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Abstract 
 

Purpose: In vivo electric conductivity (σ) values of tissue are essential for accurate 
electromagnetic simulations and Specific Absorption Rate (SAR) assessment for 
applications such as thermal dose computations in hyperthermia. Currently used σ-
values are mostly based on ex vivo measurements. In this study conductivity of human 
muscle, bladder content and cervical tumors are acquired non-invasively in vivo using 
MRI.  
Methods: The conductivity of 20 cervical cancer patients was measured with the MR-
based Electric Properties Tomography method on a standard 3T MRI system.  
Results: The average in vivo σ-value of muscle is 14% higher than currently used in 
human simulation models. The σ-value of bladder content is an order magnitude higher 
than the value for bladder wall tissue that is used for the complete bladder in many 
models. Our findings are confirmed by various in vivo animal studies from the literature. 
In cervical tumors, the observed average conductivity was 13% higher than the literature 
value reported for cervical tissue.  
Conclusions: Considerable deviations were found for electrical conductivity observed 
in this study and the commonly used values for SAR assessment, emphasizing the 
importance of acquiring the in vivo conductivity for more accurate SAR assessment in 
various applications. 

4.1 Introduction 

Accurate tissue electric properties (conductivity and permittivity) are critical for correct 
electromagnetic simulations and subsequent Specific Absorption Rate (SAR) 
assessment for various purposes, such as for safety assessment of  Magnetic Resonance 
Imaging (MRI) [1,2] and telecommunications [3] or for thermal dose computation in 

Hyperthermia Treatment Planning (HTP) [4]. SAR is related to conductivity (𝜎) as 
2

/ (2 )SAR E  , where E is the electric field and 𝜌 is the tissue density. Since many of 

the electric properties used in human models are based on ex vivo measurements of  
animal and human tissues [5,6], the accuracy of the in vivo SAR determination in specific 
applications may be questionable. Furthermore, a review of  those measurements from 
many studies showed a large variation between the reported electrical properties [7]. 
These variations can be explained by the use of  tissues of  various species and variations 
in measuring conditions (tissue temperature, in vivo, in vitro and ex vivo). Based on this 
disparity, we believe that there is sufficient reason to verify the validity of the current 
maintained in vivo electric property values. 

Due to practical and ethical reasons, human in vivo electric property measurements 
are scarce. Only easily accessible tissue types (e.g. skin, tongue) [5] and liver [8] have 
been measured in vivo. Therefore, MR based methods to measure electric properties 
non-invasively have recently received an increased attention. Electric Properties 
Tomography (EPT) [1,9–11] is such a non-invasive technique to reconstruct electric 

properties using 𝐵1
+ field measurements acquired by standard MR techniques. EPT has 
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been previously applied for in vivo electric property reconstruction of  human brain 
tissue [9,12,13] and liver [14,15]. In these studies good agreement was shown between 
the mean reconstructed values and probe measurements reported in the literature, and 
typically a standard deviation of  around 20% is observed. As in general the conductivity 
value of  tumors are elevated compared to healthy tissue, EPT is a potential tool for 
tumor characterization and has recently been utilized to reconstruct the conductivity 
values of  gliomas [16,17] and breast tumors [18,19]. One of  the limitations of  EPT is 
the accuracy at tissue boundaries due to kernel based implementations and use of  
transceive phase assumption, therefore, various studies have investigated these issues 
[9,20–22].  

In this work we utilize this technique to reconstruct the in vivo electric conductivity 
of  tissues in the pelvic region. These results can be used for more accurate SAR 
determination in hyperthermia treatment planning of  deeply seated pelvic tumors. 
Here, we report the conductivity of  muscle, bladder and cervical tumor as reconstructed 
using EPT, based on measurements performed at 3T MRI. Finally, we compare those 
values to conductivity values reported in the literature for those tissue types. 

