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Systems/Circuits

Spike-Based Functional Connectivity in Cerebral Cortex and
Hippocampus: Loss of Global Connectivity Is Coupled to
Preservation of Local Connectivity During Non-REM Sleep

Umberto Olcese,* X Jeroen J. Bos,* Martin Vinck,* Jan V. Lankelma, Laura B. van Mourik-Donga, Friederike Schlumm,
and X Cyriel M.A. Pennartz
Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands

Behavioral states are commonly considered global phenomena with homogeneous neural determinants. However, recent studies indicate
that behavioral states modulate spiking activity with neuron-level specificity as a function of brain area, neuronal subtype, and preceding
history. Although functional connectivity also strongly depends on behavioral state at a mesoscopic level and is globally weaker in
non-REM (NREM) sleep and anesthesia than wakefulness, it is unknown how neuronal communication is modulated at the cellular level.
We hypothesize that, as for neuronal activity, the influence of behavioral states on neuronal coupling strongly depends on type, location,
and preceding history of involved neurons. Here, we applied nonlinear, information-theoretical measures of functional connectivity to
ensemble recordings with single-cell resolution to quantify neuronal communication in the neocortex and hippocampus of rats during
wakefulness and sleep. Although functional connectivity (measured in terms of coordination between firing rate fluctuations) was
globally stronger in wakefulness than in NREM sleep (with distinct traits for cortical and hippocampal areas), the drop observed during
NREM sleep was mainly determined by a loss of inter-areal connectivity between excitatory neurons. Conversely, local (intra-area)
connectivity and long-range (inter-areal) coupling between interneurons were preserved during NREM sleep. Furthermore, neuronal
networks that were either modulated or not by a behavioral task remained segregated during quiet wakefulness and NREM sleep. These
results show that the drop in functional connectivity during wake–sleep transitions globally holds true at the cellular level, but confine
this change mainly to long-range coupling between excitatory neurons.

Key words: brain network integration; brain states; functional connectivity; neuronal network analysis; spiking activity; wakeful-
ness and sleep

Introduction
Behavioral states are commonly considered global brain pro-
cesses (Pace-Schott and Hobson, 2002) despite the fact that neu-
ral activity is highly regulated at the local level; different brain

areas display distinct types of activity during both wakefulness
and sleep [e.g., cortical slow waves (Steriade et al., 2001) and
hippocampal sharp wave ripples (Klausberger et al., 2003)]. At
the cellular level, behavioral states differentially affect neuronal
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Significance Statement

Studies performed at a mesoscopic level of analysis have shown that communication between cortical areas is disrupted in
non-REM sleep and anesthesia. However, the neuronal determinants of this phenomenon are not known. Here, we applied
nonlinear, information-theoretical measures of functional coupling to multi-area tetrode recordings from freely moving rats to
investigate whether and how brain state modulates coordination between individual neurons. We found that the previously
observed drop in functional connectivity during non-REM (NREM) sleep can be explained by a decrease in coupling between
excitatory neurons located in distinct brain areas. Conversely, intra-area communication and coupling between interneurons are
preserved. Our results provide significant new insights into the neuron-level mechanisms responsible for the loss of consciousness
occurring in NREM sleep.
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firing activity depending on brain area under scrutiny, neuronal
subtype, and preceding history (Hirase et al., 2001a; Greenberg et
al., 2008; Gentet et al., 2010; Lansink et al., 2010; Vyazovskiy et al.,
2011; Sachidhanandam et al., 2013; Goltstein et al., 2015). Recent
studies have highlighted a strong relationship among brain state,
patterns of neural activity, and behavioral performance. Specifi-
cally, brain states characterized by moderate arousal and firing
activity with an intermediate level of synchrony correlate with
better behavioral performance in sensory-motor tasks than dur-
ing either high arousal [e.g., locomotion (McGinley et al., 2015a;
Vinck et al., 2015a)] or low arousal, sleep, anesthesia, or fatigue
(Vyazovskiy et al., 2011; Goltstein et al., 2015; McGinley et al.,
2015a, 2015b).

Functional connectivity has also been shown to depend
strongly on behavioral state at a macroscopic level (Massimini et
al., 2005; Lu et al., 2012; Park and Friston, 2013). In particular, a
decrease in cortical connectivity has been observed in NREM
sleep and anesthesia with respect to wakefulness (Massimini et
al., 2005; Ferrarelli et al., 2010; Lewis et al., 2012; Bettinardi et al.,
2015). Most previous studies used techniques accessing the
macroscopic and mesoscopic scales: electroencephalographic
(EEG) and local field potential (LFP) recordings. Because brain
activity and behavior are determined by both neuronal spiking
activity and communication between neurons, we hypothesize
that, similarly to firing activity, functional connectivity between
neurons may also be highly regulated across behavioral states.
Specifically, we hypothesize that, as for neuronal spiking activity,
the influence of behavioral states on neuronal coupling may
strongly depend on the anatomical location of involved neurons.
Recent studies support this view because connections between
different brain areas undergo specific functional changes in the
transition between wakefulness and anesthesia. Cell-attached re-
cordings showed that synaptic connections from the cingulate
cortex to the primary visual cortex are not affected by brain-state
transitions (Zhang et al., 2014). Conversely, other top-down
pathways impinging onto the visual cortex (specifically from the
retrosplenial cortex) were shown, in two-photon calcium imag-
ing, to lose their functional role during anesthesia (Makino and
Komiyama, 2015). Moreover, because distinct neuronal subtypes
play different roles in transferring information between brain
regions (Gentet et al., 2010; Olcese et al., 2013; Makino and
Komiyama, 2015), we hypothesize a differential brain-state-
dependent modulation of coupling between excitatory and
inhibitory neurons. We expect coupling between principal (ex-
citatory) cells to be weaker than that between interneurons
in brain states with low levels of information processing (e.g.,
NREM sleep). Conversely, interneurons have been shown to
maintain a role in regulating cortical activity during NREM sleep,
namely by modulating how neighboring pyramidal neurons re-
spond to thalamic inputs (Contreras et al., 1997). Furthermore,
we hypothesize that functionally integrated neuronal networks,
for example, sets of neurons involved in performing a specific
task, will remain strongly interconnected during resting states as

a consequence of long-term plastic changes in the synaptic con-
nections between the neurons involved.

By applying nonlinear measures of functional coupling to
multi-area tetrode recordings in freely moving rats (Vinck et al.,
2015b), we found that functional coupling between individual
neurons, measured in terms of coordinated firing rate fluctua-
tions (Harris and Thiele, 2011), not only changes as a function of
brain state (and is generally stronger in wakefulness than NREM
sleep), but is also highly dependent on distinct brain areas (neo-
cortex vs hippocampus), distance between neurons (within and
between brain regions), neuronal subtypes (excitatory vs inhibi-
tory cells), and on functional properties of individual neurons.
Our results indicate that behavioral states are global brain phe-
nomena with neural correlates that are highly localized processes.

Materials and Methods
Subjects
All animal experiments were conducted according to the National
Guidelines on Animal Experiments and were approved by the Animal
Experimentation Committee of the University of Amsterdam. Data were
collected from three male Lister hooded rats. Animals were kept under a
reversed day/night cycle (lights off: 8:00 A.M., lights on: 8:00 P.M.).
During both training and experimental (recording) sessions, animals
were food restricted to maintain their body weight at 85% of ad libitum
fed animals. Rats had ad libitum access to water during all phases of the
experiment.

