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Abstract. It is possible to set up a correspondence between 3D space and
R

3,3, interpretable as the space of oriented lines (and screws), such that
special projective collineations of the 3D space become represented as
rotors in the geometric algebra of R3,3. We show explicitly how various
primitive projective transformations (translations, rotations, scalings,
perspectivities, Lorentz transformations) are represented, in geomet-
rically meaningful parameterizations of the rotors by their bivectors.
Odd versors of this representation represent projective correlations, so
(oriented) reflections can only be represented in a non-versor manner.
Specifically, we show how a new and useful ‘oriented reflection’ can
be defined directly on lines. We compare the resulting framework to
the unoriented R

3,3 approach of Klawitter (Adv Appl Clifford Algebra,
24:713–736, 2014), and the R

4,4 rotor-based approach by Goldman et
al. (Adv Appl Clifford Algebra, 25(1):113–149, 2015) in terms of expres-
siveness and efficiency.

Mathematics Subject Classification. 15A33, 51M35.

Keywords. Projective geometry, Oriented projective geometry,
Geometric algebra, Homogeneous coordinates, Plücker coordinates,
Oriented lines, Projective collineation, Versor, Rotor,
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1. Introduction

1.1. Towards a Geometric Algebra of Projective Geometry

Projective transformations in 3D and 2D are extensively used in computer
vision and computer graphics. In those fields, it is common practice to con-
struct a desired projective transformation from certain geometrically mean-
ingful primitive operations (rotations at the origin, translations, scalings,
skews, etc.), or to analyze a given transformation in terms of such primi-
tive operations. In applications, the 3D projective transformations are always
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computed by means of the homogeneous coordinates representation. An extra
dimension is added to produce a four-dimensional space V 4, and points and
vector from the 3D space are embedded as vectors in V 4; the projective
transformations become 4 × 4 matrices, and results need to be interpreted
modulo a scaling freedom of the homogeneous embedding. In oriented projec-
tive geometry [12], this scaling factor is constrained to be positive, since this
represents the practical geometry of computer graphics and machine vision
more accurately.

In the homogeneous coordinate framework, Euclidean rigid body
motions are treated as a special case of projective transformations. Within
geometric algebra, such motions have been represented differently, as a spe-
cial case of conformal transformations. The resulting versor representation of
such motions in R

4,1, and the accompanying blade representation of sensible
Euclidean primitives such as spheres, circles, planes, tangent vectors etc. is
beginning to prove very useful. The main advantage over classical approaches
of this conformal geometric algebra (CGA) is the automatic structure preser-
vation by the versor representation of the object composition and intersection
operations (see e.g. [2]). The resulting simplicity of expression appears to be
worth the extra dimensionality of the data representation (for though the 32
dimensions are ultimately all used, all meaningful elements are sparse) [3].

The success of the CGA framework makes it natural to wonder if such
a structure-preserving versor representation could not also be found for 3D
projective transformations. Since there are 15 degrees of freedom in the homo-
geneous 4 × 4 matrices (modulo the scaling freedom), one would expect that
the exponentials of the 15 independent bivectors of a suitably chosen six-
dimensional space could generate all corresponding versors.

Recently, two possibilities have been explored for a versor representation
of projective geometry, both based on existing ideas.

• In [4], Goldman et al. use the algebra of R
4,4 to transcribe the 4 × 4

matrices of the homogeneous representation into versor form, follow-
ing the general framework on balanced algebras and the suggestion to
use it for projective geometry in [1]. They manage to express the most
common primitive projective transformations as rotors using explicitly
given bivectors. But they also have to perform some non-conventional
constructions to incorporate other desired operations like the (non-
invertible) stereographic projection. They have reflections as certain
versors, but in an unoriented manner (as we will explain in this paper).

Though [4] explores the expression and transformation of quadrics
by bivectors (after an unpublished idea by Parkin), in this represen-
tation quadrics are not subspaces (as one might have hoped from the
analogy of how spheres are represented in CGA). As a consequence,
the great advantage of a versor representation (structure preservation
of composition of primitives, as in CGA) appears not to materialize—in
any case it is not explored in [4]. Also, the dimensionality of the repre-
sentation in R

4,4 seems much too high; there is no explanation of what
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the other
(
8
2

) − 15 = 13 bivectors and their corresponding rotors mean,
let alone the 256 basis blades of various grades.

• In [6], Klawitter generates the projective automorphisms of Klein’s
quadric in the projective space P 5(R) by versors of the Clifford algebra
R

3,3, and relates this to the representation of the 4 × 4 homogeneous
coordinate matrices of projective transformations in 3D. He shows how
to convert a versor from R

3,3 to a 4 × 4 matrix, and vice versa. The
correspondence is worked out in terms of solving equations of multivec-
tor coordinates, and gives little geometrical insight. In particular, the
bivector generators of projective transformations, which would provide
meaningful parametrizations for practical use, are not included.

Klawitter finds that even versors correspond to projective
collineations, and odd versors to projective correlations, and that any
regular projective transformation can be constructed from at most six
projective correlations.

Geometrically, R3,3 is the space of lines (and some more, as we will
see). Klawitter treats R

3,3 as a projective space, and therefore ignores
the orientation of lines, which makes his results only preliminarily useful
to applications, where computations with oriented rays are mandatory
(it does allow him some leeway to modify the versor product, permit-
ting the representation of certain non-invertible matrices by rotor-like
elements, though not uniquely). For the geometric interpretation of the
blades of R3,3, Klawitter refers to the classical work on linear line com-
plexes (see e.g. [10] for an accessible explanation).

In the present paper, we give the R
3,3-bivectors of the primitive projec-

tive transformations, thus bringing the R
3,3 model of Klawitter closer to the

applied flavor exhibited in the Goldman paper on R
4,4. The intended prac-

tical use, with its emphasis on meaningful orientation of lines, guides our
treatment. As with [6], the representation of scenes in terms of lines would
be most natural to R

3,3, but requires further study to do effectively. Mean-
while, the classical scene representation in terms of points and planes can
definitely be supported, since they are naturally included as 3-blades of R3,3.

To make the paper self-contained and readable to practitioners, in the
following section we briefly revisit the geometric decomposition of projective
transformations in the matrix approach. Then in Sect. 2 we introduce the
space of lines R

3,3, and endow it with a metric. Studying the effect of pro-
jective transformations on lines in Sect. 3, we find that we will unfortunately
not be able to represent all projective collineations (reflections are excluded,
though we get ‘projective correlations’ in return). After revisiting the line
transformation matrices in Sect. 4, we then explicitly expose the geomet-
ric parameterization by bivectors of the rotors of the primitive projective
collineations in Sect. 5. Precisely what R3,3 and its orthogonal group O(3, 3)
allow is explored in Sect. 6. We find that there are useful projective transfor-
mations definable in the space of lines that do not correspond to projective
transformations of points. Among them are ‘oriented reflections’, missed in
both [4] and [6]. We have no space to treat the line-containing blades fully,
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but show how 3-blades can be used to implement 3D points and 3D planes in
Sect. 7. The framework for 3D illuminates how to represent projective trans-
formations in some other dimensions, and those are indicated in Sect. 8. In
the conclusions of Sect. 9 we discuss how this paper informs the comparison
between the R

3,3 and R
4,4 frameworks. An important new development in

the analysis of R3,3 is flagged in the Postscript.

1.2. Decomposition of Projective Transformations

Since a 3D projective transformation can be computed in homogeneous coor-
dinates by means of a 4D linear transformation, its decomposition (or factor-
ization) in terms of primitives can be based on any of the standard matrix
decompositions. With the special nature of the extra dimension in the homo-
geneous coordinate embedding, it is natural to consider the 4 × 4 matrix as
a block matrix, with a 3 × 3 block A and a 1 × 1 block δ on the diagonal.
Parametrizing the corresponding off-diagonal blocks by vectors b and c, the
standard block LU decomposition is:

[H] =
[

A b
c� δ

]
=

[
I 0

c�A−1 δ − c�A−1b

] [
A b
0� 1

]
. (1)

In the homogeneous setting, a vector representing a 3D point can be rescaled
by a factor α without changing its interpretation; therefore the matrix [H] has
a multiplicative degree of freedom. Multiplying [H] by α changes its determi-
nant by α4 and therefore preserves its sign. Hence any invertible homogeneous
coordinate matrix [H] can be rescaled to make its determinant equal to ±1
without changing the reality it represents. Note that this remains true if one
would restrict meaningful rescaling to only positive factors.

The leftmost homogeneous coordinate matrix in the factorization (Eq.
1) is the perspectivity1 P parameterized by a focal plane characterized by the
row vector [f� f0]:

[P ] =
[

I 0
f� f0

]
.

Its determinant is f0 = δ − c�A−1b; we will soon standardize to f0 = 1
without loss of generality.

The rightmost factor in Eq. (1) is an affine transformation, with deter-
minant equal to det(A). It is common practice in computer vision (see e.g.
[5, p. 42]) to split that affine transformation into a Euclidean similarity (with
scaling factor γ, orthogonal transformation R and translation vector t), and
an upper triangular matrix U (giving skewing and non-isotropic scaling):

[H] =
[

I 0
f� f0

] [
γR t
0� 1

] [
U 0
0� 1

]
.

We will split the affine factor somewhat differently later on, using rotations,
translations, ‘squeezes’ (hyperbolic rotations a.k.a. Lorentz transformations,
or ‘scissor shears’), and anisotropic scalings. Together with the perspectivity
above, those will form our primitive projective transformations.

1 A perspectivity is a projective transformation fixing the points of a plane (called its axis),
and leaving invariant all the planes through a point (called its center).
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Perspective projection will of course not be included in our versor frame-
work, since it is non-invertible and therefore cannot be an orthogonal trans-
formation. However the important pseudo-perspective transformation, trans-
forming the scene frustrum in an invertible manner into a standard cube
for Z-buffering, is included, if we take the viewing direction as positive e3-
axis (rather than the conventional negative e3). When performing this trivial
sign-correction, the pseudo-perspective matrix is of the form

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 α − 1 −α
0 0 1 0

⎤

⎥
⎥
⎦ ,

where α is a positive number related to the frustrum dimensions. This matrix
can be decomposed in the manner described above in terms of the prim-
itive operations. The sign correction on the z renders the determinant of
the pseudo-perspective matrix positive (and we will learn below why this is
important).

2. The Metric Space of Lines R3,3

2.1. Homogeneous Coordinates and Their Grassmann Space V 4

Homogeneous coordinates employ the 4D homogeneous model V 4 of the 3D
Euclidean space R

3, by augmenting R
3 with one more dimension. When the

extra coordinate in that dimension is zero, the V 4-vector that results is inter-
preted as a Euclidean direction; when the extra coordinate is non-zero, the
V 4-vector is interpreted as a (weighted) point. Effectively, the embedding of
R

3 into V 4 in this manner augments our space with ideal points (points at
infinity, also known as improper points), which act as direction vectors (or
displacement vectors) in the 3D space. We can use the join of vectors in the
augmented space to represent the lines in 3D; this has the advantage of also
modeling the lines at infinity (possible horizons of planes), which we will call
ideal lines (they are also known as improper lines). Non-ideal elements may
be called finite.

