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1
Introduction

The history of image making and understanding came a long way from ancient times. It started
nearly around 40.000 years ago, when the first paintings were practiced on cave walls. The
early messages were conveyed via objects followed by time and action. The artists initially
drew animals (objects) such as bulls, horses and bisons which played an essential role (food) in
their lives. The initial drawings were mainly outlines of the objects. Specifically, objects were
represented using boundaries with emphasizes on distinctive object parts (e.g. horn of a bison).
Then, the artists start to add more details about the object (e.g. fur color of a bison). Later, the
artists wanted to extend the messages by adding high-level meanings to these drawings. For
example, to indicate the time of the day (e.g. mid-day), lighting effects are used (e.g. shadow
under a bull), see Fig. 1.1. The posture of the animals was used to make them appear to be
either alive or dead. To express motion, for example, bulls with eight legs were painted to
indicate running. There has been a long debate about the purpose of these paintings. One of the
most popular hypotheses suggests that the depictions were used to transfer knowledge, habits,
experiences and culture to the next generation [120, 154]. According to this hypothesis, our
ancestors wanted to help the next generations of human kind to survive by sharing their valuable
knowledge. Beyond images themselves, understanding these images also carried an important
role on the continuation of the human kind. Humans must have assessed the message carried
by these images. This demonstrates the ability of humans to understand what they see. In fact,
humans have a very well developed vision system. We can extract low-level information (e.g.
color, lines and texture) from an image and understand the high-level message it conveys (e.g.
recognizing a bull only from an outline). Therefore, even today, it is not so hard to interpret what
these drawings convey when we look at them.

Although the urge to tell stories did not change, image making has been evolving by the years.
Nowadays, not only the artists (e.g. cave walls) but also anyone with a mobile phone can create
pictures. In fact, if you want, you can record and share every single moment in your life. Ev-
ery minute, millions of media elements (e.g. pictures and videos) are uploaded to the Internet.
Understanding and archiving this enormous amount of data is only possible by automatization.
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Figure 1.1: In the 23,000-year old picture from Lascaux, the artist conveys that it is midday by letting
the light come from above, where Rembrandt indicates the woman is resting in the evening
hour.

Automatization requires intelligent algorithms that interpret and understand the world like hu-
mans do. To achieve this, we need to teach machines how to see. In this thesis, we explore
images in terms of fundamental elements for what a person needs to see (i.e. light, object and
high level semantic interpretation).

The human vision system is the result of complex interactions between light, objects, eyes and
brain. For example, color is not an inherent characteristic of objects [131]. What we observe
as color is the result of object surfaces reflecting and absorbing different wavelengths which are
part of the electromagnetic spectrum. Hence, from a physics-based perspective, light is the only
quantity that we are able to observe. Light, emitted by a source (e.g. lamp), is reflected by object
surfaces and stimulates the photoreceptors of our eyes. Then, photoreceptors convert the incom-
ing light into signals which are transferred to our brain. Subsequently, our brain deciphers the
information to detect low-level cues such as color, edges and texture of objects and scenes. Then,
these low-level cues are grouped together to form high-level cues for semantic interpretation.

As sight starts with light, so does this thesis. As discussed, light is an inevitable factor to form
images. Besides the importance on forming an image, light has also attracted attention of re-
search to extract other low-level (e.g. surface structure [61, 75, 156, 196]) and high-level (e.g.
material property [94]) cues. To this end, we can understand if a surface is matte/glossy which
may also interpret softness/hardness (e.g. a matte plastic or a shiny metal) of the surface. Or
we can understand the underlying geometry of objects (due to shading cues). To exploit the
interaction between light and objects, it is important to derive the position of the light source
with respect to the objects. Therefore, the second chapter of this thesis focuses on estimating the
location of the light source (i.e. light source position). To address this problem we consider a
well established technique which relies on Lambert’s law. Lambert’s law states that the quantity
of light absorbed is proportional to the angle between the light source and the surface normal
direction. Consequently, most of the algorithms aim to infer the light source position (LSP)
using pixel intensities corresponding with surface normal [180, 5, 198, 148, 91, 106, 8]. This
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is straight-forward as long as the Lambert’s law holds, i.e. matte surfaces. However, a glossy
surface is prone to (specular) highlights and material-to-material inter-reflections which are not
considered by Lambert’s law. Moreover, due to imperfections of the recording devices, the sur-
face normal may become noisy on rough, crinkled and grained surfaces. These types of surfaces
may negatively influence the LSP estimation. Therefore, we pose the following question:

• Can we assign importance to surfaces based on their surface attributes to improve the
estimation of the light source position?

To address this question, in Chapter 2, we propose a method which exploits the influence of var-
ious surface attributes for LSP estimation. More importance is rendered to those image surface
segments which have suitable photometric and geometric surface attributes. We study whether
weighting image surface segments based on their attributes may outperform the state-of-the-art
methods in which the image surface segments are considered to equally contribute.

After light is converted into signals and transferred to our brain, the initial stage of visual pro-
cessing consists of determining discontinuities in color, depth and texture. A number of these
discontinuities capture distinctive information (patterns) about the objects. The human visual
system makes use of these patterns to recognize objects even in the situation where there are
large variations between object appearances and imaging conditions. More specifically, objects
can be located at any location on the retina (position), at any distance (scale), for different views
(pose), and for different lighting conditions (Illumination) [24]. Moreover, instances of the same
object class should be considered as the same category (intra-class) independent of the different
patterns introduced by the varying imaging conditions. The main question is how to establish
the equivalence between all of these patterns. Many successful works have proposed invariant
representations to achieve robust recognition over a large range of imaging and viewing condi-
tions [7, 48, 49, 98, 115, 194]. A full invariant representation, unfortunately, leads to a decrease
in discriminative power [172]. This drawback is due to distinguishing transformations that a
full invariant representation cannot capture. For example, under rotational invariance a "6" is
identical to a "9". The current invariant representations do not allow having robustness for only
certain degree of freedom. These rigid properties of current invariants play a central role in the
trade-off between invariance and discriminative power. Subsequently, in this thesis, we try to
find an answer to our second research question:

• Is it possible to enable a degree of robustness to local image descriptors instead of on/off
invariant property for more discriminative object recognition?

To this end, in Chapter 3, we propose to replace these binary on/off invariants by steering the
robustness to a limited range of changes. When the robustness is restricted, the descriptors are
expected to be more discriminative.

Low-level visual cues are not sufficient to understand the deeper meaning of images. It is impor-
tant to extract higher-level cues as well. In the human brain, the initial step towards is to combine
low-level cues to recognize objects. Therefore, we aim for an algorithm to recognize objects in
the scene. Object recognition algorithms have shown significant progress on classifying "dis-
tinct" object categories such as horses, bicycles and cars [34]. These algorithms mostly rely
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on appearance cues (e.g. color, texture and shape) [21, 168]. However, these visual cues may
not be sufficient enough to distinguish categories of objects that only slightly differ in appear-
ance (e.g. fine-grained classification and instance search). Complementary cues are essential
to distinguish visually similar object categories. The requirement of complementary source of
information brings out a new research question:

• Is scene-text useful for image classification?

In Chapter 4, we make use of the domain specific knowledge of buildings and logos. Texts in nat-
ural scenes (i.e., outside a document) typically add meaning to an object, location or scene. For
example, text adds identification on the brand or type of a product, it specifies which buildings
serve food (e.g. steakhouse) or drinks (e.g. tea, coffee), and what kind of service is provided
(e.g. dry-cleaning, repair). The mere presence of text, its words and their meaning are closely
related to the semantics of the scene. To this end, in Chapter 4, we propose to exploit this se-
mantic relationship between text and the scene to improve automatic image classification and
retrieval where visual cues may not prove sufficient. We propose a generic, efficient and fully
unsupervised character detection algorithm. Detected character regions are processed by a state-
of-the-art character recognition algorithm [69]. Then, bi- and trigrams (textual cues) are formed
between the recognized characters by considering spatial pairwise constraints. Extracted textual
and visual cues are combined for fine-grained classification and image retrieval.

In Chapter 4, we consider textual cues encoded at character level for fine-grained classification
and image retrieval. However, characters may not fully convey the rich semantics given by the
text. Accordingly, the next research question is investigated:

• Can we achieve a better image classification and retrieval by using word-level textual cue
encoding rather than character-level textual cue encoding?

To this end, in Chapter 5, we propose to encode textual cues at word-level. Moreover, it is widely
acknowledged in text detection literature that high f-score in word detection is more important
than high recall. However, when a word in an image is not detected or localized incorrectly, it
is not possible to identify it. Therefore, in Chapter 5, we also investigate the following research
question:

• Is high recall in word detection more important than high f-score for fine-grained classifi-
cation and image retrieval?

The message carried by recognized objects may also be limited. Therefore, it is essential to
probe deeper by exploring other cues (e.g. object location). Locating an object in an image may
reveal the information based on object spatial relations. For instance, a person on top of a bike
may represent cycling, a person with a gun in his hand may raise alert or shadows under a cow
may represent mid-day as in cave paintings. To exploit such high-level semantics, we investigate
where the object is (i.e. object detection) in Chapter 6. Many object detection algorithms have
been proposed in the literature [19, 41, 52, 58, 86, 110, 167, 173]. Although these detection
algorithms are successful for common object appearances and imaging conditions [60], their
design properties (e.g. search strategy, features, and model presentation) influence the robustness
of these methods to varying imaging conditions (e.g. occlusion, clutter, unusual views, and



1.1 Origins 5

Recognition and Detection of Objects Using Visual and Textual Cues

Chapter2: Light Source 

Position Estimation

Chapter3: Improving performance 

of local image descriptors

Chapter4-5: Scene Text for Object 

Recognition and Logo Retrieval

Chapter6: Combining Object 

Detectors Using Learning to Rank

Orange BULL Coffee Orange BULL Coffee

Figure 1.2: The thesis is structured as follows: Chapter 2 of this thesis focuses on light source position
estimation. In Chapter 3, we propose a method to improve matching performance of local
image descriptors. In Chapter 4 and 5, we combine textual and visual cues to improve fine-
grained place of business classification and logo retrieval. Finally, in Chapter 6, we propose a
method to combine state-of-the-art object detectors to improve single detector performances.

object size). As a consequence, no detection algorithm can be considered as universal. With the
large variety of available methods, the question is:

• How can we combine state-of-the-art object detectors to preserve their strengths while
reducing their limitations and assumptions?

To this end, in Chapter 6, we consider a rank learning approach to combine object detection
methods. The proposed framework combines detections (detector outputs which consist of a
classifier score and bounding box locations) of various well-known object detectors including
DPM [41], CN [86], EES [110] and RCNN [52]. The aim of the proposed method is to provide
advantages over the state-of-the-art object detection algorithms. (1) Missed detections (false neg-
atives) of single detectors are compensated by combining detections of different detectors (due
to complementary detections). (2) Detections are re-ranked by using information gathered by
other detectors (due to common detections). True detections (true positives) of each detector are
rewarded and false detections (false positives) of each detector are penalized within the learning
to rank framework. (3) The combined list maintains the strengths of the detectors. Therefore, it
is more robust than each individual detector for varying imaging conditions.

This thesis focuses on various aspects of image understanding, from improving matching per-
formance of local image descriptors (low-level) to recognizing and detecting objects in a scene
(high-level). We consider each research question addressed in this thesis as a piece of a complex
image understanding puzzle. Solving unique challenges in each piece of the puzzle may allow
us to reveal the overall picture and acquire in depth image understanding. The outline of the
thesis is depicted in Fig. 1.2.

1.1 Origins

This thesis is constructed based on seven research papers [79, 77, 82, 83, 81, 80, 78]. For each
chapter of this thesis, we list the publications and specify the role of each co-author below:
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Chapter 2 is based on Point Light Position Estimation from RGB-D Image Sequences by Learn-
ing Surface Attributes under review for publication in IEEE Transactions on Image Process-
ing [79] by Karaoglu, Liu, Gevers and Smeulders. Theories and algorithms were led by Karaoglu,
with contributions from the co-authors. The experiments and the analysis were performed by
Karaoglu, Liu contributed to the experiments. All authors contributed to the text.

Chapter 3 is based on Per-patch Metric Learning for Robust Image Matching at ICIP’15 [77]
by Karaoglu, Everts, Gemert and Gevers. Karaoglu led the development of the algorithms and
experiments, with contributions from the co-authors. Karaoglu initiated writing the paper and
all co-authors contributed to the text.

Chapter 4 is based on Object Reading: Text Recognition for Object Recognition at ECCV-
W’12 [82] by Karaoglu, Gemert and Gevers and Con-Text: Text Detection Using Background
Connectivity for Fine-Grained Object Classification at ACM-MM’13 [83] by Karaoglu, Gemert
and Gevers. Extended and combined version of these papers Con-Text: Text Detection for Fine-
grained Classification and Logo Retrieval is under review in IEEE Transactions on Image Pro-
cessing [81] by Karaoglu, Tao, Gemert and Gevers. Karaoglu developed all the algorithms and
performed all the experiments. The co-authors contributed to the experiments. The paper was
written by Karaoglu. The co-authors contributed to the text.

Chapter 5 is based on Words Matter: Scene Text for Image Classification and Retrieval under
review for publication in IEEE Transactions on Multimedia [80] by Karaoglu, Tao, Gevers and
Smeulders. Karaoglu and Tao equally contributed to this work. Theories and algorithms were
developed together. Karaoglu focused on implementing textual cue extraction, whereas Tao
focused on implementing visual cue extraction for fine-grained classification and logo retrieval
tasks. The experiments, the analysis and paper writing were performed by Karaoglu and Tao.
All authors contributed to the text.

Chapter 6 is based on Detect2Rank: Combining Object Detectors Using Learning to Rank pub-
lished in IEEE Transactions on Image Processing [78] by Karaoglu, Liu and Gevers. Karaoglu
developed all the algorithms and performed all the experiments, with contributions from Gevers.
The paper was written by Karaoglu. The co-authors contributed to the text.



2
Light Source Position Estimation∗

2.1 Introduction

Images are the result of complex interactions between the light source, objects and recording
devices. Being the creator of the image before anything else, the light source is often ignored
as an important cue to its understanding. The light source may reveal low-level (e.g. surface
structure [61, 156, 75, 196]) and high-level (e.g. material property [94]) information. Such
information is used by humans in their daily activities. For instance, we can distinguish whether
a surface is matte/glossy and what material the surface is made of (e.g. a matte plastic or a shiny
metal) [38]. Or we can interpret the underlying geometry of objects (due to shading cues). The
interaction between the light source and objects is also used in visual art where artists exploit
the characteristics of light in different ways. Specular reflections in an human eye give the lively
twinkle but are in fact a direct reflection of the light source. Shading indicates the curvature
of the body and reveals collimation and direction of the light. Spotlight steers salience, and
backlight in art photography renders the subject radiant. We consider that light source is an
inevitable factor of forming and understanding images. Therefore, in this chapter, we focus on
detecting the light source position.

Light Source Position (LSP) estimation has caught attention in references such as [180, 5, 198,
148, 91, 106]. Most of these algorithms are based on Lambert’s law, assuming that the pixel
intensity is proportional to the angle between the light and surface (normal) direction. LSP esti-
mation algorithms infer the position by assuming certain 3D-shapes of objects in the scene [180]
(to obtain surface normals). Often these assumptions fail, and hence the applicability of these
methods is limited.

A recent approach is to use low cost RGB-D cameras (e.g. Kinect and Asus Xtion) as they

∗S. Karaoglu, Y. Liu, T. Gevers and A. W. M. Smeulders, "Point Light Position Estimation from RGB-D Image
Sequences by Learning Surface Attributes," Under revision in IEEE Transactions on Image Processing (TIP), 2016.
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(a) (b)

Figure 2.1: (Best viewed in color) (a) An image sample taken from [8]. (b) Image surface segments pro-
duced by the mean-shift algorithm and their individual angular errors. The color represents
the angular error of each image surface segment. The corresponding angular error for each
color is at the colorbar next to each plot. Dark blue regions represent smaller angular errors
whereas dark red regions represent larger angular errors. The figure illustrates that curved
(such as ball and bowl) and less textured (such as table and toy castle) image surface seg-
ments have lower LSP estimation errors. Moreover, regions with shadows or highlights have
difficulties to estimate LSP.

acquire color images with their depth in real-time. The use of RGB-D cameras alleviates the
requirement of assuming certain object shapes, because the surface normals can be readily com-
puted [8, 129, 72]. Assuming Lambert’s law, the light source position can be estimated using
the surface normals and pixel intensities. In particular, LSP is obtained by minimizing the resid-
uals between the re-rendered (scene generated using a hypothesized light source position) and
the original scene. This is straight-forward as long as Lambert’s law holds, such as for matte
surfaces. However, a glossy surface is prone to specular highlights and material-to-material
inter-reflections which are not considered by Lambert’s law. Moreover, due to imperfections of
recording devices, the surface normals may be noisy on rough, crinkled and grained surfaces.
Hence, these type of surfaces may negatively influence the LSP estimation. In Fig. 2.1, we es-
timate the LSP for each image surface segment (obtained by color-based mean-shift algorithm).
We measure the angular error between the estimated LSP and ground-truth LSP. The figure illus-
trates that different image surface segments have varying LSP estimation errors.

In this chapter, we propose a method which exploits the influence of various surface attributes
for LSP estimation. First, surface attributes are computed from image surface segments. These
attributes are used in a supervised learning scheme to rank the suitability of each surface for
proper LSP estimation. Higher importance is assigned to image surface segments which have
proper photometric (i.e. Lambertian reflectance) and geometric surface attributes. This is an ad-
vantage over the state-of-the-art methods [8, 72] which assume equal importance to all surfaces.
To improve the performance further, we introduce temporal constraints, extending the method to
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Figure 2.2: The flow of the proposed approach. First, the image is divided into image surface segments.
Surface attributes (e.g. glossy, matte, highlight, curved etc) are extracted from these regions
aiming to rank them based on their suitability for proper LSP estimation. The proposed
method assigns more importance to image surface segments which are more suitable for LSP
estimation. This is in contrast to the state-of-the-art methods [8, 129] which assume equal
importance to all image surface segments. Moreover, to improve the performance further, we
introduce temporal constraints (for video sequences).

video sequences. For static objects, it is assumed that the light source position does not change
during the recording of the video. We derive a temporal constraint by estimating the camera
pose. The camera pose is used to estimate a global LSP which minimizes the residuals between
the re-rendered video frames and the original video frames. See Fig. 6.1 for the outline of the
proposed method. The proposed method is tested on two different datasets (Boom13 [8] and
our newly collected video dataset). Experiments on these datasets show that surface weighting
provides a significant improvement over the state-of-the-art methods.

The chapter has the following contributions. First, surface attributes are differentiated according
to their importance for LSP estimation. Second, in contrast to state-of-the-art methods, which
declare all surface contributions as equally important, we derive weights for individual image
surface segments based on their suitability. Third, a geometry-based initialization is proposed
to make the light source LSP estimation specific to the underlying image and to ensure fast
convergence. Fourth, for videos, we introduce a global consistency term to constrain the light
source positioning by estimating the camera pose. Finally, we prove the viability of the method
on a new (video) dataset, to be made publicly available.

2.2 Related Work

Visual Cues. In general, light source positioning algorithms assume certain 3D object shapes
or known objects in the scene. For instance, [148] assumes that the position of objects in the
scene is known and uses cast shadows to estimate the light source direction. [113] uses a fisheye
camera to recover the position of the light source for indoor scenes. Others, e.g. [106], use GPS
and compass information to determine the sun position in outdoor scenes. In [91], various cues
are extracted from the sky, vertical surfaces and the ground to estimate the direction of the sun.
Although these methods may be suited to estimate the light source direction, they impose strong
assumptions on the imaging conditions.

Depth Cues. More recently, a number of methods have been proposed that use depth information.
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For instance, [129] decompose the image into specular, diffuse and albedo layers. The specular
and diffuse layers are used to constrain the difference between the re-rendered and original
image. However, detecting specular parts in a 2D still image is a difficult problem. Moreover,
each surface segment is considered to equally contribute to LSP estimation. [8] assumes that
image surface segments with the same color have the same albedo. The authors re-render the
scene from a hypothesized LSP while minimizing the error between the synthesized and original
image.

In contrast to the previous methods, we propose to learn the suitability of surfaces to estimate the
LSP based on their surface attributes. We assign weights to the image surface segments rather
than treating them all equally.

2.3 LSP Estimation Using Surface Suitability

According to Lambert’s law, an intensity pixel value I can be modeled by:

I(u) = ρ(u)min(n⃗(u)( L − p(u)
∥L − p(u)∥

)tı, 0) , (2.1)

where t represents the transpose. The intensity value I at pixel u, depends on the surface albedo
ρ, the surface normal n⃗, the light source direction and the intensity ı of the light. The light
source direction is defined as the direction between the light source position L and the point
p in 3D coordinates. From the RGB-D sensor, both the intensity I and the depth images are
provided. Further, n⃗ is computed from the depth image using [147]. For LSP estimation, the
albedo ρ and the light intensity ı are unknown. Hence, it is necessary to estimate ρ and ı. Image
surface segments are generated by using the (color-based) mean-shift algorithm. It is assumed
that image surface segments have uniform albedo [8, 72, 129]. Thus, ρ does not change within an
image surface segment. Moreover, it is assumed in [8] that ı remains constant because the light
source distance does not vary significantly over neighboring pixels (image surface segment). We
also do not use the inverse square law to adjust ı. We set ı to be 1. Under these assumptions, the
LSP is estimated by minimizing the error between the reconstructed and original image surface
segments based on the hypothesized LSP.

2.3.1 Surface Reconstruction Using Surface Suitability

To reconstruct the image surface segment S, ρ values are required. Given an arbitrary L, ρ values
for surface si are computed by:

ρ(u) = I(u)
n⃗(u)( L−p(u)

∥L−p(u)∥)tı
, u ∈ si . (2.2)
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The median of ρ values are used to obtain a single ρ value for image surface segment si. Then,
the reconstructed image Ir for si is computed by:

Ir(u) = ρsimin(n⃗(u)( L − p(u)
∥L − p(u)∥

)tı, 0), u ∈ si , (2.3)

we obtain the light source position L by minimizing the error E between the original intensity
values I and the reconstructed intensity values Ir.

Ei =
∑
u∈si

f(si)∥I(u) − Ir(u)∥ , (2.4)

E =
∑
i∈S

Ei . (2.5)

Unlike other methods [8, 129], where each image surface segment contributes equally to the total
reconstruction error, we propose to assign weights f to each image surface segment based on its
suitability to compute the LSP. The aim is to assign more importance to image surface segments
which are more suitable for LSP estimation under the assumption of Lambert’s law. To this end,
surface attributes, characterize the surface suitability for LSP estimation, are extracted. Then,
the weights f are learned using these attributes in a supervised learning. The surface attributes
and learning procedure are detailed in Sections 2.3.2 and 2.3.3.

2.3.2 Surface Attributes for LSP Estimation

Lambert’s law assumes a surface which diffusely reflects the light. The surfaces which satisfy
this condition are more suited to estimate LSP. For instance, matte surfaces are preferred over
glossy surfaces to estimate the LSP. The specular reflections are not considered by Lambert’s law.
Consequently the surfaces with highlight will negatively influence the LSP estimation. A cast
shadow is caused by the occlusion of the light source position. That means that there are no light
rays reaching the surface directly coming from the light source. Hence, intensity values would
be misleading for LSP estimation (assuming Lambert’s law). Therefore, LSP estimation from a
shadow region would be prohibitive. Not only the photometric attributes, but also the geometric
attributes of a surface is influential to estimate LSP. For instance, the surface normals on rough
surfaces are prone to be more noisy than smooth surfaces. The intensity value is determined by
the angle between the surface normal and the incident light direction. Therefore, noisy surface
normals will negatively influence LSP estimation. Subsequently, smooth surfaces are preferred
over rough surfaces.

It is clear that some surfaces have preferred attributes to estimate LSP. To this end, we define sur-
face attributes. These attributes are further used in a learning scheme to measure the suitability



12 Light Source Position Estimation

Intensity Chromatic Normalized
Chromatic

Hue

Representation O3 [O1, O2] [ O1
O3

, O2
O3

] O1
O2

Invariant to - Highlights Shadows Highlights
Shadows

Table 2.1: Opponent color space image representations and invariant properties [35].

of a surface to estimate LSP.

Photometric Representations

We aim to represent surfaces by their photometric attributes (e.g. glossiness). Moreover, it is
important to identify surfaces under different photometric changes (e.g. highlights and shadows).
The opponent color space is used to represent different photometric invariants [168, 51, 35]. The
transformation of RGB to O1O2O3 is given by:

 O1
O2
O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 . (2.6)

The different properties of the opponent color and their combinations are summarized in Ta-
ble 5.1. The intensity information is represented by O3. It has no invariant properties. Therefore,
changes due to shadows and highlights are represented [168, 35]. Color information is contained
in O1 and O2. Due to the subtraction in O1 and O2, they are invariant to shifts in illumination
such as highlights [168, 35]. We consider invariance to illumination scaling (e.g. shadows) using
normalized chromatic components (O1

O3
and O2

O3
) as in [35]. Finally, we use hue = O1

O2
to account

for both invariances.

Surface Attributes

Extracting material characteristics from images has been studied in [35, 29, 186, 153, 122].
These works consider material recognition as a texture classification problem. [99, 64] perform
a detection in the image for common materials such as stone, wood, metal, fabric etc. Material
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characterization of a surface reveals important information about the surface property. For in-
stance, in general, metal is hard and glossy whereas plastic is soft and matte. Surface attributes
would highly benefit from material characterization. Therefore, in this chapter, material charac-
terization is used to extract surface attributes to assign importance to the surfaces based on their
suitability to estimate LSP. The opponent color and combinations (see Section 2.3.2), RGB and
depth images are used to extract surface attributes (surface attributes related to [35] are extracted).
We detail these attributes in this section.

Invariant Response. A cast shadow is caused by occlusion of the light source. Therefore, the
light source position cannot be derived from a shadow region (assuming Lambert’s law). More-
over, highlights are generated by specular reflections. The assumption of Lambert’s law does
not hold for highlight regions. To be able to distinguish image surface segments with shadows
and highlights, we use the method proposed by [51] which measures the average gradient mag-
nitude ratio defining the invariant response ( |▽O3|√

|▽R|2+|▽G|2+|▽B|2
where | . | stands for gradient

magnitude). The image surface segments consist of uniform colors. Hence, the average gradient
magnitude is expected to be low. However, shadows and highlights cause photometric edges.
Therefore, the image surface segments with shadows and highlights are expected to have high
invariant response.

Photometric Stability. Invariant representations contain instabilities. For instance, hue is un-
stable for colors with low saturation O1

O2
[35]. The surface reflection characteristics make the

instabilities to vary for different surfaces. To account for the influence of instabilities, we use the
method proposed by Everts et al. [35]. Mean intensity (µ(O3)) and saturation (µ(

√
O2

1 + O2
2))

statistics are considered to measure the photometric stability of a surface.

Interface Reflectance. Lambert’s law assumes a surface which diffusely reflects the light. Inter-
face (specular) reflectance is not defined by Lambert’s law. Therefore, it is difficult to estimate
the LSP from glossy surfaces. Moreover, the depth sensor is sensitive to glossy surfaces (e.g.
shiny metal, mirror). The depth estimation becomes unstable on glossy surfaces. Therefore,
surface normals are mostly noisy. To this end, we propose to extract an attribute which aims to
detect glossiness of surfaces. Motoyoshi et al. [122] propose that the skewness (third-moment)
of the intensity histogram is highly correlated with interface reflectance (gloss) and inversely
correlated with diffuse reflectance (matte). Others, such as Sharan et al. [153] use the standard
deviation whereas Dror et al. [29] use the kurtosis to account for interface reflectance. We also
use skewness, standard deviation and kurtosis to measure the amount of interface reflectance
using the O3 component.

Colorfulness. Hue is invariant to shadows and highlights. Therefore, these photometrical chan-
ges should not influence the hue distribution of a surface segment. The assumption is that the
albedo does not change within a surface segment (see Section 2.3.1 eq. 2.2). However, the vari-
ation in hue distribution most likely corresponds to the albedo change. Thus, the same albedo
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assumption may mislead the light source position estimation. To this end, we propose to use col-
orfulness by computing the hue entropy as in [35] (−

∑
(P log2 P)). P represents the histogram

of hue pixels.

Softness. Softness is useful to distinguish surfaces having diffuse (i.e. soft-plastic) or specular
(i.e. hard-metal) reflection. Hu et al. [64] state that metal tends to have hard edges and sharp
corners whereas plastic has soft edges and round corners. To this end, we measure the softness
using the standard deviation of the gradient orientation (σ(▽O3)) and magnitude (σ(| ▽O3 |)).

Texturedness. Most of the LSP algorithms use segmentation to group similar colored surfaces
assuming that the pixels of the same surface segment have the same albedo. However, surfaces
may also contain similarly colored textures such as crinkles in leather or grains in paper. These
crinkles or grains will cause sharp intensity changes which may negatively effect the light source
position estimation. To this end, we compute two Weibull parameters for the O3 as proposed by
Yanulevskaya and Geusebroek [186] to measure the amount of texturedness of a surface.