Behavioral setup
Animals were trained to perform a two-choice visual discrimination task
on a figure-eight maze (see gray tracks in Fig. 8A). Each trial started with
the animal confined to the middle arm of the maze by two movable
Plexiglas blocking walls. Animals were trained to attend to visual stimuli
presented simultaneously on two monitors (LCD, 15 inch, Dell; see blue
lines in Fig. 8A). The stimuli consisted of inverted equiluminant Wing-
dings (Microsoft) figures (either a diamond or an airplane, randomized
across animals) that had the same proportions of black and white pixels.
Stimuli started when animals interrupted an infrared beam located in
front of the movable Plexiglas door that was closest to the monitors (see
black square in Fig. 8A). After 4.2 s, the front wall was removed. Animals
were trained to choose the side arm of the maze (either left or right)
corresponding to the screen where the positive conditioned stimulus was
shown (airplane or diamond shape). If animals chose the correct side of
the maze, they would be rewarded with two or three pellets (dustless
precision pellets, 14 mg; BioServe) placed in a ceramic cup (see black
circles in Fig. 8A). Upon choosing one side of the maze, animals would
encounter strips of sandpaper on the walls of the maze (see orange areas
in Fig. 8A). Visual stimuli were terminated when animals crossed an
infrared beam located at the end of the area where sandpaper was present.
The grain of the sandpaper predicted the amount of reward that the
animals would receive after choosing the correct side arm: two pellets for
fine sandpaper (P40) and three pellets for coarse sandpaper (P180). One
pellet was also provided in the middle arm (see black square in Fig. 8A) if
animals had chosen the correct side arm in the previous trial. Video
acquisition (see Fig. 1E) was synchronized to electrophysiological re-
cordings. Eight infrared beams were used to synchronize animal position
to electrophysiological recordings and to control the behavioral setup via
a custom-made MATLAB program (The MathWorks). For the purposes
of the current study, we were only interested in discriminating whether
the firing rate of neurons was significantly modulated during certain
phases of the task (see “Data analysis” section), so we did not discrimi-
nate between correct and incorrect trials. All animals were highly trained
on the task and performed 60.1 � 18.7 (mean � SD) trials per recording
session, with an average success rate of 59.2 � 0.9% (mean � SE), which
was significantly different from chance ( p � 2.1 � 10 �8). The success
rate had reached a stable value for all animals at the end of the training
period. Animals were trained for �1 h 5 d/week.
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Surgical procedure and recording drive
The right brain hemisphere of each rat was implanted with a custom-
built tetrode microdrive, each containing 36 individually movable te-
trodes. Eight recording tetrodes were directed to the monocular portion
of the primary visual cortex (V1M, �6.0 mm posterior and �3.2 mm
lateral to bregma), eight to the hippocampus CA1 field (HPC, �3.5 mm
posterior and �2.4 mm lateral), eight to the barrel field of the primary
somatosensory cortex (S1BF, �3.1 mm posterior and �5.1 mm lateral),
and eight to the perirhinal cortex (PRH, �5 mm posterior and �5 mm
lateral, with an angle of 17° relative to the skull midline). One additional
tetrode per area was used as a local reference. Approximately 20 –30 min
before surgery, each animal received a subcutaneous injection of
buprenorphin (Buprecare, 0.01– 0.05 mg/kg), meloxicam (Metacam,
2 mg/kg), and Baytril (5 mg/kg). Animals were kept under isoflurane
anesthesia (1–3%); body temperature was maintained between 35°C and
36°C via a heating pad. Six surgical screws were implanted into the skull
to fixate the microdrive to the skull using dental cement; the left parietal
screw was used as the signal ground. Four craniotomies (each �1.8 mm
in diameter) were made, corresponding to the above-mentioned coordi-
nates to enable access to the brain areas of interest. After removing the
dura, the tetrodes of the four bundles were lowered 0.4 –1.0 mm (de-
pending on the target area) into the cortex. Animals were allowed to
recover for a week, with ad libitum food and water available. Tetrodes
were gradually lowered to their target region over the course of the first
7–9 d after implantation. Tetrode position in relation to the target region
was estimated based on the total number of turns of the guide screws
(Lansink et al., 2007; Vinck et al., 2015b) and was also based on online
monitoring of the LFP and spiking signals. Finally, tetrode positions were
confirmed via histology.

Histology
After the final recording session, a small electrolytic lesion (12 �A for
10 s) was made on one lead per tetrode to mark the endpoint of the
tetrode. Animals were deeply anesthetized with Nembutal (sodium
pentobarbital, 60 mg/ml, 1.0 ml, i.p.; Ceva Sante Animale) and tran-
scardially perfused with a 0.9% NaCl solution, followed by a 4%
paraformaldehyde solution (pH 7.4, phosphate buffered). Coronal
sections with a thickness of 40 �m were obtained with a vibratome.
Sections were then stained with cresyl violet to reconstruct tetrode
tracks and localize their endpoints.

Data acquisition and spike sorting
Thirty-two tetrodes (nichrome; 14 �m diameter per lead, gold-plated to
500 – 800 k� impedance at 1 kHz; California Fine Wire) were used to
record neural activity with a 128-channel Digital Cheetah system (Neu-
ralynx). Signals were routed through a unity-gain preamplifier headstage
and a 128-channel, automated commutator (Neuralynx) and were digi-
tally band-pass filtered between 600 and 6000 Hz for spike recordings.
Whenever the signal on any of the leads of a tetrode crossed a preset
voltage threshold, 1 ms of activity from all 4 tetrode leads was digitized at
32 kHz, corresponding approximately to a whole action potential wave-
form. LFPs were recorded from all tetrodes, continuously sampled at 2
kHz, and band-pass filtered between 1 and 500 Hz. Action potentials
were assigned to single neurons by using a semiautomated spike sorting
algorithm (KlustaKwik, Ken Harris and MClust 3.5, A.D. Redish). Indi-
vidual spike clusters were considered as single neurons when no more
than 0.1% of all interspike intervals were shorter than 2 ms. During
recordings, the video acquisition of the whole setup was performed at 25
Hz. Interruptions of infrared beams were monitored at 32 kHz.

Each recording session consisted of three phases. The middle phase
lasted �1.5 h, during which animals performed the behavioral task in the
dark (red lights only; see Fig. 1E, right). Before and after this phase,
animals were placed in a flower pot on top of the maze (Fig. 1E, left) and
usually remained quiet or asleep for 30 min to 1 h under dim lights. The
two resting phases were pooled together in the present study. No signif-
icant difference in any information theoretical measure was observed
between them ( p � 0.05). For each animal, we selected two recording
sessions during which we found at least four neurons in each recorded

region and at least 30 min spent into each state: active wakefulness (AW),
quiet wakefulness (QW) and NREM. Tetrodes were always moved be-
tween recordings sessions.

Data were recorded during a total of six recording sessions in three
different rats. On average, we recorded 13 � 4 neurons from S1BF, 6 � 2
from V1M, 24 � 10 from PRH, and 22 � 4 from HPC. Behavioral scoring
resulted, on average, in 6293 � 543 s of AW per session, 2277 � 169 s of
QW, and 1774 � 390 s of NREM. All numbers are average � SE.

Data analysis: preprocessing
Data analysis was performed by custom-made scripts in MATLAB (The
MathWorks).

Motion tracking
Motion tracking was performed by a semiautomated custom implemen-
tation of object tracking via a partial least-squares method (Wang et al.,
2012), in which the object to be tracked was the headstage on top of the
rat’s head (see Fig. 1E). Each headstage was equipped with four LEDs to
facilitate its detection in the dark.

Behavioral scoring
Behavioral scoring was performed manually, following standard meth-
odologies applied to rodent behavior based on cortical EEG/LFPs and
motor activity (Franken et al., 1991, 2001; Vyazovskiy et al., 2009). Be-
cause rodent sleep is known to be highly fragmented, we divided the
recording sessions into 4 s epochs and scored each epoch individually.
Scoring was performed by evaluating, simultaneously, several cortical
LFP channels, the LFP power spectrum in each epoch, motor activity
(defined as the frame-by-frame displacement of the rat’s head, as identi-
fied by our motion tracking algorithm), and raw video files. The behav-
ioral state of recorded animals was scored into the different behavioral
states: AW, QW, and NREM sleep. Any epoch that did not fulfill the
criteria for AW, QW, or NREM was discarded. For all subsequent anal-
yses, only sufficiently long periods of AW, QW, or NREM (defined as
periods lasting at least 30 s) were taken into account. Because only a
limited amount of REM sleep was present in our dataset, REM sleep
epochs were not taken into account for further analysis. AW was charac-
terized by the presence of cortical theta rhythm (between 6 and 10 Hz; see
Fig. 1B), by low levels of neocortical slow wave activity (SWA, defined as
the total power between 0.5 and 4 Hz; Vyazovskiy et al., 2009), and by
detectable levels of motor activity. Cortical LFP traces showed a typical
pattern with low-amplitude, high-frequency oscillations. QW had the
same electrophysiological correlates of AW, but was characterized by the
absence of detectable motion (except nonexploratory movements such
as grooming that were not reliably captured by our motion-tracking
algorithm and were thus included into QW). Periods during which ani-
mals were not moving, but were waiting for or observing visual stimuli or
consuming reward pellets, were included into AW. AW was mostly lim-
ited to periods when animals were performing the task. QW was mostly
limited to periods when animals were resting in the flower pot. Following
the conventions used in the analysis of NREM sleep in rodents, this state
was mainly characterized using the neocortical features typical of slow-
wave sleep and no further subdivision in stages was performed (Franken
et al., 2001; Vyazovskiy et al., 2009, 2011; Bastianini et al., 2015). NREM
epochs were thus characterized by high SWA in neocortex and by weak
motor activity and were limited to the periods during which animals were
resting in the flower pot. Examples of cortical LFP traces for periods that
were scored as AW, QW, or NREM are shown in Figure 1A. Example
power spectra from epochs scored as AW, QW, and NREM are shown in
Figure 1B. We validated the results of our behavioral scoring procedure a
posteriori, by plotting, for each recording session separately, several elec-
trophysiological and behavioral parameters. SWA was slightly increased
in QW epochs compared with AW epochs, but was dramatically larger in
NREM epochs (Fig. 1C). Although we did not use hippocampal traces to
perform the scoring of states, it is known that hippocampal sharp wave
ripples are a typical feature of QW and NREM, but occur less frequently
in AW (Ylinen et al., 1995; Kudrimoti et al., 1999; Pennartz et al., 2004;
Girardeau and Zugaro, 2011). We therefore measured hippocampal rip-
ples as an additional way to evaluate the effectiveness of our behavioral
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scoring procedure. Hippocampal ripples were indeed scarce in AW ep-
ochs, but very frequent in QW and NREM epochs (Fig. 1D). Finally, we
summarized the results of our motion-tracking algorithm (Fig. 1E) by
computing the average pixel displacement per epoch (Fig. 1F ). Average
motion was larger in AW than in both QW and NREM.

