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Deciding between multiple courses of action often entails an increasing need to do something as time passes - a
sense of urgency. This notion of urgency is not incorporated in standard theories of speeded decisionmaking that
assume information is accumulated until a critical fixed threshold is reached. Yet, it is hypothesized in novel the-
oretical models of decision making. In two experiments, we investigated the behavioral and neural evidence for
an “urgency signal” in human perceptual decision making. Experiment 1 found that as the duration of the deci-
sion making process increased, participants made a choice based on less evidence for the selected option. Exper-
iment 2 replicated this finding, and additionally found that variability in this effect across participants covaried
with activation in the striatum.We conclude that individual differences in susceptibility to urgency are reflected
by striatal activation. By dynamically updating a response threshold, the striatum is involved in signaling urgency
in humans.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Timing is extremely important when making decisions. This is
especially clear, for example, when driving in traffic: as you move
closer to the car in front of you, there is increasing pressure to hit
the brakes or switch lanes and overtake. The importance of this no-
tion of urgency has only recently been acknowledged in theoretical
models of decision making (Cisek et al., 2009; Deneve, 2012;
Ditterich, 2006a, 2006b; Drugowitsch et al., 2012; Frazier and Yu,
2008; Hanks et al., 2014; Ratcliff and Frank, 2012; Thura et al.,
2012).

Decision making is thought to involve a gradual accumulation of
evidence in favor of various courses of action (Forstmann et al.,
2016; Gold and Shadlen, 2007; Mulder et al., 2014). This accumula-
tion process continues until it crosses a response threshold - the
quantity of evidence required to trigger a decision - resulting in se-
lection of a single course of action. Conventional models of the deci-
sion making process have long assumed that these thresholds are
fixed, meaning that the amount of evidence required to trigger a de-
cision does not change during the course of a single decision (Brown
and Heathcote, 2008; Ratcliff, 1978; Usher and McClelland, 2001;
Vickers, 1979). In contrast, recent models have argued for a dynamic
adjustment of the threshold within single decisions to account for
the effects or urgency (Bowman et al., 2012; Churchland et al.,
2008; Cisek et al., 2009; Ditterich, 2006a, 2006b; Drugowitsch
gy, University of Amsterdam,

.

et al., 2012; Hanks et al., 2014; Hawkins et al., 2015; Ratcliff and
Frank, 2012; Thura et al., 2012).

A series of animal studies have given support for the notion that
the basal ganglia, and in particular the striatum, are involved in deci-
sion urgency. Striatal activation appears to play a critical role in the
execution of actions (Chevalier et al., 1985; Deniau and Chevalier,
1985), and in particular motor actions (Turner and Desmurget,
2010). The basal ganglia has been proposed to be involved in the reg-
ulation of thresholds within single decisions (Thura and Cisek, 2016;
Thura et al., 2014). In these studies, monkeys performing expanded
judgment tasks (Busemeyer and Rapoport, 1988; Irwin et al., 1956;
Vickers, 1979) became faster and less accurate, and had more vigor-
ous response movements, when decision urgency was induced.
Based on this, these authors proposed that basal ganglia plays a cen-
tral role in decision urgency (see also Choi et al., 2014; Haith et al.,
2012).

Additionally, the role of striatum in the context of explicit speed-
accuracy tradeoffs in perceptual decision making in humans has been
extensively documented (Forstmann et al., 2008; Ivanoff et al., 2008;
Van Maanen et al., 2011; Van Veen et al., 2008; Winkel et al., 2012).
For instance, the difference in the striatal BOLD signal between speed-
stressed and accuracy-stressed trials correlates with differences in the
response threshold parameter, both in terms of across-participant vari-
ability (Forstmann et al., 2008) and across-trial variability (VanMaanen
et al., 2011). However, the neural mechanisms that are involved in
within-trial threshold adjustment in human perceptual decision mak-
ing are largely unknown (but see Gluth et al., 2012, for a related study
in value-based decision making). Here, we hypothesize that striatal ac-
tivation additionally regulates the speed of responding during a decision
to accommodate a sense of urgency in humans.
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In this paper, we first verified that people will decrease the quan-
tity of evidence they are willing to accept as the time required to
make a decision increases (Experiment 1), following the predictions
of recent decision making models (Cisek et al., 2009; Thura et al.,
2012). To increase the average decision time, we experimentally ma-
nipulated the speed with which the stimulus appeared on the screen.
Secondly, we tested whether the striatum is involved in adjusting
the amount of evidence required during a trial (Experiment 2). Spe-
cifically, we hypothesized that an increased sense of within-trial ur-
gency observed in behavioral data would be reflected in increased
activation in the striatum. Moreover, although Experiment 1 was a
pure behavioral study and Experiment 2 was conducted while par-
ticipants were undergoing fMRI we expect the behavioral results to
replicate.