Micro-texture. The local non-uniformities on surfaces can be used to describe surface structure.
Less micro-texture indicates polished glossy surfaces (e.g. metal) whereas more micro-texture
indicates matte surfaces (e.g. fabric). Because of the diffuse reflection assumption of Lambert’s
law, these two types of surfaces are expected to influence the LSP estimation differently. The
method proposed by Liu et al. [99] is used to measure the amount of micro-texture. In particu-
lar, we use the sum of residuals between a bilaterally smoothed O3, h(O3), and the original O3
(
∑

(h(O3) − O3)).

Smoothness. Due to the imperfections of recording devices, the surface normals may be noisy
on rough, crinkled and grained surfaces. Lambert’s law uses the angle between the surface nor-
mals and light source position to minimize the error between re-rendered and original image.
Noisy surface normals will negatively influence the error minimization. Smoothness aims at
differentiating between rough and smooth surfaces. We use the statistics of the surface normals
(from the depth image) to measure surface smoothness (

√
1
N

∑N
i=1(n⃗i − µ(n⃗))2) (N is the num-

ber of the points in a segment) and the mean of the gradient magnitude (µ(| ▽n⃗ |)) of the surface
normals. The first statistic is useful to observe overall deviation on an image surface segment
whereas the second one is useful to observe local deviations. High values correspond to rougher
surfaces. The surface normals are computed from the depth image using [147].

Area. The surface normals and intensity values may be noisy due to imperfections of recording
devices. The variation of intensity distributions is important to alleviate these errors. Therefore,
larger image segments are expected to contribute more to proper LSP estimation than smaller
segments.
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Attribute Definition Information Channel

Invariant Response |▽O3|√
|▽R|2+|▽G|2+|▽B|2

[O3, RGB]

Photometric Stability µ(O3), µ(
√

O2
1 + O2

2) [O1, O2, O3]

Interface Reflectance Skew., σ, Kurt. O3

Colorfulness −
∑

(P log2 P) O1
O2

Softness σ(▽O3), σ(| ▽O3 |) O3

Texturedness [γ, β] = weibull [186] O3

Micro-texture
∑

(h(O3) − O3) O3

Smoothness
√

1
N

∑N
i=1(n⃗i − µ(n⃗))2, depth

µ(| ▽n⃗ |)

Area #pixels RGB

Surface Consistency L − µ(L′) [O3, depth]

Curvedness σ(| ▽n⃗ |) depth

Table 2.2: Definitions of extracted attributes.

Surface Consistency. Estimated light source positions L′ = {Li}m
i=1 (m is the number of the

image surface segments in an image) should be consistent. Therefore, we express the surface
consistency attributes by measuring the deviation from the average estimation for each image
surface segment. For the ith surface segment, surface consistency is measured by Li − µ(L′).

Curvedness. Curvedness distinguishes surfaces which have non-flat surfaces. Considering the
richer surface normal representations of curved regions, we expect LSP estimation to be more
precise for highly curved surfaces. To this end, using surface normals, the curvedness attribute
is expressed by the standard deviation of the gradient magnitude (σ(| ▽n⃗ |)).
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2.3.3 Image Surface Segment Suitability by Ranking

The suitability of an image surface segment is defined by the angular error between the estimated
and the ground-truth light source position. The aim is to measure which image surface segment
is preferred over others. Therefore, we consider the learning process as a ranking problem.

We use learning to rank (L2R) [101] to measure the suitability of different image surface seg-
ments for LSP estimation. The training set consists of image surface segments S = {si}m

i=1
(m is the number of image surface segments) and ground-truth label y expressed in terms of an-
gular error between ground-truth and estimated light source positions. Image surface segments
are generated by using the (color-based) mean-shift algorithm. Attributes Φ are extracted from
image surface segments as explained in Section 2.3.2. Φ and y are used to learn f which is
described as follows:

f(si) = wtΦ(si). (2.7)

The objective function to optimize the weight w is described as follows:

min
w

1
2

wtw + C
l∑

i=1
ξ(w; Φ(si), yi), (2.8)

where ξ represents loss function. In this chapter, various loss functions are used and compared
(see Section 2.5.1). The scores of f are used in eq. 2.4 to assign importance to the image
surface segments. The image surface segments with high scores are more suitable for light
source position estimation. Image surface segments which have a negative influence on LSP
estimation (surfaces which have negative scores) are filtered out.

2.3.4 LSP Initialization and Search

The downhill simplex method [125] is used to minimize E in eq. 2.4. The state-of-the-art
method [8] uses the camera view-point to initialize the light source position. However, to solve
the minimization problem, a proper initial light source position is important to obtain fast conver-
gence. Unlike the state-of-the-art [8], we propose to use constraints imposed by the 3D geometry
to select the initial points. Assuming Lambert’s law, the points on the object surface that receive
the light close to a perpendicular angle have maximum intensity. Let O be the perpendicular
projection of L on the planar surface. θ is the angle between the light source direction and the
surface normal at surface point A. Then, cos(θ) = I(O)/I(A), where I(O) and I(A) are inten-
sity values at positions O and A. The distance d between points O and A is computed by the 3D
coordinates, see Fig. 2.3. Finally, the height h of the light source is given by:

h = d
cos(θ)√

1 − cos(θ)2 . (2.9)
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Figure 2.3: Initial light position Li based on 3D geometry constraint. O is the point with maximum
intensity on the surface. A is a random point on the surface of which the intensity is known.
Li is estimated as an initial guess for LSP which is on the direction of the surface normal of
point O and satisfies Lambert’s law for both points.

Initial light source positions are estimated for all the image surface segments in an image. These
estimations are used to initialize the arbitrary light source position in eq. 2.3 by a weighted
average. Moreover, to obtain surface consistency (see Section 2.3.2), it is necessary to have
a LSP estimation for each image surface segment. 3D geometry-based initialization allows a
speed-up of convergence for each individual estimation (≈ 2× faster).

2.4 LSP Estimation from RGB-D Sequences

Temporal information can be used to improve the accuracy of the single frame-based LSP esti-
mation. We assume that L, with respect to static objects in the scene, does not change during
a single video recording. Hence, the only change is the relative position of L with respect to
the camera. Therefore, we propose to use the camera pose to provide temporal constraints in
RGB − D sequences. First, we estimate the camera pose to build correspondences between
frames. Then, images are transformed to the same coordinate system to create consistency be-
tween estimations of different frames.

2.4.1 Camera Pose Estimation

Considering static objects in the scene, we propose to estimate the camera pose as a rigid body
movement. In our framework, the iterative closest point (ICP) algorithm is used to estimate the
camera pose [65]. ICP estimates the camera pose by aligning the data. Data alignment problem
is treated as a nonlinear optimization problem in which correspondences between recordings
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(depth images) are approximated using the closest pairs of points found between successive
depth images [130, 65]. After the computation of corresponding points, ICP aims to find a
single transformation matrix T with minimal point-to-plane error [65]:

arg min
∑
u

∥(Tvi(u) − vg
i−1(u))tn⃗g

i−1(u)∥2. (2.10)

The error is measured by how good each point vi(u) in the current frame fits the tangent plane at
its corresponding point vg

i−1(u) in the previous frame [130, 65]. n⃗g
i−1(u) is the surface normal of

the corresponding point vg
i−1(u) in the previous frame. Using a global coordinate g, the camera

pose T is used to transform point vi(u) from the image coordinate to the global coordinate.
Then, a linear approximation is adopted to solve this system. In our approach, a GPU-based
implementation of ICP is used which provides real-time camera pose estimation.

2.4.2 Global LSP Refinement

After the camera pose is estimated by ICP, the proposed LSP estimation method is applied. To
incorporate all video frames, L is transformed from local image coordinates to a global one. As
a result, given an image Ii, its corresponding T and L, ρ values in sj of eq. 2.2 are modified as
follows:

ρ(u, T) = Ii(u)
n⃗(u)( TL−p(u)

∥TL−p(u)∥)tı
, u ∈ sj . (2.11)

Then, Ir, for a given sj , is computed by:

Ir(u, T) = ρ(u, T) min(n⃗(u)( TL − p(u)
∥TL − p(u)∥

)tı, 0), u ∈ sj , (2.12)

Ei,j(u, T) =
∑
u∈sj

f(sj)∥Ii(u) − Ir(u, T)∥, (2.13)

and the residual error of Ii is computed as follows:

Ei(u, T) =
∑

sj ∈ Ii

Ei,j(u, T). (2.14)
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Given an image sequences Ic, the energy function for the light source position is then defined
by:

E =
∑

Ii∈Ic

Ei(u, T). (2.15)

The estimated light source position is obtained by minimizing E given by eq. 2.15. Finally, the
light source position which minimizes the residuals between the reconstructed and original video
sequence is selected as the final estimation.

2.5 Experiments

Datasets and Evaluation Metric. The proposed light position estimation algorithm is evaluated
on the dataset proposed by [8] and our newly collected dataset. Our dataset is collected using
the Kinect camera resulting in 71 images. Three video sequences are recorded with known
light source positions. Light source positions and objects are fixed for each video sequence
but vary between different video sequences. A Philips daylight simulator bulb is used as the
light source. As proposed in [8], the angular error between the estimated and ground-truth light
source positions are used to measure the accuracy.

Implementation. Two types of learning to rank (L2R) methods are used, namely, pointwise and
pairwise [101]. The main difference between these methods are their objective functions [78].
Pointwise methods aim to minimize the error based on single instances, whereas pairwise meth-
ods minimize the disorder between pairs. Pointwise methods require numerical scores for train-
ing labels, whereas pairwise methods use preferences between pairs. For pointwise and pairwise
methods the Liblinear [39] and Joachims [73] implementations are used respectively. The de-
fault parameter settings are used as provided by the implementations.

2.5.1 LSP Estimation from a Single RGB-D Frame

Experiment I : Influence of Learning Surface Attributes We evaluate our attribute-based LSP
algorithm on the Boom13 dataset [8] and compare it with [8]. We follow the same steps for both
algorithms. The main difference between the obtained results is that [8] gives equal weights
to all image surface segments whereas our method assigns a weight to the each image surface
segment based on its suitability to contribute to a correct LSP estimation. The results are summa-
rized in Table 2.3. The results show that the proposed algorithm outperforms [8]. The significant
improvement over [8] indicates the importance of surface attributes to estimate LSP. Hence, im-
age surface segments influence LSP estimation differently based on their appropriateness.

Experiment II: Influence of Learning Algorithms In this experiment, we evaluate three differ-
ent learning algorithms to rank the image surface segments. Support vector classifier SV C and



20 Light Source Position Estimation

Method Performance
(Mean Angular Error)

Boom et al. [8] 12.9◦±10.6◦

Proposed-SVC10 9.4◦±5.9◦

Proposed-SVC15 9.2◦±5.9◦

Proposed-SVC20 8.6◦±5.5◦

Proposed-SVC25 8.7◦±5.2◦

Proposed-SVR 9.4◦±6.7◦

Proposed-RankSVM 8.8◦±5.1◦

Table 2.3: LSP estimation performance on Boom13 dataset. There is no threshold for angular error to
consider an image surface segment to be good/bad. Varying thresholds are used to specify
positive or negative labels. The numbers next to SV C represent the angular error threshold
used. The proposed attribute-based LSP algorithm outperforms [8] which assumes equal im-
portance to all surfaces. Various learning algorithms are also tested, namely, support vector
classifier SV C, support vector regressor SV R and RankSV M . The results show that learn-
ing the surface attributes outperforms the method without learning [8] regardless the choice of
the learning algorithm. SV C20 performs best.

support vector regressor SV R are used as pointwise methods. RankSV M [73] is used as a pair-
wise method. These algorithms differ mainly by their loss functions ξ(w; Φ(si), yi) of eq. 6.5. ξ
for SV C, SV R and RankSV M are max (0, 1 − yiw

tΦ(si)), (max (0, |yi − wtΦ(si)| − ϵ))2

and max (0, 1 + wtΦ(si) − wtΦ(sj)) respectively [78]. The sensitiveness of the loss functions
are determined by ϵ parameters. Φ(s), w and y stand for the surface attribute, the weights and
the labels respectively.

The angular error between the estimated and ground-truth light source positions are used as
training labels. Since there is no threshold for the angular error to determine an image surface
segment to be good/bad, we use varying thresholds for the angular error to specify image surface
segments to be positive or negative labels for SV C. The angular errors are directly used as
training labels for SV R. RankSV M requires pairwise preferences between image surface
segments. These preferences are created based on their angular errors.

The results show that learning the surface attributes outperforms the method without learning [8]
regardless the choice of the learning algorithm (See Table 2.3). This indicates the importance
of learning surface relevance for LSP estimation. SV C using 20◦ error threshold performs best.
However, the necessity of choosing a labeling threshold makes SV C less practical. RankSV M
performs as good as SV C without introducing any hand-crafted rules for labeling. Therefore,
RankSV M is used for the rest of Chapter 2.

Experiment III: Influence of Surface Attributes In this experiment, we study the influence of
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Figure 2.4: Attribute weights: The weights are obtained by averaging the summed classifier weights of
different dimensions of the same attributes. It illustrates that surface attributes influence the
LSP estimation differently.

each individual surface attributes. The weights are obtained by averaging the summed classifier
weights of different dimensions of the same attributes. The attribute importance is summarized
in Fig. 2.4.

Deviation from smoothness of a surface is observed to be negatively related to the correctness
of the estimation. This is due to noisy surface normals extracted from rough surfaces mislead
the optimization algorithm. Moreover, rough surfaces are more prone to cast shadows due to the
occlusion of the light source.

The surfaces are segmented based on their color. Shadows and highlights cause gradient changes
within the same colored segments. Invariant response takes into account this. Higher average
gradient ratio corresponds to shadows and highlights. Considering Lambert’s law, it is expected
that light source position estimation is negatively affected by invariant response.

Surface consistency is defined by the deviation of an image surface segment LSP estimation from
the average estimation of the other image surface segments in the image. The results show the
importance of a global consistency condition. Another conclusion is that proper image surface
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segments vote for similar light source positions. Deviating from the average estimation of image
surface segments negatively influence the importance of an image surface segment.

The amount of texturedness on LSP estimation is important. This is due to the surface homo-
geneity assumption of LSP algorithms. They assume that the intensity changes are caused by
shading. However, changes caused by the surface texture negatively influence the optimization
algorithm to reach convergence. Therefore, as expected, less textured regions are more useful
for LSP estimation.

Interface reflectance is highly correlated with surface property of being matte or glossy. Surfaces
become more glossy with an increasing amount of interface reflectance. Since LambertŠs law
assumes a surface which diffusely reflects the light, the light position estimation is negatively
affected by interface reflectance.

An increase in the softness-hardness scale actually indicates an increase of the hardness of the
surface. Therefore, it can be concluded that the material hardness negatively affect the LSP esti-
mation. This can be explained by the interrelation of hardness of a material with other properties.
For instance, a metal is of harder material than plastic and it is more likely to generate a more
glossy surface than plastic.

LSP algorithms benefit from increasing the size of an image surface segment. This is because
increasing the area size also increases the variation in intensity distribution which alleviates the
errors due to the imperfections of recording devices.

The surfaces being photometrically stable has a positive influence on the light source position
estimation.

Less micro-texture mostly indicates polished, glossy surfaces (e.g. metal) whereas more micro-
texture indicates matte surfaces (e.g. fabric). Because glossy surfaces are more prone to be
affected by interface reflectance, the amount of micro-texture positively influences the LSP esti-
mation.

The amount of curvedness has a positive affect on the LSP estimation accuracy. Curved surfaces
create more variations of surface normals. This provides intensity variations even for small re-
gions. Whereas a flat surface usually changes monotonically and does not create such intensity
variation.

2.5.2 LSP Estimation from a RGB-D Video Sequence

Experiment I: Influence of Temporal Constraints In this experiment, we conduct two ex-
periments. First, we compare the performance of the proposed attribute-based LSP estimation
algorithm with [8]. Second, we compare the performance of LSP estimation based on a sin-
gle frame with video sequence. The results are summarized in Table 2.4: The results for the
first experiment show that our attribute-based method (mean angular error 7.1◦) outperforms [8]
(mean angular error 12.9◦). For the second experiment, we estimate a single global light source
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Figure 2.5: Sample images from our RGB−D video dataset. Images are from different video sequences.

Method Performance
(Mean Angular Error)

Boom et al. [8] 12.9◦±6.0◦

Proposed Attribute 7.1◦±2.7◦

Boom et al. [8] + Proposed Temporal 9.7◦±5.7◦

Proposed Attribute+Temporal 6.0◦±2.5◦

Table 2.4: LSP estimation performance on Our dataset. The proposed attribute-based method outper-
forms [8]. The proposed temporal constraints improves the accuracy of the proposed attribute-
based method and an off-the-shelf LSP estimation method [8].

position for the whole video sequence using the proposed temporal constraints. To obtain the
light source position for a single image, the estimated global light source position is transformed
into local image coordinates (using the estimated camera pose). Then, the errors are measured.
For each sequence, our temporally constrained LSP algorithm reduces the LSP estimation error
from 7.1◦ to 6.0◦.

Experiment II: Improving off-the-shelf LSP Estimation Method In this experiment, we use a
state-of-the-art LSP algorithm [8] and apply the proposed global refinement step. The objective
function is replaced by the proposed temporal constraint. The mean error is reduced from 12.9◦

to 9.7◦ with respect to the original LSP algorithm [8] (See Table 2.4).

2.5.3 Synthetic Object Rendering

Rendering an object into a 2D image without knowing the light source is a difficult task. The
estimated light source position allows us to realistically render synthetic objects into the scene.
In particular, we can correctly incorporate the photometric effects (e.g. shadows and shadings).
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Figure 2.6: An illustration for rendering a synthetic object into the scene. The original image is on the
left. The ground-truth light source position is used to render object and shadows into the
scene in the middle image. Estimated light source position is used in the right image.

We use the estimated light source position to generate shading on a synthetic dragon object and
shadow generated due to scene geometry. Fig. 2.6 illustrates that the rendered object has realistic
appearance.

2.6 Conclusion

In this chapter, we have exploited the influence of surface attributes on the accuracy of LSP
estimation. Given a single RGB − D image, we first analyzed the effects of photometric and
geometric surface attributes. Then, surfaces are ranked using a supervised learning scheme. The
ranking results are used to decide the contribution of an image surface segment for LSP esti-
mation. Higher importance is assigned to those image surface segments which have suitable
photometric (i.e. Lambertian reflectance) and geometric surface attributes. To speed up the LSP
estimation, a geometry constrain has been introduced to initialize point selection. Moreover, the
image surface segments which have a negative influence on LSP estimation are filtered out. Ad-
ditionally, we introduce a temporal constraint to estimate LSP from a RGB − D video sequence.
LSP is optimized using the camera poses between successive frames. The results show that
our method based on weighting image surface segments using their attributes outperforms the
state-of-the-art methods. By using the proposed surface weighting, the angular error is reduced
from 12.9◦ to 8.6◦ and 12.9◦ to 7.1◦ for Boom and our newly collected datasets respectively.
Moreover, using the camera pose to temporally constrain LSP reduces the angular error (6.0◦)
compared to using single frames (7.1◦).
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Per-patch Metric Learning∗

3.1 Introduction

Viewing and lighting condition changes in real-world scenes cause substantial variations in im-
age feature representations. Significant progress has been made in developing image representa-
tions that are invariant to transformations such as photometry [48, 49] or geometry [7, 98, 115,
194]. Image representations invariant to such changes are beneficial for applications such as
object recognition, image retrieval and scene recognition.

A full invariant representation, unfortunately, leads to a decrease in discriminative power [172].
This drawback is due to distinguishing transformations that a full invariant representation cannot
capture. For example, under rotational invariance a "6" is identical to a "9", and under shading
invariance the texture of "grass" turns into "moss". Another disadvantage of invariant image
representations is that they negatively influence stability [50, 170, 36]. This is due to their sen-
sitivity to noise when the image signal is low or ambiguous. For example, a rotational invariant
based on the dominant orientation [115] becomes unstable when multiple equally dominant ori-
entations are present. Illumination invariant representations based on intensity normalization
such as normalized-rgb or hue [49] become unstable for low intensity values.

Current invariant methods are always "on". One can either choose to use the invariance, or
choose not to use it. There is no middle-ground. It is not possible to have invariance for only
some shading or only slight rotations. These rigid properties of current invariants play a central
role in the trade-off between invariance and discriminative power. Here, we propose to replace
these binary on/off invariants, by steering the invariance to a limited range of disturbances. Such
a limited degree of invariance is called robustness. For example, in the case of rotation, the
proposed method can determine that a "6" is only invariant up to ±45o of (and thus robust to)

∗Published as S. Karaoglu, I. Everts, J. C. van Gemert, and T. Gevers, "Per-patch Metric Learning for Robust
Image Matching," In the International Conference on Image Processing (ICIP), Quebec, 2015.



26 Per-patch Metric Learning

Figure 3.1: 2D PCA projection of SIFT extracted from dataset samples (blue); 1000 affine transforma-
tions of the top-left image patch (red); same-class samples (yellow). The top row is the
original space, the bottom row is after learning the metric.

rotation, therefore eliminating the confusion with "9".

By allowing a degree of invariance, a single global image representation cannot be used as it
depends on the specific image content how the limited transformation range will take effect,
which is illustrated by the "6" and "9" example. Therefore, the proposed method is required to
achieve robustness on a per-patch basis. Fig. 3.1 (top) illustrates that feature distributions after a
transformation depend on the patch content, since even instances within the same class behave
differently (red versus yellow). The bottom row of Fig. 3.1 illustrates the effect of steerable
invariance applied to each patch.

To achieve robustness, we compute a Mahalanobis metric for each individual patch. In effect,
the metric weights the subset of feature dimensions that require robustness. For this, a relevant
subset of transformations is generated and a metric that is specific for only those transformations
is learned. We present two approaches for learning the metric: (i) full and (ii) direct. The
full method generates synthetic image patches, extracts descriptors for each patch, and obtains
robustness through a metric that is learned on these descriptors. In the direct approach, we
generate a transformation map only once, and use this map to directly estimate the metric from
the patch without explicitly generating any synthetic images.
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3.2 Related Work

Approaches that aim to achieve (full) invariance either use a transformation model based on
the laws of physics [48, 49] or a model of the observed variations [7, 98, 102, 115]. The two
disadvantages of invariants, stability and discriminative power, can be addressed by propagating
camera noise parameters [50] or by deriving quasi-invariants [170]. Noise propagation requires
proper noise estimation and the quasi-invariants are incomparable over different images and thus
cannot be used for matching.

In contrast to employing pre-determined models, (deep) learning methods learn invariant fea-
tures from unsupervised training examples [85, 140, 149]. Such methods do not explicitly model
invariance as they attain robustness from training examples. Therefore, learning methods require
large amounts of training data which is hard to obtain. Moreover, learning approaches do not di-
rectly incorporate known physical laws of the world. In this chapter, we use a hybrid approach of
modeling robustness by learning from synthetically generated geometric and photometric data.

Synthetically generated data can be used to directly create variation in the train and test sam-
ples [11, 45, 93]. Other brute-force methods like ASIFT [121] generate a full range of affine
transformations for both training and testing images which are used in an exhaustive matching
scheme. Similar to our work, Simard et al. [157] avoid brute-force approaches and use synthet-
ically generated images to learn a robust distance metric which is tangent to the manifold that
is spanned by the generated transformations. We also learn a robust metric, however, where
Simard et al. [157] require pixel values to estimate a manifold, our method estimates a Maha-
lanobis distance, which is applicable to any feature representation such as SIFT. To improve
discriminability of a local descriptor, Cai et al [11] also propose to learn a projection matrix for
a limited range of affine transformations through generated data. However, it is important to
note that the authors learn a global projection whereas Chapter 3 proposes to learn patch specific
projections. Fig. 3.1 illustrates that the same transformations applied to even the same class
instances has different effects for different patches. These variations are thus patch-dependent
and might not reflect the appropriate effect on other patches from the same class.

Chapter 3 has following contributions: (i) we demonstrate that a full invariant representation
leads to a decrease in the discriminative power of a descriptor. Accordingly, we propose to limit
the degree of invariance and augment the discriminativeness of a descriptor. (ii) we demonstrate
that a single global image representation cannot be used as the effect of transformation essen-
tially depends on the specific image content. Thus, a patch specific metric is proposed. (iii) we
propose two alternatives to learn per-patch metric: by either explicitly applying transformations
or obtaining directly from the patch.

3.3 Per-Patch Metric Learning

We first develop a metric that is learned from synthetically generated transformations of photo-
metric and geometric distortions.



28 Per-patch Metric Learning
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Figure 3.2: Transformations used to steer geometric invariance. The patch in the center is the original
image, whereas the others are geometrically transformed versions.

Geometric Transformations. Images are subject to geometric distortions introduced by per-
spective effects caused by view point changes. For small patches, the perspective transformation
(x′, y′)T can be approximated by an affine transformation for a given point (x, y)T as

x′

y′

1

 =

sx cos α −τx sin α tx

τy sin α sy cos α ty

0 0 1


x

y
1

 , (3.1)

where s denotes scale, τ represents shearing, α is the rotation angle, and t denotes translation.
Examples of the transformations are depicted in Fig. 3.2. Sample generation involves repetitive
random selection from appropriate parameter ranges.

Photometric Transformations. To model photometric changes, we assume Lambertian reflec-
tion. Accordingly, the color response (I) for the visible spectrum (λ), using a camera with
spectral sensitivity (f ) and an illumination source with the spectral power distribution (e) can be
defined as
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Figure 3.3: Illustration of photometric changes. The color response of point p changes due the angle
between the incident light (L) and surface normal (yellow arrow) at the point p. According
to Lambert’s law, if this angle becomes smaller, the color response becomes brighter.

I = n⃗.s⃗

∫
λ

e(λ)ρ(λ)f(λ)dλ. (3.2)

s, n and ρ denote the illumination direction, the surface normal and the surface albedo respec-
tively.

To obtain photometric robustness, we generate variations caused by Lambert’s Law. For the
same surface patch the viewpoint and illuminant spectral power distribution are the same. The
color response can only vary due to changes in illumination direction (i.e. ρ, f , e and n remain
constant). Therefore, the changes in I can be modeled by illuminating the patch from different
positions (See Fig. 3.3).

The center of the image patches are considered to be at (0, 0, 0) and placed perpendicular to
the light source position. Then, the light source position is systematically sampled within a
certain radius. The patches are sufficiently small to be assumed planar. Hence, surface normals
are equal for the patch under consideration. Thus, the light source direction is the only factor
determining the effect of the photometrical changes.

3.3.1 Metric Learning

A Mahalanobis distance metric between image features xi and xj is parameterized by the matrix
M ,

dM (xi, xj) =
√

(xi − xj)T M(xi − xj), (3.3)
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where M is a positive semi-definite matrix. A straightforward approach to compute M is to use
M = C−1 where C is the empirical feature covariance of the training data [6, 88]. The rationale
behind using the inverse covariance as a metric is that a high variance in a feature dimension
means that this dimension is not very stable. The most informative dimensions are those that
have low variances.

For large-scale matching it is convenient to use fast indexing techniques such as trees [114].
Such techniques typically work with the Euclidean distance. To this end, the metric can be
rewritten to

(xi − xj)T W T W (xi − xj) = ||Wxi − Wxj ||2, (3.4)

where W = M− 1
2 . This effectively scales the feature space with an affine transformation W to

allow the Euclidean distance to be used for metric M .

Robustness is obtained by generating a limited range of transformations for a single patch. From
these generated samples C is estimated, which is then used to compute M .

We coin this simple method for metric learning the full approach, since it needs to fully generate
a large number of transformations for a patch in order to extract the image features and estimate
the covariance matrix.

3.3.2 Direct Metric Estimation

Instead of using the brute-force approach of computing C by explicitly generating patches and
extracting features from them, we propose a direct approach to estimate the metric per-patch. In
the direct approach, the covariance is estimated from a single patch.

Let x be an image feature vector as a column, with N dimensions. For clarity, we start with
pixel values to explain the direct metric estimation, i.e. x is a vector of pixels. Later we show
our method readily applies to other descriptors.

Pixel Values. The direct metric is a combination of two terms, a transformation probability
DT that a pixel moves to a different position after transformation T , and the patch-specific
covariance term V of the feature values.

Let DT be a symmetric matrix of size NxN , containing the probabilities PT (i|j) of a pixel at
position j affecting the position of pixel i under a transformation T . Note that this transformation
is independent of the actual feature values. Matrix DT represents the per-pixel transformation
probability which is determined by simulating a large set of transformations and comparing the
transformed patch with the ground truth location obtained through the homography in eq 3.1.

The matrix V of size NxN is the variance matrix with elements σ(i, j) representing the covari-
ance of pixel values at position i with respect to position j. To compute the covariance matrix,
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we need the expected average weighted pixel value xi at position i after the transformation T ,
which is given by:

E[xT (i)] =
N2∑
j=0

PT (i|j)x(j) = DT xT , (3.5)

where xT represents the pixel vector x after the transformation T . The expected value of the
transformed image xT is denoted by E[xT (i)] and represents the average image of all transfor-
mations that are present in DT . The covariance σ(i, j) after transformation T is then

σ(i, j) = E
[(

E[xT (i)] − xT (i)
)(

E[xT (j)] − xT (j)
)]

. (3.6)

Note that in the transformation of xT (i) and xT (j) it is allowed for pixels to move independently
to other pixels. Eq 3.6 can be rewritten in matrix form to obtain V directly

WV = [[DT > 0]] •
(
DT x1T − (xT 1)T )

, (3.7)

V = 1
N2 DT • WV W T

V , (3.8)

where 1 is a column vector of all ones, • denotes element-wise multiplication and [[·]] indicate
Iverson brackets which resolves a (matrix) element to 1 when the argument is true, and 0 other-
wise. The metric is computed by M = V −1, and the transformation by W = V − 1

2 .