Determination of putative excitatory and inhibitory neurons
Neurons were subdivided into putative excitatory neurons and putative
pyramidal neurons on the basis of their action potential waveforms (Bar-
thó et al., 2004; Iurilli et al., 2013). In particular, broad action potentials
have been associated with excitatory, regular-firing neurons, and narrow
action potentials with fast-spiking interneurons, in particular with
parvalbumin-positive interneurons (Iurilli et al., 2013). For each isolated
neuron, we computed an average action potential waveform. We found
that the parameter that was well able to divide the action potentials we
recorded into two distinct subpopulations was the peak-to-trough delay.
Neurons with a peak-to-trough delay shorter than 0.25 ms were classified
as putative inhibitory neurons (Iurilli et al., 2013); all others as putative
excitatory neurons (see Fig. 6A). Of 381 recorded neurons, 66 were clas-
sified as putative inhibitory neurons. This corresponds to 17.3% of all
recorded neurons and is close to the presumed proportion of interneu-
rons in both the neocortex (Harris and Shepherd, 2015) and hippocam-
pal region CA1 (Wierenga et al., 2010).

Determination of task-modulated and non-modulated neurons
Peri-event time histograms (PETHs) were constructed for individual
neurons based on the time each of the eight infrared beams present on the
maze was crossed by animals during task performance (see examples in
Fig. 8B). PETHs were constructed in the [�10 10] s range with a time bin
of 250 ms. Because recorded neurons could respond to a variety of events
(e.g., sensory stimuli, position on the maze), we visually identified for
each region and infrared beam a baseline and response window (baseline
window: [�10 �8] s and [8 10] s range around the crossing of a beam;
response window: [�2 2] s range around the crossing of a beam; see Fig.
8B). Neurons were classified as task-modulated (TM) if their firing rates
in the response window were significantly higher or lower than the aver-
age firing rate in the baseline window (Iurilli et al., 2013; Olcese et al.,
2013) for at least one of the eight PETHs (because we computed one
PETH per infrared beam crossing). Of 381 recorded neurons, 192 were
classified as responsive. This corresponds to 50.1% of all recorded
neurons.

Detection of hippocampal ripples
An automated procedure was implemented to detect ripples in the
hippocampal LFP signals. LFP signals were band-pass filtered in the 100 –
200 Hz range and smoothed with a 30-point Gaussian window. Ripples
were identified as portions of the filtered trace exceeding a threshold,
defined for each signal as 3.5 times the SD of the whole trace. Each ripple
event had to have a minimal duration of 6 ms. Events closer than 100 ms
were grouped together.

Data analysis: information-theoretical measures
To investigate functional connectivity in our dataset, we used various
information-theoretical measures. Because of their nonlinear nature,
these measures are more general than their linear equivalents (Steuer et
al., 2002) (e.g., correlation, Granger causality) and are therefore highly
suitable to be used for neuronal data.

All information-theoretical measures that we used were based on fir-
ing rates of single neurons. Firing rates were computed by binning spike
times into non-overlapping bins. The width of temporal bins was varied
between 50 ms and 1 s in steps of 50 ms. The firing rate was subdivided
into amplitude bins. The number of amplitude bins was varied between 2
and 50. For each neuron, amplitude bins were constructed by dividing
the range between the lowest and highest recorded firing rate of each
neuron into n linearly equispaced, non-overlapping bins. For each
information-theoretical measure, a subset of time and amplitude bins
was selected [see the following sections on conditional delayed auto-
mutual information (cDAMI), conditional mutual information (cMI),
and the Results section for details). Although several methods have been

proposed to select the size of time bins, we chose an empirical approach
similar to one described previously (Reinagel and Reid, 2000). Impor-
tantly, whereas shorter time scales (i.e., shorter than 50 ms) are usually
reported when computing information-theoretical measures on spike
trains (Arabzadeh et al., 2004; Gourévitch and Eggermont, 2007), our
data mostly consisted of spontaneous activity, during which relatively
low firing rates (mostly 	10 Hz; see Fig. 6 B, C) preclude the use of short
time bins. Indeed, we were not able to find any clear relationship between
cMI computed over a short time scale (2–50 ms) and cross-correlograms
between individual neurons (data not shown). By not focusing on a
single time bin and number of amplitude bins, we aimed to make our
estimates more robust. Because values within the bin range were nor-
mally distributed for both cMI and cDAMI, we computed the average
cMI or cDAMI value over the selected range of time and amplitude bins.
As an indication of the robustness of our methods, we verified that the
results obtained with equispaced binning were fully compatible with
those obtained using equipopulated binning (temporal bins: 600 –900
ms, amplitude bins: 5–15; p � 0.05 for each brain state between cMI
values computed with the two different binning procedures, Wilcoxon
paired signed-rank test; see also Fig. 2C,D; cf. Magri et al., 2009).

To de-bias the information-theoretical measures (which is necessary
to take into account finite sampling and the different number of epochs
for distinct behavioral states), we applied a different shuffling procedure
for each measure (Wallisch et al., 2008), which consisted of randomizing
the order of one (or more) sequences of firing rates for individual neu-
rons (see sections on cDAMI and cMI for details). Each shuffling was
repeated 10 times and the average result was subtracted from the value
computed on the actual data to obtain an unbiased value. cMI values
were considered to be significantly larger than 0 if their non-unbiased
value exceeded the bootstrap-estimated (100 repetitions) 95 th percentile
of the distribution of shuffled values (Hatsopoulos et al., 1998). We
verified the effectiveness of this debiasing procedure, which previous
studies indicated to be less effective than more complex ones (Panzeri et
al., 2007), by computing cMI values on a randomly selected subportion
of the dataset (for each recording session and brain state, we randomly
retained 50% of all epochs). Because the results that we obtained did not
show major changes (the only significant, yet minor, difference was ob-
served when pooling together all pairs of neurons during NREM, p �
0.03, Wilcoxon signed-rank test; no other significant difference was ob-
served when subdividing neurons into brain areas or functionally defined
subtypes), we conclude that the de-biasing procedure that we used effec-
tively corrected bias due to dataset size effects.

We also explored the possibility of computing cMI values separately
for up and down states occurring during NREM by implementing a
procedure to discriminate up and down states based on the phase of LFP
signals (Saleem et al., 2010). However, the resulting cMI values com-
puted separately for up and down states appeared not to be reliable (and
not different from zero), possibly due to the lack of a sufficient amount of
data to properly estimate cMI. For this reason, we did not discriminate
between up and down states in the current study.

cMI
cMI (Steuer et al., 2002; MacKay, 2003) was computed between pairs of
neurons via the following formula:

cMI
X, Y � h� � �
x�X,y�Y

p
 x, y � h�log
p
x, y � h�

p
x � h�p
y � h�

Where X and Y denote the set of all amplitude bins for two distinct
neurons, x is one amplitude bin within X, y is one amplitude bin within
Y, h is the behavioral state during which firing rate values have been
considered, and log is the logarithm in base 2. Shuffled estimates were
computed by independently scrambling the order of firing rates for neu-
ron X and Y, thus affecting the joint probability distribution p(x, y � h),
but not marginal ones p(x � h) and p( y � h). We computed cMI for an
ample range of time bin width (50 –1000 ms in steps of 50 ms) and
number of amplitude bins (2–50) and then selected a smaller range for
further analysis. cMI was averaged across time bins ranging from 600 to
900 ms and the number of amplitude bins ranging from 10 to 20 (see
black rectangle in Figs. 2C, 4A).
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Relationship between cMI and firing rates
To investigate whether cMI was monotonically related to the average
firing rates of neurons X and Y, we used a linear mixed-effects model to
analyze the relationship between cMI values and the average firing rates
of neurons X and Y in the different behavioral states. Although the rela-
tionship between cMI and the average firing rate of either neuron X or Y
was significant ( p � 0.025), this was by several orders of magnitude less
significant than the relationship between cMI and the interaction term
between the average firing rates of neurons X and Y ( p � 2.5 � 10 �14).
This confirmed that cMI is related to the interaction between the firing
rates of different neurons rather than to their individual values.

Relationship between cMI and task-related modulation of
neuronal activity
Finally, a possibly confounding factor in our analyses is that cMI values
might reflect not only a different level of coupling based on the specific
behavioral state but also (in particular during AW) correlations between
the activity of different neurons due to coordinated neuronal responses
to sensorimotor inputs (e.g., during the behavioral task). This appears
unlikely for two reasons:

First, cMI values during AW are comparable or lower than those
during QW (see Figs. 2, 3, 4). This excludes that cMI values during
AW are mostly driven by external or motor variables (e.g., sensory
stimuli or locomotion), which would increase spurious (i.e., exter-
nally driven) correlations between the activity of distinct neurons. If
this would have been the case, cMI values during AW would have been
higher than during QW.