Materials and methods

Participants

Twenty-five participants (fourteen female, mean age: 22; SD:
2.5) participated in Experiment 1 for research credit or monetary
compensation. A separate group of twenty participants (eleven
female; mean age: 24; SD: 7) participated in Experiment 2, also for
research credit or monetary compensation. The University of
Amsterdam Ethics Committee approved the studies and all partici-
pants gave informed consent prior to participation in the experi-
ments. All participants had normal or corrected-to-normal vision.
In Experiment 1, two participants were excluded for failure to follow
task instructions. In Experiment 2, one participant was excluded
from the behavioral and fMRI analyses because they did not com-
plete the experiment. Three further participants were removed
from the fMRI analyses: one due to excessive head motion and two
due to excessive noise in the data.

Behavioral paradigm

In both experiments, participants made decisions between two op-
tions (henceforth “stacks”) that grew taller at different rates, by accu-
mulating increments of height (henceforth “bricks”) at discrete time
Fig. 1. Experimental paradigm for Experiments 1 and 2. On each trial, bricks fell on the left and ri
to infer the stack with the greater rate, and press a response button with the right or left index
steps (Fig. 1; cf. Brown et al., 2009; Hawkins et al., 2012a). At the begin-
ning of each trial, a fixation cross was presented in the middle of the
screen. Next, the stimulus onset was indicated by displaying an ini-
tial brick for each stack, and the stimulus was built up on the screen
in discrete time steps that were separated by an experimentally ma-
nipulated delay period (the “drop delay”). At each time step, there
was 80% chance for a brick to fall onto one stack, and 60% chance
for a brick to fall onto the other stack; we refer to these values as
the “drop rate” for the target and distractor stacks, respectively.
There was a maximum of 25 time steps per trial and trials ended as
soon as a response was given or the maximum number of time
steps was reached. The order of delays was randomized to have a
fully mixed experimental design. Participants were instructed to
press a button (left or right) with their index finger to indicate the
stack with the higher drop rate as quickly as possible. Since the dif-
ference in accumulation rate between the correct and incorrect
stacks was the same in each experimental condition, task difficulty –
operationalized as the difference in accumulation rates – was not
manipulated; only the overall speed of the task was manipulated.
The location of the correct stack was randomized across trials to
ensure that participants would not be biased to choose the left or
right response.

Experiment 1 comprised five drop delay conditions: 200ms, 400ms,
600ms, 800ms, or 1000 ms. Each condition consisted of 100 trials for a
total of 500 trials. Participants indicated their response with the “z” and
“m” keys on a standard PC keyboard. Accuracy feedback was provided
for 200 ms.

Experiment 2 comprised two delay conditions (200 ms and
400 ms), with 90 trials per condition and 20 null trials in which a fix-
ation cross was presented for the duration of the trial. The experi-
ment was split in two blocks of 100 trials with a brief break in
between, during which a new scan sequence was started. Each trial
started with a variable jitter (either 0 ms, 500 ms, 1000 ms, or
1500ms), followed by a fixation cross (200ms). Participants indicat-
ed their response by pressing a button box with either a left or right
index finger. Once a response was given, bricks continued to accrue
at the same pace until 25 time steps had elapsed, and feedback ap-
peared for 200ms. A new trial started every 12th second from the be-
ginning of the scan sequence.
ght stackwith different rates. Participantswere instructed to evaluate the stimulus buildup
finger.
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A difficult element of the task is the balance between speed and ac-
curacy: when only a few bricks have accumulated – early in the process
– the distractor (i.e., incorrect) stack may be taller than the target by
chance. Thus, the decisionmaker has to infer the probability of a chance
difference in stack height to avoid incorrect choices. This paradigm
allowed us to develop a cognitive model that quantifies the exact
amount of evidence supporting each choice, because all information
pertaining to the decision remained on screen at all times (Brown
et al., 2009; Busemeyer and Rapoport, 1988; Cisek et al., 2009;
Hawkins et al., 2012b, 2012c; Irwin et al., 1956; Kira et al., 2015;
Vickers, 1979).
Cognitive modeling of the evidence accumulation process