This V 4 is the well-known space of homogeneous coordinates. It repre-
sents the points of our 3D space as 4D vectors. We usually consider that 3D
space as having a Euclidean metric so that we can sensibly measure oriented
angles and oriented distances in our applications. Yet V 4 itself is not necessar-
ily a metric space. Since it does not have a geometrically meaningful metric to
assign, and we will not endow it with a geometric algebra (in contrast to [4],
who views it as a Euclidean space). But V 4 does have a Grassmann algebra,
with outer product, so we can make blades, and study the proportionality of
parallel blades. We will denote the outer product in V 4 by �, to distinguish
it explicitly from the outer product in our space of interest R

3,3, for which
we employ the usual ∧-notation. The 2-blades formed in this manner from
two representatives of 3D points can be used to represent oriented lines in
a 3D space. This is in principle a non-metric construction; yet we will want
to perform metric measurements on the properties of the resulting 3D lines
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(such as their relative angles). As we will soon see, the proportionality of
blades in V 4 permits such quantitative measures.

Using e0 for the V 4-vector representing the point at the origin, and
using bold font for purely Euclidean vectors (both in the 3D space and its
embedded copy within V 4), a weighted point at location p is represented as
the vector p = α (e0 + p). The line through two weighted points at p and q
with weights α and β is then represented by the bivector

L = p�q = αβ (e0�(q − p) + p�q) = αβ (e0�u + p�u), (2)

where u ≡ q − p. If we are consistent about the embedding of homogeneous
points by choosing their weights to have the same sign, as is customary in
applications [12], the resulting line L is oriented in the direction u (and clearly
distinguished from a line −L through p running in direction −u).

The coefficients of L on the basis:

{e0�e1, e0�e2, e0�e3, e2�e3, e3�e1, e1�e2} (3)

are the Plücker coordinates of the line; this matches the usual definition, see
e.g. [2] and below. A bivector A of

∧
2V 4 represents a line in 3D (finite or

ideal) iff
A�A = 0, (4)

which is called the Grassmann–Plücker relation. For the line L of Eq. (2) this
evaluates to the purely 3D spatial relation u�(p�u) = 0, which indeed holds
trivially. In terms of the coordinates lij of L on the basis of Eq. (3), relation
(Eq. 4) reads:

�01�23 + �02�31 + �03�12 = 0 (5)
This demand on the coordinates of an element given on the basis Eq. (3)
to be a line is called the (Grassmann–)Plücker condition. As Eq. (4) shows,
this condition depends only on the outer product in V 4; but we will use the
equivalent expression Eq. (5) to endow

∧
2V 4 with an inner product. Thus∧

2V 4 will be a metric space even though V 4 itself remains non-metric.
The Plücker condition is independent of the weight or orientation of the

line, so while much of the theory based on that condition remains valid for
oriented projective geometry, additional structure about line geometry will
be revealed by permitting only positive rescaling in the interpretation, or
even no rescaling at all if the weights are deemed relevant.

2.2. Plücker Coordinates of Oriented Lines and Their Space R
3,3

For a space of oriented lines (and of more, as we will see), we switch to the
six-dimensional space of the Plücker coordinates and call it R3,3 for (metric)
reasons which will become clear below. The six basis 2-blades of Eq. (3) in
V 4 are now embedded as vectors of R3,3, and we reflect this in the notation.
In an obvious one-to-one correspondence with Eq. (3), we write a natural
vector basis of R3,3 as:

{ ν01, ν02, ν03, ν23, ν31, ν12 }. (6)

The ν notation (Greek n) serves to remind us that these are null vectors of
R

3,3 (as we will explain below).
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An oriented line in R
3 is represented as a 2-blade L in the Grassmann

algebra of V 4; its embedding as the vector � of R3,3 will be denoted by the
function � = Em (L), with Em () :

∧
2V 4 → R

3,3, defined as just copying
the corresponding coordinates �ij from

∧
2V 4. For such a vector of R

3,3 to
represent a line in the original 3D space, these coordinates must satisfy the
Plücker condition (Eq. 5). This Em () is clearly an invertible embedding, we
denote its inverse as Em−1().

For later use, let us spell out Em () for the finite oriented line (Eq. 2),
in the traditionally convenient matrix notation. A point at location p is rep-
resented as a multiple of the unit-weight homogeneous point representation
vector [p�1]� on the basis {e1, e2, e3, e0} for V 4 (placing the e0-component
last, as is customary in the treatment of homogeneous coordinates). Then
the weighted oriented line Eq. (2) is represented in R

3,3 as:

Em
([

αp
α

]
�

[
βq
β

])
= αβ Em (e0�u + p�u) = αβ

[
u

p × u

]
, (7)

where u = q−p and × denotes the 3D cross product. The coefficients of the
6D vector are given on the ordered basis (Eq. 6).

Mathematically, the set of vectors of R
3,3 representing lines (vectors

satisfying the Plücker condition) forms a five-dimensional quadric, called the
Klein quadric (see e.g. [10]). Within oriented projective geometry we will of
course not consider this projectively equivalent, by arbitrary rescaling, to a
four-dimensional submanifold of a five-dimensional projective space P 5(R),
and thus we depart from the traditional treatment also followed by [6].

By Eq. (4), lines are 2-blades of
∧
2V 4. When considering general ele-

ments on the 6D basis of bivectors in V 4 given by Eq. (3), we will also consider
them as vectors in R

3,3, simply by applying our mapping Em ( ) to copy their
coordinates to the null basis Eq. (6) in R

3,3. The coordinates of such elements
do not necessarily satisfy the Plücker condition, so they are not interpretable
as lines. Thus calling R

3,3 the space of lines is a misnomer; only a subset, the
Klein quadric, deserves to be identified as ‘a manifold of weighted oriented
lines’; but ‘space of lines’ is a usefully sloppy mnemonic.

2.3. The Metric Space R
3,3

We are going to turn this 6D space R
3,3 into a metric space, to provide it

with a geometric algebra. This means that we need to define an inner product
for it. We let that be inspired by the non-metric outer product nature of V 4

(a Grassmann space), in a well-chosen correspondence (see [7]):

· : R3,3 × R
3,3 �→ R : a · b = [Em−1(a)�Em−1(b) ]. (8)

This defines the inner product between elements of the 6D space R
3,3 on

the left, in terms of a ‘bracket’ taken in the (non-metric) Grassmann algebra∧
2V 4 on the right. The bracket of a 4-blade of V 4 is defined as the scalar

proportionality factor with the pseudoscalar I4 = e0 � e1 � e2 � e3. Thus
the bracket is effectively the coordinate of the 4-blade on the basis of 4-
vectors specified by I4. We therefore use only ratios of volumes in V 4 (which
may be considered as volume measures in 3D space, as we show below), to
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induce a metric of 3D lines, and then employ that as a metric for the vectors
representing them in R

3,3.
We briefly make the geometry of this inner product explicit for 2-blades

of V 4, and the corresponding weighted oriented lines in the actual 3D space
(see also [7]).

• For two finite unit-weight lines L = (e0+p)�u and M = (e0+q)�v, the
value of the inner product Em (L) ·Em (M) is [(e0+p)�u�(e0+q)�v] =
[e0�u�(q− p)�v], which is equal to det([u (q− p) v]) relative to the
Euclidean unit volume element with appropriately chosen orientation
e1�e2�e3. Hence this inner product is the (relative) volume spanned by
the direction vector u of L, a relative position vector (q−p) from a point
p on L to a point q on M , and the direction vector v of M . This inner
product thus quantifies a combination of metric dissimilarity in position
and direction in the Euclidean 3D space: for lines with perpendicular
signed distance δ and unit direction vectors making a signed angle φ,
the inner product is equal to δ sin(φ). We can easily measure distances
of perpendicular lines, and angles between lines with unit distance, but
parallel or intersecting lines have a zero inner product.

• For a finite unit-weight line L = (e0+p)�u and an ideal line M = v�w,
we obtain Em (L) · Em (M) = det[u v w], the volume spanned by their
directions (this quantity is proportional to the sine of the angle that u
makes with the v�w-plane).

• The embeddings of two ideal lines in 3D have an inner product equal
to zero. Generally, intersecting lines (finite or ideal) have a zero inner
product—and ideal lines always intersect in a common 1-direction (ideal
point).

• In this paper, we will give no geometric interpretation to non-lines and
their inner product (they can be related to screws and twists).

Under the metric defined by Eq. (8), the null vectors (i.e., the vectors a
satisfying a · a = 0) in the 6D space are precisely identified with lines in
R

3, due to the Grassmann–Plücker relation (Eq. 4). Reference [7] proves that
this metric defined by Eq. (8) is nondegenerate: if a · b = 0 for all b ∈ R

3,3,
then a = 0. Moreover, the 6D space has the metric structure of R

3,3. An
orthonormal basis to expose explicitly its R

3,3 nature is the unit vector basis
defined as:

{ε1, ε2, ε3, ε̄1, ε̄2, ε̄3}
≡

{
ν01+ν23√

2
,
ν02+ν31√

2
,
ν03+ν12√

2
,
ν01 − ν23√

2
,
ν02 − ν31√

2
,
ν03 − ν12√

2

}
. (9)

We have ε21 = ε22 = ε23 = 1 and ε̄21 = ε̄22 = ε̄23 = −1. (As a practical insight
speeding up hand computations: any repeated index in an outer product in
V 4 leads to a zero contribution to the inner product in R

3,3, and signs are
established from even/odd permutations relative to the standard order.)2

2 Should you wish to implement this paper, there are some handy coordinate-free con-

structions inspired by [1]. We can introduce a complementation bivector C = ε1 ∧ ε̄1 + ε2 ∧
ε̄2 + ε3 ∧ ε̄3 = ν23 ∧ ν01 + ν31 ∧ ν02 + ν12 ∧ ν03 to find algebraically the ‘complement’ of



3D Oriented Projective Geometry

The inner product multiplication table on the unit basis shows the (3, 3)
signature of the space, thus explaining our notation R

3,3:

· ε1 ε2 ε3 ε̄1 ε̄2 ε̄3
ε1 1 0 0 0 0 0
ε2 0 1 0 0 0 0
ε3 0 0 1 0 0 0
ε̄1 0 0 0 −1 0 0
ε̄2 0 0 0 0 −1 0
ε̄3 0 0 0 0 0 −1

Note that these orthonormal basis vectors for R
3,3 do not represent lines—

they are clearly not null. The ‘standard’ null basis of Eq. (6)

{ ν01, ν02, ν03, ν23, ν31, ν12 }
does consist of representatives of lines: three orthogonal oriented lines through
the origin in the coordinate directions, and three orthogonal oriented lines
at infinity (three ideal lines, which may be thought of as orthogonal great
circles on the celestial sphere of V 4 containing the horizons of the coordinate
planes). The inner product multiplication table on the null basis is:

· ν01 ν02 ν03 ν23 ν31 ν12
ν01 0 0 0 1 0 0
ν02 0 0 0 0 1 0
ν03 0 0 0 0 0 1
ν23 1 0 0 0 0 0
ν31 0 1 0 0 0 0
ν12 0 0 1 0 0 0

This can be encoded as a metric matrix [M ]. Two lines A,B intersect (possi-
bly in a point at infinity) iff 0 = Em (A) · Em (B) = [Em (A)]�[M ] [Em (B)],
where the latter form implements the inner product of R

3,3 in terms of a
matrix representation of its vectors on the null basis. A bivector A of

∧
2V 4

is a line iff 0 = Em (A) · Em (A) = [Em (A)]�[M ] [Em (A)] .