Second, we performed an additional analysis to verify that cMI values
during AW were not simply driven by modulation of neuronal activity
during the behavioral task. Locomotion and quiescence are known to
greatly affect both cortical and hippocampal activity patterns (Mc-
Naughton et al., 1983; McGinley et al., 2015a). In particular during loco-
motion, neurons in the hippocampus show higher theta LFP power than
in quiescence, theta phase precession, and speed-dependent firing rates
(McNaughton et al., 1983; Fuhrmann et al., 2015). If cMI were primarily
driven by sensory and motor variables, one would expect cMI within the
hippocampus and between cortical areas and the hippocampus to be
higher during locomotion than during quiescence. However, we found
this not to be the case. AW epochs were subdivided into periods with or
without locomotion, that is, when animals were either moving along the
maze or waiting for stimulus presentation in the middle arm. cMI during
AW was not significantly different between periods of locomotion or
quiescence for the intrahippocampal and cortico-hippocampal pairs of
neurons ( p � 0.05 for HPC-HPC, PRIM-HPC, and PRH-HPC pairs,
paired Wilcoxon signed-rank test, PRIM is the combination of V1M and
S1BF neurons). Crucially, this was the case for connections between pairs
of TM neurons as well as pairs of non-TM neurons. Restricting the anal-
ysis to homogeneous phases of the task (i.e., specific sensory stimuli or
narrow portions of the maze) is expected to lead to correlated firing
activity, and thus high cMI values, between neurons. Instead, computing
functional coupling over broad, heterogeneous epochs, as we did here,
makes cMI values dependent on the overall behavioral state rather than
of specific external variables.

In conclusion, cMI values as computed here reflect interactions (i.e.,
coupling) between neurons and are unlikely to result from spurious
correlations due to external inputs or motor activity.

cDAMI
cDAMI (Pompe et al., 1998; MacKay, 2003) was computed by the follow-
ing equation:

cDAMI
X, d � h� � MI
X, X(d) � h�

� �
x�X

p
x, x(d) � h�log
p
x, x(d) � h�

p
x � h�p
x(d) � h�

Where X is the set of all amplitude bins for the firing rate of one specific
neuron; x is one amplitude bin within X, X (d) and x (d) indicate the firing
rates for the same neuron delayed by d time bins, X (d) is the set of all
delayed firing rate bins, x (d) an individual bin within X (d); h is the behav-

ioral state during which firing rate values have been considered, MI is
mutual information, and log is the logarithm in base 2. Shuffled estimates
were computed by randomly scrambling the order of firing rates for
neuron X and also scrambling their delayed version, X (d), in a different,
random order. This does not affect marginal probability distributions
p(x � h) and p(x (d) � h), only the joint probability distribution p(x,x (d) � h).
cDAMI was computed by varying time bin duration, number of ampli-
tude bins, and delay d. cDAMI values for values of d�0 were normalized
by the cDAMI value for d � 0 to better compare cDAMI values across
different neurons. Examples obtained for different time bin durations
and delays can be seen in Figure 5, A and C. cDAMI rapidly decreases to
values close to 0 for values of d�1. We therefore only included cDAMI
computed for d � 1 in subsequent analyses. We found variations in
cDAMI as a function of the behavioral state to depend neither on the
duration of time bins nor on the number of amplitude bins. For consis-
tency, we included in our subsequent analyses a similar range of time and
amplitude bins as we used in the evaluation of cMI between areas, which
we also based on mutual information. For each neuron, we computed the
average cDAMI value for time bins ranging from 600 to 900 ms and a
number of amplitude bins ranging from 10 to 20. This range of values is
outlined as a black rectangle in Figure 5, A and C. Therefore, considering
only a delay term d � 1 corresponds to computing the average cDAMI for
delays between 600 and 900 ms.

Relationship between cDAMI and firing rates. To investigate whether
cDAMI was monotonically related to the average firing rate of a neuron,
we used a linear mixed-effects model to analyze the relationship between
cDAMI values and average firing rates in the different behavioral states.
We found the relationship to be non-significant ( p � 0.82), so cDAMI is
not related to the average spiking activity of a neuron.

Statistical analysis
Statistical analysis was performed via custom-made scripts in MATLAB
(The MathWorks) and R (http://www.R-project.org). Because fewer
neurons were recorded from V1M than from other areas, results ob-
tained from V1 neurons were pooled together with those from S1BF
neurons for statistical analyses related to Figures 4 and 5 (and referred to
as neurons recorded in PRIM). Importantly, both cDAMI and cMI fol-
lowed similar trends for neurons located in V1M and S1BF. For the
analyses related to Figures 6, 7, and 8, we pooled together data from all
areas and only subdivided them based on whether connections were
within/between areas (see Figs. 6, 7) or between TM/non-TM neurons
(see Fig. 8).

Statistical analysis of information-theoretical measures
Because all information-theoretical measures displayed highly skewed
distributions, nonparametric tests were consistently used for comparing
their values. The Friedman test with post hoc analysis was used to analyze
whether cDAMI and cMI values varied as a function of behavioral state
because each measure was evaluated separately for the same neuron or
pair of neurons across AW, QW, and NREM. The Kruskal–Wallis test
with post hoc analysis was used when an independent sample analysis had
to be performed; for example, when comparing connections between
different neuronal subpopulations.

Statistical analysis of the proportion of significantly connected
pairs of neurons
A bootstrapping procedure was used to estimate confidence intervals
(� � 0.05) for the proportion of cMI values that were significantly larger
than 0. For a given set of n pairs of neurons, confidence intervals were
obtained by sampling with replacement a new set of n pairs of neurons
and computing the proportion of significant cMI values for the resa-
mpled subset. The procedure was repeated 1000 times and the 2.fifth and
97.fifth percentile of the distribution of values were used as confidence
intervals for the measured proportion. Proportions with nonoverlapping
confidence intervals were considered to be significantly different.

Results
To investigate how neuron-level functional coupling is modu-
lated across brain states, we used multi-area tetrode recordings
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(Lansink et al., 2007; Vinck et al., 2015b) to sample neuronal
activity with single-cell resolution in primary sensory cortices
(V1M and S1BF), PRH, and HPC simultaneously in freely mov-
ing rats. These areas are part of an anatomical and functional
network for sensory processing, navigation, and episodic mem-
ory formation (Witter et al., 2000). Rats were trained to perform
a sensory discrimination task in a figure-8 maze (designed to
modulate neuronal activity in all four recorded areas; see Mate-
rials and Methods). Recordings were conducted when animals
were either performing the task or resting (see Materials and
Methods; Fig. 1). Recording periods were scored into three be-
havioral states (AW, QW, and NREM sleep) based on electro-
physiological and behavioral features (see Materials and

Methods; Fig. 1). Our ability to discriminate single-neuron activ-
ity allowed us to go beyond the currently available mesoscopic
level of analysis and investigate connections between individual
neurons in the same or different brain regions. Functional cou-
pling was determined by using nonlinear measures based on in-
formation theory (MacKay, 2003) and specifically on mutual
information (Steuer et al., 2002). In contrast to widely used linear
methods such as correlation (Steuer et al., 2002; Pereda et al.,
2005), mutual information and derived measures can quantify
both linear and nonlinear coupling, the latter being a crucial
feature of neuronal dynamics (Friston, 2000). Although most
previous studies exploited information theory as a tool to as-
sess stimulus–response relationships (Quian Quiroga and

Figure 1. Scoring of behavioral states. A, Example LFP traces from one cortical channel (S1BF) recorded during (top to bottom) AW, QW, and NREM. Note the predominance of lower frequencies
and higher amplitude during NREM. B, Example single-session power spectra for the LFP channel shown in A during epochs characterized as AW (blue), QW (red), or NREM (green). In NREM, a theta
peak is absent, whereas lower frequencies become more prominent. See the Materials and Methods for definitions of all criteria used to score behavioral states. C, Average SWA measured from
epochs classified as AW, QW, or NREM, measured from the LFP channel shown in A and B. Note the strong increase during NREM epochs. D, Average total number of ripples reported from all
hippocampal channels in each epoch (classified as AW, QW, or NREM). Ripples are mostly present in QW and NREM epochs. E, Example results from the motion tracking algorithm. The animal was
either confined in a flower pot (left) or roaming in a figure-8 maze environment. Each blue dot represents the identified animal position in a video frame. F, Average body motion (measured as the
average of pixel displacement for frames within single epochs) as a function of behavioral state (classified as AW, QW, or NREM). Motion is mostly confined to AW epochs, with remaining motion in
QW and NREM being due to nonlocomotory activity (e.g., grooming) and noise level of the object tracking algorithm. Data are expressed as mean � SEM. Asterisks in C, D, and F indicate significant
differences ( p 	 0.05, one-way ANOVA followed by post hoc Bonferroni correction).
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Panzeri, 2009), we used it here to determine coupling between
individual neurons.

Behavioral-state-dependent functional connectivity between
brain regions is regulated in a region-specific manner
Functional coupling between individual neurons was measured
in terms of cMI (MacKay, 2003; see Materials and Methods).
Specifically, we aimed to quantify how the coordination of firing
rate fluctuations (Harris and Thiele, 2011) between individual
neurons varies across brain states. Figure 2, A and B, shows two
example neurons with firing rates that were co-modulated (i.e.,
they underwent similar variations over time). cMI was computed
between pairs of neurons over a wide range of amplitude and
temporal scales. Out of this extensive range, for all subsequent
analyses, we selected a relevant narrower range in which we ob-

served a significant state-dependent modulation (Figs. 2C, 4A;
Materials and Methods). The selected range of time bins (600 –
900 ms) and number of amplitude bins (10 –20; see black outline
in Figs. 2C, 4A) enabled us to sample cMI values in an interme-
diate interval where we could avoid the loss of both sensitivity
and generality (see Materials and Methods). Conversely, taking a
range in the area where cMI values were close to zero vastly in-
creased the uncertainty in our measures. We did not observe
significant changes in the results of our analysis when the bin
range was modified by �2 time bins or �5 amplitude bins. How-
ever, we cannot fully exclude that other combinations of time and
amplitude bins might lead to different results. Importantly, re-
sults were fully compatible when we used either equispaced or
equipopulated amplitude binning (Fig. 2C,D; Materials and
Methods).