We developed a Bayesian model of decision making to quantify
the level of evidence for a choice at the moment of the decision.
This model, referred to as the Rate Difference model, takes into ac-
count knowledge about the distribution from which the presented
evidence is sampled at each time step, and knowledge about the
height of the two stacks at each time step. The model assumes that
this information is used to compute the probability that one stack ac-
cumulates bricks faster than the other. This proposal is related to the
Ideal Observer model (e.g., Brown et al., 2009; Kira et al., 2015; Van
Maanen et al., 2012a, see also Inline Supplementary Methods 1).
However, the two models differ in their assumptions about what
the decision maker knows about the environment. The Ideal Observ-
er model computes the probability that the chosen stack is the target,
given that the rates of the distractor and the target are known
(i.e., the probability that a brick will fall at each time step, for the tar-
get and distractor stacks). The Rate Difference model relaxes the as-
sumption that participants have precise knowledge of the rates of
the two stacks, and computes the probability that one stack accumu-
lates bricks faster than the other.

During the task, participantsmust decidewhich of the two stacks ac-
cumulates faster. Bricks fall on the two stacks following two indepen-
dent binomial distributions with rates θt = 0.8 (i.e., the drop rate for
the target stack) and θd = 0.6 (distractor stack). Participants were not
informed about the two rates. The uncertainty around the two rates at
the beginning of the trial is quantified as θt~Beta(1,1) and θd~Beta(1,1).
Fig. 2. Illustration of the evolution of evidence for a response in the RateDifferencemodel. Thew
As time progresses and the stacks accumulate bricks, the posterior distribution of the rate diffe
Therefore, after n time steps:

θt � Beta 1þ st;1þ f tð Þ

θd � Beta 1þ sd;1þ fdð Þ

δ ¼ θt−θd

where θt is the posterior distribution of the rate of the target stack,
which follows a beta distribution with parameters α=1+ st (st
being the number of bricks that fell on the target stack) and β=
1+ ft (with ft=n− st, i.e., the number of time steps where a brick
did not fall on the target stack). θd is the posterior distribution of
the rate of the distractor stack, which follows a beta distribution
with parameters α=1+ sd (sd being the number of bricks that fell
on the distractor stack) and β=1+ fd (with fd=n− sd). The variable
δ is the difference between the two rate distributions after n time
steps. The probability of δ being positive (i.e., the probability that
θt is larger than θd, which we refer to as the evidence) can be comput-
ed as the area underlying the posterior distribution of δ for δ N 0
(Fig. 2).

In the results reported here we focus on the Rate Difference
model. However, for Experiment 1 we developed and compared
three models (see Inline Supplementary Methods 1) and subse-
quently selected the Rate Difference model to apply in Experiment
2. This setup ensured that the degrees of freedom that are introduced
when developing cognitive models were constrained by the data of
Experiment 1. The application of the selected model to Experiment
2 therefore did not depend on model adjustments that were driven
by the data of Experiment 2. As a result, there is less room for re-
searcher bias in interpreting the notion of evidence predicted by
the cognitive model.

Estimation of the non-decision time

Because there is a time lag between decision and response execu-
tion, a decision may be made for the largest stack but the display may
(or may not) change in the moments before the button is pressed. To
correct for this, we assumed (following Brown et al., 2009) that partic-
ipants aimed to choose the largest stack in the display. Under this
hite and gray areas represent the evidence in favor of a left and right response, respectively.
rence (δ) changes, and so does the evidence for the left and right responses.