2.4. Projective Duality

There is a projective duality � (denoted here by a five-pointed star)
between points and planes in V 4. Computationally, duality merely copies
the {e0, e1, e2, e3} coordinates of a point to the trivector basis {e1 �e2 �
e3,−e0�e2�e3,−e0�e3�e1,−e0�e1�e2}. Weighted points thus become
oriented planes. Mathematically, duality is seen as a mapping from V 4 to
its dual space V 4� of 1-forms. These 1-forms can act on elements of V 4 to
produce a scalar; their geometric interpretation is as 3D planes.

Footnote 2 continued
an element: ε1 = ε̄1 · C, ε̄1 = ε1 · C, etc. The null basis elements are eigenvectors of this

complementation operation: ν01 = ν01 · C, etc. and ν23 = −ν23 · C etc. Another useful
construction is the M -mapping introduced in Eq. (15).
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The effect of this duality is that a 2-blade of
∧
2V 4 representing the join

of two points P and Q becomes (minus) the 2-blade of
∧
2V 4 representing

the meet of the two planes P � and Q�. Transferring to R
3,3, this is merely a

linear transformation of lines, transforming the basis vector ν01 according to:
ν01 = Em (e0�e1) ↔ Em ((e1e2e3) ∩ (−e0e2e3)) = Em (−e2�e3) = ν23 etc.
Effectively, ‘taking the projective dual’ amounts to the permuting coordinates
of the representative vector of the line:

�01 ↔ �23, �02 ↔ �31, �03 ↔ �12.

From this induced change of basis, we see that the R
3,3-matrix of the pro-

jective duality is equal to the metric matrix [M ] above, so that (with square
brackets denoting matrices):

[Em (A�)] = [M ][Em (A)].

This transformation of lines extends naturally to non-lines on the same basis
(Eq. 6), and hence to the entire R

3,3-space. We will denote it by M (with
matrix [M ]); note that det(M) = −1, and M2 = 1.3

This induced transformation M is an orthogonal transformation, since
it preserves the bracket-based inner product: Em (A) · Em (B) = [A��B�] =
[((A�) · B)�] = [(B · A�)�] = [((B�A)�)�] = [B�A] = [A�B] = Em (A) ·
Em (B). As a consequence, we need not give M special attention; we will
meet M in the course of constructing versors of arbitrary projective transfor-
mations in the R

3,3 setting. (Spoiler alert: M ’s versor will be M ≡ ε̄1 ε̄2 ε̄3,
see Eq. (15).)

3. Projective Transformations as Versors

Having used the structure of V 4 to define a metric and a useful basis for R3,3

in the previous chapter, we need no longer consider V 4, but can focus fully
on the space R

3,3. Its null vectors (i.e., the vectors on the Klein quadric) are
representations of oriented lines in 3D, and if we need to distinguish finite and
ideal lines, we can do so using the distinguished 3-blades O = ν01 ∧ ν02 ∧ ν03
(the origin) and H = ν23 ∧ ν31 ∧ ν12 (the horizon). If required, projective
duality in V 4 is implemented by the mapping M in R

3,3.
We now proceed to investigate which projective transformations in 3D

space correspond to orthogonal transformations of R3,3. Those that do can
then be represented by means of versors, i.e. as a product of vectors, to be used
in a sandwiching product to transform general elements of the geometry in a
structure-preserving manner. Since there is some variation in how to define
the sandwiching product for versors, let us state in advance that we will use:

X �→ (−1)grade(X)grade(V ) V X V −1. (10)

3 Using M , we can relate the classical 1-form view of the inner product of two vectors �
and m in R

3,3 (see [10]) with our metric formulation: ��(m) = �� ·E m = [�]�[M ]�[m] =

[�]�[M ][m] = � · m, where ·E denotes the evaluation of the 1-form �� on the vector m as
effectively a Euclidean inner product of their coordinates.
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This convention appears to be the standard usage in geometric algebra and
in spinor literature such as [9]. For us, the sign is important, since we want
to treat the lines as oriented. Note that in [6], which does not treat lines
as oriented, a non-standard sandwiching product is used that differs in sign
and in the avoidance of the inverse, so as to allow null elements to be versor-
like in their sandwiching action. However, this non-standard usage also blurs
the distinction between an even versor and a rotor. It is easily checked that
with Eq. (10) as definition, a versor with an even number of vector factors
generates a mapping with determinant +1, and a versor with an odd number
of vector factors generates a mapping with determinant −1, independent of
the signature of the vectors.

For an invertible vector v used as versor, the sandwiching product imple-
ments a reflection of the representational space. Any orthogonal transforma-
tion in n-D can be represented by at most n reflections (this is Cartan–
Dieudonné’s theorem), and hence by a versor of at most grade n. In GA
parlance, a normalized even versor R is called a rotor if it satisfies R R̃ = 1
(where R is the reverse of the versor, the geometric product of its factors in
reverse order); rotors can be written as the exponential of a bivector (mod-
ulo a sign, and not necessarily uniquely). They represent ‘rotations’ of the
representational space which can be done by ‘degrees’ from the identity trans-
formation. To be a rotor, a versor must be even, normalized, and not contain
an odd number of vectors of negative signature.

Projective transformations of 3D space are traditionally divided into
projective collineations and projective correlations. As [6] showed, this dis-
tinction between the two reveals itself in R

3,3 as that between even and odd
versors. Yet as we analyze this in detail for our definition (Eq. 10), we find
that there is a further subclassification we need to make, based on the sign
of the determinant of the projective transformation in V 4.

3.1. Projective Collineations

A (projective) collineation in 3D is representable in the homogeneous coor-
dinate representation as a linear transformation of V 4. A point remains a
point (though possibly improper), and hence an oriented line joining two
points transforms to an oriented line joining their images. We would call
this a ‘projective transformation in 3D’ in computer vision; in mathematical
texts like [10], it would be called ‘a projective automorphism of P 3’, the pro-
jective space associated with our 3D space, though it is then unfortunately
customary to ignore the signs of the correlated embedded points and hence
the consistent orientation of the lines they produce.

A linear transformation f on V 4 induces an outermorphism on its Grass-
mann algebra. A join P �Q of points P and Q transforms to f(P �Q) =
f(P )�f(Q), so f naturally affects the 2-blades and hence the bivectors in∧
2V 4. In this manner, it induces a linear transformation F in R

3,3 through
the embedding: F (Em ( )) = Em (f( )). We define Em[ ] as the operation map-
ping functions; then F () = Em[f ]() = Em

(
f(Em−1( ))

)
. The determinants

of f and Em[f ] are directly related:
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det(Em[f ]) = det(f)3. (11)

[This is most easily seen for a mapping f that can be diagonalized. Then its
determinant in V 4 is the product of the eigenvalues det(f) = λ0λ1λ2λ3. Each
eigenvector participates in forming an eigen-2-blade with the three remain-
ing vectors, and after conversion to R

3,3 these eigen-2-blades become eigen-
vectors of Em[f ] with eigenvalues λ0λ1, λ0λ2, etc.; therefore det(Em[f ]) =
(λ0λ1)(λ0λ2) · · · (λ1λ2) = (λ0λ1λ2λ3)3 = det(f)3.]

The inner product of the line representatives may be affected by F =
Em[f ]. We compute, for a = Em (A) and b = Em (B):

F (a) · F (b) = F (Em (A)) · F (Em (B))
= Em (f(A)) · Em (f(B))
= [f(A)�f(B)]
= [f(A�B)]
= det(f) [A�B]
= det(f) Em (A) · Em (B)
= det(f) a · b. (12)

It follows that when we restrict ourselves to transformations f for which
det(f) = 1, their representation F as a mapping of R

3,3 onto itself is an
orthogonal transformation. These are the mappings that especially interest
us in this paper; let us call them special collineations. As we have seen in
Sect. 1.2, only mappings that have a positive determinant can be rescaled to
have determinant +1. We can therefore represent only half of the invertible
projective collineations as transformations in R

3,3. We continue with those
mappings with positive determinant; whether it is a practical loss not to have
the others is discussed in Sect. 6.2.

As an orthogonal transformation of R3,3, F = Em[f ] (with det(f) = 1)
could in principle have det(F ) = +1 or −1, but from Eq. (11) only the
possibility det(F ) = 1 remains. The 3D collineations with determinant 1 (as
automorphism of V 4) therefore become special orthogonal transformations in
R

3,3. Among these special orthogonal transformations are the rotors of R3,3,
and we will find that these are sufficient to represent all special projective
collineations. In slightly different terms, this is the statement “All special
projective transformations can be classified by their spinor generators” in
[7]. Mathematically, this is known as the ‘accidental Lie group isomorphism’
between SL(4,R) and Spin+(3, 3) (see [9, p. 160]).

3.2. Projective Correlations

In projective geometry, there is a duality between points and hyperplanes
in V 4. This has led people to set up dually corresponding structures in V 4

(the space of points, represented by vectors) and its dual space V 4� (the
space of hyperplanes, represented by 1-forms or covectors). We have met the
projective duality at the origin of V 4 in Sect. 2.4 and have shown that it is
represented as an orthogonal transformation M of R3,3 (with matrix [M ]).
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Under a projective correlation in 3D, a point is transformed into a plane,
and the line that is the join of two points transforms to the line that is
(minus) the meet of the two corresponding planes. Therefore a 3D-line still
transforms to a 3D-line under a projective correlation. Classically (and in
[6]) this is done in an unoriented manner, with arbitrarily weighted points,
planes and lines, but a similar definition can be used in oriented projective
geometry propagating signs consistently to obtain a transformation between
oriented lines.

Any projective correlation may be represented by a linear transforma-
tion g of V 4, followed by the projective duality at the origin to map the result
to V 4�. As a consequence, the correspondence to orthogonal transformations
of R3,3 for general projective correlations is not really different from that of
collineations:

G(a) · G(b) = Em
(
g(A)�) · Em

(
g(B)�)

= (MEm (g(A))) · (MEm (g(B)))
= Em (g(A)) · Em (g(B))
= det(g) a · b. (13)

So again, when g has det(g) = 1, the mapping induces an orthogonal trans-
formation on R

3,3. Let us call such a mapping a special correlation. The
total transformation G = MEm[g] of g has det(G) = det(M) det(Em[g]) =
(−1) (det(g)3) = −1. Since M and Em[g] are orthogonal transformations of
R

3,3, so is G. And since G’s determinant is −1, it is representable by an odd
versor in the geometric algebra of R3,3.