Figure 2. cMI values reflect coordinated firing rate fluctuations between neurons. A, Example normalized firing rates (800 ms bin) for two example neurons (blue and red traces) across the three
brain states (left: AW, middle: QW, right: NREM). All epochs classified as AW, QW, or NREM have been collapsed (i.e., drawn adjacent to each other). Firing rates for each neuron have been normalized
to the highest firing rate recorded across all brain states. B, Enlarged fragments of the firing rate traces shown in A. C, cMI values for the same example neuronal pair, computed using equispaced
amplitude binning as a function of brain state, number of amplitude bins, and temporal bin duration. Each plot corresponds to one behavioral state (left: AW, middle: QW, right: NREM). cMI was
computed for time bins of different durations ( y-axis, 50 to 1000 ms with a step size of 50 ms) and for different amplitude bins (x-axis, 2 to 50 bins). The black outline indicates the time bins and
amplitude bins that were used in all further analyses (time bins: 600 –900 ms, amplitude bins: 10 –20). The average cMI value in the interval within the black outline is indicated in the header of each
subplot. D, Same as C but using equipopulated amplitude binning. White areas indicate ranges with fewer distinct firing rate values than number of bins for which no cMI value was estimated. The
average cMI value in the interval within the black outline is indicated in the header of each subplot (time bins: 600 –900 ms, amplitude bins: 5–15). Note the similarity between the cMI values
computed in C and D (see also Materials and Methods).
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Importantly, cMI is strongly related to the joint firing ac-
tivity of pairs of neurons, an effect that cannot be explained
from the individual firing rates of the neurons considered in
the computation (see Materials and Methods). Furthermore,
cMI during AW reflects interactions between neurons rather
than spurious correlations arising from the modulation of
firing rates after, for example, sensory stimuli or motor activ-
ity (see Materials and Methods). Although we found larger
differences between NREM and wakefulness than within the
two awake states, AW and QW (see also Figs. 5, 6, 7), these did
show distinct traits and we therefore kept them separate in the
following analyses.

Figure 3A displays cMI between distinct pairs of neurons dur-
ing a single recording session as a function of brain state. Note
that cMI(X,Y) � cMI(Y, X), so the lower half of each matrix is
left empty. During AW, most neuronal pairs showed non-zero
cMI values; during QW, cMI values were generally higher, but
more black spots started to appear, indicating a lower number of
functionally interconnected neurons (i.e., of neurons with signif-
icantly correlated firing activities); during NREM, the proportion
of black spots increased as a consequence of the decrease of sig-
nificantly coupled neuronal pairs. This was also quantified over
all recording sessions in Figure 3B. To better interpret the mean-
ing of cMI values, we also measured the pairwise Pearson corre-
lation coefficient between firing rates (Fig. 3C). We found that
the correlation coefficients during NREM showed both stronger
positive and negative correlations than during AW (and in par-

ticular stronger positive correlations in the range between 0.1 and
0.2). This is consistent with the hypothesis that neurons can re-
main in a desynchronized state even when driven by a common
oscillatory rhythm, as is the case for the neocortex in NREM
(Harris and Thiele, 2011). This also indicates that the informa-
tion conveyed by correlation coefficient and cMI values is not the
same (as is evident by comparing the state-dependent changes in
cMI and correlation values shown in Fig. 3B,C). We thus plotted,
for each neuronal pair and each behavioral state, cMI values as a
function of correlation values (Fig. 3D). This plot indicates a
clear, nonlinear correspondence between cMI and correlation
values, with a “U”-shaped distribution accompanied by points
with significant cMI values, but correlations close to 0. Compared
with linear correlations, cMI is thus a more comprehensive, yet
non-signed, measure of the strength of interdependencies be-
tween fluctuations of firing rate patterns.

To investigate whether the global brain-state dependency of
cMI also showed local or interregional specificities, we pooled
pairs of neurons based on the brain regions from which they were
recorded. We then evaluated cMI values for each connection
both within and between regions as a function of behavioral state
(Fig. 4B–D). For these analyses, results for V1M were pooled
together with those for S1BF (see Materials and Methods) and we
refer to these neurons as being recorded in PRIM.

For intraneocortical connections, cMI peaked in QW and
bottomed in NREM (Fig. 4B,C), thus confirming previous EEG
results indicating a decrease in cortical integration during

Figure 3. cMI values vary across behavioral states and are an extension of linear correlation values. A, cMI values between individual neurons measured during a single recording session as a
function of behavioral state. Brackets indicate in which brain areas neurons were located. Each row and column represent a single neuron. B, Cumulative distribution plot for cMI values (all pairs of
neurons in all brain regions and recording sessions) as a function of brain state (blue: AW, red: QW, green: NREM). Inset, Enlargement of the distributions around the 80th-100th percentiles.
Nonparametric testing revealed significant differences between cMI values for all connections between the three behavioral states, with values being the largest for QW and the lowest for NREM
(*p 	 0.05, Friedman test with post hoc analysis). C, Probability distribution of pairwise “linear” correlation values between trains of binned firing rates for all recorded neurons across brain states
(blue: AW, red: QW, green: NREM). Firing rates were computed using an 800 ms time bin. Asterisks indicate significant differences between distributions ( p 	 0.05, Kolmogorov–Smirnov test with
post hoc analysis). D, Scatter plot showing the relationship between the pairwise correlation values of B and the cMI values of C as a function of brain state (blue: AW, red: QW, green: NREM).
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NREM (Massimini et al., 2005). In addition, cMI for cortico-
hippocampal connections peaked during AW, whereas cMI for
intrahippocampal connections bottomed in AW. This indicates
that behavioral states modulate functional connectivity between
brain regions in a region-specific manner. Although, on average,
cMI is higher in wakefulness than in NREM, differences exist

between cortical areas and hippocampus (Fig. 4B). Specifically,
cMI within the neocortex peaked in QW and bottomed in
NREM; cMI within the hippocampus also peaked in QW, but
remained relatively strong in NREM and bottomed in AW; fi-
nally, cMI between the neocortex and hippocampus peaked in
AW and bottomed in NREM.

Figure 4. Functional connectivity between and within brain areas is modulated heterogeneously by behavioral state. A, Average values of cMI for pairs of neurons within S1BF for a single
recording session. Each plot corresponds to one behavioral state. cMI has been computed for time bins of different durations (y-axis, 50 to 1000 ms with a step size of 50 ms) and for different
amplitude bins (x-axis, 2 to 50 bins). The black outline indicates the time bins and amplitude bins that were used in all further analyses. B, Graphs of median cMI between and within regions as a
function of behavioral state. The thickness of each connection is proportional to the cMI between or within a region (rounded to the closest multiple of 1�10 �3 bits; refer to C for non-approximated
values). Absence of a connection indicates a median value not significantly larger than 0 (one-sided Wilcoxon test). Colors indicate the outcome of a Friedman test with post hoc analysis performed
separately for each set of connections across behavioral states. Red indicates that a connection was significantly stronger in one or more specific behavioral states than in all others. Blue indicates that
a connection was significantly weaker in one or more specific behavioral states than in all others. Black indicates an intermediate value. C, Same as in B, indicating the non-approximated values of
median cMI for each connection as a function of the behavioral state. Error bars indicate confidence intervals for the medians. For significant differences across behavioral states, see B. D, Plot
indicating the proportion of neuronal pairs for which cMI values are significantly larger than 0 ( p 	 0.05, based on the distribution of shuffled estimates, see Materials and Methods). Each line
corresponds to a specific connection between or within areas. Error bars are bootstrap-estimated confidence intervals (see Materials and Methods). Asterisks indicate significant differences across
behavioral states for each type of connection ( p 	 0.05, bootstrap-estimated).
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Behavioral state modulated not only cMI values but also the
proportion of pairs of neurons displaying cMI values that were
significantly larger than 0 (Fig. 4D; Materials and Methods). Al-
though median cMI values generally peaked during QW (with
the exception of cortico-hippocampal connections; Fig. 4B,C),
we found that the proportion of significant cMI values was on
average larger in AW and progressively lower in QW and NREM
(Fig. 4D). Only for connections within the perirhinal cortex and
within the hippocampus was no significant change across behav-
ioral states observed.

Both cMI values and the proportion of significant values during
NREM did not markedly change when excluding time bins contain-
ing ripples from our analysis (see Materials and Methods). Although
ripples have been implicated in information transfer between cortex
and hippocampus (Pennartz et al., 2009; Pezzulo et al., 2014;
Buzsáki, 2015), cMI only quantifies coordinated, simultaneous fluc-
tuations in firing rates and thus cannot capture such directional,
short-term influences.