Fig. 3. Estimate of non-decision time (t0) for Experiments 1 and 2. (a) The distribution of t0 across participants in Experiment 1. (b) For each participant in Experiment 1, the proportion of
trials where they chose the largest stack without taking into account the t0 estimate (open symbols) and when taking into account a t0 estimate (filled symbols). For all participants this
proportion is largest for the filled symbols. (c) The distribution of t0 across participants in Experiment 2. (d) The proportion of trials where participants chose the largest stack in
Experiment 2, both corrected and uncorrected for t0.
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assumption we can estimate the time lag (non-decision time or t0) by
considering the state of the display at RT - t0. Per participant, we max-
imized the proportion of trials where the participant chose the
largest stack by estimating t0 using a simple root finding algorithm.
For each participant, we searched a range of non-decision times [0–
600 ms] for the value that gave the highest proportion of trials on
which the participant chose the largest stack. If a range of t0 esti-
mates led to the same proportion, we took the midpoint of the
range. The estimates of t0 are generally higher in Experiment 2
(which was conducted in the MRI scanner bore, Fig. 3). This is con-
sistent with previous findings (Koch et al., 2003; Van Maanen et al.,
2016).
Statistical analyses

We used Bayesian ANOVA (Rouder et al., 2012) to quantify the ef-
fect of the drop delay manipulation on behavioral performance. That
is, we compared the likelihood of a statistical model that included
the different drop delay levels as a factor against the likelihood of a
statistical model with only random participant intercepts. The likeli-
hood ratio of these models (the Bayes factor, BF) indicates howmuch
Table 1
Model comparison for Experiment 1.

Model Degrees of freedom AIC BIC χ2 p

0 7 −15,126 −15,074
1 8 −16,031 −15,973 907.8 b0.001
2 12 −16,035 −16,947 11.45 0.022
more likely the data are under the more complex statistical model
compared to the simpler (baseline) statistical model. We report
exact BFs, unless the BF is considered “decisive” according to
Jeffreys' (1961) scale (BF N 100).
Regression of time step on evidence

We regressed the probability that the chosen alternativewas correct
(i.e., the evidence) as defined by the Rate Difference model against re-
sponse times (RT), for every trial of each participant and condition. Al-
though a linear decrease in evidence as a function of decision time
may be a simplification (Drugowitsch et al., 2012; Hawkins et al.,
2015; Zhang et al., 2015), itwas the simplest assumption given the spar-
sity of the data. For the behavioral analyses, we used a linear-mixed ef-
fects model (Baayen et al., 2008) in which the level of evidence was the
dependent variable, and drop delay condition and time step (on a trial-
by-trial basis) were the independent variables. We included separate in-
tercepts for each participant. Statistical significance of the estimated re-
gression weights was assessed using Monte Carlo simulations. p-values
were computed using Satterthwaite's approximation of the denominator
degrees of freedom.
Table 2
Model comparison for Experiment 2.

Model Degrees of freedom AIC BIC χ2 p

0 4 −4902.9 −4878.2
1 5 −5497.8 −5467.0 596.9 b0.001
2 6 −5495.9 −5458.8 0.068 0.79
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We fitted and compared three linear mixed-effects models to the
data of Experiments 1 and 2. Model 2 included the time step at the
time of decision, the condition (drop delay), and the interaction be-
tween those; Model 1 simplified Model 2 by excluding a main effect
of condition and the interaction between condition and time step.
Model 0 was a base-line model that only included the condition,
and not the time step. Tables 1 and 2 show a model comparison
using AIC, BIC, and χ2-difference tests. AIC and BIC indicate how
well a model balances goodness-of-fit with model complexity, with
lower values indicative of the better model (Akaike, 1974; Schwarz,
1978). A χ2-difference test of two models of increasing complexity
indicates whether including the additional degrees of freedom is
warranted given the likelihood ratio of the models. For both experi-
ments, inclusion of time step as a factor was warranted as shown by
lower AIC and BIC values for Models 1 and 2 as compared to the base-
lineModel 0, as well as a significantχ2 statistic of the likelihood ratio
of Model 0 andModel 1. In Experiment 1, themain effect of condition
was warranted, as shown by lower AIC and BIC values for Model 2 as
compared to Model 1, and a significant result for the χ2-difference
test. For Experiment 2, this was not the case, and the simpler
Model 1 was preferred by all three measures.