An example of a projective correlation versor is the vector ε̄1; using it
as a reflection versor v in the standard formulation x �→ −v x v−1, we find:

− ε̄1 ν01 ε̄−1
1 = ε̄1 ν01 ε̄1 = ν23 and − ε̄1 ν23 ε̄−1

1 = ε̄1 ν23 ε̄1 = ν01. (14)

All other basis vectors are unchanged. The general correspondence between
the representation of a correlation as a matrix mapping from V 4 to V 4∗ and
the corresponding odd versor in its multivector coordinate representation may
be found in [6] for Klawitter’s version of the versor sandwiching product.

Using the above result for ε̄1, it is easy to verify that the projective
duality mapping M can be represented by the odd versor M ≡ ε̄1 ε̄2 ε̄3:

M� = −M �M−1 = −M �M. (15)

Note that in our notation, M is the versor of the linear transformation M
with matrix [M ].

4. Orthogonal Matrix Representations of Projective
Transformations

As a reference for the geometric algebra versor treatment, it is convenient
to discuss the orthogonal matrix representation of the projective transforma-
tions in the Plücker space R

3,3. Since these matrices specify how the basis
vectors transform, they help to specify the corresponding versors. This section
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is mostly standard background material, though the perspectivity of Sect. 4.3
is an uncommon primitive collineation. Since it may be confused with a per-
spective projection, we decided to expound its geometry in some detail.

4.1. Orthogonality of R3,3 Matrices

As we have seen, special projective transformations on R
3 can be represented

as orthogonal transformations on R
3,3. A transformation X acting on vectors

of R3,3 is orthogonal if it preserves the inner product of R3,3: for any vectors
� and m, we should have that � · m = (X�) · (Xm). Expressing this in terms
of matrices involves the metric matrix [M ]: for all � and m, [�]�[M ]�[m] =
[�]�[X]�[M ]�[X][m]. Using [M ]� = [M ]−1 = [M ], this yields

X orthogonal matrix for R
3,3 ⇐⇒ [M ] [X]� [M ] [X] = [I] (16)

as orthogonality condition.

4.2. The General Linear Transformation in V 4

Applying the general transformation
[

A b
c� δ

]
of V 4 to the elements of a

line, the line representation itself transforms as well. Let us compute this for
a finite line with direction u passing through a point at location p:

[
u

p × u

]
=

[
p
1

]
�

[
u
0

]

�→
[

Ap + b
c�p + δ

]
�

[
Au
c�u

]

=
[

δAu + (c · p)Au − Ap (c · u) − b (c · u)
Ap × Au + b × Au

]

=
[

δ[A] − bc� −[A][c×]
[b×][A] det(A)[A]−T

] [
u

p × u

]
. (17)

This uses −p(c·u)+u(c·p) = −c×(p×u), and denotes the cross product by
the cross product matrix [c×], defined by [c×x] = [c×] [x]. Also, we used the
well-known transformation of a cross product: Ap×Au = det(A)A−T (p×u).

4.3. Perspectivities of R3 Represented in R
3,3

As we have seen, the block LU-decomposition of a general projective trans-
formation leads us to consider certain perspectivities of R

3 represented by

a matrix of the form: [P ] =
[

I 0
f� f0

]
. This [P ] has determinant f0, and

its sign cannot be changed by rescaling, so we must assume f0 > 0 to

map to an orthogonal transformation. We can rewrite [P ] =
[

I 0
f� f0

]
=

[
I 0
f� 1

] [
I 0
0� f0

]
, and absorb the final factor in the affine part of the

decomposition (it is an isotropic rescaling). This brings the perspectivity in
the standard primitive form [

I 0
f� 1

]
, (18)
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1/fu

u/(u · f)
O

focal plane

Figure 1. The effect of the perspectivity of Eq. (19) on
oriented lines. Only parts of the lines drawn, for clarity. All
planes through O are invariant (making O the ‘center’ of
the perspectivity) and all points on the plane through O
with normal vector f are invariant (making that plane the
‘axis’)

with as corresponding matrix in R
3,3:

[
I −f×

0 I

]
. (19)

This perspectivity in V 4 should not be confused with a perspective projec-
tion used in imaging. As its name implies, perspective projection is a non-
invertible transformation; in the standard matrix representation, perspective
projection looks like Eq. (18) but has a 0 in the (e0, e0) entry.

Considering the lines as basic elements, Eq. (19) is the transformation
executed on rays by a perfect lens at the origin having a focal plane with
orthogonal support vector 1/f , see Fig. 1. It refracts all lines in direction
u where they meet the invariant plane through the origin with normal f
(the ‘axis’ of the perspectivity), to run through their common focal point in
direction u in a parallel plane with reciprocal support vector f (that point is
at u/(u · f)). Considering the points on the original parallel lines of V 4 to be
traversed with equal speed, the focal point is reached infinitely slowly by the
transformed points (indicating that this is not physical refraction, since it
changes the ‘speed of light’ along the rays). A bundle of lines with a common
object point transforms to a bundle of lines with a common image point.

5. The Bivector Generators of Collineations

A projective collineation in 3D is represented by a 4 × 4 matrix acting on
V 4. There is a homogeneous degree of freedom; a mathematically natural
way to restrict this is by demanding that the determinant be equal to 1. This
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restriction implies that a nonsingular projective transformation is represented
as an element of SL(4), which has 15 degrees of freedom (DoF).

We now show that the special projective collineations of R3, which are
represented as special orthogonal transformations of R3,3, can be represented
as rotors (even versors R satisfying R R̃ = 1). We do so by explicitly specifying
the bivectors characterizing these rotors as the exponentials of bivectors. The
number of independent bivectors in R

3,3 is
(
6
2

)
= 15, precisely matching the

expected 15 degrees of freedom for the projective transformation. Therefore
the mapping between special projective collineations and bivectors is one-to-
one, giving the usual double cover by plus or minus the exponential of the
bivectors.

The common way to partition the set of possible transformations
into geometrically meaningful primitive transformations is as: translations
(3 DoF), rotations (3 DoF), perspectivities (3 DoF), scalings of the axes
(a.k.a. dilations, 3 DoF). The remaining 3 DoF are often assigned to shears;
since there are actually 6 DoFs in shears, this is commonly done by an asym-
metrical convention (using upper triangular 3 × 3 matrices encoding ‘skew-
ings’). We will touch upon shears, but then ultimately prefer the 3 DoF
‘squeezes’ (Lorentz transformations) to encode the remaining degrees of free-
dom.

This section thus establishes the correspondence between the geometric
taxonomy of the primitive transformations and their bivector representation.
Figure 2 lists the 2-blades formed from these bivectors, the caption specifying
the effect they have when their exponentials are used as rotors, encoded by
their characteristic parameters. Figure 2 is a guide to the text in the following
subsections, notably to keep track of standardized signs of the bivectors of
the transformations.

5.1. Translation

Let us find the rotor for the translation over t = τe1. This translation replaces
e0 by e0+τe1 in V 4, and its action on

∧
2V 4 is fully defined by specifying what

its effect is on the six basis lines of the bivector basis of Eq. (3). You may glean
these effects from Eq. (17) (with [A] = [I], [c] = [0], [b] = e1, δ = 1). But we
can also specify these effects directly: e0�e1 should become (e0 + τe1)�e1,
and hence remain invariant; e0�e2 should become (e0 + τe1)�e2; and e0�e3
should become (e0 + τe1)�e3. The ideal lines should remain unchanged.

This in turn is mapped by the embedding Em ( ) to R
3,3. To represent

the translation over τe1, we would therefore like to find a rotor Vτ 1 such that:

Vτ 1 ν02 Ṽτ 1 = ν02 + τν12 ↔ (e0 + τe1)�e2 (20)

Vτ 1 ν03 Ṽτ 1 = ν03 − τν31 ↔ (e0 + τe1)�e3, (21)

while leaving the other null basis vectors invariant. The lack of trigonometric
or hyperbolic functions signifies the use of a null 2-blade, see “Appendix A”.
It is easy to verify that the rotor giving the correct transformation is

τe1-translation rotor: Vτ 1 = 1 − 1
2
τν31 ∧ ν12 = exp

(
−1

2
τBτ 1

)
,
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ν01 ν02 ν03 ν23 ν31 ν12

ν01 0 −f3 f2 −π1 −σ21 −σ31

ν02 f3 0 −f1 −σ12 −π2 −σ32

ν03 −f2 f1 0 −σ13 −σ23 −π3

ν23 π1 σ12 σ13 0 τ3 −τ2
ν31 σ21 π2 σ23 −τ3 0 τ1
ν12 σ31 σ32 π3 τ2 −τ1 0

Figure 2. The correspondence of bivectors to primitive
transformations for 3D projective geometry. The fi denote
perspective transformations in direction ei, the τi transla-
tions in direction ei. The πi denote pinches in the ei direc-
tion [stretching the orthogonal vectors by exp(−πi)]; we ulti-
mately prefer to combine three of those to produce true scal-
ing rotors. The σij denotes a shear of ei in the ej-direction;
we ultimately prefer to combine the shears over σij and σji,
to produce rotations as differences of shears, and squeezes
(Lorentz transformations) as sums of shears. The signs are
denoted as follows: for row I with null vector νI , column J
with null vector νJ , with table entry εIJ , the 2-blade νI ∧νJ

is to be used in the rotor V = exp(− 1
2εIJ (νI ∧νJ)) (note the

minus sign!), mapping x to V x Ṽ

where we introduced the e1-translation null bivector Bτ 1:

e1-translation bivector: Bτ 1 = ν31 ∧ ν12,

You can verify this by Eq. (29) in “Appendix A”, or use a direct computation,
for example:

Vτ 1ν02Ṽτ 1 =
(

1 − 1
2
τν31 ∧ ν12

)
ν02

(
1 +

1
2
τν31 ∧ ν12

)

= ν02 + τν02 · (ν31 ∧ ν12) − 1
4
τ2(ν31 ∧ ν12) ν02 (ν31 ∧ ν12)

= ν02 + τν12 + 0.

A general translation can be composed using similar bivectors for the
e2 and e3 direction, achieved by cyclic permutation of the indices: Bτ 2 =
ν12 ∧ ν23 and Bτ 3 = ν23 ∧ ν31. Since these bivectors all commute, so do the
resulting rotors. As a consequence, we can add their bivectors, so a general
translation over t = τ1e1 + τ2e2 + τ3e3 is achieved by the rotor:

Vτ (t) = exp
(

1
2
τ1 ν12 ∧ ν31 +

1
2
τ2 ν23 ∧ ν12 +

1
2
τ3 ν31 ∧ ν23

)
.

Characterizing fully within R
3,3, we can define t ≡ Em (e0�t) = τ1ν01 +

τ2ν02 + τ3ν03, and Vτ (t) = exp(− 1
2 t · H) (where H = ν23 ∧ ν31 ∧ ν12, the

horizon trivector, see Sect. 7).
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5.2. Perspectivities

The perspectivity of Eqs. (18) and (19) works as in Fig. 1: perspectivity
transforms an improper point (the direction u) into a proper point in the
same direction, with a scaling factor to make all directions end up in the
same focal plane. A perspective transformation for focal length 1/f in the e1-
direction has the effect in V 4 (or homogeneous coordinates) to change every
occurrence of e1 to fe0 + e1, and to leave the other basis vectors invariant.

