

the Wald test. The RFA test with residual variance also showed unacceptably large false

positive rates, but smaller than the RFA test without residual variance.

With large bias in indicator 1, the RFA test without estimated residual variance

identified indicator 2 as biased in almost all cases (94% with the LRT and 96% with the

Wald test)with the largest sample size, while the RFA testwith residual variance identified
25 and 40% of the cases as biased, and the test for cluster bias falsely detected bias in only

23 and 31% of the cases. With smaller sample sizes the false positive rates for all tests

decreased, leading to acceptable false positive rates for the test for cluster bias (with the

LRT), but not for the RFA tests. In the RFA models, the significant direct effects on

indicator 2 were all negative.
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Figure 3. Power (cases A, B and C). True positive rates of the test for cluster bias and the two RFA

tests with various sample sizes in conditions with large bias (top) and small bias (bottom), with

the LRT (left) and the Wald test (right) in the condition with ICC = .20. Note. On the x-axis,

B100_W25 refers to the condition with 100 clusters with 25 observations per cluster, B50_W25 to

the condition with 50 clusters with 25 observations per cluster, and so on.
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3.4. False positive rates when accounting for bias

The false positive rates when testing for cluster bias, when the bias is already accounted

for by the violator, are given in Table 5. The false positive rates seem to increasewhen the

within-level sample size decreases. The false positive rates of the LRT are generally under

the nominal level of significance and tend to becomecloser to 5% as thewithin sample size

decreases. The false positive rates of theWald test are generally higher than the expected

Test for cluster bias RFA test RFA test, accounting for cluster bias
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Figure 4. False positiveswith amisspecifiedmodel (casesG,H and I). False positive rates of the test

for cluster bias and the twoRFA testswith various sample sizes in conditionswith large bias (top) and

small bias (bottom) for ICC = .20, with the LRT (left) and the Wald test (right). The bias was in

indicator 1, while we tested bias in indicator 2. Note. On the x-axis, B100_W25 refers to the

condition with 100 clusters with 25 observations per cluster, B50_W25 to the condition with 50

clusters with 25 observations per cluster, and so on.

Table 5. False positive rates (case J) of the LRT and Wald test in conditions with bias, using the

cluster-bias test after accounting for the bias in the RFA model, based on 500 replications per

condition, a = 0.05

Size bias N between N within

Cluster bias

ICC = .10 ICC = .30

LRT Wald test LRT Wald test

Large 100 25 .014 .040 .040 .064

5 .032 .058 .042 .070

2 .030 .078 .048 .086

50 25 .030 .058 .026 .036

5 .022 .054 .018 .048

2 .032 .066 .052 .096

Small 100 25 .026 .046 .038 .076

5 .038 .056 .044 .066

2 .038 .094 .040 .090

50 25 .026 .042 .030 .048

5 .036 .050 .010 .048

2 .034 .058 .028 .076
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value, and become more inaccurate as the within sample size decreases. The false

positives are generally higher in the ICC = .30 condition than in the ICC = .10 condition.

3.5. The effect of cluster size

The results show that the true and false positive rates of all tests varywith the total sample

size. To checkwhether thewithin-level or between-level sample size has a larger effect on

the performance of the cluster-bias test, we additionally investigated the effect of the

within sample size relative to the between sample size.We expected that the false positive

rates would increase with smaller cluster sizes, because more random error would be

aggregated to the between level. For each ICCcondition,we investigated the false positive

rates and the power to detect small bias of the three tests in four conditions with a total
sample size of 1,250 (50 clusters with 25 observations, 125 clusters with 10 observations,

250 clusters with 5 observations, and 625 clusters with 2 observations). The results from

the ICC = .10 and ICC = .30 conditions are shown in Table 6. Figure 5 shows the false

positive rates and true positive rates as obtainedwith the LRT and theWald test in the four

conditions with ICC = .20 (the results were very similar in the other two ICC conditions).

With the Wald test, but not with the LRT, there seems to be an upward trend in the false

positive rates of the test for cluster bias, but not for the RFA tests. However, the false

positive rates of the test for cluster bias are still below the nominal level of significance in
all conditions, except for the condition with 625 clusters with two observations (where

the false positive rate is 7%). The RFA tests detect almost all bias in all conditions, but the

power of the test for cluster bias shows a gradual decrease when cluster size becomes

smaller.

4. Discussion

The results of the simulation study show that the inclusion of the violating variable in

the analysis adds considerably to the likelihood of detecting the bias. So, in fitting a

series of models in order to investigate measurement bias in multilevel data (Jak et al.,

2014), the finding that cluster bias is absent does not exclude the possibility that this

is a false negative and that significant bias with respect to a level 2 violator may be

found using an RFA model. Of course, the RFA model requires the availability of a

violating variable. So, although the test for cluster bias is less powerful, an advantage
of the test is that the cause of the bias does not need to be operationalized, or even

known.