SIFT. For other descriptors, the DT matrix of transformation probabilities can be reused and is
not required to be recomputed. The V matrix, however, has to be adapted to the specific form
of the descriptor. In the case of SIFT, DT is converted to Dsift

T of size 128x128. In contrast to
generating all possible sift values, Dsift

T has to be computed once only.

The 128 dimensions of SIFT comprise of a 4x4 spatial grid and 8 angular bins (4x4x8). We use
the pixel-based transformation probabilities DT to directly calculate the probability P sift

T (i|j) for
spatial SIFT bins i and j with

P SIFT
T (i|j) =

N2∑
y=0

[[f(x) = i]][[f(y) = j]]PT (x|y), (3.9)

where the function f(x) maps the pixel at location x to the correct SIFT-bin i. For the angular
transformation probabilities, we assume independence with the spatial bins. The unit circle is
sampled with 360 vectors and transformations are applied to these vectors. Since the original
orientation is known, this results in counting how often a vector switches bins after the transfor-
mations. The joint 128x128 matrix Dsift

T is calculated by multiplying the angular probabilities
with the spatial probabilities.
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3.4 Experiments

Dataset and Implementation Details. The full and direct metric methods are evaluated on the
ALOI dataset [47] for SIFT descriptor robustness against geometric and photometric distortions.
The ALOI dataset contains 1000 objects under varying imaging conditions. We use variations
due to camera viewpoint and illumination direction as geometric and photometric distortions
respectively. To annotate matching pairs, the same procedure is followed as in [35]. In total 8300
matching pairs are extracted of which 200 are used for validation. Classification is performed
by feature matching in a 1-NN classification scheme.

3.4.1 Geometric Robustness

First, we evaluate per-patch metric learning under geometric distortions. The performance of
the proposed methods is compared against the original SIFT and other methods.

The optimal parameter ranges are obtained on the validation set. Parameters are repetitively sam-
pled (1500 times) from various ranges to either generate and apply geometric transformations in
the full approach or to estimate the transformation probabilities PT (i|j) in the direct approach.
A joint optimization of parameters on the validation set yields a translation in [-2:2] and shearing
in [-.1:.1] for the SIFT descriptors. Scale and orientation do not affect the performance as the
positional difference between viewpoints does not yield large scale and orientation variations.

The results in Table 3.1 show that the proposed full and direct methods have a significant im-
provement of 6.57% and 6.22% over the SIFT performance respectively. The significance is
validated by t-test a (p < 0.001). The substantial performance increase is due to the fact that
viewpoint variations degrade the SIFT performance for matching. Considering full-rotation in-
variance for SIFT leads to a dramatic performance loss as the most discriminative information is
ignored and due to the visual complexity it is harder to estimate a dominant gradient orientation.

Additionally, we evaluate raw pixels and tangent distance (TD) [157] on this set. We obtain
a classification rate of 16.54% and 23.47% respectively. As discussed in Section 3.2, Simard
et al. invoke prior information by generating small global transformations. The performance
improvement over raw pixel values supports our idea of exploiting prior information for steering
the invariance. However, as expected, the raw pixel matching performance is far beyond the
SIFT performance which makes TD less applicable when it is necessary to use features except
raw pixel values.

3.4.2 Photometric Robustness

We evaluate the proposed full metric for photometric robustness. The full method operates by
generating synthetic samples as explained in Photometric transformations. Matching patch pairs
are selected from the same viewpoint but with different illumination. The same evaluation pro-
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SIFT +Rot. Inv. Proposed full Proposed direct

54.85% 13.86% 61.42% 61.07%

Table 3.1: Matching performance on geometric distortions. Left to right: original SIFT descriptor, full-
rotation invariant SIFT descriptor, proposed full(synthetic) and direct methods. Note that
full-rotation invariance is unstable whereas limited range of invariance is stable.

cedure is followed as in Section 3.4.1. The results are shown in Table 3.2. The proposed full
method significantly outperforms the SIFT performance (t-test with p < 0.001).

SIFT Proposed full

73.4% 77.86%

Table 3.2: Matching performance on photometric distortions. "full" outperforms the SIFT performance.

3.5 Conclusion

In Chapter 3, we propose a generic patch-specific robust metric learning method to improve
matching performance of local descriptors. We show that a full invariant representation leads
to a decrease in discriminative power of descriptors. Therefore, we propose a per-patch metric
learning method that is invariant to only a range of variations. We propose to learn a patch spe-
cific a Mahalanobis metric. Two approaches for learning the metric are presented: (i) full and (ii)
direct. The proposed approaches are validated on ALOI dataset for two different image transfor-
mations, namely, geometric and photometric. It has been shown that the proposed approaches
outperform the original SIFT descriptor matching performance.
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Text Detection for Fine-grained
Classification and Logo Retrieval∗

4.1 Introduction

Many existing object recognition methods are focused on distinguishing definite objects such as
horses, bicycles and cars [34]. Object recognition results obtained for different benchmarks, e.g.,
Pascal VOC, show that there has been a significant progress to recognize these “distinct” object
categories. However, the performance of these methods may deteriorate to distinguish categories
of objects that only slightly differ in appearance, such tasks include fine-grained classification.
Fine-grained classification is the problem of assigning images to sub-ordinate classes in which
objects differ only in (subtle) details (e.g. flower types [132], bird species [187]). Although, vi-
sual cues (e.g. color, texture and shape) can be used to distinguish visually distinct objects, the
same visual cues may lack discriminative power to differentiate object types of similar appear-
ance.

In Chapter 4, we address the problem of fine-grained object classification by combining textual
and visual cues. In particular, we focus on the classification of Buildings into their sub-classes
such as Cafe, Tavern, Diner, etc. The reason to use textual cues for such task is that text adds
semantics beyond visual cues. For instance, in Fig. 4.1, the aim is to classify the three images
based on their semantics. In this case, visual cues are not sufficient or even misleading as the first
two images have similar scene appearances. Textual cues are useful to recognize that the two

∗S. Karaoglu, R. Tao, J. C. van Gemert and T. Gevers, "Con-Text: Text Detection for Fine-grained Classifica-
tion and Logo Retrieval," Under revision in IEEE Transactions on Image Processing (TIP), 2016. Ideas previously
appeared in: S. Karaoglu, J. C. van Gemert, and T. Gevers,"Object Reading: Text Recognition for Object Recog-
nition,"In the European Conference on Computer Vision Workshop (ECCV-W), Firenze, 2012. S. Karaoglu, J. C.
van Gemert, and T. Gevers, "Con-Text: Text Detection Using Background Connectivity for Fine-Grained Object
Classification," In ACM International Conference on Multimedia (ACM MM), 2013.
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DJ SUBS Breakfast Starbucks Coffee Starbucks Coffee 

(a) (b) (c) 

Figure 4.1: An example of fine-grained Building classification [83]. Visual cues would group (a)-(b)
whereas scene text reveals the semantics and clusters (b)-(c).

(right) images belong to the same category since they contain the same brand name Starbucks.
Therefore, we propose to use both textual and visual cues.

The success of the proposed fine-grained object classification method (fusion of visual and text
modalities) highly depends on the correctness of the extracted textual image cues. Therefore,
a robust character localization is required. The state-of-the-art text detection methods [178, 96,
31, 128, 87, 191, 179, 69, 103] extract geometric, structural and appearance properties from
candidate text regions which are obtained using a connected component or sliding window ap-
proach. These regions are further verified using the extracted features if they contain text or
not. In contrast, we focus on the scene background (non-text regions) rather than text regions.
Our motivation is that the majority of the scenes consist of background pixels e.g. 93% of IC-
DAR13. Moreover, background pixels are mostly homogenous within themselves e.g. fences,
boards, roads, buildings, windows etc. and highly contrasted with text regions. Focusing on
eliminating background pixels using background connectivity rather than directly detecting text
regions benefits from eliminating larger number of non-text regions at a reduced risk of elimi-
nating true text regions (due to contrast). Moreover, since the proposed method does not extract
text specific features, it does not require any tuning for varying text size, style and orientation.

Text is designed to attract human attention. This has been verified by Judd et al. [76], and Wang
and Pomplun [177] who show that text features are more discriminative than generic object fea-
tures and scene text receives human attention more than other generic objects. Accordingly, in
this chapter, we consider salient and non-salient regions as text and background regions respec-
tively. The proposed method initially selects background (non-text regions) seeds using color
and curvature saliency, and spatial context information. Then, it detects the background from
these seeds based on background connectivity. Once the background has been detected and elimi-
nated, text regions are identified. The detected character candidates are further processed by two
methods to perform text recognition i.e. ABBYY commercial OCR machine and state-of-the-art
character recognition algorithm [69]. Then, spatial pairwise constraints between character can-
didates are used to obtain textual cue representations. Finally, extracted textual cues are used in
combination with visual cues for fine-grained classification and logo retrieval. The pipeline of
the proposed method is summarized in Fig. 6.1.
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Figure 4.2: The flow of the proposed method. We propose a generic, efficient and fully unsupervised text
detection algorithm by eliminating scene background. Detected text regions are processed by
a state-of-the-art character recognition algorithm. Then, bi- and trigrams (textual cues) are
formed between the recognized characters by considering spatial pairwise constraints. Ex-
tracted textual and visual cues are combined for fine-grained classification and logo retrieval.

Chapter 4 has seven main contributions:

• We propose a generic and computationally efficient character detection algorithm without
any training involved. Unlike the state-of-the-art text detection methods which try to
detect scene text directly, the proposed method detects the background to infer the location
of text.

• We experimentally show that removing scene background reduces clutter and subsequently
improves the character recognition performance of standard OCR systems. Moreover, re-
moving the background reduces the search space allowing the extraction of computation-
ally expensive features for character recognition.

• We propose a fine-grained classification approach which combines textual and visual cues
to distinguish objects. To the best of our knowledge, this is the first approach to combine
textual and visual cues of objects in images.

• We are the first to combine textual and visual cues for logo retrieval in natural scene
images.

• We propose to constrain textual cues by spatial information. We show that encoding
textual cues with proposed constraints is superior than without these constraints.

• We introduce a new challenge (fine-grained place of business classification) and a dataset.
The introduced dataset, extracted features (textual and visual) and text detection code are
publicly available†.

†https://staff.fnwi.uva.nl/s.karaoglu/datasetWeb/Dataset.html
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• We provide a large text detection dataset (10K images with 27601 word boxes).

Preliminary versions of this chapter appeared in [82, 83]. We extended our earlier studies in
different aspects: 1) In [82, 83], there are no spatial constraints to form textual cues. Characters,
’P’, ’E’, ’A’, ’T’, can be combined into ’TAPE’, ’PATE’, or ’PEAT’. It is not possible to distin-
guish between ’TAPE’, ’PATE’ and ’PEAT’ by considering all possible bigram combinations.
Hence, we propose to encode textual cues using spatial constraints. 2) Location information
of the recognized characters are essential to perform spatially constrained encoding. However,
ABBYY is used as a character recognition system in [82, 83]. Character location information
is not provided by ABBYY. This restricts to perform proposed encoding. Therefore, a different
character recognition algorithm [69] is used. A method is proposed to generate (locate) charac-
ter candidates which are used as an input to [69]. In this way, we have the spatial information
of the recognized characters. 3) Our previous work considers only bigrams to encode textual
cues. In Chapter 4, various layers of textual cue encoding is performed (bi- and trigrams) and
their effects are compared. 4) New analysis on the background removal and text saliency is
provided on ICDAR13. 5) In depth analysis on textual and visual cues for fine-grained classifi-
cation is provided. 6) Our previous work uses only BOW as visual features. Visual baseline is
substantially improved using GoogLeNet features [160]. 7) Various fusion techniques are used
to combine different modalities and their influences are discussed. 8) The proposed method is
compared against state-of-the-art text detection methods [96, 128, 54] on text saliency, end-to-
end character recognition and fine-grained classification. 9) The proposed method is applied on
a new application ’Logo retrieval’.

4.2 Related Work

Text Detection. Text detection methods aim at automatically detecting and generating bound-
ing boxes of words in natural scene images. Text detection methods can be categorized into
two classes based on how they search character regions: a connected component [31, 128, 87,
191] and a sliding window approach [178, 179, 69]. Connected component approaches aim
at segmenting characters using pixel similarities, e.g. contrast [82], stroke width [31] and in-
tensity [126] whereas sliding window based approaches search the image over different scales
and window sizes to locate character regions. For both methods, word candidates are detected
by further verifying and combining the generated character candidates. To verify and combine
character candidates, geometric, structural and appearance properties of text are derived from
hand-crafted rules [31] or obtained by learning [178, 193, 135, 69, 189, 103].

All these methods extract geometric, structural and appearance features from candidate regions
to verify if a region contains text or not. It is difficult to have one global parameter setting
which would accommodate for all possible text variations in natural images [190]. Therefore,
it is necessary to tune these parameters for every new alphabet, text style and size. In contrast,
our approach focuses more on background connectivity rather than text regions. The proposed
method does not extract text specific features. Therefore, it does not require any tuning for vary-
ing text size, style and orientation. Additionally, state-of-the-art methods combine characters
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into words by a learning or a rule based approach. However, the information loss at these steps
are irreversible. In contrast, we use characters instead of words to represent textual information
in the images. Recently, [68, 55] use similar ideas as in object proposals [167] but this time to
generate a small set of word candidates. A reduced number of word candidates makes it possi-
ble to use more complex classifiers for word recognition. Such work can highly benefit from the
proposed text detection method to reduce word box proposals even further.

Visual Saliency. The aim of visual saliency detection is to separate attention-driven regions and
other regions (e.g. background) [138, 107]. In this way, the vast amount of incoming visual
data (background) is eliminated. This helps to extract more reliable information because the
background is eliminated. Therefore, it is widely used in image processing, for scene classifica-
tion [155, 171], object recognition [82] and visual search [30].

Saliency for text detection has only recently received some attention [152, 20, 166, 159]. Text
in natural scenes is typically designed to attract attention. In the experiment conducted by Judd
et al. [76], it is shown that scene text fragments receive a high number of eye fixations (i.e. atten-
tion). Psychophysical experiments conducted by Wang and Pomplun [177] show that regardless
of the text position, text features are more discriminative than generic saliency features. Recently,
Jiang et al. [71] provide a large scale dataset for visual saliency. The authors measure saliency
by following the mouse-tracking behavior of users. Interestingly, they observe that even though
scene text is not explicitly defined as a category in MS COCO [97], scene text consistently at-
tracts human attention. Other work by Shahab et al. [152] compares different saliency methods
and concludes that scene text is the most salient. Recently, [96] proposes a text detection method
which relies on text saliency. The method uses a Bayesian framework and integrates visual cues
tailored for text detection to obtain text saliency. All this research shows that text in natural
images is salient and therefore we rely on non-salient regions as our primary cue for background
detection.

Existing methods for text detection using visual saliency [152] mainly focus on bottom-up infor-
mation such as edges, corners, color distinctiveness and lines of symmetry. Top-down models
are task dependent and use saliency and context to steer the search for objects in images. This
process is inspired by human focus-of-attention mechanisms. For instance, while searching for
text, humans will focus on road signs, commercials and billboards rather than other areas [76].
Torralba et al. [163] use context information to fixate locations of targeted objects (e.g. pedes-
trians). Our approach is inspired by Wei et al. [181]. The authors use boundary priors to steer
the search for salient object detection. In our approach, background information is used for text
detection.

Multimodal Fusion. The use of (textual) captions and visual information for video classifi-
cation has extensively been studied. We refer to [104] for an overview. Moreover, textual in
combination with visual cues have also been used for document image analysis [3, 145, 33].
Others [26, 144] combine visual and textual information to recognize logos and stamps in doc-
uments. However, the use of automatically extracted text information from natural images for
scene classification has largely been ignored. Text is fused with visual cues for scene classifi-
cation by Wang et al. [176]. The method uses Flickr images and their associated social tags.
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Others [199], propose to combine visual features extracted from the surroundings of text regions
with visual features from the full image. In contrast, we propose to use recognized text from
images in combination with visual features.

Similar to our approach, [165] proposes to use scene text in combination with visual features to
improve book spine recognition. However, our method focuses on combining textual and visual
features for fine-grained classification and logo retrieval.

4.3 Background Removal

Text can appear on unknown background with unknown text size, style and orientation in natu-
ral scene images. It is difficult to have one global parameter setting which would accommodate
for all these variations in text [190]. Therefore, we tackle the problem of detecting text from
a different point of view. Rather than asking “what is the property of scene text”, we ask the
question “what is the property of scene background”. Keeping in mind that scene text is highly
contrasted with background, answering this question would also reveal the location of scene text.
As a result, the proposed method would not require any tuning for varying text size, style and
orientation. Moreover, eliminating background to infer text location has additional benefits, (i)
the search space is reduced allowing the extraction of computationally intensive features for char-
acter recognition, (ii) background clutter is removed reducing false text detections/recognitions.

Background pixels are mostly homogeneous within themselves e.g. fences, boards, roads, build-
ings, windows etc.. This homogeneity allows defining connectivity between background pixels.
Moreover, text is designed to attract attention [31, 128, 166, 177] and usually strongly contrasts
with background. Hence, text boundaries usually correspond to strong intensity changes. There-
fore, we propose to select initial background seeds from non-salient pixels and grow these seeds
using connectivity of background. These seeds will grow until strong intensity changes are
reached e.g., text/background transitions. Background seeds form connectivity between all pix-
els except those that belong to the text regions. An illustration of seed growing is shown in
Fig. 4.3a. Blue dots represent initial background seeds whereas red lines represent the connec-
tivity path formed by these initial seeds (blue dots).

To form connectivity between background pixels, we use conditional dilation (δ). Conditional
dilation is a basic dilation which is conditioned by a mask image (i.e., the gray-level image I in
our case). The conditioning is obtained by defining the output as the intersection of the dilation
and I , formulated by:

δI(J) = (J ⊕ S) ∧ I , (4.1)

where J ⊕ S stands for the dilation of J (the image consisting of only background seeds) and S
(the structuring element 3-by-3 square), and ∧ denotes the element-wise minimum.
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(a) (b) (c) 

Figure 4.3: (a) Original image and selected initial background seeds (blue dots). The connectivity path
formed by these initial seeds is represented by the red dots (b) recovered background and (c)
background removed image regions [83].

To obtain a reconstructed background image (ρ) of image I , given the image consisting of the
initial background seeds, J0, eq. 4.1 is executed until stability is reached. That is, starting from
the initial background seeds J0 repeat Jn = δI(Jn−1) until Jn = Jn−1, (n = 1, 2, 3...) and
obtain ρ by ρ = Jn.

The selection of background seeds J is essential for background detection process. The proposed
method selects the seeds based on saliency and scene text priors as explained in the next section.

4.3.1 Background Seed Selection

Color Saliency

In general, it can be assumed that color is homogeneous for many background regions such
as roads, sky, buildings and so on. Moreover, color edges correlate with high contrasted text
fragments. To exploit this, we propose to detect color edges by color boosting algorithm [169].
The method uses information theory to correlate gradient strength with information content.

To be precise, let fo,x = (O1x, O2x, O3x)T be the spatial image derivatives in the x dimension
where O1, O2, and O3 stand for the opponent color channels. The information theory relates the
information content of an event to its frequency or probability

I(fo,x) = − log(p(fo,x)) , (4.2)

where I is the amount of information and p(fx) is the probability of the spatial x-derivative. Ac-
cording to information theory, rare events are more informative (i.e. higher information content).
Consequently, [169] proposes to focus on rare color derivatives. A color saliency boosting func-
tion g is used to transform the vectors with equal information content to have equal influence on
the saliency map. The distribution of image derivatives in opponent color space is characterized
by a covariance matrix M . Eigenvector matrix U and an eigenvalue matrix V are obtained by
the decomposition of matrix M . Then, the color saliency boosting function g is obtained by:
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(a) (b) (c)

Figure 4.4: An example of saliency maps: (a) Original Images, (b) Color Boosting and (c) Curvature
Shape Saliency. It is shown that colorful edge transitions are emphasized by color saliency
while colorless edge transitions are emphasized by curvature saliency.

g(fo,x) = V −1UT fo,x . (4.3)

Once g is determined, the color boosting saliency (Sc) is expressed by:

Sc = H(g(fo,x), g(fo,y)) , (4.4)

where H is the saliency function. Color boosting approach is used to enhance the saliency
of colorful text/background transitions and to suppress background regions. In Fig. 4.4b, an
example is shown of applying color boosting.

Curvature Saliency

Obviously, the color saliency measure is inappropriate for colorless edge transitions, see the
top image in Fig. 4.4b. Consequently, in addition to color saliency, we aim for a shape-based
saliency measure. To this end, we define curvature saliency (L) by:

L =
√

f2
I,xx + f2

I,xy + f2
I,yy , (4.5)
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Figure 4.5: Location occurrence probability of text in the ICDAR03 training dataset. The probability
distributions show that text rarely occurs at the image borders.

where fI,xx and fI,yy stand for the second-order derivatives of the intensity image fI(x, y) in the
x and y dimensions, respectively. Due to contrast between text and its background, text regions
result in high responses to curvature saliency even for colorless edge transitions.

Spatial Context

Spatial context is described by the likelihood of finding an object in a certain position [44]. It has
been shown to be beneficial to distinguish objects in the scene [44]. The proposed method also
uses spatial context. To this end, text location priors are used to obtain background location priors.
The proposed method treats background and text pixels as figure/ground pixels. To this end, the
location occurrence probability of text is computed for the ICDAR03 [105] image training set.
The occurrence probability for a given location is computed by counting the frequency of text
for that particular location for the full training set. The text-location occurrences shows that text
regions are more in the center of the image, see Fig. 4.5. Text can also be placed off the center,
however they rarely touch image borders. Image borders usually consist of background such as
sky, road and grass [44].

The ICDAR03 dataset mostly consists of images where text is in focus. However, the text loca-
tion prior also holds for other datasets. Recently, a text detection dataset which consists of 67K
images is collected by [175]. The images are from complex everyday scenes. Unlike ICDAR
datasets, the images were not collected with text in mind and thus they contain a broad variety of
text instances [175]. The authors compared the text distributions of the new dataset and the exist-
ing ICDAR datasets. They show that the Coco-Text dataset has a more uniform text distribution.
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Figure 4.6: Original images and text saliency maps obtained. Most of the background regions are filtered
out while text regions are preserved by the proposed method. The proposed method is robust
against photometric changes e.g., shadow and highlights, text size, style and orientation.

However, image borders still rarely contain text. Therefore, our observation about image borders
that they usually contain non-text pixels also holds for the Coco-Text dataset (uncontrolled text
detection dataset). To this end, pixels at the image borders are used as initial background seeds.
Salient regions which are connected to image borders in color and curvature saliency maps are
suppressed using eq. 4.1. Pixels at image borders are used as initial background seeds, and the
original color and curvature saliency maps are used as intensity images.

4.3.2 Background Detection and Text Saliency

The refined color and curvature saliency maps are normalized to a fixed range [0, 1] and linearly
combined. Regions which do not have any response on this combined saliency map are consid-
ered as final background seeds. The background of the input image is constructed using these
final background seeds and eq. 4.1. Text saliency map is obtained by subtracting the background
from the input image. The proposed method outputs a text saliency map which provides infor-
mation about how likely a region contains text (See Fig. 5.3 for an illustration). This saliency
map is further processed to extract textual cues.

4.4 Textual Cue Encoding

Text saliency obtained in Section 4.3 is used to perform character recognition to extract textual
cues. Two different approaches are used to perform character recognition. First, text saliency
map is directly fed into leading commercial OCR engine (ABBYY). Second, text saliency map
is further processed to obtain character candidates. Then, character candidates are fed into a
state-of-the-art text recognition algorithm [69].
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4.4.1 Character Recognizer - ABBYY

We first use ABBYY, leading commercial OCR engine, to perform character recognition on the
text saliency. ABBYY receives an image as input and outputs recognized characters within
that image. The gray level text saliency map is used as an input to ABBYY (no binarization
is required). The recognized characters by ABBYY are directly used for textual cue encoding.
The output of recognized characters are used to form bi- and trigrams without considering their
spatial relations.

4.4.2 Character Recognizer - Flexible

Location information of the recognized characters cannot be obtained from ABBYY which re-
stricts to spatially constrain textual cues. Moreover, remarkable performance improvements on
character recognition algorithms allows to perform more reliable textual cue encoding. There-
fore, in addition to ABBYY, we use state-of-the-art character recognition algorithm [69] to per-
form textual cue encoding.

Character Localization

The proposed method generates a gray level text saliency map. To extract textual cues, we need
to know where the text is. However, the generated saliency map does not provide bounding
boxes to explicitly locate character areas. Therefore, a character localization method is applied
on text saliency map.

A segmentation (binarization) based algorithm is used to locate text regions. We use the binariza-
tion algorithm from our earlier work [42]. The method is efficient and proven to work well for
natural scene images. The method uses statistics of image intensities. It models the distribution
by a generalized extreme value theory to determine the threshold for binarization. We refer [42]
for the details of the algorithm. Each connected component generated after binarization process
is considered as a character candidate.

The proposed method is not restricted to a segmentation algorithm. A sliding-window approach
can also be used to locate text with an exhaustive search in spatial and scale space. However,
a sliding-window approach generates a large number of candidate regions which need to be
processed by a recognizer. This increases the computational time. Therefore, a segmentation
based approach is used to locate text.

Character recognition

The character candidates generated by the approach outlined in Section 4.4.2 are used as input
of a character recognition algorithm [69]. The method uses a four layer convolutional neural
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network. The network takes as input a gray-scale image, resizes it to 24 × 24 pixels, and normal-
izes the image by subtracting the patch mean divided by the standard deviation (i.e. whitening).
The output is a probability p(c|x) for the Latin alphabet, digits and a non-text class resulting in
a total of 37 classes. These character probabilities are obtained by feeding last channels of the
network into a soft-max manner.

Spatial Constraints

Recognized characters in Section 4.4.2 are used to encode textual cues. However, the rich se-
mantics of text cannot be fully conveyed by using only single characters. Character, ’P’, ’E’, ’A’,
’T’, can be combined into ’TAPE’, ’PATE’, or ’PEAT’. Therefore, rather than single characters,
we propose to encode textual cues by forming bi- and trigrams. However, it is still not possible
to distinguish between ’TAPE’, ’PATE’ and ’PEAT’ by considering all possible bi- and trigram
combinations of characters forming these words. Accordingly, we propose to encode textual
cues with spatial constraints. For instance, recognized characters of the word ’TAPE’ will form
bigrams ’TA’, ’AP’, ’PE’, ’TP’ and ’AE’ whereas the word ’PATE’ will form ’PA’, ’AT’, ’TE’,
’PT’ and ’AE’.

To spatially constrain bi- and trigrams, we propose an approach inspired by [92]. However, we do
not define exact image boundaries to localize information. We allow more general feature group-
ing by considering the following pairwise relations: (i) The ratio of the heights of two characters
(ii) The angle between two character centers (iii) Euclidean distance between two consecutive
character centers (iv) Shared area between two characters. Thresholds are set according to state-
of-the-art text detection algorithms [31, 127, 37, 96] which form textlines between characters
using the above constraints. The proposed method establishes connections between character
candidates which satisfy the spatial constraints. These connections help to form bi- and trigrams.
Then, textual representations are obtained by forming histograms of character combination oc-
currences. Each representation is independently normalized (L1) and concatenated to obtain the
final textual cue.

The proposed textual cue representation has certain benefits. First, it is not possible to distinguish
anagrams (e.g. TAPE and PEAT) by considering all possible combinations of the characters form-
ing the words. Therefore, the spatial constraints help to preserve the ordering of the characters.
Second, the proposed method explicitly avoids word detection to extract textual cues. The word
formation step causes information loss due to introduced ad-hoc rules. If the connection between
characters of the word is broken due to ad-hoc rules or missed characters, the proposed method
can still extract textual cues. For instance, if the character "A" of "TAPE" is missed, word for-
mation step would most likely not detect the word "TAPE". However, the proposed textual cue
encoding would still encode "TP" and "TPE" (See Fig. 4.7 for an illustration).
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Figure 4.7: An illustration on how the spatial constraints are used to encode textual cues. Each box
represents a character candidate. These character candidates are used to form bi- and trigram
representations. Bi- and trigrams are formed only when the spatial constraints are satisfied.

4.5 Fusing Textual and Visual Information

Extracted textual and visual features are fused using three techniques, namely, early, late and
kernel fusion. In this way, the relations between different modalities (i.e. text and visual features)
are exploited at various levels of abstraction.

Early Fusion Early fusion is performed at the feature level. After textual and visual features
are extracted, the two modalities are concatenated in a single feature vector. Then, the Support
Vector Machine (SVM) is used to classify this combined feature vector. Early fusion benefits
from learning the regularities formed by the components independently based on different modal-
ities. However, it restricts the choice of classifier and/or kernel to be the same for different
modalities.

Late Fusion Late fusion is performed at the decision level. After textual and visual features
are extracted, SVM classifiers are trained on the unimodal features independently. A prediction
is obtained for each modality. Then, these predictions are combined by averaging. In contrast
to early fusion, various classifiers can be trained according to the modalities. On the other
hand, late fusion does not exploit the feature level correlation among modalities. Moreover, the
learning process for late fusion is more time consuming than early fusion since each modality
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Figure 4.8: Average precision-recall curves on ICDAR13 dataset. The proposed method (blue line) is
fully unsupervised and achieves higher recall (after 0.7) with higher precision than Character-
ness [96] (red dashed line) which is a supervised text detection method.

requires training a different classifier.