fMRI data acquisition and analysis

Imaging datawere acquired in two scan sessions (one for each block
of Experiment 2) using a Philips 3T Achieva scanner. At the beginning of
the experiment, T1 anatomical scanswere acquired for each participant
(220 slices; TR: 8.2 s; TE: 3.8ms;flip angle: 8°; FOV: 240mm; voxel size:
1 × 1 × 1 mm). For functional imaging, echo-planar images (EPI) scans
were acquired in transverse orientation (slice thickness: 3 mm; 37
slices; TR: 2 s; TE: 27.63 ms; flip angle: 76.1°; FOV: 240 mm; voxel
Fig. 4. Behavioral results for Experiments 1 and 2. (a) Mean number of time steps required f
calculated from the Rate Difference model; (c) Mean accuracy per drop delay condition; (d) M
error of the mean.
size: 3 × 3 × 3 mm). To monitor fixation of participants during the ex-
periment, we used an Eyelink II system operating at a sampling rate of
1000 Hz.

fMRI analyses were performed using FEAT (FMRI Expert Analysis
Tool), version 6.00, part of FSL (FMRIB Software Library, www.fmrib.
ox.ac.uk/fsl). Images were realigned to correct for small head move-
ments using MCFLIRT motion correction (Jenkinson et al., 2002).
Data were spatially smoothed using a 5 mm FWHM Gaussian kernel,
temporally filtered using a nonlinear high-pass filter (100 s cutoff),
and pre-whitened. All functional images were registered using the
participants' individual high-resolution anatomical images acquired
at the beginning of the experiment and normalized into MNI space
by linear scaling.

First and second-level analyses were performed to identify decision-
related BOLD activity in thewhole brain. A third-level analysis identified
which decision-related areas correlated with a behavioral measure of
urgency, separately for the two drop-delay conditions. Finally, a con-
junction analysis (Nichols et al., 2005) identified which urgency-
correlated areas were common across the two conditions. This way,
the results are not dependent on the difference in stimulus durations
between the two conditions.

In the first level analyses, the design matrix was convolved using a
double gammahemodynamic response function (HRF) and its temporal
derivative. A total of five regressors were included: left and right re-
sponses, first and second condition (200 and 400 ms), stimulus locked,
with a duration equal to the RT (Grinband et al., 2008), and null events.
Contrasts were 200 ms vs. baseline and 400 ms vs. baseline. Analyses
were completed separately for each participant, for each block. In the
second-level analyses, the resulting images for each participant in the
two first-level blocks were combined without correcting for multiple
comparisons. In the third-level analyses, the resulting images across
or a decision per drop delay condition; (b) Mean evidence per drop delay condition, as
ean response time per drop delay condition. Error bars indicate within-subjects standard

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


Table 3
Beta estimates for the linear mixed-effects model of Experiment 1.

Factor Estimate Degrees of freedom t p

Intercept 0.86 3400 87.50 b0.001
Time step −0.0064 10,930 −11.96 b0.001
400 ms 0.0045 10,930 0.72 0.47
600 ms −0.0060 10,930 −0.96 0.33
800 ms −0.0024 10,930 −0.39 0.70
1000 ms −0.015 10,930 −2.42 0.015
Time step × 400 ms −0.0033 10,930 −4.03 b0.001
Time step × 600 ms −0.0041 10,930 −4.76 b0.001
Time step × 800 ms −0.0057 10,930 −6.21 b0.001
Time step × 1000 ms −0.0057 10,930 −6.29 b0.001
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all participants were combined and regressed against the individual
participant's regression coefficient of evidence against decision time. Fi-
nally, the conjunction analysis was performed to test the overlap of
common regions activated in both the 200 ms and 400 ms condition
(i.e., areas positively and negatively correlated with the individual
slope estimates). Results are reported at a cluster corrected threshold
of z = 2.3 (p = 0.05, using Gaussian random field theory).