In
∧
2V 4, this affects the ideal basis lines containing e1, which are e3�e1

and e1�e2, changing them to −(fe0+e1)�e3 and (fe0+e1)�e2), respectively,
but it affects none of the other basis lines. Therefore we are looking for a rotor
in R

3,3 that has the effects:

Vf 1 ν31 Ṽf 1 = ν31 − fν03 ↔ −(fe0 + e1)�e3 (22)

Vf 1 ν12 Ṽf 1 = ν12 + fν02 ↔ (fe0 + e1)�e2 (23)

Checking the desired scaling factor to correspond to the specific perspective
change, we find that we should use as actual rotor

fe1-perspective rotor: Vf 1 = exp
(

−1
2
fBf 1

)
= 1 − 1

2
fBf 1,

with

e1-perspective null bivector: Bf 1 = ν03 ∧ ν02.

We can parameterize a general perspective transformation by a vector f , with
each of its components the focal length in the corresponding direction. Since
the individual rotors commute, we can add their bivectors, so that the general
perspective rotor is:

Vf = exp
(

1
2
(f1 ν02 ∧ ν03 + f2 ν03 ∧ ν01 + f3 ν01 ∧ ν02)

)
.

Characterizing fully within R
3,3, we can define f = Em

(
(e0�f)�) = f1ν23 +

f2ν31 + f3ν12, and Vf = exp(12f · O) (where O = ν01 ∧ ν02 ∧ ν03, the line
bundle at the origin, see Sect. 7).

5.3. Shearing

A shear (a.k.a. skew) is like sliding a pack of cards: the higher the card
(in a specified direction) the more it needs to move (in another specified
direction), see Fig. 3a. Shearing is a fairly involved transformation: there
are six elementary shears (on an orthonormal basis: 3 choices for the first
direction, and for each of those 2 other directions).

The null 2-blade Bσ = ν12 ∧ ν02 produces a shearing transformation.
Since Bσ

2 = 0, using Eq. (29) the action of the rotor Vσ = exp(−σ32Bσ/2)
affects the null basis as follows:
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e2

e3
σ32

e2

e3

φ

e2

e3

λ

(c)(b)(a)

Figure 3. Area preserving transformations in the e2�e3-
plane: a a shear, b a rotation from two similar shears, c a
squeeze from two opposite shears (‘scissor shears’ in [4])

Vσν01/Vσ = ν01,

Vσν02/Vσ = ν02,

Vσν03/Vσ = ν03 + σ32 ν02 = Em (e0�(e3 + σ32e2)) ,

Vσν23/Vσ = ν23 = Em (e2�(e3 + σ32e2)) ,

Vσν31/Vσ = ν31 − σ32 ν12 = Em ((e3 + σ32e2)�e1) ,

Vσν12/Vσ = ν12.

Since all these relationships are reducible to e3 �→ e3 + σ32e2 in V 4, they
indeed specify the shear of the e3 direction into the e2-direction, over
σ32. In terms of e2 and e3, the 2-blade can be characterized as Bσ =
M [Em (e0�e3)] ∧ Em (e0�e2) (for M [ ] see Eq. (15)).

There are six basic shears; to specify them we can use σij for the amount
of shear of the ei-direction into the ej direction. Note that the order mat-
ters, swapping the indices does not merely produce a change of sign! The
appropriate bivectors are listed in Fig 2.

5.4. Rotation

The rotation bivector is a bit more involved. We view a rotation as two
related shears in the same plane, with the same direction. The orthogonality
conditions on the transformation automatically introduce a proper scaling
to the transformed vectors to preserve the transformed spanned area, see
Fig. 3b.

We now show that the bivector Bφ23 for a rotation in the e2�e3 plane
is:

Bφ23 =
1
2
(ν02 ∧ ν12 − ν03 ∧ ν31) =

1
2
(ε2 ε3 − ε̄2 ε̄3)

Bφ23 is the difference of two 2-blades; such structure is a generic pattern of
construction for a natural bivector basis of a balanced algebra; it was exposed
in [1], and also employed in [4]. This Bφ23 is not a blade, as we can tell from
its square: B2

φ23
is not a scalar (as we would expect for a 2-blade, see [11]),

but of the form scalar plus quadvector:
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B2
φ23

= −1
2
(1 + ν02 ∧ ν12 ∧ ν03 ∧ ν31).

However, one may verify that B3
φ23

= −Bφ23 . The algebraic properties of
Bφ23 therefore still allow a grouping into trigonometric functions using Eq.
(26) in “Appendix A”:

eφBφ23 = 1 + sin(φ)Bφ23 +
(
1 − cos(φ)

)
B2

φ23
.

Vectors commuting with Bφ23 are unchanged by the action of this rotor in
the sandwich product. But a vector b not commuting with Bφ23 (and so ‘in’
Bφ23 , such as ν02 or ν12) may be verified to satisfy the identities

Bφ23 bBφ23 = 0 and B2
φ23

b + bB2
φ23

= −b.

The non-invertibility of Bφ23 means that the latter is not implied by the
former. These identities affect the expansion of the application of the rotor
to such a vector b, as follows [writing B = Bφ23 , and c = cos(φ) and s = sin(φ)
for short]:

e−φB b eφB

= (1 − sB + (1 − c)B2) b (1 + sB + (1 − c)B2)
= b − s(Bb − bB) + (1 − c)(B2b + bB2) − s2BbB

−s(1 − c)(BbB2 − B2bB) + (1 − c)2B2bB2

= cos(φ) b + sin(φ) b⊥, (24)

where we introduced a B-associated vector to b, namely b⊥ = bB − Bb.
(Specifically for this bivector Bφ23 one may compute: ν⊥

02 = ν03 and ν⊥
03 =

−ν02 and ν⊥
31 = ν12 and ν⊥

12 = −ν31, specifying what happens to all vectors
linearly dependent on these four.)

Equation (24) shows that exp(−φBφ23) is the rotor for a rotation
parameterized by φ, leaving the vectors commuting with Bφ23 invariant.
With the signs and magnitude of Bφ23 as chosen, the rotation is posi-
tive in the usual sense: ν02 �→ cos(φ)ν02 + sin(φ)ν03 in R

3,3 transfers to
e2 �→ cos(φ)e2 + sin(φ)e3 in V 4 (and similarly for e3). Note that this rotor
employs the full rotation angle φ in the exponent, rather than the required
half-angle characterization of rotation rotors (quaternions) in the geometric
algebra of R3.

One can derive similar bivectors Bφ31 and Bφ12 to rotate in the other
coordinate planes, by cyclic permutation of the indices. In general, a rotation
over an arbitrary plane with normalized 2-blade I = b23e2 �e3 + b31e3 �
e1 + b12e1�e2 (so that b223 + b231 + b212 = 1) in the 3D Euclidean space has
as its corresponding bivector B = b23Bφ23 + b31Bφ31 + b12Bφ12 , and rotor
exp(−φB).

5.5. Squeeze (Lorentz Transformation, Scissors Shear)

The constituent 2-blade parts of the rotator bivector are pure shears; a rota-
tion combines an e2 axis shear and an e3-axis shear in the same direction.
Changing the sign of their combination gives a volume-preserving ‘squeeze’
operation [13]. (In [4] this is called a ‘scissors shear’.)
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The pattern of derivation is very similar to that for the rotation, with
some sign changes leading to a substitution of hyperbolic functions for
trigonometric functions. Since this derivation is not very long, we give it
again explicitly.

The bivector Bλ23 for a squeeze in the e2�e3 plane is:

Bλ23 = −1
2
(ν02 ∧ ν12 + ν03 ∧ ν31) =

1
2
(ε2 ε̄3 − ε̄2 ε3)

Bλ23 is the difference of two 2-blades; such structure is a generic pattern of
construction for a natural bivector basis of a balanced algebra; it was exposed
in [1], and also employed in [4]. This Bλ23 is not a blade, as we can tell from
its square: B2

λ23
is not a scalar (as we would expect for a 2-blade, see [11]),

but of the form scalar plus quadvector:

B2
λ23

=
1
2
(1 + ν02 ∧ ν12 ∧ ν03 ∧ ν31).

However, one may verify that B3
λ23

= Bλ23 . The algebraic properties of Bλ23

therefore still allow a grouping into hyperbolic functions using Eq. (28) in
“Appendix A”:

eλBλ23 = 1 + sinh(λ)Bλ23 +
(
cosh(λ) − 1

)
B2

λ23
.

With suitable sign changes one then computes fully analogously to Eq. (24)
that on a vector b not commuting with B = Bλ23 , the rotor action is:

e−λB b eλB = cosh(λ) b + sinh(λ) b⊥, (25)

where we introduced a ‘B-associated’ vector to b, namely b⊥ = bB − Bb.
(Specifically for this bivector Bλ23 one may compute: ν⊥

02 = ν03 and ν⊥
03 = ν02

and ν⊥
31 = −ν12 and ν⊥

12 = −ν31, specifying what happens to all the vectors
linearly dependent on these four.)

Equation (25) shows that exp(λBλ23) is the rotor for a squeeze parame-
terized by λ, leaving the vectors commuting with Bλ23 invariant. Its result
on a typical element ν02 �→ cosh(λ)ν02 + sinh(λ)ν03 relates to the usual
transformation e2 �→ cosh(λ)e2 +sinh(λ)e3 that one would associate with a
positive Lorentz transformation at the origin in the e2�e3-plane, see Fig. 3c.

One can derive similar bivectors Bλ31 and Bλ12 to squeeze in the other
coordinate planes, by cyclic permutation of the indices. In general, a squeeze
in an arbitrary plane with normalized 2-blade I = b23e2�e3 + b31e3�e1 +
b12e1�e2 (so that b223 + b231 + b212 = 1) in the 3D Euclidean space has as its
corresponding bivector B = b23Bλ23+b31Bλ31+b12Bλ12 , and rotor exp(−λB).

5.6. Pinching: Not Quite Scaling

We saved the directional scaling to last, since this transformation is the most
involved to represent. Here the determinant constraint will lead to an inter-
action of more elementary transformations to produce a desired scaling.

First, 2-blades capable of directional scaling should square to a non-zero
positive scalar, normalized to 1. For a scaling in the e1-direction, one might
think to use the 2-blade:

Bπ1 = ν23 ∧ ν01 = ε1 ε̄1.
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The corresponding rotor for an amount π1, which is

Vπ1 = e−π1Bπ1/2 = eπ1(ν01∧ν23)/2,

leaves all null basis elements unchanged except:

ν01 �→ eπ1ν01, ν23 �→ e−π1ν23.

The ν01 scaling seems as hoped for, and the ν23 scaling is obviously needed
to keep the inner product ν01 · ν23 invariant.