Kernel Fusion Kernel fusion is performed at the kernel level. After the textual and visual
features are extracted, kernels are constructed on the unimodal features. Then, these kernels are
combined by using the sum operation [4].

In this chapter, we explore the above fusion techniques to exploit the relations between modality
components for fine-grained image classification.

4.6 Validation of Text Saliency

The proposed method provides a text saliency map. [96] is similar to our approach because it
generates a text saliency map too. Moreover, [96] is a supervised approach which outperforms
other object saliency methods on text detection on ICDAR13 [84]. To demonstrate the effective-
ness of the proposed method, we compare our results with [96]. The evaluation metric is used
as in [96]. The pixel level annotations of the ICDAR13 are used as ground truth. The dataset
consists of 229 images. For comparison reasons, the same set of randomly selected 100 images
in [96] is used for testing.
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Figure 4.9: The number of background and text pixels for the ICDAR13 dataset. The majority of the
scenes consists of background pixels (93%). The text saliency map is normalized to the range
of [0,255]. Different thresholds indicate the number of text/background after the proposed
method is applied. The results at threshold 0 shows that proposed method suppresses a large
amount of background (53%) while preserving most of the text regions. The amount of
suppressed background reaches (85%) whereas the amount of missed text detections is still
reasonable at threshold 100.

4.6.1 Experiments and Results

We evaluate the effectiveness of our text saliency method based on the precision-recall (PR)
curve as proposed by [96]. The generated text saliency map is normalized to the range of [0,255].
Then, the PR curve for an image is computed by binarizing the saliency map using thresholds
varying from 0 to 255. A full PR curve is generated by averaging PR curves over all test images.

The results are shown in Fig. 4.8. The proposed method (blue line) is fully unsupervised and
achieves higher precision than [96] (red dashed line) at higher recall regions.

To provide insights in the background removal process, we measure the total amount of back-
ground/text and the amount that remains after the proposed method has been applied. It is shown
in Fig. 4.9 that 93% of the pixels of the overall images consists of background. We represented
that the proposed method reaches higher precision values at higher recall regions compared
to [96]. The reason is that the proposed method focuses on removing connected background
pixels rather than the detection of text regions. The algorithm benefits from the background
connectivity process to remove larger number of pixels. At the same time, the proposed method
avoids to reach the text regions (due to contrast). Hence, the proposed method eliminates more
background and misses a limited number of text pixels. Fig. 4.9 illustrates that a large num-
ber of background pixels are suppressed (53%) by the proposed method (at Threshold 0) while
only a limited number of text pixels are missed (0.2%). The proposed method is suited as pre-
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Method↓ Cl. Rate (%)

Orig. Image + ABBYY 37

Backg. Removed (Proposed) + ABBYY 62

Table 4.1: The impact of background removal on end-to-end character recognition on ICDAR03. AB-
BYY is a commercial OCR engine. Orig.Image + ABBYY uses original image whereas Pro-
posed+ABBYY uses text saliency map (background removed input images) as input for AB-
BYY character recognition. These approaches differ from each other due to background
removal. This shows that eliminating the background from the images increases the OCR
accuracy.

processing step for text detection algorithms to reduce the search space (e.g. [68, 55]). The rest
of Chapter 4 uses [42] to binarize the text saliency map. Systematically changing the threshold
values for binarization is only used to obtain PR curve as in [96].

4.7 Character Recognition Evaluation

4.7.1 Dataset

End-to-end character recognition performance of our proposed method is evaluated on the pub-
licly available ICDAR03 test dataset. The dataset consists of 5370 letters in 249 images. The
dictionaries supplied by the dataset are not used to refine the recognition results.

4.7.2 Experiments and Results

We conduct two experiments. First, we evaluate the effect of background removal on the charac-
ter recognition accuracy. Second, we compare the results for end-to-end character recognition
performance of our method against the state-of-the-art text detection methods [96, 54, 128].

Experiment I. We compare Proposed+ABBYY against Orig.Image+ABBYY. For Orig.Image+
ABBYY character recognition, the input image is directly fed into ABBYY without any process-
ing. Proposed+ABBYY also uses ABBYY for character recognition. However, text saliency map
is used as input. The results are shown in Table 4.1. Although removing the background from
the images may decrease the character detection recall in some cases, the experimental results
show that background removal increases the overall character recognition recall of ABBYY by
25%. This is because traditional OCR systems are designed to work on documents with homoge-
neous backgrounds. Their performance deteriorates for natural scene images with cluttered and
inhomogeneous background [116].

Experiment II. End-to-end character recognition results of our proposed methods are compared
against state-of-the-art text detection methods [54, 96, 128]. Table 4.2 summarizes the results.
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Method↓ Cl. Rate (%)

Text Detection [54] + Text Recog. [69] 38

Text Detection [96] + Text Recog. [69] 53

Text Detection [128] + Text Recog. [69] 64

Text Detection (Proposed) + Text Recog. (ABBYY) 62

Text Detection (Proposed) + Text Recog. [69] 79

Table 4.2: End-to-end character recognition performance of our proposed methods against text detection
methods [54, 96, 128] on ICDAR03. [69] is used for character recognition for all the methods.
The methods only differ in character detection steps. The results show that proposed method
significantly outperforms [54, 96, 128] on end-to-end character recognition on ICDAR03. Pro-
posed+ABBYY and Proposed+[69] differ in character localization and recognition steps. The
results show that Proposed+[69] outperforms Proposed+ABBYY.

We detect character candidates using state-of-the-art text detection algorithms [54, 96, 128]. [69]
is used to perform character recognition. End-to-end character recognition performance obtained
using character candidates of the proposed method significantly outperforms (15%) other meth-
ods. Additionally, Proposed+ABBYY and Proposed+[69] differ in character candidate genera-
tion and character recognition steps. Proposed+[69] (described in Section 4.4.2) uses the state-
of-the-art character recognition method [69] rather than ABBYY as in Proposed+ABBYY (de-
scribed in Section 4.4.1). A significant improvement (17%) over Proposed+ABBYY is obtained.
This indicates that Proposed+ABBYY is restricted by the accuracy of ABBYY. Proposed+[69]
reaches state-of-the-art end-to-end character recognition accuracy up to 79% on this dataset.

Efficiency. The experiments are conducted on a laptop (Intel(R) Core(TM) i7-4810MQ Proces-
sor (2.80 GHz)) using Matlab. To run the method on a 480 × 640 resolution image takes 0.1s for
each color and curvature saliency map extractions, 0.12s for recovering the background, 0.1s for
binarization and 0.001s for each character candidate recognition.

4.8 Fine-grained Classification

4.8.1 Dataset and Implementation Details

Dataset. We use sub-classes of the ImageNet‡ building and place of business sets to evaluate
our fine-grained classification based on textual and visual information. The dataset consists of
28 categories with 24,255 images, see Fig. 4.10 for the list of categories. In the experiments,
we use all images from these categories. Note that many images may not necessarily contain
scene text fragments. The number of images that contain text varies e.g. Bistro (21% ) and Dry
Cleaner (89%).

‡http://image-net.org/
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Textual Cue Encoding↓ Performance (mAP%)

unconstrained bigrams 13.1

unconstrained trigrams 12.6

Proposed spatially constrained bigrams 24.8

Proposed spatially constrained trigrams 24.0

Proposed spatially constrained [bi+tri]grams 28.4

Table 4.3: The influence of different textual cue encodings on fine-grained classification performance
(mAP). Encoding textual cues as bi- or trigrams produce similar results. Adding proposed spa-
tial constrains on textual cue encodings significantly outperforms the version without spatial
constrains. Combining bi- and trigram representations outperforms each individual represen-
tation.

Implementation notes We use average precision as the performance metric. We repeat all
experiments three times to obtain standard deviation scores to validate the significance of the
results. We use three types of features as visual baseline 1. a standard bag of visual words
(BOW) approach with SIFT using 4000 words with 1 × 3 and 2 × 2 spatial pyramid, 2. we
use a pre-trained model of GoogLeNet [160]. The GoogLeNet is trained on ILSVRC 2012,
provided by the Caffe library §. We use the last average pooling layer as features (1024-dim),
which are further normalized to unit lengths (DEEP), 3. GoogLeNet is fine-tuned with a 28-way
softmax classifier. The learning rate is 0.001, decreased by a factor of 10 every 5 epochs. The
weight decay is set to 0.0005 and the momentum is 0.9. The network is fine-tuned for 20 epochs
(DEEP-FT). We use the histogram intersection (for BOW) and linear (for DEEP and DEEP-FT)
kernels in Libsvm and use its default value for the C parameter (=1) without any tuning. For text
classification, we use the proposed method based on unconstrained and spatially constrained
bi- and trigrams with the histogram intersection kernel with the same settings. The visual and
textual modalities are fused using techniques described in section 4.5.

4.8.2 Experiments and Results

We perform six experiments. First, we evaluate the influence of different textual cue encodings
on the final classification performance. Second, we quantify the impact of textual cues for
fine-grained classification. Third, we compare our results against state-of-the-art text detection
methods for textual cue extraction. Fourth, we assess the influence of three different fusion
strategies. Fifth, we quantify the complementarity of the extracted features. Sixth, we discuss
the influence of the performance change with respect to the amount of text in images.

Experiment I. We evaluate the following textual cue encodings: (1) unconstrained bigrams, (2)
unconstrained trigrams (3) spatially constrained bigrams, (4) spatially constrained trigrams, and
(5) spatially constrained bi- + trigrams. The results are summarized in Table 4.3. Represent-

§https://github.com/BVLC/caffe/tree/master/models/
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Source of Info. ↓ Performance (mAP%)

Textual-only 28.4

Visual-only (BOW) 34.9

Visual-only (DEEP) 53.3

Visual-only (DEEP-FT) 60.3

Textual + Visual (BOW) 47.9
Textual + Visual (DEEP) 66.2
Textual + Visual (DEEP-FT) 70.7

Table 4.4: The impact of textual and visual cues for fine-grained classification results (mAP). The results
show that textual cues extracted by the proposed method achieve limited accuracy, 28.4%.
The low performance of visual-only shows that visual information is not sufficient. Combin-
ing textual and visual cues significantly outperforms visual-only results with 13%, 12% and
10.4% for BOW, DEEP and DEEP-FT respectively. This shows that textual information is
beneficial for fine-grained classification and is complementary to the visual cues. The gain
in the performance is almost the same for three different visual-only baselines, even though
their performance are at different ranges. This is due to the fact that textual and visual cues
are from completely different sources.

ing textual cues in terms of bi- or trigrams produce similar results. However, the combination
outperforms each individual representation. Finally, the significant performance improvement
between spatially constrained and unconstrained textual representations indicates that spatially
constraining textual representations increases discriminative power of textual cues.

Experiment II. To quantify the influence of visual and textual cues, we compare the results
of visual-only (BOW), visual-only (DEEP), visual-only (DEEP-FT), textual-only, textual+BOW,
textual+DEEP and textual+DEEP-FT. The classification scores per category are shown in Fig. 4.10
and mAP is given in Table 4.4. The approach using textual cues, extracted by the proposed
method, achieves an accuracy of 28.4%. The baselines using visual-only features achieve 34.9%,
54.5% and 60.3% for BOW, DEEP and DEEP-FT respectively. Using more discriminative visual
features (DEEP-FT) significantly improves the visual baseline of BOW (26%). Using textual
cues in combination with visual cues increases the mean average precision up to 47.9%, 66.2%
and 70.7% for BOW, DEEP and DEEP-FT respectively. The performance gain due to combining
visual and textual cues is preserved, 13%, 12% and 10.4% for BOW, DEEP and DEEP-FT re-
spectively (even though their individual performance are substantially different). Hence, textual
information is beneficial for fine-grained classification and is complementary to visual cues.

Adding textual information to visual cues improves the accuracy of 26 out of the 28 classes. The
low accuracy for textual cues compared to visual cues can be explained by the lack of scene text
in many images, as is the case for the Bistro class. Nevertheless, text cues outperform visual
cues for Discount House, Steak House, PawnShop, Cafe and Dry Cleaner. Intra-class variation
for Discount House and Steak House are high. Therefore, the images within these classes are
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Figure 4.10: Fine-grained classification results on each class for visual-only (DEEP-FT), textual-only
and proposed method. The visual mAP is 60.3 ± 0.2, text is 28.4 ± 1.7 and proposed is
70.7 ± 0.6. Adding textual cues significantly outperforms (10.4%) visual-only results.
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Method ↓ Performance (mAP%)

Textual-only (Text Detection [54]) 10.9

Textual-only (Text Detection [128]) 17.8

Textual-only (Text Detection [96]) 19.9

Textual-only (Text Detection Proposed) 28.4

Textual (Text Detection [54]) + Visual (DEEP-FT) 63.0

Textual (Text Detection [128]) + Visual (DEEP-FT) 66.4

Textual (Text Detection [96]) + Visual (DEEP-FT) 67.6

Textual (Text Detection Proposed) + Visual (BOW) 47.9

Textual (Text Detection Proposed) + Visual (DEEP) 66.2

Textual (Text Detection Proposed) + Visual (DEEP-FT) 70.7

Table 4.5: Comparison of fine-grained classification results of textual cues using the proposed text detec-
tion method and state-of-the-art text detection methods [96, 54, 128]. Textual methods differ in
text detection. Textual cues are extracted for all the methods as proposed in this chapter. [69]
is used to perform character recognition. Bi- and trigrams are formed between the recognized
characters by considering the proposed spatial pairwise constraints. The proposed method
significantly outperforms [96, 54, 128] for textual-only cues and also visual+textual cues.

visually dissimilar and are difficult to group them together without text (even for humans).

Experiment III. The proposed method is compared against the state-of-the-art text detection
methods [96, 54, 128] for textual cue extraction. The methods only differ in character detection.
The same steps are followed for all the methods to extract textual cues as proposed in this chapter.
Table 4.5 illustrates that textual cues extracted by the proposed method outperforms [96, 54, 128].
Moreover, we compare our previous result in [83] for which we encode the textual cues using
unconstrained bigrams, ABBYY for character recognition and BOW for visual features. Our
previous result is 39%. Textual(Proposed)+BOW outperforms it significantly (9%). This shows
the importance of 1. spatially constraining bigrams, 2. adding another layer of encoding (tri-
grams), 3. high character recognition performance on fine-grained classification. Additionally,
using more discriminative visual features [160] significantly improves the visual baseline. Con-
sequently, the proposed method outperforms [83] by a large margin (32%).

Experiment IV. We assess the influence of the three different fusion strategies. These strategies
are outlined in Section 4.5. Late fusion is performed in three different ways (i) predictions
from each modality are combined equally using a sum operation (sum), (ii) another classifier
is trained on top of predictions of the modalities to obtain weights to sum predictions from
different modalities (weighted sum) and (iii) predictions from different modalities are added
using a product operation (product). Table 4.6 shows the results. Early performs slightly better
than the rest. Early fusion benefits from learning the correlation between features of textual
and visual modalities. sum and weighted sum performs in a similar way and better than product.
Kernel fusion performs slightly lower than early fusion. However, Kernel is still beneficial since
it does not restrict the choice of kernel to be the same for different modalities. Therefore, Kernel
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Fusion Strategy ↓ Performance (mAP%)

Early 71.0
Late - sum 70.0

Late - weighted sum 69.8

Late - product 65.0

Kernel 70.7

Table 4.6: Comparison of different strategies for multimodal information fusion.

is used for comparisons.

Experiment V. In this experiment, we explore the complementarity of the extracted features.
All combinations are performed using kernel fusion strategy. The results are summarized in Ta-
ble 4.7. Textual features extracted by different methods only differ in detected text regions. Be-
side that, textual cues are obtained in the same way. Therefore, combining textual cues together
does not influence the overall accuracy. This also indicates that the proposed method covers
all the information that [96, 54, 128] carries and more. BOW and GoogLeNet visual baselines
are extracted using different features. Therefore, combining BOW and DEEP/DEEP-FT still im-
proves DEEP/DEEP-FT only. This indicates that BOW and DEEP/DEEP-FT visual features are
useful for fine-grained classification on this dataset. Combining all the extracted features still
improves with 1% over the best result obtained in previous experiment (70.7%). Moreover, com-
bining textual cues still significantly improves the performance even after combining all visual
features. This indicates complementarity of visual and textual modalities.

Experiment VI. In this experiment, we discuss the performance change with respect to the
amount of text in images. To this end, we have annotated text regions (as word bounding boxes)
for the first 10 classes of the Con-Text dataset (in alphabetical order). All the text (Latin alpha-
bet) visible and recognizable has been annotated. The annotated dataset consists of 9131 images.
5219 of these images contain at least one word box. In total there are 27601 word boxes anno-
tated. We report per-class, 1. the total number of images, 2. the number of images with text, 3.
the percentage of images with text with respect to the total number of images, 4. fine-grained
classification rates (mAP) using only textual information (see Table 4.8).

"Dry Cleaner" obtains the maximum classification rate (71%). Hence, there is a strong correla-
tion with the amount of text and the fine-grained classification rate since "Dry Cleaner" has the
maximum number of images with text and also a high text percentage (89%). This holds also for
the other classes which contain a high number of images with text, and a high text percentage
(e.g. BookStore, Country Store). The classification rate is low when the number of images with
text and text percentage is limited (e.g. Bistro, ComputerStore). The text percentage alone is
not a conclusive indicator for high classification rate (e.g. DiscountHouse). It is necessary that
there is enough data (number of images with text) to learn from. Moreover, overlapping text is
also important. For instance, "Country Store" has a high number of images and text percentage.
However, the classification rate is relatively small compared to "Dry Cleaner". This is due to the
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Source of Feat. ↓ Performance (mAP%)

Textual-only (Text Detection [54]) 10.9

Textual-only (Text Detection [128]) 17.8

Textual-only (Text Detection [96]) 19.9

Textual-only (Text Detection Proposed) 28.4

Textual-only (Proposed+[54]+[128]+[96]) 28.4

Visual-only (BOW) 34.9

Visual-only (DEEP) 53.3

Visual-only (DEEP-FT) 60.3

Visual-only (BOW + DEEP) 55.8

Visual-only (BOW + DEEP-FT) 62.9

Visual-only (DEEP + DEEP-FT) 62.1

Visual-only (BOW + DEEP + DEEP-FT) 63.5

Visual (BOW + DEEP + DEEP-FT) + Textual (Proposed) 71.6

Table 4.7: The impact of combining the same and different modalities on fine-grained classification
performance. Textual cues are extracted in the same manner for Textual(Proposed) and
Textual([96]). They differ only in detecting text regions. Combining them does not influence
the overall accuracy. Visual cues are extracted using different features. Therefore, combin-
ing BOW and DEEP/DEEP-FT still improves DEEP/DEEP-FT only. The largest gains are
obtained when different modalities are combined.

diversity of text descriptions.

4.9 Logo Retrieval

In logo retrieval, the aim is to find all images of a query logo in an image collection, e.g., Star-
bucks. Logos may consist of text alone or text is an important part of the logo itself such as
Starbucks, Ford, FedEX and Google. However, in logo retrieval, recognized text in natural scene
images has never been exploited before [141, 142, 161].

4.9.1 Dataset and Implementation Details

Dataset. Our approach is validated on FlickrLogos-32 [143]. The dataset consists of 32 brand
logos, e.g., Texaco, Pepsi and Google and 30 queries per logo resulting in a total of 960 queries.
The search set contains 40 images per logo and 3000 non-logo images.

Implementation notes. Again, we use average precision as the performance measure. To rep-
resent the visual cues, a standard bag of visual words (BOW) approach is used with a visual
vocabulary of size 1 million. This visual representation reaches a retrieval accuracy of 54.8%
mAP. This accuracy corresponds with what has been reported in [142]. To represent textual cues,
we use spatially constrained bi- and trigrams and their combinations. The character candidates
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Class↓ Total Num. Images Num. Images with Text Text Percentage (%) Performance (mAP%)

Bakery 1214 467 38 21.19

Barber 1573 635 40 35.81

Bistro 287 59 21 3.12

BookStore 1333 724 54 44.46

Cafe 839 438 52 25.80

DryCleaner 1195 1065 89 71.46

ComputerStore 287 142 49 5.38

CountryStore 1224 866 71 35.01

Diner 1136 781 69 30.95

DiscountHouse 43 42 98 25.63

Table 4.8: The distribution of images with text and without text for the first 10 classes of the fine-grained
dataset.

Textual Cue Encoding↓ Performance (mAP%)

bigrams 19.0

trigrams 18.9

[bi+tri]grams 23.9

Table 4.9: The influence of different textual encodings e.g., bi- and trigram and bi- +trigram in logo
retrieval. Bi- and trigrams produce similar results. Combining bi- and trigram outperforms
each individual representation.

within the query bounding boxes are kept for the query images to represent textual cues. The
images are ranked by the cosine similarity between the normalized textual representations. To
combine the visual and textual cues, we use late fusion.

4.9.2 Experiments and Results

We conduct two experiments. First, we quantify the influence of textual cues and the effect of
different levels of textual cue encodings for logo retrieval. In the second experiment, we evaluate
the complementarity of textual and visual cues for logo retrieval.

Experiment I. We evaluate different textual cue encodings: (1) bigrams, (2) trigrams and (3) bi-
+ trigrams. The results are summarized in Table 4.9. Representing textual cues as bi- or trigrams
produces similar results. However, combining both representations outperforms the individual
encodings. This implies that bi- and trigrams have similar discriminative power, yet they capture
information at different levels. Therefore, they are complementary to each other.

Experiment II. To assess the influence of textual cues, we compare the results of textual-only,
visual-only and textual+visual. The results are summarized in Table 4.10. The results show that
the method based on textual cues extracted by the proposed method achieves an accuracy of
23.9%. Using textual and visual cues increases mAP up to 57.4%. This implies that textual
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Source of Info. ↓ Performance (mAP%)

textual-only 23.9

visual-only 54.8

textual+visual 57.4

Table 4.10: Logo retrieval results (mAP) for textual-only, visual-only and textual+visual. The results
show that the method based on textual cues extracted by the proposed method achieves an
accuracy of 23.9%. Combining textual and visual cues increases the accuracy. This shows
that textual information is beneficial for logo retrieval and is complementary to visual cues.

information is beneficial for logo retrieval. And that textual information is complementary to
visual cues. Textual cues improve the retrieval accuracy of the logos which are formed by only
text e.g., esso, aldi and stella artois. However, textual cues are not effective when the characters
of the logos are all connected e.g., fedex and ford, when logos do not contain any text e.g., apple
and ferrari, or when the characters are not in a common text font.

4.10 Conclusion

A method has been introduced to combine textual with visual cues for fine-grained classification
and logo retrieval. While the state-of-the-art relies on visual cues only, in Chapter 4 we propose
to combine recognized scene text and visual cues for fine-grained classification and logo retrieval.
To extract text cues, we have proposed a generic, efficient and fully unsupervised algorithm for
text detection. The proposed text detection method does not directly detect text regions but
instead aims to detect background to infer text location. Remaining regions after eliminating
background are considered as text regions. Then, text candidates have been processed by two
methods to perform text recognition i.e. ABBYY commercial OCR machine and state-of-the-art
character recognition algorithm [69]. Bi- and trigrams have been formed between the recognized
characters by using proposed spatial encoding.

The proposed algorithm achieves state-of-the-art (end-to-end) character recognition accuracy on
the ICDAR03. It is shown that bimodal information fusion of visual and textual cues increased
the fine-grained classification accuracy by 10.4%. The proposed method outperforms state-of-
the-art text detection methods [96] on text saliency and [54, 96, 128] on (end-to-end) character
recognition and fine-grained classification. We improve earlier work [83] for fine-grained clas-
sification from 39.0% to 70.7% in mAP. Moreover, we applied our work also for logo retrieval.
Textual cues proven to be complementary to visual cues for logo retrieval too. Combining tex-
tual and visual cues improves the logo retrieval performance over visual-only from 54.8% to
57.4%.





5
Scene Text for Image Classification and
Retrieval∗

5.1 Introduction

Fine-grained classification is the problem of assigning images to classes where instances from
different classes differ slightly in the appearances e.g., flower types [133], bird [182] and dog
species [100], and models of a product [108]. In contrast to coarse object category recognition
e.g., cars, cats and airplanes, low-level visual cues are often not sufficient to make distinction be-
tween fine-grained classes. Even for human observers, fine-grained classification tasks usually
require expert and domain specific knowledge. Accordingly, most recent works also integrated
such domain specific knowledge into their solutions. For instance, dogs have ears, nose, body,
legs etc., and the differentiation of dog species relies on the subtle differences in these parts. Dif-
ferent bird species have different wing and beak appearances, and such differences in local parts
provide the critical information to categorize different bird types. [195, 184, 100] exploit the part
information and extract features from particular parts for better birds and dogs recognition. In
this chapter, we make use of the domain specific knowledge of buildings. We exploit the recog-
nized text in images for fine-grained classification of building types. The building types studied
in this work are places-of-businesses (e.g., bakery, cafe, bookstore etc.). Automatic recognition
and indexing of business places will be useful in many practical scenarios. For instance, it can
be used to extract information from Google street view images and Google Map can use the
information to provide recommendations of bakeries, restaurants close to the location of the
user.

Most of the time, the stores use text to indicate what type of food (pizzeria, diner), drink (tea,
coffee) and service (drycleaning, repair) that they provide. This text information is helpful even

∗S. Karaoglu, R. Tao, T. Gevers and A. W. M. Smeulders, "Words Matter: Scene Text for Image Classification
and Retrieval," Pending revision in IEEE Transactions on Multimedia, 2015.



62 Scene Text for Image Classification and Retrieval

Figure 5.1: bakery and pizzeria example images. The two buildings are visually similar. Text can be
used to differentiate the two shops.

for human observers to understand the content of the store. For instance, in Fig. 5.1, the images
of two different buildings (pizzeria and bakery) have a very similar appearance. However, they
are different types of business places. It is only possible with text information to identify what
type of business places these are. Moreover, text is also useful to identify similar products (logo)
such as Heineken, Foster and Carlsberg. Therefore, we propose a multimodal approach which
uses recognized text and visual cues to do better fine-grained classification and logo retrieval.

The common approach to text recognition in images is to detect text first before they can be
recognized [179, 69]. The state-of-the-art word detection methods [128, 178, 96, 183, 103] focus
on obtaining a high f-score by balancing precision and recall. However, instead of using the f-
score, our aim is obtain a high recall. A high recall is required because textual cues that are not
detected will not be considered in the next (recognition) phase of the framework. Unfortunately,
there exists no single best method for detecting words with high recall due to large variations in
text style, size and orientation. Therefore, we propose to combine character candidates generated
by different state-of-the-art detection methods. To obtain robustness against varying imaging
conditions, we use color spaces containing photometric invariant properties such as robustness
against shadows, highlights and specular reflections.

The proposed method computes text lines and generates word box proposals based on the charac-
ter candidates. Then, word box proposals are used as input of a state-of-the-art word recognition
method [67] to yield textual cues. Finally, textual cues are combined with visual cues for fine-
grained classification and logo retrieval. The proposed framework is given in Fig. 5.2.

Chapter 5 has the following contributions. First, we combine word-level textual cues and visual
cues for fine-grained classification and logo retrieval. In Chapter 4, we extract the textual cues at
character-level. However, in this chapter, we propose to extract textual cues at word-level. The
proposed method reaches state-of-the-art results on both tasks. Second, to extract the textual
cues, a generic and computationally efficient word proposal algorithm which aims at high recall
is proposed without any training involved. The proposed algorithm obtains state-of-the-art re-
call for word detection for a limited number of word box candidates. Third, contrary to what
is widely acknowledged in text detection literature, we experimentally show high recall word
detection is more important than high f-score for both applications considered in this work.
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Figure 5.2: Pipeline of our multimodal approach. Text is encoded at a word level and utilized for fine-
grained classification and logo retrieval. A generic and fully unsupervised word box proposal
method is proposed to detect words in images. The method uses different color spaces and
character detection algorithms (MSER [112] and text saliency [82]). The word box candi-
dates are used as input for a state-of-the-art word recognition method [67] to perform word-
level encoding. An English vocabulary consisting of around 90k words is considered [67].
For the visual cues, bag-of-words (BOW) and GoogLeNet features [160] are used. The mul-
timodal approach combines the visual and textual cues.

5.2 Related Work

Word Detection. Word detection consists of computing bounding boxes of words in images.
Existing word detection methods usually follow a bottom-up approach. Character candidates
are computed by a connected component [31, 128] or a sliding window approach [178, 69, 179].
Candidate character regions are further verified and combined to form word candidates. This
is done by using geometric, structural and appearance properties of text and is based on hand-
crafted rules [31] or learning schemes [178, 69]. State-of-the-art word detection methods [128,
178, 96] focus on high f-score by the trade-off between recall and precision. Strict rules are used
in character detection and word formation to keep only boxes that most likely contain words. As
a consequence, methods aiming for high f-score may miss a number of correct word boxes. In
contrast, we propose to generate word boxes with the goal to include all words i.e. high recall.
We use recall in text detection because our aim is not to miss correct word boxes with the cost
of introducing false detections.

