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Chapter 1
General introduction

In health care, it is routine to monitor patients by collecting information regarding

their health repeatedly over time. Commonly, both longitudinal response measure-

ments and the time to an event of interest are collected for each patient. This has

led to a growing need to adequately use such updated information (together with

information collected only at baseline) to provide a better insight in patients’ health

status over time. This could help clinicians to make better decisions as regards to

patient care. Patients could also benefit from being educated about possible health

risks, which may motivate them to take more responsibility for their health. The

motivating examples that will be revisited in more detail in this thesis include;

I Post-kidney transplantation data (Struijk et al., 2010): In a kidney transplantation

unit, immunological markers such as CD3+ T cells, B cells and natural killer cells

were measured at several time points in order to monitor patients’ immune status after

transplant. Also, the times of repeated occurrences of opportunistic infections such as

urinary tract, viral and upper respiratory infections were monitored. Follow-up could

be terminated by death. Here, frailer patients exhibiting either deteriorating marker

trajectories or experiencing more frequent recurrent events may benefit from a mod-

ification of their immunosuppressive therapy or be placed on preventive medication

against future infections.

II Intensive care (IC) data (Toma et al., 2007): In an intensive care unit (ICU), be-

sides routinely collected baseline data, patients’ Sequential Organ Failure Assessment

(SOFA) scores were used for daily monitoring of organ dysfunction. Patients either

died or were discharged from the hospital. The updated information in the daily

SOFA scores may improve patients’ prognosis at the end of hospital stay which is

relevant, e.g., in assessing the quality of care in the ICU and for patient management.
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2 Chapter 1. General introduction

III Primary care data (Siebeling et al., 2011): In primary care, Chronic Obstructive

Pulmonary Disease (COPD) patients were seen by their general practitioner (GP) at

regular intervals and information about four quality of life (QoL) domains (dyspnoea,

fatigue, emotional function, and mastery) and overall QoL were monitored. The time

to death was also noted. In daily clinical practice, it is important to be able to show

patients their expected course on (different domains of) their QoL. In case of potential

decline in one or more domains, both the physician and the patient can discuss about

prioritizing certain treatment decisions.

In such settings, when we desire to make inference on either a longitudinally measured

variable (henceforth referred to as marker) or on the time to an event of interest

(such as an infection or death), classical models such as a linear mixed effects model

and a Cox proportional hazards model can be used respectively. But performing

separate analyses for both the longitudinal and survival subprocesses may ignore

possible underlying associations between the marker and time-to-event data. For

instance, in modeling longitudinal data with missing marker values which are likely

not missing at random, we may need to also model the times to dropout or death to

avoid possible biases in the estimation of the longitudinal model. As another example,

when fitting survival models which include a time-dependent covariate that may have

been measured with error or contain missing values at event times, a longitudinal

model for the time-dependent covariate is required to cater for the missing covariate

values as well as for the measurement errors. In both examples, it is necessary to

simultaneously evaluate both the longitudinal and the survival subprocesses using

a joint model. In the first part of this thesis, we will consider the joint modelling

framework (Tsiatis and Davidian, 2004) to study the association between longitudinal

and survival data. We shall use joint models to perform dynamic predictions of

survival probabilities for a new subject, using marker values that are accrued as time

goes on. We shall also present an extension of the application of joint modelling to a

setting with multiple markers and multi-type recurring events.

In the second part of this thesis, we shall look at landmarking (Van Houwelingen,

2007) as an alternative to joint modelling for performing dynamic predictions of sur-

vival probabilities. With the landmarking approach, a Cox model is fitted to a data

set comprising a selection of subjects who are at risk at a landmark time point ts and

treating their marker values at ts as a time fixed covariate. This approach circumvents

possible computational complications of fitting time-dependent covariates, making it

easier to compute survival probabilities compared to using joint models. Although a

joint model (if correct) would yield a better predictive performance (Rizopoulos et al.,
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2013), landmark models require fewer modelling assumptions, hence are more robust.