However, despite appearances, this rotor Vπ1 is not the scaling in the
e1-direction. Rather, by the transfer of matrices in Eq. (17), the R

3,3 matrix
diag(eπ1 , 1, 1, e−π1 , 1, 1) of this mapping of the basis vectors is the represen-
tation of the V 4-matrix diag(eπ1/2, e−π1/2, e−π1/2, eπ1/2), which is homoge-
neously equivalent to diag(1, e−π1 , e−π1 , 1). Therefore in its V 4 interpreta-
tion, the rotor Vπ1 leaves e1 invariant and simultaneously shrinks e2 and e3
both by e−π1 . This effect inspired the name ‘pinching’. We will argue below
pinching is a more natural choice for a primitive projective transformation
of lines than the traditional directional scaling used in a homogeneous point
representation.

5.7. Directional Scaling (or Dilation)

The e1-scaling in V 4, in which e1 �→ eγe1 while the other basis vectors remain
invariant, has matrix diag[eγ , 1, 1, 1]. Rescaling to unit determinant, this is
homogeneously equivalent to the matrix diag[e3γ/4, e−γ/4, e−γ/4, e−γ/4]. By
Eq. (17), it corresponds to the matrix diag[eγ/2, e−γ/2, e−γ/2, e−γ/2, eγ/2, eγ/2]
in R

3,3. This matrix transformation is equivalent to requiring:

ν01 �→ eγ/2ν01, ν02 �→ e−γ/2ν02, ν03 �→ e−γ/2ν03,

ν23 �→ e−γ/2ν23, ν31 �→ eγ/2ν31, ν12 �→ eγ/2ν12.

These transformations of the basis vectors thus determine the rotor for the
e1-scaling by eγ . Using the pinching results above, the coupled scaling of ν01
and ν23 by eγ/2 and e−γ/2, respectively, would be achieved by the 2-blade Bπ1

in the rotor exp(−γBπ1/4) = exp(γ ν01 ∧ ν23/4). We need to combine this
rotor with two more pinches in the e2 and e3 directions (involving analogous
2-blades Bπ2 = ν31∧ν02 and Bπ3 = ν12∧ν03) to perform the pure e1-scaling.
These 2-blades all commute, so they can be added to form the bivector of the
total scaling rotor. Therefore the pure e1-scaling by eγ is done by the rotor:

e1-scaling by eγ rotor: Vγ1 = exp
(
γ(ν01 ∧ ν23 − ν02 ∧ ν31 − ν03 ∧ ν12)/4

)
.

which can be written as S1 = exp(−Bγ1γ/2) using the e1-scaling bivector:

e1-scaling bivector: Bγ1 =
1
2
(ν23 ∧ ν01 − ν31 ∧ ν02 − ν12 ∧ ν03)

Note that while Bπ
2
i = 1 for the pinching 2-blades, we have Bγ

3
1 = (7Bγ1 −

3I6)/4 for the scaling bivector (with I6 the pseudoscalar of R3,3), so that Bγ1
is not a 2-blade, and also not of the next simplest bivector form satisfying
Bγ

3
1 = Bγ1 studied in the appendix.

A scaling in an arbitrary direction can be characterized by a total log-
arithmic gain vector g = γ1e1 + γ2e2 + γ3e3. Thus arbitrary scaling may be
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achieved by multiplying the rotors for the scalings in the directions of each
of the axes. Since the bivectors occurring in the exponential all commute, we
can group them:

g = exp((γ1 − γ2 − γ3) ν01 ∧ ν23

+ (−γ1 + γ2 − γ3) ν02 ∧ ν31

+ (−γ1 − γ2 + γ3) ν03 ∧ ν12)/4).

This is rather involved! For lines, pinches appear more natural than scalings,
since the bivectors of pinches are the simpler 2-blades in R

3,3. But we should
mention that in the R

4,4 framework of [4], which operates on points and
planes as geometric primitives, scalings are the exponentials of 2-blades like
e1ē1 in terms of their basis vectors e1 and ē1.

6. Other Transformations of Oriented Lines

6.1. Non-Projective Orthogonal Transformations of Lines

It is possible to perform transformations of 3D oriented lines that are orthog-
onal transformations of R3,3, yet do not correspond to projective transforma-
tions of 3D space.

A concrete example is the versor V1 = ν01 ∧ ν23 = ε1 ε̄1 (not to be
confused with pinching, which is the exponent of such an element). Its trans-
formation of the basis vectors by x �→ V1 xV −1

1 = V1 xV1 establishes that its
matrix is diag[−1, 1, 1,−1, 1, 1]. Its determinant is equal to 1, and it is easy
to check that this is an orthogonal matrix, by Eq. (16).

It is not possible to find a projective transformation of V 4 of which this
is the embedding. This is easily seen by inspecting the lower right block of this
matrix, which has determinant −1. From Eq. (17) we observe that for a block
diagonal projective transformation of V 4 transferred to lines, that lower right
block should have determinant det(det(A)[A]−T ) = det(A)2 > 0. Therefore
V1 is a counterexample to the idea that all special orthogonal transformations
of R

3,3 might represent projective transformations of V 4. A distinguishing
characteristic of V1 is that V −1

1 = V1 while Ṽ1 = −V1. This even versor V is
therefore not a rotor, since V1Ṽ1 �= 1.

In the previous section, we have shown that all rotors in R
3,3 (writ-

ten as exponentials of bivectors) are the representatives of special projec-
tive collineations of V 4, and indeed can represent all of those transforma-
tions. Therefore all we need for our representation of (special) projective
collineations is the rotor component of the collection of even versors of R3,3;
that component of course also contains the identity transformation.

V1 = ε1ε̄1 is an even versor that is not a rotor, yet an orthogonal
transformation. Looking at the orthogonal group O(3, 3) more closely, it
consists of four connected components. An overview of these components
and their coset characterization is given in Fig. 5. The component classi-
fications are based on the sign of the determinant of the associated map
x �→ V [x] = (−1)grade(V )V x V −1, and the quantity V Ṽ , which must be
equal to +1 for a rotor. Using these criteria, the versors can be classified in



L. Dorst

even or odd (based on the sign of the determinant), and on whether they
contain an odd or even number of vectors with negative signature (based on
the sign of RR̃). A typical example of each component is given.

The component containing the identity transformation is isomorphic
to SO(3, 3)—this is the component of elements that can be represented by
rotors (and hence is isomorphic to Spin+(3, 3) in the notation of [9]). Another
significant component is the one used to represent the special correlations,
the right coset of SO(3, 3) containing the versor ε̄1, our example of Eq. (14).
The operation introduced above, generated by the versor ε1ε̄1, is in neither
of these components of O(3, 3); this transformation is in the right coset of
SO(3, 3) by the versor ε1ε̄1. And there is a fourth component, the right coset
of SO(3, 3) by ε1. The practical use of the last two components is not yet
clear.

6.2. Upon Reflection

The representation of reflections in R
3,3 is more subtle than one would expect.

A first naive implementation would be to take the spatial reflection
of points, which is an affine transformation with negative determinant, and
embed that as a transformation of lines. For simplicity, consider a reflec-
tion in a plane through the origin represented in 3D by the orthogonal
3 × 3 matrix [A] with determinant −1. The embedding is, by Eq. (17),
diag(δ [A],det(A) [A]−T ) = diag(δ [A],−[A]). This matrix can only represent
an orthogonal transformation if δ = −1, by Eq. (12). However, the R

3,3

mapping of lines is then diag(−[A],−[A]) with det(A) = −1; this map is
indistinguishable from the embedding of the mapping ‘−[A]’ in 3D, which
is an orthogonal transformation with determinant +1, and hence a rotation
(over π radians due to its eigenvalues 1 and −1). Thus the option of setting
δ = −1 fails to implement a reflection, and therefore we cannot represent
the reflection of 3D points as an orthogonal transformation on lines in R

3,3.
From the geometry of the reflection transformation, this impossibility is fully
understandable: the inner product between finite lines is equal to a Euclidean
volume; and under a Euclidean reflection, this volume changes sign.

So constraining a reflection of lines to be the transfer to R
3,3 of a reflec-

tion of points in 3D (or V 4) does not lead to an orthogonal transformation.
Rather than revert to a possible non-orthogonal implementation of reflection
in R

3,3, we should consider what we actually want the effect of a reflection to
be, on lines. We would prefer the reflection to keep invariant certain geomet-
rical properties of the lines and their relationships. In particular, when we
reflect an object defined by facet planes with a distinguished inside/outside
direction, we desire to maintain this consistently in the reflection result, so
that we obtain a reflected object bounded by the reflected facet planes in a
properly oriented manner.

In R
3,3, a plane is represented as a field of lines, defined by a 3-blade

�1 ∧ �2 ∧ �3 of three pairwise intersecting lines in that plane (see Sect. 7
below). After the ordinary (point-based) reflection [A] in 3D treated above,
the lines acquire an orientation that makes their wedge product endow the
containing plane with an orientation opposite to what would be consistent
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Figure 4. Reflection of oriented lines in a plane, �i �→ �′
i: a

point-based, b line-based. With the line-based manner of b,
the orientation of the plane containing the lines reflects sen-
sibly

with the reflection of the normal vector of the original plane (see Fig. 4a).
Hence such a reflection would interchange the inside and outside of the
plane when used as a facet. To restore the relationship of the desired ori-
entation of the reflected plane to the outer product of the three reflected
lines, we should have defined a reflection that gives each the opposite ori-
entation of the point-based reflection (Fig. 4b). The latter transformation is
implemented in R

3,3 as multiplying by −1, so the desired line-based reflec-
tion transformation in R

3,3 (let us denote it by Â) should have matrix
[Â] ≡ −diag([A],det(A) [A]−T ) = diag(−[A], [A]). Since the lower right 3 × 3
matrix now has a negative determinant, this cannot be constructed as the
embedding of a transformation on 3D points (for which that determinant
is always positive as we reasoned above). This desired line reflection Â has
det([Â]) = −1, so Â might be an orthogonal transformation of R

3,3. But
since [M ] [Â]�[M ] [Â] = diag(−[I],−[I]) �= diag([I], [I]), it is not. Therefore
the desired line reflection is not in the orthogonal group O(3, 3) of Fig. 5,
and so the desired line reflection cannot be represented by a versor of R3,3.
Nevertheless, this line reflection is a legitimate linear outermorphism of R3,3,
and it is good to have it.

In the R
4,4 framework used for projective transformations in Goldman

[4], the spatial reflection [A] of points (and simultaneously of planes) can be
represented as an orthogonal transformation. For example, reflection in the
plane with normal e1, is done by R = e1ē1 (using Goldman’s basis unit vec-
tors for R4,4). Goldman calls R a rotor, though it is not (since R−1 �= R̃), but
at least R is a versor. This reflection [A] simultaneously reflects planes (so
that the inner product in R

4,4 is preserved), and hence [A] cannot be used for
an oriented projective geometry (which should covariantly preserve the sides
of planes). Therefore its versor nature is actually of limited use: one could not
use this versor on composite elements in a consistent orientation-preserving
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connected
components V Ṽ = 1 V Ṽ = −1
of O(3, 3)

special collineations
det(V ) = 1 ± rotor × 1 ± rotor × (ε1ε̄1)

Spin+(3, 3) ∼= SO(3, 3)
special correlations

det(V ) = −1 ± rotor × ε1 ± rotor × ε̄1
(including duality map M)

Figure 5. The classification of normalized versors into the
four components of O(3, 3), with a typical member indicated
for each class. Two components are useful for modelling 3D
projective geometry: Spin+(3, 3) ∼= SO(3, 3) and its right
coset by ε̄1

manner. As we have shown above, the more desirable oriented reflection can-
not be represented as a point-based operation, so oriented reflection seems
naturally absent from the R

4,4 framework.