Our work is similar to the recent works [66, 56] in terms of providing word box proposals. [66]
combines two generic object proposal outputs, namely Edge Boxes [201] and Aggregate Chan-
nel Feature Detector [27], as preliminary word box proposals. Then, these proposals are filtered
using the HOG [22] feature with a Random Forest text/non-text classifier [10]. Finally, the
remaining word box proposals are processed using a convolutional neural network regressor
to refine the coordinates of these word boxes. [56] performs an over-segmentation using maxi-
mally stable extremal region (MSER) algorithm with flexible parameters. Then, the segments
are grouped together using distance metrics related to text (e.g. color, stroke width etc.). Finally,
weak classifiers are used to obtain a text-likeliness measure for these word candidates. In con-
trast, our word box generator is uniquely designed to detect text in images without any training
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involved. Moreover, [66, 56] in the end aim at high f-score word recognition whereas this chap-
ter aims only at high recall. We experimentally verify high recall is more important than high
f-score for the applications considered in this chapter. Further, different from [66, 56] which
address word recognition, the aim of this chapter is to combine textual and visual cues for better
fine-grained recognition and logo retrieval.

Text Recognition. Text recognition approaches can be categorized into two groups: character
and word based methods. Character based methods first recognize single characters, then form
words [118, 119, 134]. Recent work [2, 53, 67] shows that entire-word recognition performs
better than recognizing characters first and then forming words. In this chapter, we follow the
state-of-the-art word recognition approach [67] to encode the textual cues.

Textual Cues. Mishra et al. [117] propose to use textual cues for query-by-text image retrieval.
Given a query text, the method assigns scores to images based on the presence of the query
characters. Additional pairwise spatial constraints between characters are used to refine the
ranking. In Chapter 4, we propose to use textual cues in combination with visual cues for
fine-grained classification. Bi- and trigrams are computed based on recognized characters in
images. These bi- and trigrams are used to encode the textual cues. In contrast, this chapter
performs a word-level textual cue encoding. Moreover, the proposed method aims at high recall
word detection which leads to combine state-of-the-art text detectors performed in various color
spaces.

Fine-grained Classification. Many recent works in fine-grained classification exploit domain
specific knowledge. Dogs and birds are composed of a number of semantic parts, such as head,
body and tail. [195, 184, 197] use parts for better fine-grained recognition. [195] learns part
detectors and localizes the parts to isolate the subtle differences in specific parts. [184] shows
the hidden layers of a deep neural network are actually part detectors and uses the filters in the
hidden layers to detect specific bird and dog parts. [197] generates multi-scale part proposals and
selects useful parts. [46] presents another successful use of domain specific knowledge for bird
species recognition. It exploits the fact that birds have rather fixed poses and fits an ellipse to
represent the overall shape of a bird. In this work, we exploit the domain specific knowledge for
building types classification. In our case, the domain knowledge is the scene text in the building
images. We propose a multimodal approach to fine-grained building type classification by fusing
the textual and visual cues. A recent paper from Google [124] also studies the classification of
different business places. [124] only considers visual cues for classification while we show that
adding textual cues significantly outperforms methods that only use visual information.

5.3 Word-level Textual Cue Encoding

In order to extract the textual cues from the image, a two-step procedure is followed. In the first
step, word box proposals are generated to locate the words in the image. In the second step, the
word proposals are used as input to a word recognizer to form the word-level representation.
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5.3.1 Word Box Proposals

High recall. When a word in an image is not detected or localized incorrectly, it is not possible
to identify it. Our aim is to obtain high recall with the cost of false positives. To this end, the
proposed method uses a complementary set of character detection algorithms and color invariant
spaces.

Low computational cost. The word box proposal method needs to be efficient especially for
large scale scenarios. Further, the number of possible word box candidates (i.e. proposals)
should be as low as possible.

Generic. We aim for a generic word proposal method. No need for tuning the method for
different alphabets or datasets.

Therefore, we propose an efficient and fully unsupervised bottom-up approach. First, charac-
ters are detected by a text-independent approach. Then, these detected characters are filtered
based on geometric and appearance properties. Finally, they are grouped to generate word box
proposals.

Character Detection

As stated earlier, there exists no single character detection algorithm that is robust against all
variations in text style, location and orientation and imaging conditions. Therefore, we propose
to compute character candidates using two methods with different strengths, i.e., text saliency
(proposed in Chapter 4) and Maximally Stable Extremal Regions(MSERs) [112].

In Chapter 4, a text saliency map is computed using scene background. It is assumed that
background pixels are uniformly colored e.g., windows, boards, roads, buildings, fences etc. and
that they contrast with text regions. Accordingly, the method uses background homogeneity to
form connectivity between background pixels. The method selects initial background seeds and
grows these seeds iteratively until all background pixels are covered (detected). Assuming that
text regions have strong contrast with the background [9], text regions will remain uncovered
by the region growing algorithm. Finally, the background image is subtracted from the original
image to obtain a text saliency map, which is further binarized using [42] to obtain character
candidates (See Chapter 4 for details).

Text saliency computation does not require any tuning for varying text size, style and orientation,
and is robust to image noise. However, due to the information loss caused by the image boundary
priors and the binarization, the method may miss characters. To compensate for this, we enable
MSER as another character detection algorithm. MSERs define an extremal region as a con-
nected component of which image values remain stable within the boundary and highly contrast
against boundary pixels [112]. MSER regions are widely in use for character detection [15, 128].
MSER is suited for character detection because text regions are usually designed to have uniform
appearance (color). Further, they usually have high contrast with their surroundings. However,
MSER has certain shortcomings for character detection such as detecting characters in blurry
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Figure 5.3: Original images (up), text saliency (middle) and MSER character detections (down) obtained.
Text saliency method is robust against changes in text size and noise while MSER detects
characters at image boundaries.

and noisy images [15]. Moreover, MSER is sensitive to character sizes due to the parameters
used to define stable regions. In fact, the MSER and text saliency results are, to a certain extent,
complementary. Fig. 5.3 illustrates complementary properties of MSER and saliency methods.

Complementary Color Spaces

Images are captured under uncontrolled illumination conditions. Therefore, text regions may
be influenced by different photometric changes such as shadows and specular reflections. A
uniformly colored character may vary in intensity due to shadows or highlights. Hence, these
shadows or highlights may negatively influence the pixel connectivity for a uniformly colored
character.

To compensate for this, the proposed method computes the character candidates using a variety
of color spaces containing a range of invariant properties. The two channels, (O1, O2), from the
opponent color space [35], Saturation (S) and Hue (H) from HSV [167], and (I) from gray scale
are considered in the proposed method (see Fig. 5.4). The invariant properties are summarized
in Table 5.1. Fig. 5.4 illustrates the color channel responses for photometrical changes.



5.3 Word-level Textual Cue Encoding 67

I O1 O2 S H

Highlights - + + - +

Shadows - - - + +

Table 5.1: Color spaces and their invariant properties. I is the gray scale. (O1, O2) are the two channels
from the opponent color space [35]. Saturation (S) and Hue (H) are from the HSV color
space [167]. ‘+’ means invariant. In this chapter, we use all these color spaces with different
invariant properties to cope with the photometric changes in natural images.

(a) (b) (c) (d) (e) (f)

Figure 5.4: Examples of different color channel responses: (a) Original image, (b) Gray-scale, (c) Hue,
(d) Saturation, (e) O1 and (f) O2. It is shown that color channels have different responses to
photometric changes e.g. shadow and highlights, based on their invariant properties.

Character Filtering

The character candidates provided in Section 5.3.1 may consist of non-character regions. Our
method for character filtering is based on state-of-the-art text detection systems [15, 31] to filter
out non-character regions efficiently.

Aspect ratio. Most of the real characters have a width-height ratio close to 1 [31]. Therefore,
the proposed method limits the aspect ratio of character candidates to be a value between 0.1
and 10. These values are reported in [31] to be conservative enough to still keep characters such
as ‘i’, ‘I’ or ‘1’. This process filters out text-like items in images such as fences and branches of
trees.

Size. The proposed method limits the height of a character candidate to be greater than 5 pixels
and the area to contain more than 50 pixels [31]. If the character is too small, the information it
carries is limited. Therefore, it is likely that even if these regions are not eliminated, recognition
on these regions would fail.

Solidity. The solidity is defined as the proportion of the number of character pixels to the
convex area which covers the text candidate. It has been observed that text regions have low
solidity [15]. Therefore, the proposed method eliminates character candidates which have high
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Size Aspect Ratio Solidity Contrast

Figure 5.5: Samples for character candidate filtering. The green, red and yellow (different colors are used
to highlight boxes) boxes represent filtered character candidates after corresponding filtering
condition is applied (i.e. size, aspect ratio, solidity and contrast).

solidity (>0.95) and longer width than height. Longer width is to avoid removing characters
like ‘i’ and ‘l’. This process filters out brick-like image regions which have solidity close to 1.
Solidity threshold is set to be conservative enough to keep characters like ‘w’ and ‘m’.

Contrast. Pixels at character borders usually have high contrast and the contrast decreases with
the distance to the borders. As a result, the box which neatly covers a character will have a higher
average contrast than its slightly expanded version. Therefore, the proposed method eliminates
the character candidates which do not meet this condition. Contrast (C) of an image pixel (p)
is calculated by Cp =

√
I2

x(p) + I2
y (p) + Ix(p)Iy(p), where Ix, Iy are the first order image

derivatives (x and y dimensions) in intensity I .

A character candidate satisfying all these conditions is remained for further processing. This
filtering step removes those obvious non-character candidates to reduce computational cost in
following steps. Fig. 5.5 shows filtered character candidates for each condition.

Word Box Proposal Generation

The next step is to compute word box proposals using character candidates. We consider com-
binations of character candidates as potential words. However, it is computationally expensive
if all possible combinations are considered. And, due to the nature of text, characters within
a word cannot have arbitrary positions and sizes [31, 37, 96, 111, 126, 127]. Therefore, as the
first step of computing word box proposals, we generate text lines to restrict the selection of
combinations by linking character candidates based on five pair-wise constraints. In Fig. 5.6,
the two boxes stand for two character candidates with (x1, y1), height1 and width1 being the
coordinates of the top-left corner, height and width of the box covering the first character. The
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Distance (Horizontal offset)
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Figure 5.6: An illustration on the notions of two character candidates. This illustration is used to elabo-
rate the pairwise constraints.

box of the second character is defined likewise.

The five pairwise constraints are as follows:

(a) Distance between two character centers is smaller than 2.5 times of the longer axis of the
character box [31, 37, 127]. Distance < max([height1, width1, height2, width2])×2.5
where Distance = (x2 + width2

2 ) − (x1 + width1
2 ). 2.5 is considered to allow one missed

character in between.

(b) The ratio of the vertical displacement and horizontal offset is no greater than 0.2 [96, 127],
formally expressed by V D

Distance ≤ 0.2 where V D = |(y2 + height2
2 ) − (y1 + height1

2 )| and
Distance as defined in (a). Text is mostly horizontally aligned.

(c) The height ratio of two characters is not greater than 2 [31, 37, 127], i.e., 0.5 ≤ height1
height2

≤
2. Two characters of a word should have similar height and 2 is considered to allow the
case of a lower-case character following a capital.

(d) Two characters must not overlap more than 0.1, formally, Area(Char1∩Char2)
Area(Char1∪Char2) ≤ 0.1. Char-

acters of a word usually do not overlap except in special cases, e.g., italic.

(e) The bottom of one character is below the center of the other [127], i.e., (y1 + height1) ≥
y2+height2

2 and (y2 + height2) ≥ y1+height1
2 .Two consecutive characters of a word are

usually well aligned for easy reading.

As the second step, we compute word box proposals by considering all possible combinations
of character candidates within a text line. A combination of character candidates corresponds
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to the box covering the union of the character candidates. The proposed method starts with a
single character candidate as a word proposal. The reason is that when the characters of a word
are connected the word is covered by only one character candidate.

Word box proposals are generated from each character detection algorithm and color space inde-
pendently and then combined.

5.3.2 Word Recognition and Textual Cue Encoding

Section 5.3.1 generates word box proposals. To recognize words, we employ a state-of-the-art
word recognition approach [67]. [67] formulates word recognition as a multi-class classification
problem, where a word from a predefined English vocabulary is treated as one class. A convo-
lutional neural network classifier with four convolutional layers and two fully-connected layers
is used to solve the classification problem. We refer to [67] for the details of the network. The
network takes a word box proposal b as input and produces for each word w a probability of the
word being present in the box, P (w|b). The probability is modeled by the softmax scaling of
the final multi-way classification layer. As a result, each word box proposal is represented by a
n-dimensional feature, where n is the number of words in the vocabulary. In this work, we use
the model† provided by the authors of [67]. The model considers a vocabulary of 88, 172 words
and is trained using synthetic data. We encode the textual cues in an image by summarizing the
representations of word box proposals with average pooling. Each dimension of the resulting
image feature represents the probability of the corresponding word being present in the image.

5.4 Fine-grained Classification

Fine-grained classification is the problem of the categorization of subordinate-level categories
such as bird species [182], flower types [133] and building types [83]. The small inter-class
visual differences and the large intra-class variations make fine-grained classification challenging.
In this section, in addition to visual features, we exploit the use of textual cues in the images for
fine-grained image classification.

5.4.1 Dataset and Implementation Details

Dataset. We use the Con-Text dataset proposed in Chapter 4. The dataset is for fine-grained
classification of business places e.g., Cafe, Bookstore and Pharmacy. The dataset consists of
24, 255 images from 28 categories. The dataset is divided into three folds. Experiments are
repeated three times, each time using two folds as training and the other as testing. We report
the mean performance over the three runs. Average precision is used to measure the performance.
The first 10 classes of the dataset have word location annotations, whereas the rest of the dataset
do not have any available annotation.

†http://www.robots.ox.ac.uk/~vgg/research/text
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Implementation notes. Three visual-only classification baselines are considered as in Chapter
4. All the three visual baselines employ one-versus-rest SVM classifiers for classification, while
the differences lie in the employed visual representations. First, we use a standard bag of visual
words representation with 3 × 1 and 2 × 2 spatial pyramid, denoted as BOW.

Second, as image representation, we use the L2 normalized output of the last average pool-
ing layer of the ImageNet-pretrained GoogLeNet [160], denoted by DEEP. The network is pre-
trained on the 1000 ImageNet categories‡ [146], available in the Caffe library [70].

Third, we fine-tune the pretrained GoogLeNet with a 28-way softmax classifier on the Con-Text
dataset. After fine-tuning, the last average pooling layer output of network is used as the image
representation. This visual baseline with features from fine-tuned GoogLeNet is denoted by
DEEP-FT. The details of the fine-tuning are as in Chapter 4. The learning rate is initially set to
be 0.001, and is decreased by a factor of 10 every 5 epochs. The network is fine-tuned for 20
epochs. The weight decay parameter equals 0.0005. The network is fine-tuned using SGD with
momentum which is set to be 0.9.

For text-based classification, the textual cues are extracted as described in Section 5.3.

Libsvm [14] is used for classification. The histogram intersection kernel is employed for BOW,
as in Chapter 4, while linear kernel is adopted for DEEP, DEEP-FT and the proposed textual
cues. Textual and visual cues are combined by kernel fusion. Specifically, the visual-based ker-
nel and textual-based kernel matrices are computed independently. Then the two kernel matrices
are summed up with equal weights to generate the final kernel matrix. In all experiments, we
use the default value for the C parameter (=1) without tuning.

5.4.2 The Influence of Word Detection Precision and Recall on Fine-grained
Classification

We use the annotated 10 classes to analyze the effect of word detection precision and recall on
fine-grained classification. Therefore, we systematically change recall or precision and evaluate
the classification performance. Within this section, only textual cues are used.

Performance on images without text

Not all images in the dataset contain text. However, the proposed method may generate candi-
date word proposals in non-textual regions in the image. The method uses the character candi-
date detector using MSER and saliency. Consequently, regions of interest, other than text, may
also be detected. We have evaluated the classification performance using the ‘textual cues’ en-
coded by the proposed method on images without text. Interestingly, it achieves 28.9% in mAP,
significantly better than random guessing, although the textual cues are much more effective
on images with text (67.7% in mAP). This indicates some salient non-text patterns within the

‡http://www.image-net.org/challenges/LSVRC/2012/
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Figure 5.7: The influence of the precision and recall change in word detection on fine-grained classifi-
cation performance (evaluated on the 10 annotated classes). Left: Increasing precision by
removing the false positive detections (FP) from the automatically generated set of proposals
does not improve the classification performance. ‘-FP20’ denotes removing 20% of the false
positives. Middle: We systematically increase the recall by adding the missed ground-truth
word boxes (mGT) on top of the automatically generated set of proposals. The classifica-
tion performance keeps increasing as the word detection recall increases before it saturates.

‘+mGT20’ denotes adding 20% of the missed ground-truth word boxes. Right: Decreasing the
word detection recall by removing the true positive detections (TP) from the automatically
generated set negatively influences the classification performance. ‘-TP20’ denotes removing
20% of the true positives. This set of experiments show that word detection recall is more
crucial than precision for the classification performance.

same class could be consistently detected and similarly encoded. In the following analysis, we
consider two cases, one with images containing text and the other considering all images.

The influence of word detection precision

To study the influence of word detection precision on fine-grained classification, we increase
the precision while keeping the recall unchanged by removing the false positive detections (FP)
from the generated word proposals. Fig. 5.7 (left) shows that increasing the precision does not
improve the classification performance.

Interestingly, this experiment has brought the following additional insight. The classification
performance actually decreases when too many false positives are removed from the generated
word proposals, especially when all images are considered (‘All images‘). There are two reasons
for this. (1) The proposed word proposal method may detect salient but non-text regions. And
some salient non-text patterns within the same class could be consistently detected and similarly
encoded. Consequently, some false positive word proposals may contribute positively to the
classification, especially for those images without text. This has been discussed in Section 5.4.2.
This is also the reason for the decrease in classification performance when removing too many
false positives. This is more significant on ‘all images‘ than ‘images with text‘ as shown in
Fig. 5.7. (2) The boxes, that cover the text regions for less than 50% overlap with the ground-
truth, are treated as false positives. These boxes may contain parts of words or contain complete
words with extra background regions. Removing such boxes may have a negative influence on



5.4 Fine-grained Classification 73

the classification results.

Additionally, we study the influence of precision decrease by adding the generated word propos-
als (Ours) on top of the manually annotated word boxes (GT). The classification performance
of GT+Ours (with a precision of 6.2%) is 75.7% whereas GT (with a precision of 100%) is
76.1%. The significant drop in precision from 100% to 6.2% results in a marginal decrease in
classification performance.

These experiments indicate that the false positive word proposals generated by the proposed
method do not negatively influence fine-grained classification. However, it is worth to mention
that it is still desirable to produce a limited number of word proposals for memory and efficiency
concerns.

The influence of word detection recall

First, we evaluate the influence of a recall increase on the classification rate. We systematically
increase the recall by adding the missed ground-truth word boxes (mGT) on top of the automat-
ically generated set of proposals. As shown in Fig. 5.7 (middle), the classification performance
keeps increasing as the word detection recall increases before it saturates.

Second, we decrease the recall by removing the true positive word proposals (TP) from the auto-
matically generated set. The results in Fig. 5.7 (right) show that decreasing the word detection
recall negatively influences the classification performance.

Note that even when 90% of the true positive word proposals are removed, the classification
performance is acceptable. There are two reasons for this. (1) As discussed in Section 5.4.2
and 5.4.2, the word proposal method is able to consistently detect a number of salient but non-
text patterns which are contributing positively to the classification. (2) The boxes that cover
the text regions, with less than 50% overlap with the ground-truth, are treated as false positive.
Therefore, even when all true positives are removed, these boxes contribute positively to the
classification result.

Additionally, we evaluate the performance only using ground-truth boxes. In the case where
only images containing text are considered, the performance is 76.1%. When all images are
considered, the performance is 54.2%, outperformed by Ours (56.2%). When using the ground-
truth boxes, the performance on images with no text is random, while when using our generated
word proposals, the classification on images with no text is 28.9% in mAP, much better than
random guessing (as discussed in Section 5.4.2). This is why when all images are considered,
including both images with text and images without text, the performance of using our generated
boxes is slightly better than the result of using ground-truth boxes.

Comparison to state-of-the-art text detection

We compare the proposed word detection method with a recent state-of-the-art text detection
approach [96]. The textual cue encoding and the classification steps are kept same. [96] aims for
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Performance (mAP%)
Ours Characterness [96]

Images with Text 67.7 37.8

All Images 56.2 30.6

Table 5.2: Comparison to state-of-the-art text detection [96]. [96] aims at a high F-score. The recall,
precision and F-score values of the proposed method are 64.7%, 4.7% and 8.7% respectively
while the values of [96] are 19.3%, 25.3% and 21.9%. A high recall value is more effective
than a high f-score for the fine-grained classification problem.

a high f-score, like other state-of-the-art text detection methods [128, 178].

The recall, precision and f-score values of the proposed method are 64.7%, 4.7% and 8.7%
respectively while the values of [96] are 19.3%, 25.3% and 21.9%. Compared to [96], the
proposed method achieves a significantly higher recall but a lower precision and F-score. In
terms of fine-grained classification performance, as shown in Table 5.2, the proposed method
(Ours) significantly outperforms [96].

5.4.3 Performance evaluation on 28 classes

In this section, we use all 28 classes for evaluation and conduct two experiments. First, we
evaluate the effectiveness of the textual cues encoded by the proposed method on the 28-class
classification problem. Second, we compare the classification performance of word-level and
character-level textual cue encoding.

Experiment I. Three different ways to generate word box proposals are considered: (1) the
proposed method using all color channels, denoted by full, (2) the proposed method using only
the gray scale, denoted by gray-only, and (3) a state-of-the-art text detection approach [96]
aiming at a high f-score, denoted by characterness. We evaluate the sets of word box proposals
generated by these three different ways separately while keeping the textual cue encoding and
classification steps the same.

As shown in Table 5.3, full always outperforms gray-only and characterness thanks to a higher re-
call in word detection. The proposed textual-only classification method obtains a mean average
precision of 38.3%, outperforming BOW (34.0%). The combination of textual and visual cues
improves the visual-only baseline by 21.8%, 17.7% and 14.2% for BOW, DEEP and DEEP-FT
respectively. It can be derived that recognized words in images contain discriminative informa-
tion and that it is complementary to visual cues.

Additionally, it is observed that the BOW representation and the deep representation are comple-
mentary. Combining BOW, deep representation and the textual cue improves slightly over the
combination of deep visual cue and textual cue. Specifically, ‘Textual (full) + Visual (DEEP) +
Visual (BOW)’ improves ‘Textual (full) + Visual (DEEP)’ from 71.0% to 72.5%, and ‘Textual
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Performance (mAP%)

Textual-only (full) 38.3±0.9
Textual-only (gray-only) 33.1±0.5
Textual-only (characterness [96]) 20.2±0.6

Visual-only (BOW) 34.0±0.3
Visual-only (DEEP) 53.3±0.08
Visual-only (DEEP-FT) 60.3±0.2

Textual (full) + Visual (BOW) 55.8±1.0
Textual (gray-only) + Visual (BOW) 52.0±0.6
Textual ( [96]) + Visual (BOW) 42.7±0.4

Textual (full) + Visual (DEEP) 71.0±0.5
Textual (gray-only) + Visual (DEEP) 68.7±0.3
Textual ( [96]) + Visual (DEEP) 62.0±0.2

Textual (full) + Visual (DEEP-FT) 74.5±0.8
Textual (gray-only) + Visual (DEEP-FT) 72.7±0.5
Textual ( [96]) + Visual (DEEP-FT) 67.5±0.6

Table 5.3: Fine-grained classification performance on Con-Text dataset. The textual cue encoded by the
proposed method is effective. It is complementary to the visual information. Textual-only (full),
Textual-only (gray-only) and Textual-only (characterness [96]) only differ in word detection.
Textual cue encoding and classification steps are kept the same. full outperforms gray-only
and characterness [96] thanks to a higher recall in word detection.

(full) + Visual (DEEP-FT) + Visual (BOW)’ improves ‘Textual (full) + Visual (DEEP-FT)’ from
74.5% to 75.5%.

Fig. 5.8 shows the per-class performance. The low performance of textual cues is due to the lack
of scene text, e.g., for classes as Bistro and Massage Center. However, combining visual and
textual cues improves visual-only on all classes. The performance improvement is the highest
on the classes where visual cues are not sufficient and textual cues are discriminative, e.g., Pawn
Shop, Dry Cleaner and Steak House.

Experiment II. We compare our word-level textual cue extraction method with character-level
textual cue extraction proposed in Chapter 4. We compare textual-only and textual+visual per-
formances. Table 5.4 summarizes the results. Word-level textual cue improves character-level
textual cue by 4.7% in mAP. It shows that representing the textual information at a word level is
more effective than at a character level.
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Figure 5.8: Fine-grained classification performance for each class. Adding textual cues improves the
performance on all classes. The proposed multimodal approach improves the visual-only
baseline (DEEP-FT) from 60.3% to 74.5% in mean average precision. Textual-only has av-
erage precision values from 10% to 60% and visual-only has values from 0% to 80% largely,
whereas multimodal approach guarantees at least 50% except two classes (Bistro and Dis-
countHouse) up to 90%.
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Performance (mAP%)

Textual-only (Character) 28.4

Textual-only (Word-gray) 33.1

Textual-only (Word-full) 38.3

Textual (Character) + Visual (BOW) 47.9

Textual (Word-gray) + Visual (BOW) 52.0

Textual (Word-full) + Visual (BOW) 55.8

Textual (Character) + Visual (DEEP) 66.2

Textual (Word-gray) + Visual (DEEP) 68.7

Textual (Word-full) + Visual (DEEP) 71.0

Textual (Character) + Visual (DEEP-FT) 70.7

Textual (Word-gray) + Visual (DEEP-FT) 72.7

Textual (Word-full) + Visual (DEEP-FT) 74.5

Table 5.4: Word-level textual cues are compared to the textual cues extracted at character-level. Word-
level textual-only cue extraction improves our character-level textual-only cue extraction by
4.7% in mAP. It can be derived that representing the textual information at word-level is more
effective than at character-level.

5.5 Logo Retrieval

In logo retrieval, the objective is to retrieve all images of a specific logo from an image collection,
e.g., Heineken, given one image example of that logo as query. Logo retrieval is useful for
measuring brand exposure. Logo is a special type of objects where text can be part of the object.
Examples are Starbucks, Ford and Google. Previous works [74, 141, 142, 161] do not consider
the recognized text of the logo. These methods treat the text of the logos the same as other visual
patterns. In contrast, we explicitly extract the word-level textual cues in the logos and utilize it
for logo retrieval.

5.5.1 Dataset and Implementation Details

Dataset. We evaluate our approach on FlickrLogos-32 [143]. FlickrLogos-32 has 32 brand
logos, e.g., Google, Coca-cola and DHL. We follow the retrieval setting of [142], which defines
a set of 960 queries, 30 per logo, and a search set of 4280 images in total. The search set consists
of 1280 logo images, 40 per logo, and 3000 non-logo images.

Implementation notes. The common method for logo retrieval is to use low level feature match-
ing. In line with this paradigm, two visual baselines are considered. First, we use the available
BOW representations with a visual vocabulary of 1 million visual words [142], denoted by BOW.
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Second, we implement another visual baseline based on aggregated selective match kernels [162],
denoted by ASMK. The visual vocabulary has 20000 visual words. The kernel we use is a thresh-
olded 4-degree polynomial kernel expressed by σ(µ) = [µ > 0]µ4, where the square bracket
stands for the Iverson bracket.

For textual cues, we encode the images in the same way as in the previous fine-grained classi-
fication application, detailed in Section 5.3. For the query images, we use the query bounding
boxes to only keep the word box proposals that overlap with the query boxes. The textual repre-
sentations are normalized to unit length and cosine similarity is used to rank the images.

To combine the visual and textual cues, we perform a late fusion on the similarity scores obtained
from the two modalities. Both sum fusion, expressed by Sfusion = Svisual + Stextual, and
product fusion, expressed by Sfusion = Svisual ∗ (Stextual + ϵ) are tested. Sfusion, Svisual

and Stextual are the fused score, visual-based score and textual-based score respectively. ϵ is a
small constant value added to handle cases where no text has been detected. Sum fusion requires
the two scores to be roughly in the same numerical range while product fusion does not. For
this reason, only the product fusion is considered for fusing with ASMK as the similarity scores
produced by ASMK lie in a very different range from the scores generated based on the textual
cues. The product fusion is also different from the sum fusion because the product fusion has a
higher requirement than the sum fusion on the quality of both modalities to derive a decent final
result. In general, the product fusion requires both modalities to be reasonably good.

5.5.2 Experiments and Results

This section experimentally evaluates the proposed multi-modal approach to logo retrieval. We
quantify the added value of the proposed textual cues on top of the visual baselines. Moreover,
we compare with several state-of-the-art text detection methods for the purpose of logo retrieval.

Table 5.5 summarizes the results. Adding the proposed textual cues ‘Textual (full)’ and ‘Textual
(gray-only)’ always improves the visual baselines. The best performance, 62.7% in mAP, is
achieved by combining the proposed textual cues (full) with the visual baseline (ASMK) using
product fusion. Interestingly, fusing the textual cues from other text detection methods with
the visual baselines using the product fusion does not improve the performance because the
performance of the textual part is too modest in these cases. From the experiments, it can be
concluded that the proposed textual cue extraction that focuses on high recall word detection is
effective, resulting in a textual cue complementary to the visual cues for logo retrieval.