Overall, these results indicate a state-dependent modulation
of functional connectivity between neurons. On average, connec-
tions between and within brain areas were found to be stronger
and denser in wakefulness than in NREM. Specific differences
were found between AW and QW and for intrahippocampal and
cortico-hippocampal connections. Therefore, functional con-
nectivity between neurons varies in a regionally specific and state-
dependent manner both in terms of connection strength and
proportion of actively coupled neurons.

Recurrent connectivity in cortico-hippocampal circuits is
weaker in NREM sleep than in wakefulness
We next investigated whether the same behavioral-state depen-
dency and regional heterogeneity that we found for functional
(undirected) connectivity between pairs of neurons was also
present for reentrant (or self-) connections at the level of single
neurons (Edelman and Gally, 2013). Recurrent connectivity is a
key factor in the generation of a balanced and functional cortical
activity (Douglas et al., 1995; Haider et al., 2006) and has been
proposed to be a key component of conscious processing (Bal-
duzzi and Tononi, 2008; Pennartz, 2009; Edelman and Gally,
2013). Reentrant connectivity was measured by cDAMI (Pompe
et al., 1998; MacKay, 2003; Materials and Methods; Fig. 5A,C), a
nonlinear measure that quantifies how strongly the current
activity of a neuron influences its future activity. Specifically,
cDAMI measures recurrent functional connectivity as the mutual
information between the activity of a neuron at time t and the
activity of the same neuron at time t � 1 as a function of behav-
ioral state. cDAMI does not discriminate between autaptic
(monosynaptic self-feedback) and polysynaptic feedback onto a
single neuron, and between these and intrinsic firing properties
(e.g., bursting). An example cDAMI plot for a single neuron is
shown in Figure 5A and its nonlinear relationship with the neu-
ron’s activity can be seen by comparing cDAMI plots with the
auto-correlogram (Barthó et al., 2004) shown in Figure 5B. The
autocorrelogram for the displayed example neuron shows higher
values during AW than both QW and NREM (with slightly higher
values for QW compared with NREM) for time scales longer than
50 ms, and this rank order is nonlinearly mirrored by the cDAMI
values computed using the corresponding temporal bins (cf. Fig.
5A,B). Both the autocorrelograms and cDAMI show a promi-
nent drop for time scales shorter than 50 ms. Here, as was the case
for cMI, we focused on time bins in the order of hundreds of
milliseconds. cDAMI is therefore a measure of how firing rate
fluctuations over time scales in the order of hundreds of millisec-

onds persist at the level of single neurons. cDAMI was averaged
over the same range of time bins and number of amplitude bins
that we used for cMI (see Materials and Methods).

We hypothesized that recurrent functional connectivity
would be stronger during conscious states (Shu et al., 2003)
(AW and QW) compared with unconscious ones (NREM). We
found that, in all recorded regions, cDAMI values were lower
in NREM than in both AW and QW (Fig. 5D, p 	 0.05, Fried-
man test with post hoc analysis). In the hippocampus, cDAMI
was also significantly lower in QW than in AW. Overall, these
results indicate that, at the level of single neurons, a given
pattern of neural activity more quickly dissipates during
NREM than during wakefulness, a further sign of the decay in
integration during NREM.

Decrease in inter-areal coupling between excitatory but not
inhibitory neurons, and preservation of intra-area
connectivity during NREM sleep
Next, we investigated the cell-level mechanisms responsible for
the global drop of neuronal coupling that we observed during
NREM sleep. We discriminated putative excitatory neurons from
putative interneurons based on the shape of action potential
waveforms (Barthó et al., 2004; Iurilli et al., 2013; Fig. 6A; Mate-
rials and Methods). Specifically, putative inhibitory neurons
display a narrower action potential waveform than putative ex-
citatory neurons. We confirmed previous reports that average
firing rates are lower during NREM than during awake states. In
particular, we found firing rates to be significantly higher for
excitatory neurons in AW, and progressively lower in QW and
NREM (Vyazovskiy et al., 2009; Fig. 6B,C, left). We also evalu-
ated how the distribution of firing rate values shifted within each
neuronal subtype as a function of brain state. To this aim, we
normalized, separately for each neuron and brain state, firing
rates to the highest recorded value (Fig. 6B,C, right). As expected
from the literature (Steriade et al., 2001), NREM sleep is charac-
terized by an increase in low firing rates at the expense of higher
ones for both excitatory and inhibitory neurons. A bimodal dis-
tribution, representing an alternation between up and down
states, was not observed here, probably for two reasons: (1) we
binned spike trains without discriminating between active and
silent periods, so bins, which were several hundreds of millisec-
onds long, could include both; and (2) most neurons we recorded
displayed low firing rates (Fig. 6B,C, left), thus increasing the
chance of observing silent periods also during AW and QW. QW
showed distinct patterns of normalized firing rate distributions
for excitatory and inhibitory neurons (Fig. 6B,C, right). For the
former, firing rates were shifted to values higher than those ob-
served in AW; for inhibitory neurons, the firing rate distribution
in QW was similar to that present in NREM.

Reentrant connections (cDAMI) were weaker in NREM than
in wakefulness for both excitatory and inhibitory neurons (Fig.
6D), indicating a generalized drop of recurrent functional con-
nectivity in NREM.

We next shifted our focus to investigating coupling between
pairs of excitatory or inhibitory neurons. First, we evaluated how
correlations between pairs of excitatory or inhibitory neurons
varied as a function of brain state (Fig. 6E). Pairs of excitatory
neurons showed the highest proportion of both positive and neg-
ative correlation values in QW, especially higher positive ones,
followed by NREM and AW (Fig. 6E, left). For pairs of inhibitory
neurons, the only significant difference was between AW and
NREM (Fig. 6E, right), the latter being associated with a wider
distribution of correlation values.
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Nonlinear coupling (measured in terms of cMI) between
pairs of excitatory neurons or pairs of inhibitory neurons was,
like correlations, differently modulated by behavioral state
(Fig. 6 F, G). Although cMI between pairs of excitatory neu-
rons decreased going from AW to QW and to NREM (both in
terms of values and proportion of connected couples), cMI
between interneurons did not vary and was stronger than that
observed between excitatory neurons (Fig. 6G). These results
indicate that, overall, the brain becomes more disconnected in
NREM than during wakefulness, but this is primarily due to a
decrease in the coupling between pyramidal neurons, not of
interneurons.

We then investigated the spatial nature of the decrease in net-
work connectivity during NREM sleep by analyzing pairs of neu-
rons separately within and between distinct brain areas. We
found that functional connectivity between excitatory neurons
located in different areas decreased going from wakefulness (AW

and QW) to NREM, both in terms of cMI values and proportion
of connected couples (Fig. 7A,B, left). Conversely, only minor
changes were observed between excitatory neurons located in the
same area and between interneurons (Fig. 7A,B); specifically, no
consistent difference was found for cMI values and proportion of
significantly connected couples between NREM and both AW
and QW (see the legends of Fig. 7A,B for details). Therefore,
whereas, during NREM, connectivity at the local level (i.e.,
single-area) and between interneurons is preserved, communica-
tion between excitatory neurons located in distinct brain areas
diminishes.

The pattern observed for cMI closely resembled the differ-
ences between distributions of pairwise correlations for excit-
atory and inhibitory neurons located in the same or in different
brain areas (Fig. 7C), with weaker inter-area than intra-area cor-
relations during QW and NREM for pairs of excitatory neurons,
but no difference for pairs of inhibitory neurons.

Figure 5. Recurrent connectivity is heterogeneously modulated by behavioral state. A, cDAMI plot for a single example neocortical neuron. Each plot corresponds to one behavioral
state. cDAMI has been computed for time bins of different durations ( y-axis, 2 to 1000 ms), for different delay bins (x-axis), and for different time bin widths (the duration of one delay
bin is equal to the corresponding time bin width given on the y-axis; e.g., a delay of 1 time bin for a time bin width of 600 ms is exactly 600 ms). For each time bin width, cDAMI for delay
bins �0 is normalized to the corresponding value with no delay (see Materials and Methods). B, Auto-correlogram (probability of one spike by a neuron being followed or preceded by
a spike by the same neuron) for the neuron shown in A computed using a 25 ms bin in the range �1 to 1 s for each behavioral state (blue: AW, red: QW, green: NREM). C, Average values
of cDAMI across neurons in the barrel cortex for a single recording session. Each plot corresponds to one behavioral state. cDAMI has been computed as described for A (for time bins
ranging between 50 and 1000 ms). The black outline indicates the values of time bins and delays that were used in all further analyses. D, Boxplots indicating the average values of cDAMI
for all recorded neurons (see Materials and Methods) in the three different brain regions that we considered. Asterisks indicate significant differences ( p 	 0.05, Friedman test with post
hoc analysis).
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Task-related functional networks remain segregated during
quiet wakefulness and NREM sleep
All analyses presented so far are independent from the previous
history of neuronal activity. Although it is widely accepted that
neuronal activity occurring during wakefulness strongly influ-
ences firing patterns during quiet wakefulness and sleep (reacti-
vation of stored memory traces; Foster and Wilson, 2006; Ji and
Wilson, 2007; Pezzulo et al., 2014), only a few studies have inves-
tigated whether functional multi-area networks, as defined by
involvement (or non-involvement) in a behavioral task, display
consistent patterns of functional connectivity across different

brain states (Hoffman and McNaughton, 2002; Ji and Wilson,
2007; Lansink et al., 2009). We first investigated differences in
network dynamics based on whether neuronal firing rates were
significantly modulated by the task (Fig. 8A,B; Materials and
Methods). We found that cDAMI was significantly larger for
non-TM than for TM neurons during QW and NREM, but not
AW (Fig. 8C).