4.2 Methods 

In vivo MR measurements were conducted on 20 patients with cervical cancer in 
accordance with the approval of the Medical Ethics Board. 18 patients were 
histopathologically diagnosed with squamous-cell carcinoma (SCC) of the cervix, one 
was diagnosed with adenocarcinoma and one with endometrial carcinoma. Peristaltic 
bowel motion during the MRI scan was reduced with the intravenous injection of 
Buscopan® (Boehringer Ingelheim GmbH). 

4.2.1     MR measurements  

All experiments were conducted on a 3T MR system (Ingenia, Philips Healthcare, The 

Netherlands) using a 26 channel torso receive array. The 𝐵1
+ amplitude map was 

acquired using the actual flip angle imaging (AFI) method [23] (3D, nom. flip angle = 
65°, TR1/TR2=50/290ms, 2.5x2.5x5mm, 16 slices, scan duration ≈ 6 min.). The 
transceive phase was acquired by a spin echo (SE) sequence (TR=1200ms, 
2.5x2.5x5mm, 16 slices, scan duration ≈ 6 min.) [24,25]. The receiver non-uniformity 
including the phase contribution of the receive array was eliminated by using the so-
called CLEAR technique [26]. The net effect of this technique is that the phase of the 
receive array is replaced by the receive phase contribution of the system’s birdcage body 
coil operated in reverse quadrature. To correct for eddy currents, the transceive phase 
was measured twice with opposing gradients [27]. Due to scan time limitations, a 5 mm 
isotropic resolution was used for 13 patients. 
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4.2.2.     EPT reconstruction 

The EPT reconstructions were performed using 𝐵1
+ amplitude measurements and the 

transceive phase approximation (𝜙+ ≈ 𝜙±/2) was applied as described in literature 
[1,10,25,27].  

Assuming that the dielectric properties are piece-wise constant, the tissue electric 
conductivity can be computed by the homogenous Helmholtz equation:  
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where 𝐵1
+ is the complex transmit field (𝐵1

+ = |𝐵1
+ |𝑒𝑖𝜙+

), 𝜀𝑟 and 𝜎 are the relative 

permittivity and conductivity of  the object of  interest, respectively, 𝜔 is the Larmor 

angular frequency, and 𝜇0 and 𝜀0 are the permeability and permittivity of  vacuum, 
respectively.  

The conductivity can be computed by 
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(7) 

where in the last part of  Eq.(2), the identity i i
e e i  

     was used [28]. 

The Laplacian required to evaluate Eq.(2) was computed by a kernel-based method 
as described in [27] using a kernel size of 7x7x5 voxels. This noise-robust kernel was 
used to reduce the effect of noise on the second derivative. The applied EPT method 
in this study was validated in a pelvic-sized phantom study in [11] where a good 
agreement was found between EPT based conductivity values and probe measurements 
(Model 85070C, HP/Agilent Corp, Santa Clara CA). 

4.2.3     Quantification of in vivo data  

The tumor volume was delineated by a radiation oncologist based on CT and T2-
weighted MRI images (TR/TE=5906/80ms, 0.70x0.90x3.00 mm). In vivo MR 
measurements were used to reconstruct the electric conductivity and the reconstructed 
values were compared to literature values. 

Average conductivity values were computed for all voxels inside a (manually) 
delineated volume-of-interest. All acquired slices have been used for the computations 
of the average and standard deviation of σ-values. To exclude the effect of boundary 
reconstruction errors related to EPT, the delineated regions excluded the boundaries 
where out-of-range σ-values were reconstructed. Furthermore, the first two pixels 
closest to the boundary were excluded and for a reliable reconstruction only tissues with 
a volume of at least 3.5x3.5x3.0cm3 were considered. At the boundaries the 
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reconstructed values can be twice as high as the expected values and are therefore 
excluded by excluding the first two pixels closest to the boundary. As a consequence 
the bladder and tumor volume of only ten patients were sufficiently large to be included. 
All patients met the inclusion criteria for muscle tissue reconstructions. Computations 
regarding EPT reconstruction were performed using MATLAB® (The Mathworks, 
Natick, MA, U.S.). 