Another advantage of the test for cluster bias is that the false positive rates were

generally acceptable, while the RFA tests had high false positive rates in conditionswhere

the bias was in an indicator other than the one actually subject to the test. The high false

positive rates with the RFA test show that when the model does not account for

measurement bias, the common factor is contaminated by the bias. For example, suppose

that the trait of interest is closeness of the relation between teachers and students, and
indicator 1 is biased by gender of the teacher, meaning that for equal levels of closeness,

women on average attain higher scores on this indicator than men do. Indicator 1 is then

not only an indicator of closeness, but also an indicator of gender (and gender-related

characteristics). Not accounting for this bias results in the contamination of the closeness

factor with gender. The interpretation of the factor is then closeness and (probably to a

smaller extent) being a woman. Indicator 2 is actually not an indicator of gender, so an
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effect of gender on indicator 2 will be negative in order to compensate for the

contamination of the common factor.

The false positive rates of the RFA test without residual variance were higher than the

rates of the test with residual variance. This makes sense, as by estimating residual

variance in the indicators, we account for part of the bias. Although false positive rates of

the RFA test with residual variance are still higher than the chosen level of significance,
based on the false positive rate, the RFA test with residual variance is preferred.

TheWald test generally showedmore power to detect bias than the LRT. However, the

Wald test also showed larger false positive rates in all conditions. In practice, one should

never base conclusions about measurement bias on a significant test result only. The size

of the bias aswell as the possibility of interpreting the bias should be taken into account. In

the RFAmodel, the size of the bias can be judged by looking at the size of the standardized

direct effect of the violator on the indicator. In the cluster-biasmodel, the size of the bias in

an indicator can be represented by the percentage of variance due to cluster bias (level 2
residual variance) in the total variance or in the total level 2 variance. More important than

size and significance is theory. Only if detected bias can be interpreted substantively can

the finding be taken as a real instance of measurement bias. Theory should always be used

to counter false positive results, especially if theWald test is used. The difference between

the results from the LRT and theWald test may also stem from the fact that the simulation

study considered multivariate normal data. If inspection of the data supports multivariate

normality, using normal theory rather than robust standard errors may be preferable (Hox

et al., 2010).
In practice, researchers may employ an iterative bias detection procedure. In an

iterative procedure, a researcher starts by including a direct effect in the indicator that

improvesmodel fitmost. The choice ofwhich direct effect to include first can be based on

testing direct effects on all indicators one by one, or by inspecting modification indices
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Figure 5. The effect of smaller cluster size. Power (top) and false positive rates (bottom) of the test

for cluster bias and the two RFA tests using the LRT (left) and the Wald test (right), with various

cluster sizes leading to a total sample size of 1,250 and ICC = .20. Note. On the x-axis, B50_W25

refers to the conditionwith 50 clusterswith 25observations per cluster, B125_W10 to the condition

with 125 clusters with 10 observations per cluster, and so on. The dotted line indicates the nominal

alpha level.
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from the model without any direct effects. In our example, if bias were tested in the

unbiased indicator, while the bias in indicator 1 was already accounted for, the factor

would not be contaminated, and indicator 2 would not be marked as biased. In a

simulation study, Barendse et al. (2012) showed that an iterativeRFAprocedure led to less
false positive results than a single-run RFA procedure. Using modification indices or

iterative testing is data-driven, however, and always bears the risk of capitalizing on

chance characteristics of the data (MacCallum, Roznowski, & Necowitz, 1992). One may

therefore adjust the nominal significance level to a more conservative value, and one

should always take the substantive interpretation of possible bias into account.

This simulation study showed that with data with ICCs around .20, in order to have

adequate power to detect large bias with the cluster-bias test, one needs a total sample

size of at least 500, with sufficiently large cluster sizes. To detect small bias, the cluster-
bias test needs a total sample size of at least 2,500, with cluster of sufficient size. If one

can use the RFA test, smaller samples are sufficient to obtain adequate power. With large

bias, a total sample size of 100 would be enough. With small bias, total sample sizes of

500 or more are required. With smaller ICCs larger sample sizes are needed to obtain

adequate power. It should be noted that this holds assuming that the size of the bias is

proportional to the ICC.

In conclusion, although the test for cluster bias has several advantages, this study

showed that including the presumed cause of level 2 bias in the model to detect
measurement bias is a more powerful approach than the test for cluster bias. We also

showed that the RFA test with residual variance leads to less false positive results than the

RFA testwithout residual variance. If a researcher’s goal is to investigatemeasurement bias

with respect to (level 1 and) level 2 violators, we advise following the five-step approach

(Jak et al., 2014) and testing for level 2 bias in step 5, while taking cluster bias into

account. This study also showed that the power of the test for cluster bias is larger with a

smaller number of clusters with a larger size than for more clusters with a smaller size.
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