In contrast, functional connectivity (cMI) showed features
different from those of cDAMI. During AW, cMI between TM
neurons was found to be larger than cMI between non-TM neu-
rons and between one TM and one non-TM neuron, in terms of

Figure 6. Differential modulation of functional connectivity between excitatory and inhibitory neurons as a function of behavioral state. A, Average action potential waveforms (mean � SEM)
for neurons classified as either broad-spiking (putative excitatory neurons, black) or fast-spiking (putative inhibitory neurons, gray). B, Left, Firing rates for putative excitatory neurons across brain
states. Asterisks indicate significant differences ( p 	 0.05, Friedman test with post hoc analysis). Right, Distribution of normalized firing rates for excitatory neurons only as a function of brain state
(blue: AW, red: QW, green: NREM) computed using an 800 ms time bin. Firing rates within each brain state have been normalized (independently for each neuron) to the highest value recorded across
all three brain states. Asterisks indicate significant differences between distributions across behavioral states ( p 	 0.05, Wilcoxon rank-sum test with post hoc analysis). C, Same as B but for
inhibitory neurons. D, Boxplots of cDAMI for putative excitatory neurons (left, black) and putative inhibitory neurons (right, gray) as a function of behavioral state. For both excitatory and inhibitory
neurons, cDAMI is weaker in NREM than in AW and QW, with cDAMI being larger in AW than QW for excitatory neurons (asterisks indicate p 	 0.05, Friedman test with post hoc analysis). For all
behavioral states, cDAMI was larger for inhibitory than for excitatory neurons ( p 	 0.05, Mann–Whitney U test). E, Probability distribution of pairwise linear correlation values between firing rate
trains separately for all recorded excitatory (left) or inhibitory (right) neurons, across brain states (blue: AW, red: QW, green: NREM). Firing rates were computed using an 800 ms time bin. Asterisks
indicate significant differences between distributions across behavioral states ( p 	 0.05, Kolmogorov–Smirnov test with post hoc analysis). F, Median cMI values within and between brain areas
measured during a single recording session as a function of behavioral state. Red lines indicate the border between computed cMI values and empty portion of the matrix (see also Figure 3A). Top,
Median cMI values between pairs of excitatory neurons. Bottom, Median cMI values between pairs of inhibitory neurons. Green lines indicate the boundary between intra-area and inter-area
connections (below and above the green line, respectively). G, Left, Cumulative probability distribution curves of cMI values as a function of behavioral state for pairs of putative excitatory neurons
(solid lines) and pairs of putative inhibitory neurons (dashed lines) pooled across all areas for different behavioral states (blue: AW, red: QW, green: NREM). Asterisks indicate significant differences
( p 	 0.05, Friedman test with post hoc analysis). Right, Proportion of connections significantly larger than 0 ( p 	 0.05) for the different types of neuronal pairs (black: pairs of excitatory neurons;
gray: pairs of inhibitory neurons) as a function of behavioral state. Error bars indicate bootstrap-estimated confidence intervals (see Materials and Methods). Asterisks and lines at the top of each
panel indicate significant differences across behavioral states ( p 	 0.05, bootstrap-estimated, only one asterisk for all lines); line colors and styles correspond to the connection to which they refer,
as indicated in the legend; asterisks on top of error bars indicate significant differences between types of connections within each behavioral state.
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both values and proportion of significant values (Fig. 8D,E).
During QW and NREM, instead, we found that cMI (again, for
both value and proportion of significant connections) was lower
for connections between a TM and a non-TM neuron than for
connections between pairs of TM neurons or pairs of non-TM
neurons, with no difference between the latter two types of con-
nection (Fig. 8D,E). This indicates that, during QW and NREM
(i.e., in brain states having no direct bearing on the task), TM and
non-TM neurons continue to behave as distinct functional net-
works that interact weakly with each other.

Discussion
Although behavioral states have long been considered global phe-
nomena involving the whole brain (Pace-Schott and Hobson,
2002), several recent experiments indicate that neural activity
patterns during different behavioral states have a highly hetero-
geneous nature (Hirase et al., 2001b; Pennartz et al., 2002; Klaus-

berger et al., 2003; Greenberg et al., 2008; Vyazovskiy et al., 2009,
2011; Gentet et al., 2010; Sachidhanandam et al., 2013; Goltstein
et al., 2015). Surprisingly, investigation of state-dependent mod-
ulation of brain connectivity has been mostly limited to the mac-
roscopic (Massimini et al., 2005; Ferrarelli et al., 2010; Park and
Friston, 2013) and mesoscopic (Lewis et al., 2012; Lu et al., 2012;
Bettinardi et al., 2015; Pigorini et al., 2015) scales. Here, we pro-
vide an account of how brain state modulates functional con-
nectivity between individual neurons in the rat neocortex and
hippocampus. Specifically, we quantified the coordination be-
tween firing rate fluctuations over hundreds of milliseconds
(Harris and Thiele, 2011). Compared with faster neuronal
processes, usually referred to as assembly or packet activity
and occurring over periods of 30 –200 ms (Miller et al., 2014;
Luczak et al., 2015; Montijn et al., 2015), such slower fluctua-
tions are thought to modulate (or gate) how effectively infor-

Figure 7. Differential state-dependent modulation of functional connectivity between excitatory and inhibitory neurons for intra-area versus inter-area connections. A, Median cMI values as a
function of behavioral state between different types of neuronal pairs based on whether neurons were located in the same brain area or in different areas (solid lines: intra-area connections; dashed
lines: inter-area connections). Error bars indicate confidence intervals for the medians. Left, black, cMI between pairs of excitatory neurons; for inter-area connections, cMI values during NREM were
significantly lower than during both AW and QW; for intra-area connections, cMI values during NREM were lower than during QW but not AW. Right, gray, cMI between pairs of inhibitory neurons;
the only significant difference was observed for inter-areal connections, for which cMI values during AW were lower than during both QW and NREM. Asterisks and lines at the top of each panel
indicate significant differences across behavioral states ( p 	 0.05, Kruskal–Wallis test with post hoc analysis); line colors and styles correspond to the connection to which they refer, as indicated
in the legend; asterisks on top of error bars indicate significant differences between types of connections within each behavioral state ( p 	 0.05, Wilcoxon rank-sum test). B, Proportions of
significant ( p 	 0.05) cMI values for different types of connection as a function of behavioral state and based on whether neurons were located in the same or different areas (solid line: intra-area
connections; dashed line: inter-area connections). Left, black, Pairs of excitatory neurons; no significant change was observed across behavioral states for intra-area connections, whereas a
significant progressive decrease change was found for inter-area connections going from AW to QW and NREM. Right, gray, Pairs of inhibitory neurons; the only significant difference was present
for inter-areas connections between AW and NREM (but not between QW and NREM). Error bars are bootstrap-estimated confidence intervals (see Materials and Methods). Asterisks and lines at the
top of each panel indicate significant differences across behavioral states ( p 	 0.05, bootstrap-estimated, only one asterisk for all lines); line colors and styles correspond to the connection to which
they refer, as indicated in the legend; asterisks on top of error bars indicate significant differences between types of connections, within each behavioral state. C, Probability distribution of pairwise
correlation values between firing rate trains as a function of brain state (blue, left: AW; red, middle: QW; green, right: NREM), neuronal subtype (top: excitatory neuron; bottom: inhibitory neurons),
and type of connection (solid lines: intra-area; dashed lines: inter-area). Asterisks indicate significant differences between types of connection within brain state and neuronal subtype ( p 	 0.05,
Kolmogorov–Smirnov test).
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mation can be transferred between neurons, rather than the
“message” to be processed (Luczak et al., 2013). We found
that, on average, NREM is associated with a lower level of
network integration compared with wakefulness (both AW
and QW), as indicated by cMI and cDAMI (Figs. 2, 3, 4, and 5).
However, we also found that: (1) functional connectivity
within and between brain areas is modulated across behavioral
states in a region-specific manner, with differences between
neocortex and hippocampus (Figs. 2, 3, 4, 5); (2) functional
coupling between interneurons and connectivity within single

areas are not significantly modulated by behavioral states, but
inter-areal coupling between excitatory neurons is reduced in
NREM (Figs. 6 F, G, 7 A, B); and (3) functional networks
formed by TM and non-TM neurons remain segregated dur-
ing QW and NREM (Fig. 8 D, E). Our general conclusion is
that the different stages of wakefulness and sleep are global
behavioral phenomena with specific local neural correlates.
This had so far been observed only at the level of single-cell
spiking activity (Gentet et al., 2010; Vyazovskiy et al., 2011).
For example, local clusters of cortical neurons can enter sleep-