Furthermore, landmark models can be easily extended to accommodate several mark-

ers. We shall present an extension of the application of landmark models to a setting

with recurring events of the same type.

In the third part of this thesis, we shall look at construction and validation of

prediction models in the presence of multiply imputed data. This was motivated

by the fact that at certain moments in time, when we desired to make predictions

on patients’ health status, the number of predictors that were available per patient

was larger than what clinicians would prefer to use in practice. Also, some of the

predictors contained missing values. It was paramount to optimally select the "best"

subset of predictors which were interpretable and practically useful. But the selection

and validation procedure for this "best" subset of predictors was complicated by

the presence of missing data. Here, we shall lay more emphasis on how to inter-

nally validate prediction models via bootstrap methods (Harrell et al., 1996) after

multiply imputing missing data. A pertinent question that we will answer is that

of how resampling should be performed in the presence of multiply imputed data sets.

Part I: Joint modelling

Joint models for longitudinal and survival data have gained a lot of attention

in the literature (Tsiatis and Davidian, 2004; Faucett and Thomas, 1996; Wulfsohn

and Tsiatis, 1997; Xu and Zeger, 2001; Rizopoulos and Ghosh, 2011). In comparison

to performing separate analysis for each outcome, joint modelling is commended to

yield less biased and more efficient assessment of both the survival and longitudinal

subprocess since it acknowledges that both subprocesses may be highly associated. A

comprehensive overview of the subject is given by Tsiatis and Davidian (2004).

In recent years, the application of joint models have extended beyond the tra-

ditional one longitudinal response and a single event type setting to settings with;

(i) multiple longitudinal outcomes and a single failure time (Rizopoulos and Ghosh,

2011; Sweeting and Thompson, 2011; Ibrahim et al., 2004; Xu and Zeger, 2001), (ii)

a single longitudinal outcome and multiple failure types (Gueorguieva et al., 2012; Li

et al., 2010; Elashoff et al., 2008), (iii) multiple longitudinal outcomes and multiple

failure types (Chi and Ibrahim, 2006), and (iv) a single longitudinal outcome and re-

current events (Kim et al., 2012; Liu and Huang, 2009; Liu et al., 2008). In chapter 2

of this thesis, we will further extend the joint modelling approach to include multiple

longitudinal outcomes and multiple recurrent events. This was motivated by the post-

kidney transplantation data which comprised patients who could experience up to ten
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4 Chapter 1. General introduction

infection types, all at multiple times. Patients’ immune status was monitored using

five immunological markers. Our main goal was to evaluate the effect of the markers

on the risk of each infection type, and to also measure the dependence within and

between infection types. We proposed a joint model consisting of a multivariate mixed

effects linear submodel and an infection-specific Cox submodel with a set of frailty

terms to catch the within and between infection type dependence. Both submodels

were linked by shared latent terms.

Maximization of the likelihood in a joint model requires integrating over the ran-

dom effects distribution. This is usually computationally challenging, requiring for

instance quadrature approximation techniques (Liu et al., 2008) to cater for analyti-

cally intractable integrals or Bayesian approaches (Faucett and Thomas, 1996). How-

ever, in settings with multiple markers and multiple repeating infections as with the

transplantation study, the dimensionality of the integral is high and these methods

become too computationally expensive. In chapter 3, we propose to use a simulated

maximum likelihood (SML) approach based on a quasi-Monte Carlo (QMC) inte-

gration technique to evaluate the likelihood of a joint model with high dimensions

of random effects (Gouriéroux and Monfort, 1997; Lemieux, 2009). With the QMC

technique, the integrals are evaluated using a deterministic point set. This is more

computationally friendly, although the accuracy of the approximation depends on the

size of the QMC point set. We illustrate the QMC approach using simulated data

sets and the transplantation data.