7. Line-Containing 3-Blades of R3,3

Much can be said about the blades of R3,3 and their interpretation as sets of
lines. Since these blades are candidates for the natural geometrical primitives
with which to describe real world scenes in a manner well suited to the R

3,3

versor representation of the special projective transformations, this subject
is highly relevant to the theme of this paper. The essence of these blades
corresponds to the classical treatment of linear line complexes, linear line
congruences and the like, well described and illustrated in [10]. Descriptions
in terms of the geometric algebra of R

3,3 may be found in [7] and more
extensively in [6].

Since the present paper is long already, we will not give a full description
of all blades. We provide just some intuition for the richness of the blade
representation by considering the 3-blades in

∧
3
R

3,3 containing lines. These
3-blades will also tell us how to re-represent the usual classical elements used
to describe objects in 3D projective geometry: points and planes.

An easy way to construct a 3-blade R containing lines is as the outer
product of three line representatives �1, �2, �3, so R = �1 ∧ �2 ∧ �3. Any linear
combination of these lines is then also contained in the 3-blade, and forms its
outer product nullspace (i.e., all x such that x ∧ R = 0). The null elements
among those are lines (they are in the intersection of the 3-blade and the
Klein quadric), and the collection of these lines can be used to depict the
geometric meaning of the 3-blade R in our 3D-space. We can also consider
the inner product nullspace of R; since it is identical to the outer product
nullspace of its dual, it is also called the dual interpretation of R. The lines
in the inner product nullspace of R intersect all three lines �1, �2 and �3.
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Figure 6. From the lecture notes of Hans Havlicek
(TUWien, with permission): a a regulus, b the two dual sets
of lines on a regulus

• For three mutually skew lines, the collection R is a regulus containing
those lines, see Fig. 6a. (A regulus is a ruled surface that is a hyperboloid
of revolution—a cooling tower of a nuclear power station—though in
general the hyperboloid may be affinely deformed to have an elliptic
principal cross section.) The dual in R

3,3 of a 3-blade is again a 3-blade;
in this case, the dual regulus is formed by all lines intersecting the three
lines. This dual regulus is somewhat easier to visualize than the direct
regulus. As point sets in 3D space, they are the same, see Fig. 6b.

• For three intersecting lines, their 3-blade is the bundle of lines passing
through the intersection point. This 3-blade is how a 3D point may
be represented in the geometric algebra of R

3,3. An example of such
a 3-blade is the origin blade O ≡ ν01 ∧ ν02 ∧ ν03. The 3-blade R of a
bundle is a null blade (i.e., R2 = 0). A bundle is self-dual: the only lines
intersecting all lines in the bundle are those also passing through the
intersection point.

• For three coplanar lines, the 3-blade is the field of lines consisting of all
lines in the common plane. This 3-blade is how we may represent a 3D
plane in the geometric algebra of R3,3. An example of such a 3-blade is
the horizon blade H ≡ ν23 ∧ ν31 ∧ ν12. The 3-blade of a field is a null
blade. A field is self-dual: the only lines intersecting all lines in the plane
are those in the plane.

• When one of the three lines intersects the other two, we obtain a special
case of line-containing 3-blades, the double wheel pencil [7,10]. Its dual
is also a double wheel pencil, and the sets of spatial points contained in
their lines are the same in both. The 3-blade of a double wheel pencil
is a null blade.

A full specification of how geometric algebra can re-encode practical projec-
tive geometry requires a full treatment of its blades. We leave this analysis
to another time; but we can already reveal that there are no quadrics among
these blades (though the quadric cross section of the regulus may offer oppor-
tunities to encode conics in 2D projective geometry).
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ν01 ν02 ν03 ν23 ν31 ν12

ν01 0 0 f2 −π1 −σ21 0
ν02 0 0 −f1 −σ12 −π2 0
ν03 −f2 f1 0 0 0 0
ν23 π1 σ12 0 0 0 −τ2
ν31 σ21 π2 0 0 0 τ1
ν12 0 0 0 τ2 −τ1 0

Figure 7. The correspondence of bivectors to primitive
transformations for 2D projective geometry in the e1 �e2
plane of a 3D space. Notation as in Fig. 2

8. Projective Geometry in Other Dimensions

The projective transformations on nD space can be represented, by means
of homogeneous coordinates, as matrices of SL(n + 1). Thus a projective
transformation has (n + 1)2 − 1 = n(n + 2) degrees of freedom. To represent
the special collineations precisely as the rotors characterized by bivectors in
some m-dimensional space offers m(m − 1)/2 degrees of freedom.

Matching the necessary condition of equality of these counts, up to
n = 100 the only integer solutions for (n,m) are: (1, 3), (3, 6), (10, 16), (22, 33)
and (63, 91). Concentrating on the lower dimensions, this solution set includes
our 3D case, related to the accidental isomorphism of SL(4) and Spin+(3, 3).
We now see why the isomorphism is called ‘accidental’: it does not generalize
to SL(n) for arbitrary n. The matching count also suggests a solution to
1D which we will briefly treat below. But for the practically useful case of
2D projective transformations, there is no solution. To treat 2D projective
geometry by means of rotors, we apparently have to see 2D geometry as a
special case of 3D geometry.

8.1. 2D Projective Geometry in R
3,3

We can consider projective transformations in 2D by concentrating on a sin-
gle plane in space, and considering the subset of transformations that keep
that plane and its normal direction invariant. We again limit ourselves to
projective collineations with positive determinant, rescaled to be +1. There
are then eight primitive transformations: two translations, two scalings, two
perspective transformations, one rotation and one squeeze. These transforma-
tions can be represented as orthogonal transformations of R3,3. The bivectors
of their rotors are as specified in Fig. 7.

8.2. 1D Projective Geometry in R
3,3 and R

2,1

Since 1D projective transformations can be represented in V 2 as SL(2), they
have 3 DoFs. In our terms, the degrees of freedom would be characterized as
one translation parameter, one perspectivity parameter, and one directional
scaling (or pinch). The remaining bivectors are as in the table of Fig. 8.

Here the use of R3,3 is overkill, even if the goal is to represent the trans-
formations as rotors. Indeed, there is an accidental isomorphism of SL(2)
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ν01 ν02 ν03 ν23 ν31 ν12

ν01 0 0 0 −π1 0 0
ν02 0 0 −f1 0 0 0
ν03 0 f1 0 0 0 0
ν23 π1 0 0 0 0 0
ν31 0 0 0 0 0 τ1
ν12 0 0 0 0 −τ1 0

Figure 8. The correspondence of bivectors to primitive
transformations for 1D projective geometry, (ab) using the
3D projective geometry representation in R

3,3. Notation as
in Fig. 2

with the three-dimensional group Spin(2, 1) which can do the representation
more compactly. Since projective geometry in 1D is of very limited practical
use, we do not explore this subject any further.

9. Conclusions

This paper is part of a research effort to identify a geometric algebra that
has projective transformations as versors. Such an algebra would permit their
encoding and application, in a structure-preserving manner, to suitable and
geometrically meaningful primitive elements and their compositions. A frame-
work of that kind would emulate the success of conformal geometric algebra
for Euclidean and conformal geometry, and could standardize and simplify
software for projective geometry, encoding all necessary projective opera-
tions, while making non-projectively-covariant (and hence non-geometrical)
constructions impossible. That would make such a geometric algebra a dedi-
cated and reliable programming tool.

We and others looking for this algebra have restricted ourselves to 3D.
As we have seen in Sect. 8, there are mathematical reasons: the mapping
between linear transformations of (n + 1)-D space and orthogonal opera-
tors in some well-chosen representation m-D space does not work in general.
Fortunately, we live in a 3D space, so this restriction does not limit the
applicability of the results unduly.

The present attempt uses the space of oriented lines (and more) R3,3 to
provide the primitive elements and operations upon them. This representa-
tion allows a geometrically meaningful metric to be introduced (based on the
Plücker relation), and the versors in the resulting algebra indeed implement
almost all relevant projective transformations. In particular, this representa-
tion implements as rotors the special projective collineations (‘special’ mean-
ing that their homogeneous coordinate matrix has positive determinant), and
as certain odd versors the special projective correlations (currently little used
in applications). Reflections of 3D space are not included—reflections change
the sign of the inner product, and are hence not orthogonal transformations
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issue Goldman et al. [4] Klawitter [6] this paper

a representational space projective(?) 4,4 projective 3,3 oriented 3,3

b standard sandwiching almost no yes

c versors employed some all all

d blades not developed line complexes line complexes

e 3D modelling by points, planes lines lines

f quadrics yes no no

g limitations V 4-map none (?) special only (?) special only

h projective correlations no yes yes

i bivector generators yes no yes

j oriented reflections no no yes

k n-D extendible? yes no no

l unusual constructions rotor-like non-invertible non-V 4-matrix
perspective ‘versor’ mappings operations
projections

Figure 9. Comparison of the frameworks for projective
transformations as versors

of R3,3, and therefore not versors. However, our analysis revealed a means to
implement an oriented reflection that preserves inside/outside relationships,
by transforming lines directly (and that is not reducible to an operation on
points or planes).

We decomposed the special projective collineations into primitive oper-
ations, and gave the bivector generators of the corresponding rotors of R3,3.
These primitive operations include the usual translation, rotation, scaling
along an axis, and shears. Perspectivity (or ‘ideal lensing’) was a bit unex-
pected, and we also identified relatively novel primitives like a ‘squeeze’ (aka
Lorentz transformations or scissors shears) and a ‘pinch’ of lines, both of
which assume a simple form in our framework. In this specificity, we expand
a recent treatment by Klawitter [6] of an unoriented R

3,3 to transcribe 4 × 4
homogeneous coordinate matrices into (freely rescalable) versors. This expan-
sion towards practically parametrized specification permits a comparison
with Goldman et al.’s [4] employment of R

4,4 to construct rotor represen-
tations of important projective transformations in computer graphics.

The main points of comparison of all three frameworks are listed in the
form of a table in Fig. 9. There are five main themes to organize and discuss
the various differences in approach or expressiveness. We indicate the labels
of the rows of the table they inform.

• Orientability (a, g, h) Does one consider arbitrary scaling of the homo-
geneous representation V 4 in which 3D points become 4D vectors? And
does one allow arbitrary scalings for lines as well? Whether we do or not
may sacrifice useful geometry in applications. Rays are oriented lines;
oriented lines can only be constructed consistently from points with the
same sign of their homogeneous scaling freedom (and even the magni-
tude of these factors has a meaning as the weight or mass of a point).

We have chosen to develop, as much as possible, an oriented pro-
jective geometry [12], since we know that it could be very convenient in
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applications to get the signs right by means of direct (algebraic) com-
putations, rather than fixing the signs afterwards.