In addition, we compare our word-level textual cue extraction with character-level textual cue ex-
traction proposed in Chapter 4. We compare textual-only and textual+visual performances. The
performances in mAP of character-level textual cue extraction are 23.9% and 57.4% for textual-
only and textual+visual(BOW) respectively. The performances in mAP of word-level textual cue
extraction are 28.4% and 57.8% for textual-only(gray) and textual(gray)+visual(BOW) respec-
tively. Word-level textual cue improves character-level textual cues. It shows that representing
the textual information at a word level is more effective than at a character level for logo retrieval.
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mAP%

Textual-only (full) 32.2
Textual-only (gray-only) 28.4

Textual-only ( [96]) 12.3

Textual-only ( [192]) 13.2

Textual-only ( [179]) 12.7

Visual-only (BOW) 54.8

Visual-only (ASMK) 58.4

Textual (full) + Visual (BOW) [sum fusion] 59.4

Textual (gray-only) + Visual (BOW) [sum fusion] 57.8

Textual ( [96]) + Visual (BOW) [sum fusion] 56.0

Textual ( [192]) + Visual (BOW) [sum fusion] 56.2

Textual ( [179]) + Visual (BOW) [sum fusion] 55.9

Textual (full) + Visual (BOW) [product fusion] 59.5

Textual (gray-only) + Visual (BOW) [product fusion] 56.9

Textual ( [96]) + Visual (BOW) [product fusion] 36.2

Textual ( [192]) + Visual (BOW) [product fusion] 34.5

Textual ( [179]) + Visual (BOW) [product fusion] 30.8

Textual (full) + Visual (ASMK) [product fusion] 62.7
Textual (gray-only) + Visual (ASMK) [product fusion] 61.0

Textual ( [96]) + Visual (ASMK) [product fusion] 41.5

Textual ( [192]) + Visual (ASMK) [product fusion] 40.1

Textual ( [179]) + Visual (ASMK) [product fusion] 36.5

Table 5.5: Logo retrieval performance on FlickrLogos-32 [143]. Adding the proposed textual cues always
improves the retrieval performance. The proposed textual cues are more effective than the
textual cues from other text detection methods due to the focus on high recall word detection.
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(a) Improved cases

(b) Failure cases

Figure 5.9: (a) Example queries where adding textual cues improves the retrieval performance of visual-
only. (b) Example queries where adding textual cues decreases the performance. The reasons
are no text (Ferrari), exotic font style (Cocacola) and vertical text (Foster and Guinness).
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Analysis. Adding the textual cues improves the retrieval performance on 641 queries out of 960
(‘Textual (full) + Visual (ASMK)’). Text is helpful when it is in standard fonts and orientations.
Fig. 5.9(a) shows 4 example queries where combining textual and visual cues improves the
performance of visual-only. On the other hand, when text is not there or it is in exotic fonts or
orientations, adding textual has a negative effect on the accuracy. Fig. 5.9(b) shows 4 example
queries where considering textual information decreases the performance of visual-only. For the
query of Ferrari, considering textual information is not helpful because there is simply no text.
The example of Cocacola is due to the exotic font style which makes it unrecognizable. For
Foster and Guinness, the vertical text makes detection and recognition fail.

5.6 Word Box Proposal Evaluation

Dataset. We evaluate the performance of our word box proposal method on the SVT dataset [178].
The dataset consists of 249 images which are downloaded from Google Street View of road-side
scenes. The dataset has word-level box annotations.

Evaluation measures. The performance is measured in terms of recall, number of proposals
and average maximum overlap (AMO) (See Table 5.6). We calculate the overlap between each
groundtruth box and its best overlapping word box proposal. AMO is the average of these
overlap values.

5.6.1 Experiments and Results

We conduct three experiments. First, we evaluate the effect of the color spaces and the character
detection algorithms on the word detection performance. Second, we compare our method with
state-of-the-art word box proposal methods [66, 56]. Third, we analyze the influence of ground-
truth overlap threshold on word detection recall and word recognition accuracy.

Experiment I. The proposed method generates word box proposals using different color spaces
and character detection algorithms. Word box proposals are generated for each color space
independently and then combined. The same candidate regions may be detected for the differ-
ent color spaces or character detection algorithms. To filter out these duplicate regions, non-
maximum suppression is applied.

Table 5.6 shows that adding more color spaces improves the performance in terms of recall
and AMO. When a single character detection algorithm is used, the recall values for MSER
and text saliency are 85.47% and 90.88% respectively, whereas the recall is 96.14% when both
algorithms are considered. Hence, the use of color spaces with different invariant properties, and
complementary character detection algorithms results in a high recall.

Experiment II. We compare the performance of our word proposals with the state-of-the-art
word proposal methods [66, 56]. [66] uses generic object proposal methods to generate pre-
liminary word box proposals. However, the number of boxes is prohibitively large (> 104).
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#proposals recall(%) AMO(%)

[This paper] MSER+TSAL, I 338 84.23 70.40
[This paper] MSER+TSAL, I+O1, O2+S 806 95.21 77.08
[This paper] MSER+TSAL, I+O1, O2+S, H 968 96.14 77.54
[This paper] MSER, I+O1, O2+H, S 568 85.47 70.90
[This paper] TSAL, I+O1, O2+H, S 500 90.88 75.12

TextProposals [56] 17358 94.00 -
Jaderberg et al. [66] without (RF+CNN-reg) > 104 97.00 77.00
Jaderberg et al. [66] without CNN-reg 900 94.80 -
Jaderberg et al. [66] 900 - -

Table 5.6: Evaluation of the word box proposals on SVT dataset. MSER and TSAL are the MSER based
and text saliency based character detection algorithms. I , O1 ,O2, H and S are the color
models. The recall increases as more color invariant models are combined because of their
complementary photometric invariant properties. Using both character detection algorithms
results in a higher recall than using a single algorithm. RF and CNN-reg of [66] are the Ran-
dom Forest classifier for non-text box filtering and the convolutional neural network regressor
for box refinement. The values for [56, 66] are taken from the references, and empty blocks
are not reported in the references. Different from [56, 66] the proposed method is fully unsu-
pervised.

Therefore, [66] filters out most of these boxes using a Random Forest text/non-text classifier. As
their recognition step is based on the preciseness of the word boxes, a convolutional neural net-
work regressor is learned to refine the coordinates of the remaining word boxes. [56] uses MSER
with flexible parameters and a grouping strategy to generate word proposals. These proposals
are also further scored by a weak classifier for word-likeliness. Table 5.6 shows that our method
achieves a slightly higher recall than [66, 56] while requiring fewer boxes.

Experiment III. As is common practice in text detection, a candidate word-box is considered
as a true positive if it overlaps more than 0.5 with the ground-truth word-box. However, a 0.5
overlap does not guarantee a correct word recognition. In particular, not all true positives are
correctly recognized. We analyze the relation between the recognition accuracy and the over-
lap. The lexicon word with the maximum probability returned by [67] is considered as the word
recognition result for each word proposal. Given the word proposals that pass the overlap thresh-
old, the recognition accuracy is computed as the percentage of correctly recognized proposals.
Concretely, for a specific overlap threshold, e.g., 0.7, we take all the word proposals that have
at least 0.7 overlap with ground-truth, and compute how many of them are correctly recognized.
The results are summarized in Fig. 5.10. The results show that the candidate word-boxes (pro-
posals), which have higher overlap with ground-truth, also have higher recognition accuracy.
Therefore, not only higher recall but also higher AMO is important for accurate textual cue ex-
traction. Further, we vary the ground-truth overlap threshold and evaluate the word detection
recall. As expected, increasing the threshold has a negative effect on the recall, see Fig. 5.11.
However, the proposed method still performs well for a threshold of (> 0.75). For this threshold
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Figure 5.10: The relation between the ground-truth overlap threshold (i.e., the IoU threshold) and the
word recognition accuracy, evaluated on SVT dataset [178]. Proposals with higher IoU
values are better recognizable.
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Figure 5.11: The influence of the ground-truth overlap threshold (i.e., the IoU threshold) on word detec-
tion recall, evaluated on SVT dataset [178]. Recall decreases as IoU threshold increases.
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value, the recall and recognition accuracy is around 70%.

In addition, we evaluated the word recognition performance of the proposed method. A common
practice to improve word recognition accuracy is to make use of dataset specific dictionaries.
However, we did not use the dictionaries provided for this dataset to refine the recognition results.
The proposed method reaches a word recognition recall (74.64%) and precision (17.92%).

Efficiency. The matlab implementation of the proposed method (without optimization) takes 4s
(on average) on a standard laptop to process one image from the SVT dataset.

5.7 Conclusion

We have demonstrated the effectiveness of textual cues for fine-grained (building) classification
and logo retrieval. To capture textual information in images, a generic, efficient and fully unsuper-
vised word box proposal approach which aims at high recall has been proposed. For fine-grained
building classification, the proposed method outperforms the state-of-the-art [83] from 39.0% to
55.8% in mean average precision. It shows that encoding the textual cues at the word level is
superior to using characters. To validate the influence of recall, precision and f-score changes
on fine-grained classification, we have annotated a large set of 27601 word boxes. Furthermore,
Chapter 5 explores textual cues for logo retrieval. Combining the textual and visual cues im-
proves the retrieval performance to 62.7% from 58.4% of visual-only. Moreover, we show that
high recall in word detection is more relevant than high f-score for fine-grained classification and
logo retrieval. The proposed unsupervised word box proposal method achieves state-of-the-art
recall for word detection on SVT with a limited number of word box proposals (< 1000).



6
Combining Object Detectors Using
Learning to Rank∗

6.1 Introduction

Object detection is an active research area in the field of computer vision. Many detection
algorithms have been proposed [41, 173, 86, 110, 52, 151, 167, 19]. Although these detection
algorithms are successful for many detection tasks, they may be less accurate for some specific
cases.

To gain more insight on the differences amongst detectors, Hoiem et al. [60] provide an extensive
analysis on object detectors and their properties [60]. Their findings are that detectors perform
well for common object appearances and common imaging conditions. Obviously, different de-
sign properties of the detectors (e.g. search strategy, features, and model presentation) influence
the robustness of the methods to varying imaging conditions (e.g. occlusion, clutter, unusual
views, and object size). For instance, detectors based on the sliding-window approach [41]
using pre-defined window sizes and aspect ratios are good at finding likely object positions
(rough object positions). However, they are less suited to detecting deformable objects precisely.
Hoeim et al. [60] show that these types of detectors typically suffer from poor localization er-
rors. Moreover, the large number of candidate regions to be considered limits the capability of
sliding-window based object detection methods [173, 63]. Due to a large number of candidate
regions (over 100K per image), it is not possible to perform object detection within an afford-
able time-frame while using strong classifiers [173]. The large number of candidate regions
does not only restrict the classifier options but also influences the choice of the selected features.
Extracting complex features from a prohibitively large number of sub-regions is not feasible
due to its low efficiency [173, 167]. To avoid the limitations of a sliding-window approach, an

∗Published as S. Karaoglu, Y. Liu, and T. Gevers, "Detect2Rank: Combining Object Detectors Using Learning
to Rank," In the IEEE Transactions on Image Processing (TIP), 25(1):233-248, 2016.
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Figure 6.1: Flow of the proposed method (Best viewed in color). Initial detections from different de-
tectors namely, Det1(green), Det2(red) and Det3(Blue) are combined by a learning to rank
algorithm. False detections of the individual detectors are learned by detector-detector re-
lations and obtain less confidence when combined, whereas consistency in detectors BB1,
BB2 and BB3 are rewarded by the re-ranking system.

object proposal method (selective search [167]), is integrated as a pre-processing step in current
state-of-the-art techniques [52]. Selective search generates a significantly reduced set of candi-
date regions (around 2K per image). However, Hosang et al. [63] show that selective search
generates candidate regions which are sensitive to changes in scale, illumination and geomet-
rical transformations. This is because selective search is based on segmentation derived from
superpixels which are unstable for small image deformations.

Besides the method to generate proper candidate regions for detection, the choice of features
influences the robustness and discriminative power of the detectors. HOG-based templates are
able to preserve the shape information [41, 110] of objects but are less suited for differentiating
between visually similar categories such as cats and dogs. This limitation is addressed using
color information in [86], following successful results of using color information in object recog-
nition [168]. HOG-based object detection using color [86] is suited for object classes in which
the intra-class color variation is low (e.g. potted plant and tv-monitor). However, the use of
color negatively affects the detection accuracy for object classes in which the intra-class color
variation is large (e.g. bottles and buses).

Finally, the chosen model and classifier drastically influences the performance of the detectors.
In general, object detectors represent all positive samples of a given category as a whole [41, 86].
However, Malisiewicz and Efros [109] show that standard categories (e.g. train, car and bus) do
not form coherent visual categories. Accordingly these methods are too generic. To address this
issue Malisiewicz et al. [110] propose to train a separate linear SVM classifier for each positive
sample in the training set. Gu et al. [57] show that using only one positive sample for training
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significantly reduces the generalization capacity. Hence, the detection performance of [110]
deteriorates for uncommon object views.

As a consequence, no detection algorithm can be considered universal. With the large variety
of available methods, the question is how to combine these object detectors to preserve their
strengths while reducing their limitations and assumptions. In Chapter 6, we consider a rank
learning approach to combine object detection methods. The proposed framework combines
detections (detector outputs which consist of a classifier score and bounding box locations) of
different well-known object detectors including DPM [41], CN [86] and EES [110]. Furthermore,
the method extracts high-level context features such as detector-detector consistency, detector-
class preference, object-saliency of a detection, and object-object relations. These features are
used in a learning to rank framework to yield a combined detection list. The flow of the proposed
method is summarized in Fig. 6.1.

The proposed approach offers the following advantages over single object detectors:

• Missed detections (false negatives) of single detectors are compensated by combining
detections of different detectors.

• Detections are re-ranked by using information gathered by other detectors. True detections
(true positives) of each detector are rewarded and false detections (false positives) of each
detector are penalized within the learning to rank framework.

• The combined list maintains the strengths of the detectors. Therefore, it is more robust
than each individual detector for varying imaging conditions.

To the best of our knowledge, we are the first to propose using re-ranking approaches to com-
bine object detectors. Experiments on VOC07 and VOC10 show that the proposed method
significantly outperforms single detectors. The proposed method (including code and the detec-
tor outputs) will be made publicly available. This allows other researchers to add new detectors.

Our contributions are the following:

• Detector combination: We provide a new perspective on how to approach the object de-
tection problem. As there is no universal object detector, we propose to combine the
state-of-the-art object detectors rather than creating a new one.

• Formulating detector combination: We formulate the problem of combining detectors in
a learning to rank framework which has not been considered before in object detection.

• Detector contextual integration: We propose high-level context features (e.g. detector-
detector relations and object-saliency cues) to combine detections in a learning to rank
framework.

• Detector consistency: We show that the state-of-the-art detectors have many detections in
common. These common detections are proven to be very informative to re-rank detection
scores.
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• Detector complementarity: We show that existing state-of-the-art object detectors also
have complementary detections. These complementary detections reduce missed detec-
tions of single detectors in a combined list.

6.2 Related Work

6.2.1 Object Detection

In general, papers on object detection aim to design a single detector, descriptor or classi-
fier [41, 173, 52, 151, 19, 167, 32]. Felzenszwalb et al. [41] propose a part-based object detection
method using HOG features and a latent SVM. This algorithm outperforms the state-of-the-art
methods for standard object appearances. The use of template-based models limits a detector’s
ability to detect deformable objects [60]. Moreover, template-based models (using HOG fea-
tures) are designed to accommodate for shape information and are less suited to differentiate vi-
sually similar categories (e.g cats and dogs). In contrast to part-based detection methods, Vedaldi
et al. [173] propose the use of a bag-of-words model for object detection. Multiple features are
used within a multiple kernel learning framework which is able to distinguish between visually
similar object categories. However, Hoiem et al. [60] show that this approach is sensitive to
object size due to the bag-of-words model. Khan et al. [86] propose to use additional color infor-
mation for object detection. The color information contains expressive power for object classes
in which the intra-class color variations are low (e.g. potted-plants or sheep). However, color
may have a negative influence on the detection of classes in which the intra-class color variations
are high (e.g. bottles or buses) [86].

Malisiewicz et al. [110] propose to learn a linear classifier per exemplar in the training set. The al-
gorithm benefits from a large collection of simpler exemplar classifiers. In this way, the method
is tuned to the appearance of the exemplar. While the detections of this detector cover the ob-
jects in the dataset (high recall), the detector usually provides low average precision. This is
due to the large number of false detections introduced by each of the exemplar specific classi-
fiers. Currently, remarkable results for object detection are obtained by convolutional neural
networks [52, 151]. Girshick et al. [52] employ the CNN of [89] to a set of candidate windows
obtained by selective search [167]. Recently, Hosang et al. [62] used various object proposals
(BING [16], OBJ [1], CORE [139] etc.) to generate candidate windows and evaluate their perfor-
mance for object detection using RCNN detector. The authors also report the best performance
using candidate windows generated by selective search.

6.2.2 Contextual Information for Object Detection

Contextual information for object detection has been exploited over the past few years. Con-
textual information includes the relation between objects [59, 40], scene layout [23] or charac-
teristics [17, 163], surrounding pixels [59, 12, 43] and background segments [95]. [163] shows
that real-world scene structures can be modeled by inference rules. Therefore, in addition to
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the appearance of objects, contextual information provides useful information for object de-
tection [13, 25]. For example, Choi et al. [17] model the object spatial relationships and co-
occurrences by employing a tree-structured graphical model. Desai et al. [23] model the spatial
arrangements between objects to detect objects in a structured prediction framework. Cinbis and
Sclaroff [18] formulate the object and scene context in terms of relative spatial locations and rel-
ative scores between pairs of detections as sets of unordered items. Felzenszwalb et al. [41]
re-score their DPM detections by exploiting contextual information as a post processing. Their
re-scoring scheme relies on object co-occurrences as well as the location and size of the objects.
The above methods show that contextual information is important for object detection. However,
these methods have certain limitations. For example, the above methods rely on object-object
co-occurrences and spatial relationships and hence are suited for images consisting of (many)
different objects. Further, the context-based methods aim at re-scoring detections. They do not
introduce new detections and hence are not able to recover from missed detections of single
detectors.

6.2.3 Score Aggregation

The approach of aggregating the responses of classifiers and learning a second level SVM to
re-score them for different tasks such as action recognition [188], image retrieval [28] and ob-
ject recognition [164, 158] has been exploited in the literature. The organizers of Pascal VOC12
use seven methods submitted to the classification challenge. The scores of each submission are
concatenated to form a single vector to train another linear classifier. Substantial increase for
average precision is reported for classes such as potted plants and bottles. However, the prob-
lem of aggregating scores of different object detectors is not straightforward as other problems
mentioned. More precisely, for these problems each instance in the dataset has a response from
each classifier. By contrast, the object detectors do not generate candidate regions (exactly) at
the same locations. Therefore, each candidate region does not necessarily contain a response
from other detectors. Recently, Xu et al. [185] propose combining different pedestrian detectors
through score calibration and detection clustering steps. The authors reduce false and missed
detections of pedestrian detectors per image. However, they do not aim to perform a global rank-
ing of detections over the entire dataset for different object classes. In a different work, Ladicky
et al. [90] jointly estimates object location and segmentation by minimizing a global energy func-
tion on a Conditional Random Field (CRF) model. [90] combines results from detectors (single
detector trained for different object classes), pairwise relationships between superpixels, and
other low-level cues to perform better segmentation.

6.3 Object Detectors

In this section, the detectors used in Chapter 6 are outlined. We focus on publicly available
detectors. Note that there are no constraints on the type of detector since the proposed method
only requires detections (bounding box locations with classifier scores) of a detector.
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6.3.1 DPM

Felzenszwalb et al. [41] propose an object detector in which each object category consists of a
global template and deformable parts. The global template and deformable parts are represented
by HOG features extracted at different scales. Training of the object models is done in a latent
SVM framework. Each detection {x1, x2, ..., xn} in the training set is given a corresponding
label, yi, which is either +1 or −1. Each detection x is scored as

fβ(x) = max
z∈Z(x)

β.Φ(x, z). (6.1)

The set Z(x) defines all possible latent values for detection x. β and Φ(x, z) is a vector of model
parameters and a feature vector, respectively. β is trained by minimizing the following objective
function:

L(β) = 1
2

||β||2 + C
n∑

i=1
max(0, 1 − yifβ(xi)), (6.2)

where max(0, 1 − yifβ(xi)) is the hinge loss and constant C is the regularization parameter.

6.3.2 CN

Khan et al. [86] propose an object detector which uses color attributes as an additional feature
alongside DPM based HOG features. The color attributes are combined with HOG features in
a late fusion manner. The proposed color attributes are compact and efficient. They are proven
to be effective for the object classes in which intra-class color variations are low such as potted-
plants and sheep. Beside extending HOG features with color attributes, training is done exactly
the same as in DPM.

6.3.3 EES

Malisiewicz et al. [110] propose an object detector which is trained by a parametric SVM for
each positive exemplar in the training set. Consequently, a large collection of simpler exemplar
specific detectors, which are highly tuned to the appearance of the exemplars, are obtained. Each
exemplar is represented using a rigid HOG template [21] to train a linear SVM. Then, each
Exemplar-SVM, (βE ,bE), is used as a learned instance-specific HOG weight βE vector to score.
βE is learned by optimizing the following convex objective function:

ΩE(β, b) = ||βE ||2 + C1h(βT xE + b) + C2
∑

x∈NE

h(−βT x − b), (6.3)
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where h(x) = max(0, 1 − x) is the hinge loss and C1 and C2 are regularization parameters.
Training each detector allows detectors to be tuned based on variations on the exemplar’s appear-
ance (viewpoint and object geometry). As a result, high recall is obtained for object detection.

6.4 Combining Detectors by Learning to Rank

To combine detections from different detectors, learning to rank (L2R) is used. L2R aims to rank
groups of items according to their relevance to a given task. Fig. 6.2 illustrates a common L2R
flow. In our framework, the training set consists of detections X = {xi}m

i=1 (m is the number
of the items in training set) and the ground truth label (y). Feature vector Φ and y are used in
training data to learn a ranking model (g). To re-score detections, g is described as follows:

g(x) = wΦ(x). (6.4)

Using varied loss functions ξ (see Section 6.5), the weight (w) is optimized by minimizing the
following objective function:

min
w

1
2

wT w + C
l∑

i=1
ξi. (6.5)

To learn a ranking algorithm that performs re-ranking, the proposed method starts with the fea-
ture extraction step using detections x from different detectors.

6.4.1 Context Features

The proposed method starts with high-level context feature extraction to learn how to combine
the ranking of detections from different detectors into a single detection list. We aim to extract
generic features which exploit the correlation and consistency between detectors.

Detector-Detector Context

We introduce a notion of detector consistency which measures whether different detectors are
generating object detections within the same image region. Agreement of all object detectors for
a certain location increases the probability of a correct object detection. However, different detec-
tors may generate detections at different locations even for the same image. As a result, it is hard
to obtain an exact bounding box location where all detectors provide a detection. Therefore, a
relative detector score is defined. To obtain a relative score for each detection, a correspondence
term is computed by considering the overlapping ratios between all other detections. In this
way, an image is represented as a collection of detections obtained by different object detectors
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Figure 6.2: Learning to rank framework for detection re-ranking.

j, where j = {1, 2 . . . n} and n is the number of the detectors used. For the ith detection in the
image, the maximum overlapping detection with each detector is given by:

Ai,j = Area(BBi ∩ BBj)
Area(BBi ∪ BBj)

, (6.6)

[Γi(j), φi(j)] = max (Ai,j) , (6.7)

where Γ is the overlap ratio and φ is the index of the maximum overlapping detection for detector
type j. Then, the corresponding relative score R of a detector j to the ith detection is Ri,j =
Γi(j)×S(φi(j)), where S is the initial classification score of the detector. Note that if a detection
has no overlap with other detectors (Γi(j) = 0), its relative scores will be zero. In this way,
higher relative scores correspond to more reliable detections because more detectors agree on a
particular location (see Fig. 6.3). If a detection has high relative score from each single detector
it corresponds to a high probability of being a true detection. Whereas a low relative score
corresponds to a false detection. Moreover, a mid-level consistency in relative score can be
considered as a good indication of poor localization error.

Relative score of a detection does not include the information of which detector it belongs to.
However, some detectors perform better than others for some classes, hence their detections
should get higher scores than detection of lower-performing detectors (to emphasize the strength
of detectors on tasks for which they are successful). Therefore, a detector indicator term is
specified. The aim is to provide information to the learning system for identifying detector
preferences for particular classes. To give an indication of which detector the detection belongs
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Figure 6.3: The figure illustrates relative score R for each detection in VOC 2007 trainval set. Each
sphere represents a detection in the trainval set whereas each axis represents relative score
from detectors namely, DPM, CN and EES. The color blue, green and red holds for true
detection, poor localization and false detection, respectively. Best viewed in color.

to, a binary vector ID of three dimensions (i.e. three detectors in our case) is used. The value
of the dimension is assigned to be one in case of a detection by the corresponding detector
otherwise the value is set to zero. This feature vector is at the detector level. Therefore, all
detections of the same detector have the same binary coding ID.

The final corresponding score feature Rs, for the ith detection is denoted by Rsi = {ID,i, Ri,1,
Ri,2, ..., Ri,n, Ri,1+Ri,2, Ri,1+Ri,3, Ri,2+Ri,3, ..., Ri,n−1+Ri,n, Ri,1+Ri,2+Ri,3+..., +Ri,n}.
The dimension of Rs is limited to the number of the detectors.

Object-Saliency

A feature vector Os is proposed to represent how likely it is that a detection contains an object.
EES [110], OBJ [1] and CORE [139] are used to measure the object-saliency of a detection.
OBJ and CORE are category independent region proposal methods. They are mostly used by
the current object detection algorithms to avoid an exhaustive sliding window search. These
methods provide region candidates/proposals (bounding box) which are likely to contain objects.
Both methods result in approximately 1000 candidate regions per image. In addition to these cat-
egory independent region proposal methods, EES [110] is also used to provide region candidates.
The overlap ratios between these different region proposals and object detections are calculated
according to eq. 6.6. Then, the feature vector Os for the ith detection is given by:

Ψi,j = sort(Ai,j) , (6.8)

Os(i, j) = 1
n

n∑
k=1

Ψi,j(k), (6.9)
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Figure 6.4: The figure illustrates object likelihood score Os for each detection in VOC 2007 trainval set.
Each sphere represents a detection (randomly sub-sampled over all classes) in the trainval
set whereas each axis represents object likelihood score from object indicators namely, OBJ,
CORE and EES. The color blue, green and red holds for true detection, poor localization and
false detection, respectively. Best viewed in color.

where n is the number of neighbors to measure object-saliency, Ψ is the sorted list of overlaps
and j is the indicator of different regions proposals, namely OBJ, CORE and EES. Additionally,
we use the confidence scores of the maximum overlapping neighbors of detections by EES [110]
in eq. 6.9 since these regions proposals are class specific. A detection with a high object-saliency
value is considered to be a good indicator for a correct detection. These features may be useful
for assigning lower confidence scores to false detections. Fig. 6.4 illustrates that true or false
detections are highly correlated with the object likelihood scores.

Object-Object Relation

The likelihood of an object being present is inferred by using other object class likelihoods.
Let Sc,j be the detection with maximum confidence for object class c (c = {1, 2, . . . , m}) by
detector j (j={1,2,3}) in an image, where m denotes the number of object classes. Then, the
object-object context So is given by

So(c) =
3∑

j=1
Sc,j . (6.10)

This feature exploits the object-object relations. For instance, when three detectors locate a cow
with high confidence, it is less likely to have a sofa or tv in the same image.

The compactness of the proposed contextual features used in this chapter is shown in Table 6.1.
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Feature Notation Dimension

Detector Relative Score Rs 10
Object Likelihood Measure Os 4
Object-Object Context So 20

Total 34

Table 6.1: Contextual features used in the proposed learning to rank framework.

We normalize each feature dimension by subtracting its mean and dividing by its standard devia-
tion.

6.4.2 Learning

L2R methods are used to learn the ranking models. L2R methods used in this chapter can be
categorized in two groups [101]. The first type of algorithms is called pointwise techniques.
Pointwise approaches represent the problem of ranking as a regression or classification prob-
lem. These techniques are straightforward approaches to learn the ranking model. Pointwise
algorithms are preferred because of their efficiency and effectiveness. These methods have been
optimized to work on large scale data.

The second type of L2R algorithms are pairwise techniques. These methods consider the prob-
lem of ranking as a pairwise classification problem. The aim is to learn a binary classifier to
determine which instance is most relevant from a given pair of instances. The goal of these
algorithms is to minimize the average number of misorders in ranking rather than the traditional
misclassification in the ordinary pointwise approach.

6.4.3 Non-maximum Suppression

Duplicate removal for the same instance is a known problem for single detectors. Obviously,
by combining multiple detectors, the proposed method increases the number of duplicates. To
this end, we propose to suppress these multiple detections by non-maximum suppression (nms).
The common application of nms considers all bounding boxes (over a certain overlap threshold)
for suppression. We use only correspondences (overlaps between detections of other detectors)
obtained for each detection in eq. 6.7 for suppression. After applying the re-ranking system, the
corresponding detections are sorted and the highest among the others remains constant while
detections which are at least 40% covered by the highest detection are suppressed.
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Figure 6.5: Each training is used for learning detector models and context models. To avoid overfitting,
the object detectors for context models are trained on the train set to generate detections on
validation. Further, they are trained on validation to provide detections on train.