Robustness check for correlation of the BOLD signal in the striatum and the
evidence coefficients

To ensure that the correlation of the BOLD signal in the striatum and
the evidence coefficients is robust against perturbations of the data, we
resampled the data with replacement 10,000 times and recomputed re-
gression coefficients. The evidence coefficient is here defined as the slope
estimate of the regression of the evidence (according to the Rate Differ-
ence model) against RT.

Results

Experiment 1

We found that as the drop delay increased, there was a correspond-
ing decrease in the number of discrete steps that elapsed prior to deci-
sion (Fig. 4a, BF N 100). This finding suggests that when bricks
accumulated more slowly – that is, when there was a larger amount of
time between successive evidence increments – participants based
their decisions on less stimulus information, consistent with the idea
of decision urgency.

To confirm that the effect of drop delay on time step corresponded to
a reduction in the evidence used to trigger decisions, we computed an
Fig. 5. Individual differences in urgency in Experiment 1. (a–e) Individual regression lines p
(f) Regression lines per condition as estimated by a linear mixed-effects model (see Materials
explicit measure of evidence that was derived on an individual trial
basis and separately for every participant. We define the evidence for a
response as the probability that the chosen stack was correct, using
the Rate Difference model (see Materials and methods, Section 2.3.
Cognitivemodeling of the evidence accumulation process). As expected,
the average evidence in the display at the time of decision decreased as
a function of the drop delay (Fig. 4b, BF N 100). However, this reduction
in mean evidence was not associated with a reliable reduction in re-
sponse accuracy (Fig. 4c, BF = 1.1). Since the drop delay manipulation
directly influenced howquickly the stacks grew,meanRT also increased
(Fig. 4d, BF N 100).

Formost participants inmost conditions, the evidence for the chosen
alternative decreased as decision times increased, as indicated by the
coefficient of a linear regression (Fig. 5a–e shows individual-
participant regression lines). Fig. 5f summarizes this finding across par-
ticipants, showing that the probability of being correct at the time of
er condition, where the value in the lower left of each panel indicates the drop delay.
and methods for details).



Fig. 6. Individual differences in urgency in Experiment 2. (a–b) Individual regression lines per condition. (c) Regression lines per condition as estimated by a linear mixed-effects model
(see Materials and methods, Section 2.6. Regression of time step on evidence for details).
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choice was negatively correlated with the number of time steps re-
quired for a decision (Table 3 shows the β-weights of the best model
for Experiment 1, together with a t-statistic that represents the proba-
bility of finding such a weight distribution if the true model did not in-
clude that factor, Bates, 2005). Thus, the amount of evidence required to
make a decision decreased with elapsed decision time, and this effect
was stronger for longer intervals between consecutive time steps.

To support our hypothesis that the effect of urgency is not driven by
differences in RT induced by the experimental manipulation (i.e., the
drop delays), we additionally fit a regression model in which the indi-
vidual regression coefficient was predicted by each participant's mean
RT per condition. The likelihood of this statistical model under the
data was compared against a model that only included the drop delays.
We found a Bayes factor of 0.19, indicating that the simplermodel with-
out mean RT as a factor is 5.3 times more likely than the more complex
model with RT as a factor. Therefore, it is unlikely that the urgency ef-
fects observed in behavior were due to differences in RT induced by
the drop delays.

Experiment 2

Consistent with Experiment 1, the analysis of behavioral data from
Experiment 2 also supported the decision urgency hypothesis (Fig. 4,
Mean time step: BF N 100; Mean evidence: BF = 0.55; Mean accuracy:
BF = 1.4; Mean RT: BF N 100). Also, as in Experiment 1, as the number
of time steps grew larger people were willing to make decisions on
the basis of less evidence (Fig. 6 and Table 4). The regression analysis
did not support a main effect of the drop delay levels, suggesting that
the decrease in evidence wasmainly related to time, and not the exper-
imental manipulation per se.