By contrast, [6] treats both V 4 and R
3,3 as projective spaces,

with any non-zero scaling not affecting the 3D geometric interpretation.
This scaling preserves a surprising amount of the relevant mathematical
structure (such as the difference between collineations and correlations
which is essentially an even/odd parity), but we had to revisit some of
the results to process the consequences of the relevant orientation signs.

On the other hand, [4] does not treat this issue of signs in much
detail. Its authors appear to assume the standard practice in computer
graphics to embed points sensibly with positive signs, and interpret signs
of constructions as signed distances to the camera plane. More research
may be needed on the robustness of that approach; it appears to miss
opportunities in the encoding of orientation preserving reflections, which
cannot be based on point transformations, and so may not be in R

4,4.
• Orthodoxy of terms, signs and scaling factors (a, b, c, l) A versor is

a product of invertible vectors, a rotor is an even versor such that
R R̃ = 1. Both [4] and [6] allow themselves leeway in this standard-
ized use of terms, partly because of the sign issue above. This apparent
flexibility misses essential structure in the orthogonal transformations of
their representative space, and hence of the projective transformations
which may or may not be represented. Orientation signs are important
in practice!

Non-invertible transformations cannot be represented by versors
(or rotors), because they are not orthogonal transformations. Any
tweaking of definitions of the versor sandwiching product, or non-linear
non-covariant preparatory constructions to seemingly make this possi-
ble, leads to an unnecessary confusion. We wish those authors had not
reused existing terms in a different meaning.

In the present paper, we have chosen to specify precisely what
we can or cannot implement by means of the standard versors in our
representational algebra of choice, before we would even think of unusual
constructions.

As we mentioned, [6] treats R3,3 as a projective space, and for that
reason he permits himself to redefine the sandwiching product first to
neglect signs, and then to neglect even invertibility (using null versors
in a sandwiching product).

Unfortunately, [4] misuses the term rotors in general (using them
also for even versors that cannot be written in exponential form), and
moreover makes three different constructions of perspective projection
which are called rotors even though they are by design non-invertible.

• Modelling by blades (d, e, f) How well suited are the blades of the geo-
metric algebra of choice to model reality? None of the three approaches
answers this question fully yet, the focus has so far been on the opera-
tions themselves rather than the objects they operate on.

R
4,4 can use the vectors of V 4 as 3D points and the vectors of

V 4∗ as planes (though with an ungeometrical inner product in each of
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those constituent spaces, only the mixed inner product is interpretable).
While doing so has the advantage of corresponding directly to the cus-
tomary usage of homogeneous coordinate vectors, the meaning of the
composition into blades of these elements has not been spelled out fully.
As [4] indicates, some of the mixed bivectors appear to be usable as
quadrics (though composition of quadrics is not treated, and may not
be based on standard meet and join operations).

Both [6] and we refer to the literature on linear line complexes
(such as [10]) for the interpretation and usage of the blades of R3,3. But
while we know that these blades will transform covariantly under our
versors, how to use them in practical modelling needs to be spelled out
explicitly to see how easy these blades are to use in practice. For now, we
can only refer to [10]. At least R

3,3 does have points and planes as null
trivectors, to correspond to classical representations; yet the modelling
possibilities are presumably richer.

• Expressiveness and efficiency (c, f, h, i, j, k) Clearly the algebra of the
rotors of projective transformations based on R

4,4 in [4] is very similar to
ours, since these algebras ultimately generate the same transformations.
There are some subtle differences (rotations must be based on bivectors
satisfying B3 = −B in our case, in their case in the algebra R

4,4 the
corresponding primitives can be based on the 2-blades satisfying the
simpler B2 = −1). Goldman et al. [4] shows how to incorporate non-
oriented reflections in 3D as blade-based versors.

But the main difference between the R
3,3 and R

4,4 approaches is
the dimensionality. The

(
6
2

)
-dimensional bivector basis of R3,3 precisely

matches the 15 degrees of freedom of the 4 × 4 homogeneous coordi-
nate matrices classically representing the 3D projective transformations
(with the subtlety that we can only represent matrices with positive
determinant). In that sense R

3,3 fits like a glove. By contrast, the sensi-
ble approach of [4] to view the 4×4 matrices as linear mappings and then
use the general framework of [1] for balanced algebras to encode these
linear transformations by rotors requires many more dimensions to gen-
erate these 15-degrees-of-freedom transformations, and almost half of
its

(
8
2

)
-dimensional manifold of rotors remains unused. The orthogonal

transformations of R4,4 are simply too rich for 3D projective geometry,
and permit non-projectively-covariant expressions. Therefore the R

4,4

framework requires the checking on projective relevance of construc-
tions that one had hoped to make intrinsic by a picking a perfectly
suited algebra.

With respect to our oriented R
3,3 framework relative to the unori-

ented R
3,3 of [6], we already made the point above that oriented rays

are essential to applications. While much of the essential structure is
the same, the expressiveness and precision of maintaining the orienta-
tion signs makes the oriented framework preferable.

• Novel possibilities (e, j, l) The embedding of projective geometry into
geometric algebra is not done just for art’s sake. The richer formal struc-
ture might permit novel possibilities to include necessary but extraneous
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aspects of practical projective geometry in a structural and integrated
manner. We see signs of such possibilities in all three approaches.

Klawitter [6] showed how closely related correlations and
collineations really are in the R

3,3 framework. The underuse of corre-
lations in literature on machine vision and computer graphics perhaps
needs reconsidering. Klawitter [6] also shows how (for unoriented lines)
certain non-invertible operations may become tractable by modifying
the sandwiching product.

In the present paper, we found a way to implement consistently
oriented reflections using the line representation (though not as versors).
This implementation could structure and simplify the inside/outside
consistency tests in geometric modelling software.

With its much larger space R
4,4, [4] may offer many more possi-

bilities. The mixed bivectors from V 4 ∧ V 4∗ to represent quadrics may
be a mere glimpse of its capabilities. Still, the extreme overkill of the
dimensionality of the representational space and its geometric algebra
implies that there are going to be many non-projectively-covariant con-
structions, as we asserted above.4

In summary, our augmentation of the R
3,3 framework in [6] to treat

oriented projective geometry shows that R3,3 is essentially as expressive as the
core of the R

4,4 model in giving a structure-preserving rotor representation
of primitive projective collineations. R3,3 does so using a much smaller 6-D
rather than 8-D representational space (or 64-D rather than 256-D if one
counts the dimensions of the geometric algebra), and exhaustively employs
all rotors in that space. Even all these rotors of R3,3 do not suffice to generate
all transformations that may be of interest, as we found discussing spatial
reflection. In R

4,4, reflection is a versor; but R
3,3 offers the much better

possibility to define an oriented reflection directly on lines.
To conclude, we believe that oriented R

3,3 is a more natural candidate
framework for structure-preserving projective geometry than R

4,4. How con-
venient R

3,3 really is in practice will depend on the development of sensible
object representation methods using its blades.

10. Postscript: New Developments in R
3,3

After submission and approval for publication of this paper, at the Barcelona
AGACSE conference in July 2015 Lei Huang presented an extended math-
ematical analysis of R3,3. This work is currently available on arXiv [8]. By
augmenting the rotor concept, he apparently manages to incorporate the
anti-orthogonal oriented reflections into the framework, and to clarify the
components of the augmented O(3, 3) and their covers. Thus [8] appears to
confirm and complete the theoretical foundations for the R

3,3 approach to

4 Since we believe that the rather contrived non-covariant R
4,4 constructions of [4] for

perspective projection should be replaced by more classical covariant geometric algebra

projection operators, we have not investigated their R
3,3 counterparts in this paper.
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oriented projective geometry, resolving most of the weaknesses we mentioned,
while not affecting any of its strengths.
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Appendix A. Exponentials of Bivectors as Degree 2
Polynomials

A bivector squaring to a scalar is always a 2-blade, see [11]. The rotor of a 2-
blade can be organized into polynomials of degree 1 in the 2-blade, weighted
by linear, hyperbolic or trigonometric functions of the scalar strength of the
2-blade.

The bivectors we encounter in this paper may not be blades, and there-
fore do not necessarily square to a scalar. However, we find that all our bivec-
tors B (except the scaling bivector of Sect. 5.7) fall into one of three classes
for their normalized bivector B, namely B3 = B (sometimes even B2 = 1),
B3 = −B (sometimes even B2 = −1), or B2 = 0. The exponentials of such
bivectors can still be written in terms of trigonometric, linear or hyperbolic
functions of φ weighting polynomials of the bivectors, now of degree 2. We
show this property for the three cases.

• B3 = −B: The algebraic properties of B then allow for an obvious
grouping into trigonometric functions:

eφB = 1 +
1
1!

φB +
1
2!

φ2B2 +
1
3!

φ3B3 +
1
4!

φ4B4 + · · ·

= 1 +
1
1!

φB +
1
2!

φ2B2 − 1
3!

φ3B − 1
4!

φ4B2 + · · ·

= 1 + B2 +
(

1
1!

φ − 1
3!

φ3 + · · ·
)

B −
(

1 − 1
2!

φ2 +
1
4!

φ4 + · · ·
)

B2

= 1 + sin(φ)B +
(
1 − cos(φ)

)
B2. (26)

The special case for a blade B with B2 = −1 is the familiar eφB =
cos(φ) + sin(φ)B.

• B2 = 0: The algebraic properties of B then allow for a grouping into a
linear function of the parameter:

eτB = 1 + τ B. (27)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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• B3 = B: The algebraic properties of B then allow for a grouping into
hyperbolic functions.

eλB = 1 +
1
1!

λB +
1
2!

λ2B2 +
1
3!

λ3B3 +
1
4!

λ4B4 + · · ·

= 1 +
1
1!

λB +
1
2!

λ2B2 +
1
3!

λ3B +
1
4!

λ4B2 + · · ·

= 1 − B2 +
(

1
1!

λ +
1
3!

λ3 + · · ·
)

B +
(

1 +
1
2!

λ2 +
1
4!

λ4 + · · ·
)

B2

= 1 + sinh(λ)B +
(
cosh(λ) − 1

)
B2. (28)

The special case for a blade B with B2 = 1 is the familiar eλB =
cosh(λ) + sinh(λ)B.

We can summarize these cases for B3 = σB with σ ∈ {−1, 0, 1} as:

eαB = 1 + sσ(α)B + σ
(
cσ(α) − 1

)
B2,

with appropriate choice of sσ(α) and cσ(α) as trigonometric, linear or hyper-
bolic functions of the characteristic parameter α:

s−1(α) = sin(α), s0(α) = α, s1(α) = sinh(α),

c−1(α) = cos(α), c0(α) = 1, c1(α) = cosh(α).

Note that cσ(α)2 − σsσ(α)2 = 1 relates the two functions in all cases. When
B is a 2-blade, we have B2 = σ. In that case, some straightforward rewrit-
ing shows that the rotor sandwich product on a vector x can be expressed
compactly as:

e−αB x eαB = x + 2sσ(α) e−αB (x · B). (29)

The second term on the right is therefore the chord from x to its transformed
version.
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