6.5 Experiments

Experiments are conducted on the Pascal VOC07 and VOC10 datasets. VOC07 dataset con-
sists of 9963 images of 20 different object classes (24640 annotated objects) with 5011 training
images and 4952 test images. The VOC10 train/val dataset contains 10103 images of 20 differ-
ent categories (23374 annotated objects). Object detections for the train set are obtained via
models trained on 2007val and detections for the val set are trained on the 2007train set to
learn detector-detector context. Detections for the test set are obtained by models trained on the
2007trainval set for both dataset evaluations. This process is summarized in Fig. 6.5.

6.5.1 Detector Bounds

In this experiment, we evaluate the maximal mAP that can be achieved by the detections of the
baseline detectors and their combinations. The maximal mAP of a detector is calculated when all
true detections are ranked at the top of the detection list (precision-recall curve of the maximal
AP: precision is always at 1 and the cut-off is at the maximum recall). Since AP corresponds
to the area under the precision-recall curve, AP for the maximal AP is (1 × max(Recall)).
Consequently, Table 6.2 corresponds to a recall table. Table 6.2 shows that re-ranking DPM ,
CN and EES detections results in a substantial performance improvement, 17.5%, 16.2% and
33.1%, respectively. This result shows the positive effect of re-ranking detection scores of object
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [41] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3

CN [86] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0

EES [110] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

M-DPM 39.3 66.5 29.2 25.5 36.2 58.2 73.4 36.3 53.8 33.6 19.9 22.5 74.7 65.5 62.5 35.0 28.5 37.2 66.0 51.6 45.8

M-CN 43.5 61.7 26.1 20.5 34.5 56.8 72.2 39.4 46.3 33.2 22.8 22.5 73.3 63.1 65.0 38.3 38.8 43.9 62.1 60.1 46.2

M-EES 47.7 72.4 38.3 37.3 46.1 64.3 64.1 45.0 44.4 50.8 44.7 43.1 69.5 63.4 54.9 35.6 47.9 50.2 62.8 73.7 52.8

M-(DPM + EES) 60.7 80.4 48.6 46.0 54.6 73.7 80.2 59.5 67.6 58.2 51.9 51.3 82.2 73.8 73.1 49.0 51.7 60.3 76.2 76.0 63.7

M-(DPM + CN) 48.8 68.0 36.8 27.4 40.7 62.9 77.4 49.4 61.5 39.8 31.6 33.7 78.7 70.8 71.2 48.5 42.1 49.4 70.6 61.7 53.5

M-(EES + CN) 59.3 79.5 46.6 43.7 54.6 72.8 78.9 62.0 63.2 55.7 51.5 52.1 82.5 71.7 74.7 50.0 55.8 66.1 73.4 76.3 63.5

M-All 62.5 81.3 52.3 47.5 56.7 76.1 82.3 65.9 71.2 59.0 55.3 56.9 84.2 75.7 77.5 56.0 57.0 67.4 78.4 76.3 67.0

Table 6.2: mAP values for baseline detectors DPM, CN and EES. Class specific and overall maximal
mAP values of baseline detectors M-DPM, M-CN and M-EES, and their combinations M-
(DPM+CN), M-(CN+EES), M-(DPM+EES) and M-(All) on PASCAL VOC07.

detectors.

Table 6.2 shows that DPM and CN have similar maximal mAPs of 45.6% and 46.2%, respec-
tively. However, their combination has a significantly higher maximal mAP (53.5%) than both of
them individually. This shows that although these two detectors are very similar in nature, they
have complementary detections. Furthermore, when the detectors have intrinsically different
designs (e.g. DPM and EES or CN and EES), they produce more complementary detections.
This can be derived by the performance gain obtained by combining DPM+EES and CN+EES
in Table 6.2, 10.9% and 10.7%, respectively. Consequently, the proposed method would benefit
from more detectors.

Another observation that can be derived from Table 6.2 is that aside from detectors having com-
plementary detections to each other, they also have detections in common. While these shared
detections are useful to learn consistency in their output, complementary detections compensate
for missed detections from each individual detector.

Table 6.2 shows that the performance of detectors is limited by their correct detections. Therefore,
detector combinations always show higher mAP values than individual detectors. The proposed
method highly benefits from this, whereas other context based re-ranking methods lead to a
limited performance improvement (limited to correct detections of a single detector).

6.5.2 Direct Combination of Detections

In this experiment, several ways of combining (without learning) detector outputs are investi-
gated. Because the detectors are trained independently, detector scores are not necessarily com-
patible. A calibration process [136] is applied before merging different detector outputs. Given a
detection x and the learned sigmoid parameter (α, β), the calibrated detection score is calculated
as
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f(x|α, β) = 1
1 + exp(xα + β)

, (6.11)

where α and β for each detector are learned on the trainval set. After the scores are calibrated,
we evaluate three different approaches for combining detections:

• NaiveI, after scores are calibrated, detections are merged into a single list.

• NaiveII, after scores are calibrated, detections are sorted in a descending score order for
each single detector. Then, detections are combined by taking one by one from the top of
each sorted detector outputs.

• NaiveIII, the detectors are combined based on their training set performance. The output
of the best performing detector is first added to the list followed by the others based on
their performance.

After the detections are combined in a single list, nms (see Section 6.4.3) is applied. It can
be derived from Table 6.3 that naively combining detector outputs outperforms baseline scores.
The improvements are due to the increase in recall of the combined detection list.

The minimum performance improvement is obtained by NaiveII . NaiveII gives equal impor-
tance to each single detector. This means that although EES detections are not precise, they
become as important as DPM and CN . Therefore, more false positives are introduced at the
top of detection list which negatively affects the detection performance. This result shows the
importance of properly weighting the detections.

NaiveIII is expected to perform better than other naive methods since it incorporates the train-
ing performances of the baseline detectors. However, the trainval performance of the baseline
detectors explains the lower performance of NaiveIII . To obtain trainval performance detec-
tor models are: a) trained on train to test on val and b) trained on val to test on train (see
Fig. 6.5). Since the detectors are trained with fewer samples for trainval detections, baseline
performances do not necessarily correspond to their test performances. Training with fewer
examples has also an influence on our context models.

6.5.3 Learning to Rank Detectors

In this experiment, four different L2R algorithms are evaluated. The pointwise methods we use
are the L2-regularized support vector classifier (PoW1), the logistic regressor (PoW2) and the
support vector regressor (PoW3). The pairwise method is RankSV M [73] (PaW1), since it
is commonly used as a pairwise L2R method. Pointwise approaches represent the problem of
ranking as a regression (PoW3) or classification (PoW1, PoW2). It takes as input the feature
vectors for individual samples and learns a mapping to the ground truth labels whereas pairwise
approach takes as input pairs of feature vectors and maps them into binary labels indicating
whether two samples are presented in correct order or not.
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [41] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3

CN [86] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0

EES [110] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

NaiveI 31.0 61.6 6.1 13.7 22.7 48.9 58.4 19.6 20.5 22.3 19.3 3.9 63.2 52.1 44.3 14.5 22.7 31.5 47.8 47.4 32.6

NaiveII 30.8 57.7 6.1 14.2 20.2 47.6 55.2 13.3 16.7 22.4 20.0 4.4 61.4 50.2 33.4 11.8 23.4 28.0 46.4 41.6 30.2

NaiveIII 28.3 61.3 2.8 13.3 22.8 48.1 58.7 18.5 19.5 15.3 19.0 1.8 61.7 52.6 41.9 14.8 20.0 29.3 48.9 48.3 31.4

PoW1 36.8 62.7 10.0 18.1 24.3 51.6 59.5 21.2 22.5 25.4 22.4 7.8 64.2 57.3 44.9 18.7 26.7 34.1 54.1 47.8 35.5

PoW2 36.7 62.8 13.3 18.4 27.0 52.3 59.9 24.7 21.9 24.8 25.8 10.6 65.4 55.9 44.7 19.2 21.2 37.5 54.0 46.5 36.2

PoW3 35.6 63.1 9.7 17.0 25.0 51.2 60.0 21.3 22.5 25.1 21.5 8.1 65.0 56.4 43.8 18.2 27.0 33.9 53.5 48.2 35.3

PaW1 34.5 59.4 10.2 16.2 19.8 49.5 54.4 24.6 20.7 19.7 24.0 8.0 61.0 51.5 40.9 16.7 25.9 31.1 48.3 41.5 32.9

Imp 8.1 7.1 6.2 5.6 5.1 6.3 4.5 7.0 3.5 4.9 10.9 5.7 7.4 8.4 3.4 4.2 5.2 9.4 9.9 2.4 6.3

Table 6.3: The results using learning to rank algorithms. Naive: Direct merging methods without learn-
ing. Imp: The improvement over maximum baseline detector by maximum learning algorithm.

L2R algorithms differ mainly by their loss functions (ξ(w; xi, yi)) in eq. 6.5. ξ for PoW1,
PoW2, PoW3 and PaW1 are max (0, 1 − yiw

T xi), log (1 + e−yiw
T xi), (max (0, |yi − wT xi| − ϵ))2

and max (0, 1 + wT xi − wT xj) respectively. w represents weights, x instances, y correspond-
ing labels and ϵ parameter to specify the sensitiveness of the loss.

Liblinear [39] implementations for pointwise approaches and rankSVM implementation by
Joachims [73] are used with default parameter settings. Ground-truth overlap ratios are taken
as training labels. Pascal VOC (> 0.5) overlap criteria is used to assign positive and negative
labels for PoW1 and PoW2, while overlap ratios are directly used as training labels for PoW3
and PaW1. PaW1 requires pairwise preferences between samples, and these preferences are
created based on their ground-truth overlaps. Since there is no preference between samples for
which the ground-truth overlap equals 0, we do not generate preferences between those samples.

Table 6.3 shows that the proposed learning to rank approach outperforms the baseline detectors
for all classes, DPM (7.8%), CN (6.2%) and EES(16.5%). While learning based methods al-
ways perform better, logistic regression (PoW2) based learning method performs slightly better
than other L2R algorithms. Slightly better performance of classification- over regression-based
pointwise methods can be explained by the fact that regressor methods try to predict continuous
values and do not pay attention to the strict 0.5 overlap boundary of VOC evaluation. Therefore,
errors within this range harm regressor results. However, classifier-based methods attempt to
minimize these errors. The performance of RankSV M is slightly lower than other L2R meth-
ods. This might be due to unbalanced data. The number of negative samples is significantly
larger than positive samples. RankSV M treats all the samples equally, therefore some pairs
might be overly emphasized within the model.

Considering the low dimensionality of the proposed feature vector, the feature space may not be
linearly separable. Therefore, other non-linear kernel options for the classifier could be tested.
However, we avoid learning a non-linear SV M due to its long learning time and the need for
costly parameter validation. Therefore, we use a feature mapping method proposed by Vedaldi
and Zisserman [174]. A 34 dimensional feature vector is mapped to a higher dimensional fea-
ture space. The best performing linear classifier in Table 6.3(PoW2) is applied to this new
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Figure 6.6: Average (over classes) APN for the highest and lowest performing subsets within each dif-
ferent object characteristics such as occlusion, truncation, bounding box area, aspect ratio,
viewpoint and part visibility.

feature space. Through use of this feature space, the PoW2 classifier obtains a 0.6% mAP
improvement(36.8%). Increasing the dimensionality results in support vectors which are bet-
ter able to separate the feature space. Increasing the feature vector dimension with additional
context features may further improve the results.

The improvement by the proposed learning scheme over direct merging methods in Table 6.3 in-
dicates that the performance gain is not only due to the increased recall but also the effectiveness
of the contextual information and the chosen learning scheme.

6.5.4 Detection Error Analysis

To provide more insight into the performance obtained by combining the baseline detectors, we
follow the procedure introduced by Hoiem et al. [60]. Our first analysis regards detector sen-
sitivities. The detector sensitivity is calculated based on the difference between max and min
normalized AP for each characteristic (occlusion, truncation, bounding box area, aspect ratio,
viewpoint, part visibility). Each colored plot in Fig. 6.6 shows the mean (over all classes) nor-
malized AP for specified detectors. The results show that the proposed method does not reduce
the sensitivity. However, it improves both the highest and lowest performing subsets for nearly
all object characteristics. This indicates that the proposed method improves robustness for all
object characteristics. The sensitivity is not reduced with the proposed method. This is due
to commonly missed detections (hard detections cannot be detected easily even for human ob-
servers). While some of these hard detections are covered by one of the baseline detectors, they
mainly remained undiscovered. That is why the minimum normalized APs for each character-
istic increase but not as much as the maximum normalized APs. Consequently, the difference
between max and min normalized AP increases.
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

Rs 33.7 62.4 9.5 15.2 22.9 50.4 59.6 18.8 22.0 22.8 20.3 6.2 62.7 53.7 44.6 16.5 24.4 34.4 50.9 46.7 33.9

Rs + Os 35.6 62.1 10.6 17.4 24.6 50.8 59.3 25.1 21.3 23.2 23.9 10.5 63.1 51.0 45.5 14.7 26.3 37.8 50.6 47.5 35.1

Rs + So 35.4 63.7 10.6 18.2 26.5 51.7 60.3 18.7 22.7 24.1 21.5 6.6 63.8 57.3 43.7 18.5 24.3 34.5 53.0 45.3 35.0

All 36.8 64.2 12.3 20.3 27.3 53.0 60.3 27.0 22.0 25.3 27.1 11.1 63.7 56.6 45.4 19.3 24.0 38.0 54.5 46.8 36.8

Table 6.4: The influence of selected features for the final detection performance.

Hoiem et al. [60] show the problem of small objects. Since small sized objects are mainly missed
by all detectors, we observe that the min normalized AP for category “size” is not improved even
if three baseline detectors are combined.

Fig. 6.7 shows the changes in the percentage of each false positive (FP ) types with an increasing
total number of FP . FPs are divided into four categories as follows:

• Poor localization (Loc) occurs when the label of detection is correct but misaligned with
the ground-truth detection (0.1 ≤ overlap ≤ 0.5 or a duplicate detection.

• Confusion with similar classes (Sim) occurs when a false detection has an overlap with
an instance of a similar class.

• Confusion with dissimilar object categories (Oth) occurs when a false detection is ob-
tained for dissimilar classes.

• Confusion with background (BG) occurs when a false detection has no overlap with an
instance of similar or dissimilar classes.

The errors originate from poor localization rather than other errors. This shows the effectiveness
of relative score features. For instance, consider an image region where all detectors generate a
detection. All detections belonging to this region have high classifier scores because of the high
relative score. Consequently, these detections are ranked at the top of the detection list. How-
ever, the proposed method creates preferences for certain detectors when dealing with particular
classes. Consider a detection by a detector preferred for a particular class that has a localization
error within the region. The corresponding detections of the other detectors are suppressed by
nms. The suppressed detectors may be true detections. This explains why top ranked false
positives of the proposed method are mostly the result of poor localization.

Fig. 6.7 illustrates that the confusion with background error is significantly reduced. This shows
the effectiveness of the proposed object likelihood features. Such strong object-saliency cues
positively affect the proposed method to detect false detections.

Another observation shown in Fig. 6.7 is that the proposed features could not reduce the confu-
sion caused by similar object categories. However, they are effective on limiting the confusion
between dissimilar object categories.
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Figure 6.7: Figure shows the fraction of false positives of each type (animal, furniture and vehicle) evolv-
ing as the total number of false positives increase.

6.5.5 Feature Importance

In this experiment, we study the influence of each individual feature. The weights are obtained by
averaging the absolute classifier weights over the classes. The importance of proposed detector-
detector context features (Rs ) is highlighted in Fig. 6.8. Moreover, feature weights also empha-
size the importance of proposed object-saliency features (Os). As stated earlier, the proposed
Rs and Os features are more generic and independent of the number of object categories. How-
ever, object-object relationships exploited by other state-of-the-art context based object detection
methods [17, 23, 18] is dependent on the image characteristics. Therefore, the accuracy gain is
limited to the image characteristics for these methods.

We now investigate the influence of each feature on the final mAP score. The detector scores
are essential for ranking the detection list. Therefore, it is not possible to evaluate Os and So

individually. We evaluate mAP using only the Rs feature. For the rest of the features, Rs is also
included. It is shown in Table 6.4 that using only Rs improves the baseline detectors significantly.
An object likelihood measure also improves the accuracy (e.g. for animal classes such as cat, dog
or sheep). Significant improvement for these classes is due to the poor representation capacity
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Figure 6.8: Classifier weights are averaged over different classes to see the importance of features indi-
vidually.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP Imp.

DPM + Context 29.8 57.5 9.9 16.4 24.1 46.3 58.0 21.1 19.6 20.4 15.1 7.5 58.3 50.4 42.0 14.3 18.2 28.0 49.0 39.6 31.3 3.0

CN + Context 33.3 55.1 11.4 13.4 22.7 44.9 57.0 22.6 18.6 19.4 17.5 8.5 56.0 50.9 42.1 17.4 20.9 31.3 48.5 45.5 31.9 1.9

EES + Context 31.4 57.2 10.6 16.9 21.0 46.6 51.5 13.3 15.5 20.6 15.2 8.1 57.3 51.5 32.9 14.1 18.0 20.1 46.9 44.5 29.7 10.0

Table 6.5: The results of the re-ranked SINGLE baseline detector outputs using contextual features. The
results of SINGLE detectors are improved using context.

of template-based detectors for non-rigid objects. Deformable part based object detectors are
well suited for detecting rigid parts of the objects (see top ranked visual results of category
cat in Fig. 6.10.) Due to the homogeneous appearances of cats, dogs, and sheep, most object
proposals contain the full object shape. Therefore, detections of the entire object receive higher
confidence than detections for object parts. The object size plays role for other animals, such as
horse and cow. Object proposal methods used in this chapter tend to have better performance
when detecting small sized objects. Moreover, it is less likely to happen that the object proposal
methods generate many large bounding boxes for a specific image region. Therefore, the average
overlap of a detection with these windows becomes lower. Adding object-object context (So)
slightly improves most of the object classes. However, its contribution to the average precision
increases when it is combined with the object-saliency. Furthermore, So clearly improves the
accuracy for class “bottle” in which samples usually occur within a context (usually on a table
or in the hand of a person).

6.5.6 Re-ranking Detections from a Single Detector

In this experiment, we exploit the effectiveness of context features without combining detectors
into a single list. The proposed context features are only used to re-rank individual detectors.
It is shown in Table 6.5 that the proposed method is still effective and improves the baseline
detectors. However, the accuracy gain is relatively smaller than using the combined detector
outputs in Table 6.3. These results underline the importance of combining different detector
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

BL1 28.6 55.1 0.6 14.5 26.5 39.7 50.1 16.5 16.5 16.8 24.6 5.0 45.2 38.3 35.8 9.0 17.4 22.7 34.0 38.3 26.8

[23] 1.7 0 0.1 1.4 0 -3.5 1.3 0.5 -2.8 1.2 -0.7 0.2 0.5 1.1 -2.8 -1.1 -2.3 -0.7 0.5 0 -0.3

[17] 2.4 -4.2 2.3 0.8 -1.1 -0.2 -0.4 3.9 1.6 0.9 2.3 6.9 5.6 2.2 0 4.7 3.8 2.8 4.7 -0.1 1.9

[18] 5.6 2.7 9.2 0.8 3.2 1.9 3.4 5.0 0 0.7 1.4 7.9 5.9 4.6 3.5 4.2 3.1 4.9 4.9 0.3 3.6

BL2 27.8 55.9 1.4 14.6 25.7 38.1 47.0 15.1 16.3 16.7 22.8 11.1 43.8 37.3 35.2 14.0 16.9 19.3 31.9 37.3 26.4

[200] 2.4 1.9 0.5 0.2 3.2 2.6 2.9 -0.9 0.9 1.9 0.2 5.3 1.3 3.3 3.6 3.0 3.2 3.7 2.9 -0.5 2.0

BL3 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3

Proposed 10.1 7.3 9.7 7.5 5.4 7.0 5.0 13.3 3.0 5.9 14.5 8.9 5.6 9.3 4.5 12.5 8.9 11.0 11.1 8.1 8.4

Table 6.6: Comparison of the state-of-the art context based object detection methods on PASCAL
VOC07 dataset. The results of referred works [23, 17, 18] and DPM baseline scores (BL1)
are reported in [18] whereas [200] and DPM baseline scores (BL2) are reported in [200].
BL3 is DPM baseline score obtained in this chapter. The results represented as proposed are
the improvements over DPM baseline in this chapter.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [41] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3

CN [86] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0

EES [110] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

RCNN [52] 62.4 70.9 46.5 37.3 31.8 63.3 72.1 62.3 28.3 64.1 49.2 56.2 66.2 65.2 53.2 28.4 53.1 49.9 57.2 62.2 54.0

Proposed 63.5 74.3 47.1 39.1 38.5 67.1 74.5 62.9 30.7 64.4 50.5 56.3 71.3 68.6 56.4 29.2 53.5 54.2 61.5 63.4 56.4

Table 6.7: The results for baseline detectors CN, DPM, EES, RCNN and proposed detector merging
scheme on VOC07 test set. The proposed method outperforms all baseline detectors over all
classes.

outputs to recover from missed detections to improve the overall object detection performance.

Note that a detector with a high recall and low precision such as EES can be as powerful as
other, more precise detectors (DPM , CN ) using the proposed context features.

6.5.7 Comparison to Other Context Methods:

In this experiment, we compare the proposed method against the state-of-the-art context based
object detection re-ranking methods. Table 6.6 shows the baseline scores of DPM and improve-
ments reported by the papers [18, 200] on VOC07. The gain in performance by our method
indicates the importance of high level contextual features and L2R based detector merging.

Moreover, the proposed method is compared to the recent work by Mottaghi et al. [123] on
VOC10 dataset (See Table 6.8). The authors also report on the context re-ranking method of
DPM (See [41] for details) discussed in Section 6.2.

The contextual features proposed by other methods in Table 6.6 and Table 6.8 are from different
sources. Hence, they can be complementary to the proposed features. Combination of these
features may further improve the results.
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

BL1 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 10.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6

DPM-Context[41] 0.1 1.3 2.7 1.8 -0.6 1.8 2.9 -4.8 0.5 1.3 0.7 1.0 1.5 1.5 2.5 0.6 -2.8 4.9 6.6 2.7 1.2

[123] 6.5 -0.7 7.2 4.4 6.5 1.7 6.9 7.2 0.0 2.1 2.8 3.7 3.4 5.5 2.5 4.6 8.4 3.3 7.9 3.1 4.2

BL2 37.4 51.8 5.1 3.9 20.3 51.4 39.2 13.3 15.2 9.5 7.2 4.8 40.1 43.4 41.5 9.8 13.2 16.4 31.9 26.5 24.1

Proposed 7.3 2.9 8.5 6.6 2.5 7.1 5.1 15.0 2.8 3.5 5.8 7.1 3.6 7.7 3.5 8.0 8.4 3.4 10.6 11.8 6.6

Table 6.8: Comparison of the state-of-the art context based object detection methods on PASCAL
VOC10val. The results of referred works [123] and DPM baseline scores (BL1) are re-
ported in [123]. BL2 is DPM baseline score obtained in this chapter. The results represented
as proposed are the improvements over DPM baseline in this chapter.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

[41] 36.8 50.1 4.3 10.6 14.3 50.0 40.4 13.9 15.9 14.2 9.4 4.7 41.8 43.0 40.9 5.9 11.6 15.3 33.4 31.4 24.4

[86] 34.5 48.8 5.3 10.4 11.4 52.1 40.9 18.7 14.9 15.7 7.1 5.9 41.3 45.5 42.2 10.1 14.0 18.1 36.2 35.8 25.4

[110] 22.6 34.9 3.2 9.4 4.5 45.9 25.0 2.1 7.2 10.7 4.3 2.0 21.7 31.7 10.0 2.1 11.6 8.1 21.3 23.6 15.1

PoW2 44.8 53.3 14.3 14.6 14.2 56.3 44.7 27.2 18.9 19.6 14.5 15.0 44.1 50.0 45.4 13.2 17.6 22.5 42.0 39.1 30.6

[41] 37.4 51.8 5.1 3.9 20.3 51.4 39.2 13.3 15.2 9.5 7.2 4.8 40.1 43.4 41.5 9.8 13.2 16.4 31.9 26.5 24.1

[86] 36.6 45.0 6.0 4.7 17.9 52.5 40.2 18.8 15.3 10.6 6.5 5.2 39.7 44.4 44.0 15.5 16.4 13.0 35.6 33.8 25.1

[110] 19.9 36.8 1.8 3.3 7.2 46.2 23.5 2.0 4.2 6.4 2.1 1.3 20.6 30.4 9.5 2.8 14.5 7.0 24.0 24.7 14.4

PoW2 44.7 54.7 13.6 10.5 22.8 58.5 44.3 28.3 18.0 12.9 13.0 11.9 43.7 51.0 45.0 17.8 21.6 19.8 42.5 38.2 30.7

Table 6.9: The results for baselines (DPM , CN and EES) and proposed detector merging scheme
using PoW2 on VOC10 (upper: train set and lower: val set).

6.5.8 Increasing Number of Detectors:

We performed another experiment to gain more insight into detector correlations and perfor-
mance improvement. In this experiment, we focus on the state-of-the-art object detector of [52]
(RCNN) in addition to three baseline detectors. The state-of-the-art detector of [52] uses the
selective search paradigm [167] to generate object candidates which are classified by convolu-
tional neural networks. [52] obtains the highest detection rate (in the literature) for the Pascal
VOC 2007 dataset. The results are summarized in Table 6.7. Table 6.7 shows that the pro-
posed method improves the performance for all classes and outperforms [52]. This indicates
that the proposed method is still effective when there is one strong detector (RCNN) which is
implemented using substantially different methods than other detectors (CN, DPM and EES).
Moreover, Table 6.7 shows that RCNN significantly outperforms other detectors for classes

“bird”, “table” and “dog”. However, combining weak detectors (CN, DPM and EES) still pro-
vides an improvement in the performance of RCNN for those classes. The maximum gain over
RCNN is obtained for classes “bottle” (6.68%) and “horse” (5.12%). Additionally, 16% recall
improvement over the single RCNN is obtained. This indicates that CN, DPM and EES still
have complementary detections to RCNN.
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6.5.9 Tests on VOC10

We also evaluate our method on the PASCAL VOC10 dataset. The VOC10 annotations of the test
samples are not publicly available. Therefore, we use only the “train/val” dataset. All the train-
ing is done on the VOC07 trainval set, including object detection models and detector-detector
relation models. Table 6.9 shows the results. Table 6.9 indicates that the proposed method out-
performs the baseline detectors for all classes also on the cross dataset evaluation. The results
show that the learned detector-detector context is generic and it is not dataset dependent.

6.6 Discussion

6.6.1 Recall and Precision Improvement:

Missed detections of individual detectors are recovered when detections of different detectors
are combined in a single list (increased recall). Table 6.2 shows that combining multiple detec-
tors will lead to an increase in true object detections. This indicates that missed detections of
individual detectors are recovered by the combined list. Fig. 6.9 also shows that the proposed
method only misses objects which are missed by all three baseline detectors.

In [60], it has been shown that detectors can detect objects which contain consistent appearances.
They experimentally derive that object detectors have common detections (Section 6.5.1 and
Table 6.2). Most detector outputs will overlap for true detections because their aim is to detect
the same objects. Therefore, the overlapping information indicates the consistency between
detectors and can be used to give more confidence to those detections which overlap with other
detections (increase precision). The overlap information is useless for “orthogonal detections”.
The question is how to derive more confidence to those “orthogonal detections” to increase their
precision. Therefore, the proposed approach makes use of other features such as “ID-detector
indicator”, “object-saliency (Os)” and “object-object relations (So)”. These features are generic
and independent of detector orthogonality.

6.6.2 Detector Correlation and Diversity:

In Chapter 6, diversity, and thus potential complementary detections of CN, DPM and EES exist
mainly due to three reasons. First, DPM and CN represent all positive samples of a given cate-
gory as a whole (learn models per-category). However, EES proposes to train a separate linear
SVM classifier for each positive sample in the training set (learns models per-sample). Accord-
ingly, DPM and CN are more generic and EES is more discriminative. Second, not only the type
of the feature but also how the features are used is crucial for object detection. DPM and CN
represents objects using HOG features extracted from object parts and the whole object whereas
EES represents objects using HOG features extracted only from the whole object. Moreover, CN
uses color information as an additional feature. This results in complementary detections due to
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Figure 6.9: The first 5 missed objects by single detectors and proposed method for class “aeroplane”.
The missed detections are listed based on ascending order of dataset image numbers. The
first missed object by “CN” is also missed by “EES”, however it is detected by “DPM”.
Therefore, the proposed method recovers this object. All three baseline detectors missed
the objects outlined by red lines. Therefore, the proposed method misses these objects. All
missed detections of single detectors which are not outlined by a red line are recovered within
the proposed method.

photometric invariance and discriminative power enabled by the color attributes. The discrimi-
native power and photometric invariance do not always guarantee an improved object detection
performance. Therefore, CN and DPM detections are complementary to each other. Third, the
objective functions are different. DPM and CN minimize the inconsistencies between object
parts using latent SVM whereas EES defines per-exemplar distance (more like nearest neighbor
search) using linear SVM. These differences have a substantial influence on their final outputs.
Table 6.2, Table 6.3 and Fig. 6.12 represent the differences in the final outputs. Although these
detectors have detections in common, they have also complementary detections. While common
detections are useful to learn consistency in their output to increase precision, complementary
detections resolve missed detections for each individual detector.