Figure 8. Task-related networks remain segregated in quiet wakefulness and NREM sleep. A, Outline of maze (gray track) and behavioral task. Black rectangle indicates the starting point of each
trial, where visual stimuli (blue: screens) were observed. Orange areas are the maze portion with sandpaper on side walls. Black areas are the reward locations. B, PETHs and raster plots for two
example TM neurons. Top, Neuron in S1BF (time 0: entrance in the sandpaper zone). Bottom, Neuron in PRH (time 0: reward delivery). C, cDAMI for neurons of which the firing rate was either
modulated (TM, orange traces) or not (non-TM neurons, purple traces) during task performance. Horizontal lines (with one asterisk for all lines): significant differences across behavioral states (solid
lines: orange for TM neurons, purple for non-TM neurons; Friedman test with post hoc analysis) and between TM and non-TM neurons within each behavioral state (dashed black lines: differences
between TM and non-TM within a single state, p 	 0.05, Wilcoxon rank-sum test). D, Cumulative probability distribution of cMI values during the different behavioral states as a function of the type
of neuronal pair: pairs of non-TM neurons (purple curves), pairs of one non-TM and one TM neuron (black curves), and pairs of TM neurons (orange curves). Top left, AW (solid lines). Bottom left, QW
(dashed lines). Bottom right, NREM (dotted lines). Top right, Dashed lines: significant differences within each behavioral state ( p 	 0.05, Kruskal–Wallis test with post hoc analysis). Solid lines
indicate significant differences across behavioral states ( p 	 0.05, Friedman test with post hoc analysis) for each type of neuronal pair (indicated by the corresponding color). E, Proportion of cMI
values significantly larger than 0 for the different types of pairs of neurons (orange: pairs of TM neurons; purple: pairs of non-TM neurons; black: one non-TM and one TM neuron) as a function of
behavioral state. Error bars are bootstrap-estimated confidence intervals. Colored asterisk above (or below) all lines at single brain states indicate the connection with the significantly ( p 	 0.05)
highest (lowest) proportion of positive cMI values. Horizontal lines (with one asterisk for all lines) indicate significant differences across behavioral states for each type of neuronal pair (colors
correspond to neuronal pair types, p 	 0.05, bootstrap-estimated).
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like states independently from the rest of the cortex (Vyazovs-
kiy et al., 2011) and individual neuronal subtypes were shown
to have specific brain-state dependent patterns of activity
(Gentet et al., 2010; Vinck et al., 2015b). Our findings indicate
that, similar to firing activity, neuronal coupling is also tightly
regulated at the single-neuron level.

During NREM, inter-area functional connectivity between
excitatory neurons was diminished, whereas coupling was pre-
served at the level of individual areas and between interneurons
(Figs. 6, 7). This indicates a potential mechanism underlying the
breakdown of neural integration, which has been described dur-
ing unconscious states (anesthesia and NREM) at the macroscale
(Massimini et al., 2005; Ferrarelli et al., 2010), and fragmentation
of activity shown to occur at the mesoscale (Lewis et al., 2012;
Pigorini et al., 2015). Therefore, whereas global brain integration
is lost during NREM, it is preserved at the local level and individ-
ual brain areas might, at least during depolarized states, preserve
a minimal level of activity to allow fast reengagement in con-
scious processing (Destexhe et al., 2007).

Our results reveal potential functional differences between
excitatory and inhibitory neurons across the sleep–wake cycle.
Preserved coupling between interneurons and distance-
dependent decline between excitatory neurons during NREM
was described previously at the single-area level in humans (Pey-
rache et al., 2012). Here, we found that functional connectivity
between interneurons is also preserved between different brain
areas during NREM (Fig. 7A,B). This was confirmed by our anal-
ysis of pairwise correlations between neurons located in same or
different areas (Fig. 7C). Compared with linear methods (such as
pairwise correlations), however, cMI captures a broader range of
interrelationships between firing rate fluctuations (e.g., non-
monotonic dependencies). Therefore, although the synchronous
occurrence of up and down states during NREM likely leads to
higher pairwise linear correlations (Figs. 3C, 6E), this is accom-
panied by a stronger drop in nonlinear coupling (Figs. 3B, 4C).

Overall, our results indicate that, during NREM, interneurons
help to maintain an adequate level of coupling between brain
areas, for example, by synchronizing rhythmic activity within and
between areas (Caputi et al., 2013). Conversely, excitatory neu-
rons are primarily involved in communication, defined as
information transfer between areas (Olcese et al., 2013), and
functional connectivity between them declines when less infor-
mation is transferred, possibly due to a decline in functional con-
nectivity between excitatory neurons, as observed in NREM. Our
results thus support the view that interneurons might be involved
in modulating oscillatory activity during NREM to foster coordi-
nation (i.e., coupling without information transfer) between
brain areas (Puig et al., 2008; Kilduff et al., 2011). What could be
the mechanisms underlying preserved coupling between in-
terneurons during NREM? Although interneurons with long-
range connections have been described (Melzer et al., 2012) and
could play a role, common subcortical inputs may also constitute
a major driving force for interneuron synchronization: specifi-
cally, direct neocortical projections from both the thalamus
(Contreras et al., 1997) and the basal forebrain (Jones, 2004;
Henny and Jones, 2008). Measures of functional coupling such as
cMI cannot discriminate between these two possible mecha-
nisms: future studies using methods to quantify effective (direc-
tional) connectivity such as transfer entropy (Schreiber, 2000)
and optogenetics will be necessary to address this point.

Brain state also modulated functional connectivity depending
on the involved brain regions, with a major difference between

neocortex and hippocampus. Within the neocortex, both cMI
and cDAMI peaked in wakefulness and bottomed in NREM, mir-
roring the key role of the neocortex in conscious processing. In-
trahippocampal coupling followed instead a different trend:
whereas cDAMI peaked in AW and was progressively lower in
QW and NREM, cMI peaked in QW and was lower in AW than
NREM (Figs. 4C, 5D). Therefore, during AW, hippocampal neu-
rons show high level of self- but not mutual connectivity and the
opposite occurs in NREM. Future experiments and analyses will
be required to determine whether this is conducive to establish-
ing the role of the hippocampus in episodic memory formation
and sleep-dependent consolidation (McNaughton et al., 1983;
Lee and Wilson, 2002; Pennartz et al., 2002; Girardeau and Zu-
garo, 2011).

Finally, we found that TM neurons and non-TM neurons
form distinct functional networks not only, as expected, during
AW (Tauste Campo et al., 2015), but also during QW and NREM.
We observed that cMI between pairs of TM-neurons or between
pairs of non-TM neurons was stronger than between one TM and
one non-TM neuron during QW and NREM (Fig. 8D,E). This
functional segregation between TM and non-TM neurons may
be due to within-network (i.e., within TM or non-TM neurons)
correlated firing activity and consequential Hebbian learning,
which would selectively strengthen connections between TM (or
non-TM) neurons, but not between different functional net-
works (Olcese et al., 2010). Importantly, this learning process
may have occurred over the course of the whole training period
(i.e., several weeks) and this may explain why we observed func-
tional segregation during QW and NREM periods, which oc-
curred both before and after AW. Segregation between networks
with different functional profiles might be one of the mechanisms
underlying the coordinated and selective reactivation of patterns
of neuronal firing across brain areas in NREM sleep (Hoffman
and McNaughton, 2002; Ji and Wilson, 2007; Lansink et al., 2009;
Olcese et al., 2010), which must avoid the involvement of neu-
rons unrelated to the replayed experience. We also observed that
cDAMI for TM neurons was lower than cDAMI for non-TM
neurons in QW and NREM, but not AW (Fig. 8C). Low cDAMI
can indicate both weaker recurrent connectivity and faster dy-
namics because it quantifies how strongly patterns of activity at
the level of single neurons dissipate over time (Fig. 5A,C). Reac-
tivation of patterns of spiking activity during QW and NREM
occurs is time compressed compared with task performance (e.g.,
navigation) in AW (Hoffman and McNaughton, 2002; Lee and
Wilson, 2002; Foster and Wilson, 2006; Euston et al., 2007; Ji and
Wilson, 2007; Lansink et al., 2009; Pezzulo et al., 2014). This is
consistent with lower cDAMI values for TM-neurons during QW
and NREM because faster, yet highly correlated, dynamics would
result in a decrease in cDAMI at the temporal scales that we
measured. However, it remains to be determined whether time-
compressed sleep replay contributes to the lower cDAMI of TM
neurons.

In conclusion, we provide for the first time an account of how
inter-area and intra-area coupling vary as a function of behav-
ioral state at a cellular level. Our analysis demonstrates a highly
local and interregional nature for brain-state-dependent modu-
lation of neural coupling. Importantly, whereas inter-areal cou-
pling between excitatory neurons is reduced in NREM compared
with wakefulness, functional connectivity within single areas and
between interneurons is preserved. Future studies will be needed
to generalize our findings to other brain regions, locations within
single areas (e.g., cortical layers), temporal scales, and identified
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neuronal phenotypes and to understand the functional roles of
this modulation.

Notes
Supplemental material for this article is available at http://hdl.handle.
net/11245/2.174271 (online-only material, including nine additional fig-
ures). This material has not been peer reviewed.
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