Importantly, the conjunction analysis indicated that the BOLD activ-
ity correlating with decision urgency peaked in the right striatum (Fig.
7a). While the individual drop delay conditions also showed other re-
gions that were activated (Table 5), the striatum was the only region
that survived thresholding in the conjunction of the two conditions. It
should be noted that the cluster that survived thresholding also extends
into anterior insula. However, the peak coordinate of activation clearly
lies in striatum (MNI: x = 32, y = 12, z = 4).

The individual participant regression coefficients of evidence
against decision time were negatively correlated with the BOLD
Table 4
Beta estimates for the linear mixed-effects model of Experiment 2.

Factor Estimate Degrees of freedom t p

Intercept 0.92 220 66.09 b0.001
Time step −0.011 35,620 −22.91 b0.001
Time step × 400 ms −0.0023 35,460 −5.66 b0.001
response in striatum, across conditions (Fig. 7b). This effect was
not dependent on the undue influence from individual data points,
as the 95% confidence interval around the bootstrapped distribution
of regression coefficients was completely below zero (Fig. 8). Thus, a
more negative slope coefficient in the regression of evidence against
decision time reflects a larger BOLD response in striatum. This
means that participants with greater striatal activation demonstrat-
ed a greater sense of urgency in their decisions. Because this finding
is shared across the two drop-delay conditions, the relationship be-
tween sense of urgency in behavior and BOLD response in striatum is
independent of the duration of the task. This result is consistent with
the hypothesis that the striatum is involved in implementing a deci-
sion urgency signal.

Discussion

A recent class of dynamic models of decision making in the com-
putational neuroscience literature suggest that decision-makers
regulate response selection as a function of time (Bowman et al.,
2012; Cisek et al., 2009; Ditterich, 2006a, 2006b; Drugowitsch
et al., 2012; Ratcliff and Frank, 2012; Thura et al., 2012). This class
of models assumes a decreasing decision threshold, where the quan-
tity of evidence required to trigger a decision decreases with time.
This assumption reflects the idea that decision-makers might be-
come less patient, or feel an increasing sense of urgency, as time
passes, and will commit to a course of action on the basis of less
evidence.

In Experiment 1, we established behavioral evidence that sup-
ports the concept of decision urgency. To study urgency, we devel-
oped a Bayesian model (the Rate Difference model) that tracks
changes in stimulus information over time to compute the quantity
of evidence present at the time of decision. We found that the
amount of evidence required to trigger a decision decreased with
each additional unit of time, leading to choices that were based on
less evidence. This behavioral pattern provides support for a de-
creasing decision threshold, indicating that less evidence is required
as time progresses, or as an urgency signal, indicating that a choice
should be made independent of whether a decision bound has been
reached. Our findings are consistent with previous research in
which the amount of information required for a decision was found
to decrease with time (Cisek et al., 2009; Gluth et al., 2012; Thura
et al., 2014).

The concept of evidence can be quantified in many ways that
differ in minor details (Brown et al., 2009; Kira et al., 2015;
McMillen and Holmes, 2006; Van Maanen et al., 2012a, 2012b), so
it is important to validate the results of the model developed in Ex-
periment 1 in an independent data set. This research strategy
strengthens the generalizability of the results, as there is less



Fig. 7. The striatum reflects decision urgency. (a) A conjunction analysis of both conditions reveals that only activation in the striatum is negatively correlated with regression slopes. Red
pixels indicate positive z values. Peak coordinates are given in MNI-space. (b) Both conditions show a reliable correlation between z-scored percentage signal change in the striatum and
the individual regression slopes of evidence against time for both drop delay conditions.
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freedom for researcher bias. Experiment 2 replicated the behavior-
al patterns observed in Experiment 1 and found similar outcomes
of the model analysis in that less evidence was required as time
progressed within a trial.