We also show that when detectors are implemented using substantially different methods, the
proposed method still outperforms each individual detector. The experiment conducted in Sec-
tion 6.5.8 indicates that increasing the number of the detectors will further increase the perfor-
mance of the proposed method.

6.6.3 Computational Time vs Detection Performance:

There is a tradeoff between computational time and performance improvement. The computa-
tional time increases linearly with the number of detectors (assuming the same detection time
per detector). The computational time can be reduced either by parallel processing or removing
redundant operations e.g. the computation of HOG features, candidate regions etc. With a linear
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Figure 6.10: Top ranked false positives of the proposed method for specified classes. Blue and red colors
indicate the detector type, DPM and CN , respectively. Yellow and green colors corre-
spond to poor localization and multiple detections, respectively. The image frames without
color information indicates no overlap between ground truth object, either due to miss clas-
sification or background clutter.

increase in time, the improvement in true object detection (recall) starts to slow down eventu-
ally. This deceleration depends on the complementarity of the detectors (See Table 6.2). For
instance, when CN and DPM are combined, the gain in recall is 7%. When combining EES with
CN + DPM, the gain is 13.5%. However, detection performance is not only dependent on the
recall. Increasing the number of detectors will yield a higher precision because of an enhanced
consistency between detectors. Detections which are supported (overlap) by more detectors are
good candidates to be true detections. Hence, agreement between more detectors increases the
precision of detections (See Table 6.5). Detections of single detectors become more precise
with the help of other detectors. Eventually, the improvement in precision will also slow down
(stop) when near optimal detections are provided. Therefore, it can be argued that after a certain
detection performance is obtained, the method may stop including more detectors.

6.6.4 The Choice of Learning to Rank Algorithm:

L2R methods are categorized into three groups: pointwise, pairwise and listwise. In general,
these three methods differ by their objective functions. All three methods can be used within the
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proposed framework. However, there are some advantages/disadvantages for each method.

The selection of an algorithm is performed based on the following criteria: scalability, computa-
tional complexity and performance. Pointwise techniques are the most straightforward to learn
the ranking model. These methods are optimized to deal with large scale data. Hence, they are
fast in training and testing. Their main drawback is that the order between samples cannot be
considered in the training step. This is because the algorithm optimizes loss functions based on
individual sample errors.

A major advantage of the pairwise approach over the pointwise approach is that it focuses on the
relative order of samples. Further, like the pointwise approach, the pairwise approach does not
consider the position of all the samples in the ranked list. It does not require a quantitative label
for each single sample but it requires pairwise preferences between samples. However, in our
approach, each detection has a real value (ground truth overlap). Moreover, a pairwise approach
is computationally more expensive than the pointwise approach due to the number of pairwise
preference constraints formed by the pairs.

The listwise approach considers the position of all the samples in the ranked list when the loss
function is optimized. Consequently, the listwise approach has an exponential number of ranking
permutations yielding an increase in complexity and computational time. Incorporating the
position information in the loss function may further improve the final results. However, the
tradeoff between complexity and accuracy should be taken into account.

In fact, accuracy, training speed and memory requirements are important factors to select the
number of detectors, object classes and number of training samples. For a (moderate size) dataset
such as Pascal VOC (consisting of 20 object classes, 5K samples for training, and three detec-
tors yielding in total 100K detections per class), pairwise solution is still tractable (since most
of the detections do not have ground-truth overlap and there is no preference generated between
those detections). While it is good to have more training data, it is challenging for pairwise
algorithms to handle big data. For a dataset such as ImageNET (consisting of 200 object classes
and 500K samples for training) the pairwise approaches need to be further optimized [150] to
make the problem tractable. Pairwise approaches are still an area of active research and further
improvements are possible by employing recent techniques such as active learning to rank pro-
posed in [137]. Pointwise approaches are already capable of handling such large scale datasets
and their performance are proven to be good for this task on Pascal VOC dataset. Therefore, for
such large scale experiments pointwise approaches should be used.

6.6.5 Possible Improvements:

To avoid overfitting, the object detectors are trained on train to test on val. Subsequently, they
are trained on val to test on train, in which case the detectors are trained with fewer examples.
This has an impact on the performance of detectors on the train/val set in which we learn the
relationship between detectors. It is observed that for some classes the performance of object
detectors on the train/val set are not inline with the test set. Therefore, learning the models
for detectors on a larger dataset may further improve the proposed learning to rank scheme.
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Figure 6.11: Top five ranked false positives of baseline detectors and proposed method with their rank-
ings below (object class car). The color of the detection yellow, green and red indicates
the type of detector DPM , CN and EES respectively. The false positives of individual
detectors are pushed down in the proposed method.

The non-maximum suppression technique is a widely used ad-hoc method in object detection
literature. However, learning to detect multiple detections from different detectors may be more
appropriate for the proposed method.

The proposed method does not provide new bounding boxes. Therefore, it cannot recover from
poor localization errors. Error resulting from poor localization becomes problematic for some
cases (See Fig. 6.10 and Fig. 6.11 for top ranked false positives). This problem can be resolved
by proposing new bounding boxes using object proposals or using a method similar to [52].

With the help of the proposed method, future object detectors can focus on more specific solu-
tions to harder detection problems. Their results will be combined with other detection methods
to carry object detection algorithms a step further. The contribution of a new method can be
compared against the combination of the-state-of-the-art methods.
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6.7 Conclusion

No detection algorithm can be considered universal. As a consequence, we have proposed an
approach to combine different object detectors. The proposed approach uses (single) object
detectors to exploit their correlation by learning a re-ranking scheme.

The proposed method uses the agreement among the detections of different detectors to award
a detection based on detector correlation and consistency. Furthermore, the proposed method
exploits complementary detections of detectors to help recover missed detections of individual
detectors.

Experiments on the PASCAL VOC07 and VOC10 datasets show that the proposed method signif-
icantly outperforms individual object detectors ( DPM (8.4%), CN (6.8%) and EES (17.0%)
on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10.)

We show that there are no constraints on the type of the detector. The proposed method outper-
forms (2.4%) a state-of-the-art object detector (RCNN) on VOC07 when the RCNN is combined
with other detectors used in Chapter 6.



112 Combining Object Detectors Using Learning to Rank

Figure 6.12: Precision-recall curves on PASCAL VOC 2007. The proposed method significantly outper-
forms all single detectors. Furthermore, it is shown that detections of baseline detectors
have remarkable differences.



7
Summary and Conclusions

7.1 Summary

In this thesis, we focus on object recognition and detection for image understanding. We explore
images in terms of fundamental elements for what a person needs to see (i.e. light, object and
high level semantic interpretation).

Chapter 2: Light Source Position Estimation
In Chapter 2, we focus on detecting the light source position. A common approach for esti-
mating the light source position (LSP) assumes Lambert’s law. However, in real-world scenes,
Lambert’s law does not hold for all different types of surfaces. In Chapter 2, we exploit the influ-
ence of surface attributes on the accuracy of LSP estimation. Given a single RGB−D image, we
first analyze the effects of photometric (e.g. glossy, matte) and geometric (e.g. curved, smooth)
surface attributes. Then the surfaces are ranked using a supervised learning scheme. The rank-
ing results are used to decide the contribution of an image surface segment for LSP estimation.
Higher importance is assigned to those image surface segments with suitable photometric (i.e.
Lambertian reflectance) and geometric surface attributes. Additionally we assume that light
source positions, with respect to static objects in the scene, do not change during a single video
recording. Hence, the only change is the relative position of the light source with respect to
the camera. Therefore, we propose to use the camera pose to provide temporal constraints in
RGB − D sequences. To do this, we first estimate the camera pose to build correspondences
between frames. Then, the camera poses are used to optimize the LSP for a RGB − D video
sequence.

Experiments on Boom and a newly collected RGB − D video datasets show that the state-of-
the-art methods are outperformed by the proposed method. The results demonstrate that weight-
ing image surface segments based on their attributes outperforms the state-of-the-art methods
in which the image surface segments are considered to equally contribute. In particular, by
using the proposed surface weighting, the angular error for light source position estimation is
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reduced from 12.9◦ to 8.6◦ and 12.9◦ to 7.1◦ for Boom and RGB−D video datasets respectively.
Moreover, using the camera pose to temporally constrain LSP reduces the angular error (6.0◦)
compared to using single frames (7.1◦).

Chapter 3: Per-Patch Metric Learning for Robust Image Matching
In Chapter 3, we focus on improving matching performance of local image descriptors. Existing
methods to extract local image descriptors typically focus on invariance by completely consider-
ing, or completely disregarding, all variations. However, a full invariant representation leads to
a decrease in discriminative power. In Chapter 3, we propose a metric learning method that is
robust to only a range of variations. The ability to choose the level of robustness allows us to
fine-tune the trade-off between invariance and discriminative power.

By allowing a degree of invariance, a single global image representation cannot be used as it
depends on the specific image content how the limited transformation range will take effect.
Therefore, the proposed method is required to achieve robustness on a per-patch basis. We learn
a distance metric for each patch independently by sampling from a set of relevant image transfor-
mations. These transformations give a-priori knowledge about the behavior of the query patch
under the applied transformation in feature space. We present two approaches for learning the
distance metric: (i) full and (ii) direct. The full method generates synthetic image patches, ex-
tracts descriptors for each patch, and obtains robustness through a metric that is learned on these
descriptors. Instead of using the brute-force approach of computing covariance by explicitly gen-
erating patches and extracting features from them, in the direct method we propose an approach
to estimate the covariance from a single patch. We generate a transformation map only once,
and use this map to directly estimate the metric from the patch without explicitly generating
any synthetic images. The matching between query patch and data is performed with this new
metric.

Results on the ALOI dataset show that the proposed method improves performance of SIFT by
6.22% for geometric and 4.43% for photometric transformations.

Chapter 4: Text Detection for Fine-grained Classification and Logo Retrieval
In Chapter 4, we focus on fine-grained object classification using recognized scene text in natural
images. While the state-of-the-art relies on visual cues only, we propose to combine textual and
visual cues. By incorporating textual cues, we thus add semantics to the recognition process be-
yond visual cues. The success of the proposed fine-grained object classification method (fusion
of visual and text modalities) highly depends on the correctness of the extracted textual image
cues. Therefore, a robust character localization and a textual cue encoding method is proposed.
Unlike the state-of-the-art text detection methods, we focus more on the background instead
of text regions (foreground). Once text regions are detected, they are further processed by two
methods to perform text recognition i.e. ABBYY, a commercial OCR engine, and a state-of-
the-art character recognition algorithm. Then, to perform textual cue encoding, bi- and trigrams
are formed between the recognized characters by considering the proposed spatial pairwise con-
straints. Finally, extracted visual and textual cues are combined for fine-grained classification.

The proposed method is validated on four publicly available datasets: ICDAR03, ICDAR13,
Con-Text and Flickr-logo. We improve the state-of-the-art end-to-end character recognition by
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a large margin of 15% on ICDAR03. We show that textual cues are useful in addition to visual
cues for fine-grained classification. We show that textual cues are also useful for logo retrieval.
Adding textual cues outperforms visual- and textual-only in fine-grained classification (60.3% to
70.7%) and logo retrieval (54.8% to 57.4%).

Chapter 5: Words Matter: Scene Text for Image Classification and Retrieval
In Chapter 5, we exploit word-level textual cues for fine-grained classification and logo retrieval,
instead of character-level textual cues extracted in Chapter 4. To detect words in images, a
generic and fully unsupervised word box proposal method is introduced. While the state-of-
the-art text detection methods aim at high f-score, the proposed method is designed to obtain
high recall. A high recall is required because textual cues that are not detected will not be
considered in the next (recognition) phase of the framework. Unfortunately, there is no single
best method for detecting words with high recall due to large variations in text style, size and
orientation. Therefore, we propose to combine character candidates generated by different state-
of-the-art detection methods. To obtain robustness against varying imaging conditions, we use
color spaces containing photometric invariant properties such as robustness against shadows,
highlights and specular reflections. The detected word regions are used as input to a state-of-the-
art word recognition method to perform a word-level textual cue encoding.

Results show that adding the textual cues to visual cues improves the mean average precision
of visual only in fine-grained classification and logo retrieval, from 60.3% to 74.5% and from
58.4% to 62.7% respectively. Moreover, using word-level textual cues (33.1%) outperforms
the fine-grained classification performance of character-level textual cues (28.4%) extracted in
Chapter 4. In addition, we show that word detection recall is more important than word detection
f-score for fine-grained classification and logo retrieval.

Chapter 6: Combining Object Detectors Using Learning to Rank
In Chapter 6, we focus on detecting objects in images by combining state-of-the-art object de-
tectors. Many object detection algorithms have been proposed. However, each object detector
relies on specific assumptions of the object appearance and imaging conditions. As a conse-
quence, no algorithm can be considered universal. In chapter 6, we address the question how to
combine the state-of-the-art object detectors. We use detections (detector outputs which consist
of a classifier score and bounding box locations) of different well-known object detectors includ-
ing DPM [41], CN [86] and EES [110]. The method extracts high-level context features such
as detector-detector consistency, detector-class preference, object-saliency of a detection, and
object-object relations from these object detectors. These features are used in a learning to rank
framework to yield a combined detection list.

Experiments on the PASCAL VOC07 and VOC10 datasets show that the proposed method sig-
nificantly outperforms single object detectors, DPM (8.4%), CN (6.8%) and EES (17.0%) on
VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10. We show with an experi-
ment that there are no constraints on the type of the detector. The proposed method outperforms
(2.4%) state-of-the-art object detector (RCNN) on VOC07 when RCNN is combined with other
detectors used in Chapter 6.
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7.2 Conclusions

In this thesis, we focused on image understanding via object recognition and detection algo-
rithms. Light source is the creator of the image before anything else. Therefore, we have ini-
tially approached the problem of light source position (LSP) estimation. Instead of allowing
surfaces to equally contribute to LSP estimation, we assigned importance to surfaces based on
their photometric and geometric surface attributes. The results have shown that various surface
attributes influence the LSP estimation differently. Consequently, learning the importance of
surface attributes to estimate LSP outperforms the methods for which image surface segments
equally contribute to LSP estimation. In addition, using the camera pose to temporally constrain
LSP reduces the angular error compared to using single frames.

Extraction of local image descriptors is important for object recognition. Viewing and lighting
condition changes in real-world scenes cause substantial variations in local image descriptor
representations. In Chapter 2, we have shown that a full invariant representation leads to a
decrease in discriminative power. Instead, we proposed a per-patch metric learning method
that is invariant to only a range of variations. We learnt a patch specific a Mahalanobis metric.
Two approaches for learning the metric were presented: (i) full and (ii) direct. The proposed
approaches were validated on ALOI dataset for two different image transformations, namely,
geometric and photometric. It has been shown that the proposed approaches outperform the
original SIFT descriptor matching performance.

Low-level visual cues are not sufficient to understand the deeper meaning of images. It is impor-
tant to extract higher-level cues as well. Therefore, in Chapter 3, we addressed the problem of
object recognition in the scene. Object recognition algorithms have shown significant progress
on classifying "distinct" object categories such as horses, bicycles and cars [34]. These algo-
rithms mostly rely on appearance cues (e.g. color, texture and shape) [21, 168]. In Chapter
3, we have shown that these visual cues are not sufficient enough to distinguish categories of
objects that only slightly differ in appearance (e.g. fine-grained classification and logo retrieval).
Therefore, we have introduced a method to combine textual with visual cues for fine-grained
classification and logo retrieval. To extract textual cues, a robust character localization and a tex-
tual cue encoding method has been proposed. The proposed algorithm achieves state-of-the-art
(end-to-end) character recognition accuracy on the ICDAR03. It has been shown that bimodal
information fusion of visual and textual cues increased the fine-grained classification accuracy
of visual-only classification by 10.4%. The proposed method outperforms state-of-the-art text
detection methods [96] on text saliency and [54, 96, 128] on (end-to-end) character recognition
and fine-grained classification. In addition, textual cues proven to be complementary to visual
cues for logo retrieval too. Combining textual and visual cues improves the logo retrieval perfor-
mance over visual-only from 54.8% to 57.4%.

In Chapter 4, the textual cues were extracted at character-level. However, characters cannot fully
convey the rich semantics given by the text. To this end, in Chapter 5, we proposed to extract
word-level textual cue. Therefore, we proposed a generic, efficient and fully unsupervised word
box proposal approach which aims at high recall. For fine-grained building classification, word-
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level textual cue improves the character-level textual cue from 28.4% to 33.1% in mean average
precision. It has been shown that encoding the textual cues at the word-level is superior to
using characters. Contrary to what is widely acknowledged in text detection literature, we have
experimentally shown that a high recall in word detection is more relevant than a high f-score
for fine-grained classification and logo retrieval.

In Chapter 6, we have shown that the design property of object detectors (e.g. search strategy,
features, and model presentation) influence the robustness of these methods to varying imaging
conditions (e.g. occlusion, clutter, unusual views, and object size). As a consequence, no de-
tection algorithm can be considered as universal. To this end, we have proposed an approach
to combine state-of-the-art object detectors. The proposed approach exploited single object de-
tectors and their correlation by learning a re-ranking scheme. We have shown that the shared
(common) detections between object detectors, are useful to learn consistency in their output
whereas complementary detections compensate for missed detections from each individual de-
tector. Moreover, it is also shown that the performance of detectors is limited by their correct de-
tections. Therefore, detector combinations helped to improve individual detector performances.
Experiments on the PASCAL VOC07 and VOC10 datasets have shown that the proposed method
significantly outperformed individual object detectors ( DPM (8.4%), CN (6.8%) and EES
(17.0%) on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10.) We have
also shown that there are no constraints on the type of the detector. The proposed method
outperformed (2.4%) a state-of-the-art object detector (RCNN) on VOC07 when the RCNN is
combined with other detectors used in this chapter. With the help of the proposed method, fu-
ture object detectors can focus on more specific solutions to harder detection problems. Their
results will be combined with other detection methods to carry object detection algorithms a step
further.

This thesis contributes to various aspects of image understanding, from improving matching
performance of local image descriptors (low-level) to recognizing and detecting objects in a
scene (high-level). We consider each research question addressed in this thesis as a piece of a
complex image understanding puzzle. Solving unique challenges in each piece of the puzzle
allows us to reveal the overall picture and acquire in depth image understanding. We believe that
the proposed methods, benchmarks, insights and pitfalls represent valuable knowledge that can
be leveraged in future research in the area of image understanding (i.e. text and object detection).
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Samenvatting

Met dit proefschrift richten we onze aandacht op object herkenning en detectie voor een beter be-
grip in afbeeldingen. We onderzoeken afbeeldingen op het gebied van fundamentele elementen
voor wat een persoon nodig heeft om te kunnen zien (dat wil zeggen; licht, objecten en een hoog
niveau van semantische interpretatie).

Hoofdstuk 2: Positie van de lichtbron schatten
In hoofdstuk 2 richten we ons op het schatten van de positie van de lichtbron. Een veelgebruikte
methode voor het schatten van de lichtbron positie (LP) gaat uit van de wet van Lambert. Echter,
in de praktijk geldt deze wet niet voor alle verschillende soorten oppervlakten. In hoofdstuk 2
benutten we de invloed van oppervlakte kenmerken op de nauwkeurigheid bij het schatten van
de LP. Gegeven een RGB −D afbeelding, analyseren we eerst het effect van fotometrische (bijv.
glanzend, mat) en geometrische (bijv. gebogen, vlak) oppervlakte eigenschappen. Hierna wor-
den de oppervlakte eigenschappen gerangschikt met een supervised leertechniek. De volgorde
wordt gebruikt voor het bepalen van de toegevoegde waarde van elk oppervlakte in de afbeeld-
ing met betrekking tot het schatten van de LP. Zodoende worden oppervlakte segmenten met de
juiste fotometrische (d.w.z. Lambertiaanse reflectie) en geometrische oppervlakte eigenschap-
pen hoger gewaardeerd. Bovendien gaan we er van uit dat de lichtbron, ten opzichten van de
statische objecten in de scène, niet veranderd gedurende de opnamen van de video. Het enige
dat veranderd is de relatieve positie van de lichtbron ten opzichte van de camera. Daarom stellen
we voor om de camerapositie te gebruiken voor het beperken van het mogelijke posities van
de LP in opeenvolgende frames in een RGB-D video frames. Om dit te bereiken, schatten we
eerst de camera positie om zo de relatieve positie tussen de frames te verkrijgen. Daarna worden
de camera posities gebruikt voor het optimaliseren van de LP voor de RGB − D video frames.
Experimenten op Boom en een door ons verzamelde dataset met RGB − D video’s, laten zien
dat actuele methodes worden overtroffen door de voorgestelde methode. De resultaten laten
zien dat het toekennen van verschillende gewichten aan oppervlakte segmenten op basis van
hun eigenschappen beter werkt dan de actuele methodes waarbij alle oppervlakte segmenten
evenveel bijdragen bij het schatten van de LP. Om precies te zijn verminderd de voorgestelde
methode de hoekfout bij het schatten van de lichtbron van 12.9◦ naar 8.6◦ voor Boom, en van
12.9◦ naar 7.1◦ voor de RGB − D video dataset. Bovendien, door gebruik te maken van de
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camera positie voor het beperken van mogelijke posities van de LP in opeenvolgende frames,
kan de nauwkeurigheid nog verder verbeterd worden naar 6.0◦ in vergelijking met 7.1◦ waarbij
afzonderlijk frames gebruikt zijn.

Hoofdstuk 3 :Metrisch stelsel leren per beeld-stukje voor het bepalen van beeldafstanden
In hoofdstuk 3 richten we ons op het verbeteren van methodes voor het berekenen van de afs-
tand tussen afbeeldingen met behulp van lokale beeld representaties. De bestaande methodes op
dit gebied houden doorgaans rekening met alle of juist geen van alle variaties die mogelijk zijn.
Echter, hierdoor kunnen de algoritmes minder goed fijne details onderscheiden. In hoodfstuk
2 stellen we een metrisch stelsel leer-methode voor die robuust is voor een gedeelte van deze
variaties. Met deze methode kan vooraf bepaald worden voor welke gedeeltes de methode robu-
ust moet zijn, waardoor we de juiste balans tussen de invariantie en onderscheidend vermogen
kunnen afstellen.

We stellen een methode voor die robuust is voor beeld-stukjes. We laten het systeem een af-
standsstelsel leren voor het meten van de afstanden tussen de beeld-stukjes. Dit gebeurd on-
afhankelijk voor alle beeld-stukjes door telkens een willekeurige transformatie te kiezen uit een
verzameling van relevante beeld-transformaties. Deze transformaties geven voorkennis met be-
trekking tot het gedrag van de beeld-zoekopdracht na het toepassen van de transformatie in
de kenmerkruimte. Voor het leren van het afstandsstelsel stellen we twee methodes voor: (i)
volledig en (ii) direct. De volledige methode genereert synthetische beeld-stukjes, vervolgens
berekend het de representatie per beeld-stukje, en wordt zodoende robuust door een afstandss-
telsel te leren op deze beeld representaties. In tegenstelling tot de nogal inefficiënte aanpak van
de volledige methode, in de directe methode stellen we een benadering voor waarbij de covari-
antie geschat kan worden van één enkel beeld-stukje. We genereren een transformatie-indeling
slechts één keer, en gebruiken deze indeling om direct het afstandsstelsel voor een beeld-stukje
te schatten, zonder dat er hiervoor synthetische afbeeldingen gegenereerd hoeven te worden. Het
zoeken naar vergelijkbare beeld-stukjes voor een beeld-zoekopdracht wordt uitgevoerd met het
nieuwe afstandsstelsel. De resultaten op de ALOI dataset laten zien dat de voorgestelde meth-
ode SIFT verbetert met 6.22% op het gebied van geometrische transformaties, en 4.43% voor
fotometrische transformaties.

Hoofdstuk 4: Tekst detectie voor fijnkorrelige classificatie en logo retrieval
In hoofdstuk 4 richten we ons op fijnkorrelige object classificatie, gebruikmakend van teksten
die in de afbeeldingen voorkomen. In tegenstelling tot actuele methodes die zich richten op
alleen visuele aspecten, stellen wij een methode voor dat zowel de visuele als tekstuele aspecten
gebruikt. Door gebruik te maken van de tekstuele aspecten, voegen we semantische informatie
toe tijdens het herkenningsproces wat dieper gaat dan enkel visuele aspecten. Het succes van
de voorgestelde methode hangt sterk af van de nauwkeurigheid waarin de tekstuele informatie
dat uit de afbeeldingen vergaard kan worden. Om deze reden stellen we een robuuste letterteken
lokalisatie methode voor, en en methode om tekstuele informatie uit afbeeldingen te verkrijgen.
In tegenstelling tot actuele tekst detectie methodes, richten wij ons meer op de achtergrond dan
op plekken waar tekst zich bevindt (voorgrond). Wanneer er een gebied met tekst is gedetecteerd,
wordt deze nog door twee andere methodes behandeld voor tekst herkenning zoals ABBYY, een
commerciële OCR oplossing, en een actuele letterteken herkenningsalgoritme. Hierna worden
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de lettertekens omgezet in woorden, gebruikmakend van bi- en trigrams om de meeste waarschi-
jnlijke volgorde van lettertekens te kiezen. In de laatste stap worden de textuele en de visuele
aspecten gecombineerd voor fijnkorrelige classificatie. De voorgestelde methode is gevalideerd
op vier publieke datasets: ICDAR03, ICDAR13, Con-Text en Flicker-logo. We verbeteren de
actuele eind tot eind letterteken herkenningsalgoritmes met een marge van 15% op ICDAR03.
Met dit hoofdstuk laten we zien dat het gebruik van tekstuele informatie uit afbeeldingen nuttig
is in combinatie met visuele informatie voor fijnkorrelige classificatie, zo verbeterd de combi-
natie van tekst en visuele aspecten de classificatie van 60.3% naar 70.7%. Hetzelfde geldt voor
het logo retrieval, waarbij we aantonen dat de combinatie een verbetering teweeg brengt van
54.8% naar 57.4%.

Hoofdstuk 5: Woorden in afbeeldingen zijn belangrijk voor de classificatie en retrieval
In hoofdstuk 5 maken we gebruik van woorden voor fijnkorrelige classificatie en logo retrieval,
dat in tegenstelling tot hoofdstuk 4, waarbij alleen lettertekens zijn gebruikt. Bij het detecteren
van woorden in afbeeldingen stellen we een generieke en volledig unsuperviced leertechniek
voor, dat de locatie van de woorden in een afbeelding kan detecteren. In tegenstelling tot de
actuele methodes voor tekst detectie die zich voornamelijk richten op het behalen van een hoge
f-score, is de voorgestelde methode ontwikkeld met het oogmerk op een hoge recall. Een hoge re-
call is vereist voor de volgende stap in het algoritme, omdat lettertekens die niet herkend worden,
ook niet gebruikt kunnen worden bij het vormen van woorden. Helaas is er geen methode die het
beste is voor alle toepassingen van tekst detectie vanwege de grote variatie in lettergrootte, stijl
en oriëntatie. Daarom stellen we voor om verschillende actuele letterteken detectie methodes
te combineren. Om robuust te zijn tegen de verschillende omstandigheden waarin de afbeeldin-
gen verkeren, maken we gebruik van kleur ruimtes met fotometrische invariante eigenschappen
zoals robuustheid tegen schaduwen, lichteffecten en reflecties. De gedetecteerd tekst locaties
worden gebruikt als invoer voor woord-herkenningsalgoritmes om de lettertekens om te zetten
in woorden.

De resultaten laten zien dat het gebruik van tekstuele informatie de MAP van fijnkorrelige classi-
ficatie verhoogt van 60.3% naar 74.5%, en voor logo retrieval van 58.4% naar 62.7%. Bovendien
leidt het gebruik van woorden tot een verbetering van 33.1% in fijnkorrelige classificatie, dat ten
opzichten van 28.4% wanneer alleen lettertekens gebruikt zijn zoals in hoofdstuk 4.

Hoofdstuk 6: Het combineren van object detectoren
In hoofdstuk 6 richten wij ons op het detecteren van objecten in afbeeldingen door verscheidene
actuele object detectie algoritmes te combineren. Er zijn in het verleden veel verschillende
object detectie algoritmes voorgesteld, echter, gaan zij uit van bepaalde aannames in de manier
waarop objecten in de afbeelding voorkomen en beeldomstandigheden. Het gevolg hiervan is
dat geen van deze algoritmes breed toepasbaar is. In hoofdstuk 6 richten we ons op het vraag
hoe verschillende object detectoren geselecteerd en gecombineerd kunnen worden. We maken
gebruik van bekende object detectoren zoals DPM, CN en EES voor het detecteren van object
locaties en de bijbehorende scores.

Experimenten op de PASCAL VOC07 en VOC10 datasets laten zien dat het combineren van
verscheidene object detectoren duidelijk hoger scoort dan wanneer er maar één object detector
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wordt gebruikt. De verbeteringen op de VOC07 dataset zijn als volgt: DPM (8.4%), CN (6.8%)
en EES (17.0%), en voor VOC10: DPM (6.5%), CN (5.5%) en EES (16.2%). Met deze experi-
menten laten we zien dat er geen belemmeringen zijn voor het type detector. Met de voorgestelde
methode behalen we een verbetering van 2.4% ten opzichten van actuele object detectoren zoals
RCNN op VOC07 wanneer RCNN gecombineerd wordt met andere detectoren die gebruikt zijn
in hoofdstuk 6.
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