The joint modeling framework can also be utilized to calculate and dynamically

update individual survival probabilities based on information that is available at new

time points. This presents physicians with an additional tool to optimize care at the

patient level, which is in line with the growing trend of personalized medicine. For

an overview and illustration of how joint models are used for dynamic prediction,

as well as how to evaluate their predictive performance, see Rizopoulos (2011) and

chapter 7 of Rizopoulos (2012). In chapter 4, motivated by the IC data of patients

who were all observed to have died or discharged, we performed dynamic prediction

of the risk of dying in the hospital. Despite the availability of daily measured SOFA

scores, only data collected during the first 24 hours of admission to the ICU was often

used to predict the survival status of patients at the end of hospital stay (Minne et al.,

2008). We applied the joint modelling framework which optimally uses all available

information that is accrued over time. Our joint model comprised a linear mixed

effects submodel for the development of longitudinal SOFA scores, and a proportional

subdistribution hazards (Fine and Gray, 1999) submodel for death as end point, with



Processed on: 28-9-2016Processed on: 28-9-2016Processed on: 28-9-2016Processed on: 28-9-2016

504928-L-bw-Zebedee504928-L-bw-Zebedee504928-L-bw-Zebedee504928-L-bw-Zebedee

5

discharge as competing risk. The two parts were linked by shared latent terms. As

opposed to the commonly used proportional cause-specific hazards formulation for

competing risk data, the subdistribution hazard directly translates to event-specific

survival probabilities. Also, since there was no censoring nor late entry that induced

left truncation in our data, discharged patients could remain in the risk set with a

weight of one. Hence, fitting our joint model was straightforward using free available

software such as the JM package (Rizopoulos, 2010) within the R statistical software

(R Core Team, 2013). However with respect to performing dynamic predictions within

the JM package, it is only possible to calculate the risk of dying in the hospital for a

patient given that he or she is still alive at given moments in time. This does not take

into account that discharged patients are no longer at risk of dying in the hospital after

their time of discharge. So additional routines were developed to perform dynamic

predictions such that patients were no longer at risk after being discharged. We

compared predictive values from our joint model with those obtained from an earlier

modelling approach by Toma et al. (2007) which relied on patterns discovered in the

SOFA scores over a given period of time.

Part II: Landmarking

Though the joint modelling approach allows for flexibility in the description of the

time updated marker subprocess, more modelling assumptions are often required and

the modelling exercise could become computationally intensive. This is particularly

the case when several longitudinal markers are used to make more accurate risk pre-

dictions. Alternatively, the landmarking paradigm (Van Houwelingen, 2007; Zheng

and Heagerty, 2005) offers a more flexible and relatively simple way to characterize the

association between a longitudinal marker and the time until an event. This does not

require any assumption on the distribution of marker development. At landmark s, a

survival model is fitted to data that comprise individuals who are at risk at landmark

time point ts. Only information that is available at ts is used and the value of the

time varying marker at ts is handled as a time fixed variable. Conditional on updated

information at ts, it is easy to compute survival probabilities at a prediction horizon

thor; thor = ts + w, where w is the width of the prediction window. The choice of w

depends on the length of follow-up and the overall prognosis.

An overview of existing methods for dynamic prediction based on landmarking

has been provided by Van Houwelingen and Putter (2012). They restrict to single-

type events (occurring once). Extensions to a competing risks scenario have also been

addressed (Nicolaie et al., 2013, 2012; Cortese and Andersen, 2010). In chapter 5, we

generalize the landmarking approach to a setting with recurrent events of the same
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6 Chapter 1. General introduction

type with application to the post-kidney transplantation data. At each landmark s, a