4.3 Results 

In Figure 1a and 1b, an example is depicted of  the measured 𝐵1
+ amplitude and 

transceive phase maps of  a patient, respectively. The reconstructed σ-map based on 
Figures 1a and 1b is shown in Figure 1c. Figure 1c also shows the manual delineation 
of  muscle tissue to exclude EPT-related boundary artifacts from the measurement. The 
T1-weighted image of  the patient, acquired by the AFI sequence, is shown for 
anatomical reference in Figure 1d.  

4.3.1     Muscle 

In Figure 2 the electric conductivity (mean±std) of muscle of each patient is presented. 
The mean conductivity value of muscle found in this study is 0.93±0.26 S/m. In Figure 
2 the literature value as given by Gabriel et al. [6] is also shown, a value widely used in 
human models for SAR assessment in various applications. The mean value found in 
this study is 14% higher than the value reported in [6]. In Figure 3 the distribution of 
the data of the 20 patients is presented along with the mean value and the value based 
on [6]. 

4.3.2  Bladder content/Urine 

The reconstructed electric σ-values of  bladder content of  ten patients are presented in 
Figure 4. The interpatient variation is larger compared to muscle conductivity. The mean 
value based on this study is 1.76±0.42 S/m. The conductivity of urinary bladder wall 
tissue from the literature [5,29] is also shown, which is widely used for the whole bladder 
volume in human models [30–33]. Finally, the porcine urine conductivity value at 
128MHz, based on [34], is also depicted in Figure 4. 

4.3.3 Cervical tumor 

In Figure 5 the reconstructed electric σ-values of tumor tissues are depicted. The σ-
value of adenocarcinoma and endometrial carcinoma is slightly higher than for other 
tumor tissues. The conductivity of cervical tissue at 128MHz as reported in [6] is also 
shown in Figure 5. The mean value of all cervical tumors is 1.02±0.29 S/m which is 
13% higher than the σ-value reported in [6]. 
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Figure 1. 𝐵1

+ amplitude (a) and the transceive phase (b) of  a patient. The 
reconstructed conductivity map (c) based on (a,b) and the corresponding T1 
weighted image (d) acquired during the AFI sequence. The muscle delineation shown 
in black (c) excludes the EPT related boundary artifacts. The outline of  the tumor is 
shown in red (d). 
         

 

 

Figure 2. Muscle conductivity (mean±std) of  each patient and the literature value 
based on [6] at 128 MHz. 
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Figure 3. Distribution of  the 
muscle data of  20 patients. 

 

Figure 4. Bladder content conductivity based on 
this study and the literature value [6] based on 
bladder wall tissue. The last bar represents the 
conductivity value of  porcine urine reported in 
[34]. 

 

 

 

Figure 5. Cervical tumor σ-values observed in this study for squamous-cell 
carcinoma, adenocarcinoma and endometrial carcinoma compared to literature 
value. 
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Figure 6. a) An overview of  the available literature data at 100MHz and 128MHz for 
the conductivity of  muscle along with the mean value based on this study. b) The 
literature data extrapolated to 37ºC by adjusting the conductivity values by 2%/ ºC. 
The horizontal line represents the median values of the ex vivo/in vitro data or the in 
vivo data. 

 

4.4 Discussion  

We have presented in vivo electrical σ-values as reconstructed by the EPT method based 

on 𝐵1
+ data. The presented values correspond to σ-values at 128MHz as this is the 

Larmor frequency of  a 3T MR system.  
Since current implementations of  EPT might show error artefacts at tissue 

boundaries, these regions have been excluded from the calculation of  the mean 
conductivity. However, the performance of  EPT of  relatively large tissue regions is 
reliable as was demonstrated in pelvic-sized phantom experiments in [11] and brain 
studies [9,10,25]. Furthermore, we applied the transceive phase approximation, which 
was shown to hold for the pelvis anatomy in [11]. The standard deviation observed in 
this study and generally observed in EPT in vivo studies is due to the numerical 
implementation of  the method and the heterogeneity of  biological tissue. For instance, 
derivative operators act on typically noisy B1 data which together with the transceive 
phase approximation introduce around 20% standard deviation within a sample volume.  