In addition to replicating the behavioral findings, we found evidence
in Experiment 2 that is consistent with a role for a cortico-basal ganglia
network in within-trial decision urgency. In particular, we found that –
independently of decision duration – activation in the striatum nega-
tively correlated with the evidence available to participants at the
time they committed to a decision. That is, greater striatal activity is as-
sociatedwith greater urgency in behavior. The cortico-basal ganglia net-
work model assumes that the execution of actions is mediated through
the basal ganglia nuclei (Mink, 1996).When there is no preference for a
course of action, the output nuclei of the basal ganglia inhibit the thala-
mus and brainstem, precluding the execution of actions (Chevalier et al.,
1985; Deniau and Chevalier, 1985). When cortical signals activate the
input nuclei of the basal ganglia, most prominently the striatum, the in-
hibition of the output nuclei are selectively released, allowing specific
actions to take place, such as responding in a decision making task. It
is therefore conceivable that the striatum acts as a gate (Cools et al.,
2006; Frank et al., 2001) that signals a higher degree of urgency. Various
mechanisms are proposed bywhich themediation of a striatal signal re-
sults in action selection (e.g., Cools et al., 2006; Frank et al., 2001; Lo and
Wang, 2006). However, our results do not disambiguate between these
theoretical proposals.

These results are consistent with the literature on the neural mech-
anism of the speed-accuracy tradeoff in perceptual decision making,
which has shown increased striatal activationwhen participants are ex-
plicitly instructed to emphasize decision speed over accuracy across
Table 5
Significant correlations with individual regression coefficients of evidence versus time,
split per drop delay condition.

Condition Regression ROI Voxels z-Value x y z

200 ms Positive R Thalamus 844 3.51 8 −22 20
Negative R Striatum 1132 4.07 22 4 6

L Striatum 638 3.45 −30 0 4
L Inferior frontal
cortex

431 3.53 −54 32 −12

400 ms Positive L
Parahippocampal
gyrus

571 3.7 −32 −40 −8

Negative R Anterior
cingulate cortex

991 4.11 4 22 36

R Striatum 689 4.03 32 12 2

Note: 200 ms and 400 ms: drop delay condition; x, y, z: peakMNI-coordinates of each re-
ported cluster.
different trials (Forstmann et al., 2008; Ivanoff et al., 2008; Van
Maanen et al., 2011; Van Veen et al., 2008; Winkel et al., 2012). More
generally, it seems that individual differences in action selection are
reflected by activation of the striatum (e.g., Balleine et al., 2007;
Delgado, 2007). For this reason, striatal activity had already been hy-
pothesized to reflect decision urgency in monkeys performing expand-
ed judgment tasks similar to the ones presented in the current study
(Thura and Cisek, 2016; Thura et al., 2014). Our findings extend this
work by providing clear evidence for the role of striatal activation in
the absence of explicit instructions to emphasize one mode of
responding over another: when decision-makers were free to establish
the cost of the time taken to accumulate evidence to inform their
choices.

Previous research has shown that in addition to the striatum, the
pre-supplementary motor area (pre-SMA) is involved in setting re-
sponse thresholds in the speed-accuracy tradeoff (Forstmann et al.,
2008; Ivanoff et al., 2008; Van Maanen et al., 2011; Van Veen et al.,
2008). Here, we found some evidence for the involvement of the pre-
SMA in urgency as well. However, the signal was not as strong as in
the striatum, and more dispersed. As a result, it did not appear above
threshold in the analyses that we performed. Previous work on time-
variant evidence accumulation in the context of economic choices, how-
ever, also reported activation in the pre-SMA, in concert with the stria-
tum and insula (Gluth et al., 2012). Therefore, it seems likely that a
dynamic adjustment of response thresholds activates the same neural
network involved in static manipulations of response thresholds. How-
ever, our results suggest that the function of the striatum ismore prom-
inent than the function of pre-SMA in dynamic conditions, and that
striatum reflects the neural activation of the urgency signal in humans.
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Fig. 8. Robust regression of the evidence coefficient and striatal BOLD. (a) The data (symbols), the default regression (solid lines), the averaged bootstrapped regression (dashed lines), and
100 samples illustrating the distribution of the regression lines. (b) The distribution of regression coefficients. The dashed vertical line represents the 95%-CI upper limit, indicating that
these distributions differ from zero. (c) The distribution of t-statistics for the regression coefficients. Blue: 200 ms condition; Green: 400 ms condition.
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