Various studies have focussed on clinical implementation of  new approaches 
increasing the accuracy by using multi transmit channel systems or avoiding derivative 
operators [9,20,35,36]. However, the close agreement between the reconstructed values 
of 20 patients included in this study demonstrates the high reproducibility of the 
reconstructed conductivity values. Furthermore, we had repeat measurements available 
for three patients as they underwent a follow up MR scan after the treatment. The mean 
reconstructed muscle conductivity values in these three cases deviated less than 5% 
from the initially reconstructed conductivity values confirming the high reproducibility. 
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In general EPT is able to reconstruct the permittivity values as well. However, the 
reconstruction accuracy varies with field strength as shown earlier by van Lier et.al [12]. 
It was shown that the permittivity reconstruction in vivo is most accurate at 7T. Due to 
the limited accuracy of permittivity reconstruction at 3T we have focused on 
conductivity reconstruction only, since the acquisition of the latter contributes more 
substantially to more accurate SAR assessment. This was shown by Restivo et.al. [37] 
for tumor SAR assessment at 7T MRI and in deep hyperthermia studies in [4,38–40]. 

Currently, most electric property values presented in overviews like Gabriel et al. 
[7] are measured under different measurement conditions, hence report a large variance 
in values. We have compared σ-values reported in this study to the ones reported in the 
literature for the relevant frequency range, and included literature data available from 
animal studies at around body temperatures and human data at any temperature 
measured in vivo, in vitro or ex vivo. 

Literature data are mostly presented in tables at distinct frequencies or in graphs. 
The latter necessitate estimation of  σ-values at intermediate frequencies by 
interpolation. We have chosen to consider only studies which presented data for muscle 
tissue at 100MHz. In addition, we have included literature data at 128MHz (ie. Larmor 
frequency for 3T proton MRI imaging) if  this was explicitly given or if  Cole-Cole 
parameters were reported allowing computation of  the value at 128MHz. In general, 
frequency dependence of  tissue conductivity can be described by a Cole-Cole equation 
[41]. 

4.4.1 Muscle 

Comparison of  our measured values to values in the literature is challenging as 
conductivity measurements of  human muscle are reported in just two studies [42] [43]. 
In [42], measurements were performed between 1 and 2 hours after excision at a 
temperature between 23-25°C. No information regarding measuring conditions is 
provided in [43]. Note that the currently used conductivity value for muscle, based on 
[6], is of  ovine origin, measured ex vivo (at 37°C), and within 2h after the animal is 
sacrificed. A larger overview of  literature data for muscle tissue of  different species and 
obtained both in vivo and ex vivo is depicted in Figure 6a. In Figure 6a we have depicted 
the median of  the reported σ-values in [44–46]. All other values shown in Figure 6a are 
mean values as reported in the corresponding studies [47–51]. In Figure 6b the 
temperature dependency of  conductivity values is taken into account, therefore, the 
values of  Figure 6a are extrapolated to 37ºC by adjusting the values with 2%/ºC as 
reported in [52,53]. The mean value found in this study is depicted alongside literature 
values and appears to be in good agreement with the in vivo values reported in the 
literature for different species. 

Thus, based on σ-values reconstructed in this work, it is observed that the mean 
conductivity value of  all patients is approximately 14% higher than the value reported 
in [6]. These findings are in agreement with the animal studies presenting in vivo σ-values 
as shown in Figure 6. We therefore reason that the currently used value for muscle 
conductivity slightly underestimates the true in vivo conductivity value, however, the 
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reported value in [6] falls within the uncertainty range of  data presented in this study. 
Explanation for this 14% difference might be the higher blood and water content in 
living conditions. In [54] and [55] the effect on conductivity change after sacrifice was 
investigated for canine and porcine brain tissue, respectively, and a 15% conductivity 
decrease in the first 15 minutes after sacrifice was observed. Additionally, physiological 
difference between human and ovine muscle tissue may explain the difference between 
the literature values and the values observed in this study. We have, furthermore, noticed 
that the conductivity value reported for muscle in the table in [6] is around 14% higher 
than reported in the online databases [29,56]. We assume this discrepancy is introduced 
due to the use of  Cole-Cole parameters in the latter databases which might lead to a 
mismatch at some frequencies compared to the true measurements [6] on which these 
Cole-Cole parameters are derived from.  

Furthermore, [57] reported a decrease of  conductivity with age for various rat 
tissues, including muscle, in a frequency range of  130MHz to 10GHz, attributed to 
changes in cell sizes, structure, water content and the ratio of  free to bound water. Based 
on the Cole-Cole parameters presented in [57,58], the estimated σ-values at 130MHz of  
a new born and 70 days old rat muscle are 1.46 S/m and 0.68 S/m, respectively. In our 
study the patient age ranged between 30 and 86 years old, however, no significant age 
related conductivity differences were observed in the relatively small patient population 
included in the study.  

4.3.2 Bladder content/Urine 

There is a large discrepancy of  an order of magnitude between the often used 
conductivity for bladder volume in human models [30–33] and in vivo reconstructed 
conductivity based on EPT (Figure 4). No study reports human urine σ-values at 
128MHz, but one study [34] reports σ-values of  porcine urine using samples of 21 
animals (at 37°C). These yield, based on the reported Cole-Cole fitting parameters, a 
conductivity value of urine of 1.84 S/m at 128MHz, which is in good agreement with 
the human values found in this study (Figure 5). The reported root-mean-square-error 
of the fits was large [34], indicating a relatively large spread among samples. The results 
of the porcine study [34] were recently included in the online database [56], however, 
various SAR studies have been using the low conductivity value of  bladder wall tissue 
for the whole bladder. There is one study reporting that human urine conductivity at 90 
MHz is 1.81[S/m] [59] measured by an impedance probe (Model 85070C, HP/Agilent 
Corp, Santa Clara CA) which is in good agreement with our findings. 

4.3.3. Cervical tumor 

The only available data on human cervical tissue at 128MHz are found in [6] which is 
based on measurements (at 37°C) on excised non-specified (healthy or tumor) cervical 
tissue. The reported σ-value is 0.91 S/m. In contrast, the cervix conductivity value used 
in, for instance, Virtual Family models [56] and in the online available database [29] is 
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much lower: 0.75 S/m (at 128MHz). The σ-value at 128MHz based on [6] is shown in 
Figure 5.  

To the best of  our knowledge, no data are available regarding cervical tumor σ-
values at 128MHz. The only reports on cervical tumor conductivity are based on 
measurements at 4.8 kHz and 614 kHz [60], where no significant difference in average 
σ-values were observed between healthy and pathological cervix uteri. However, 
Trokhanova et al [60] did observe a higher electrical conductivity value within the zone 
of the external fauces. 

The average conductivity found in cervical tumors in this study is approximately 
13% higher compared to [6]. In our study however, we have not reconstructed the 
conductivity of healthy cervical tissue for comparison. We therefore have insufficient 
evidence to expect that our EPT technique is capable of differentiating this particular 
tumor type. We do not exclude of course that this technique is capable of differentiating 
other types of pelvic tumors provided the tumor is large enough and provided that this 
tumor type has conductivity properties which deviate more significantly from the 
surrounding normal tissue as was the case for the breast tumors evaluated by Katscher 
et al. [18]. A further comparison between healthy and diseased cervical tissue is 
warranted to enable interpretation of the observed differences. 

4.5 Conclusion  

This study indicates that the human in vivo electric conductivity values appear to deviate 
slightly from values provided in the present databases at the investigated frequency and 
conductivity values should therefore be evaluated in a larger in vivo study investigating 
more human tissues. The in vivo values reported in this study were in good agreement 
with available in vivo data from the literature. The presented results have an impact on 
power absorption computations, used among others for hyperthermia treatment 
planning, emphasizing the importance of using in vivo values when incorporating electric 
conductivity data into numerical models.   
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