Cox proportional hazards model with random effects for repeated infections was fitted

since patients could experience more than one infection. The time-updated marker

values at ts were handled as time-fixed covariates. Commonly, the last observed

marker value prior to ts is carried forward to ts. But for our case, since some patients

had a large time difference between the last marker measurement and the landmark

time point, it was more plausible to use fitted marker values at ts (according to a mixed

effects model). This has the extra benefit of accounting for possible measurement

error in the original marker measurements. For the sake of parsimony, we merged

all landmark data sets to create a stacked set, and fitted supermodels that allow

parameters to depend on the landmark in a smooth fashion. We described four ways to

parameterize supermodels for recurrent event data, and settled for parameterizations

that could be implemented within available software. Also, as opposed to settings with

single-type events, where the stacked data set often comprise overlapping landmark

periods (Van Houwelingen and Putter, 2012), it could be a problem to use overlapping

landmark periods for recurrent events data since it will imply counting events multiple

times over the overlapping landmark. So, we compared supermodels that were fitted

on stacked data sets that comprise either overlapping or non-overlapping landmark

periods using both our study data set and simulated data sets.

Part III: Construction and validation of prediction models in the

presence of multiply imputed data

In practice, besides being able to accurately predict patients’ future health status,

it is also important for prediction models to be as parsimonious as possible. Models

with fewer predictors are often easier to implement and thus we are sometimes willing

to sacrifice some predictive performance. For instance, most physicians will be unwill-

ing to use large models that require collecting too much information. Furthermore,

it is much easier to display a parsimonious model using visual decision tools such as

nomograms which simplifies their potential application in everyday care. In the third

part of this thesis, motivated by follow-up data of COPD patients in primary care,

we aimed at constructing parsimonious models to predict four QoL domains, as well

as overall QoL. The variable selection and validation procedures were complicated by

the presence of missing data. Some strategies to go about this have been discussed in

the literature (Vergouwe et al., 2010; Vergouw et al., 2010; Heymans et al., 2007). For

instance, Vergouw et al. (2010) and Heymans et al. (2007) proposed to combine mul-

tiple imputations (MI) with backward elimination (BE) and bootstrapping to obtain

a parsimonious prediction model. Herein, we propose the least absolute shrinkage
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and selection operator (lasso) technique (Tibshirani, 1996) for predictor selection and

model fitting using data that has been multiply imputed, and bootstrap resampling

for model validation. In Chapter 6 we focus on the methodological aspects, especially

on handling multiply imputed data sets when performing bootstrap resampling for

model validation. A clinical application will be presented in chapter 7.

The lasso technique maximizes a function that combines the likelihood of the

data with a penalty on the absolute value of the regression coefficients, such that

parameter estimates are shrunk towards zero. This makes the lasso attractive for

prognostic studies since it improves the quality of predictions compared to predictions

based on a model fitted via unpenalized maximum likelihood. Parsimony is achieved

as well since variables whose parameter estimates are exactly zero can be dropped.

It is unclear whether the performance of a model fitted using the lasso still shows

some optimism. Hence we investigated optimism of the lasso model via bootstrap

resampling (Harrell, 2001). As opposed to traditional single-split data techniques

where only portions of the data are used for model training and validation, bootstrap

resampling makes full use of the data for model construction and gives nearly unbiased

estimates of future model performance (Breiman, 1992; Harrell, 2001; Steyerberg et al.,

2001). This technique internally validates the original model fitting process by taking

bootstrap samples from the original data set and reconstructing a new model using

the same procedure as with the original data set. The performance of this new model

is then checked on both the bootstrap sample and on the original data set, and any

discrepancy is seen as evidence for optimism. The procedure is repeated at least 100

times to obtain a stable estimate of the expected value of optimism (Harrell, 2001).

This procedure can be straightforwardly implemented in the absence of missing data.

But when data are missing and MI is performed, it is unclear how resampling should

be performed over the imputed data sets. We could either choose to: (i) perform

resampling such that the same subjects are drawn in the bootstrap samples that are

taken over the imputed data sets. Hence samples from the different imputed data

sets differ only by imputed values, (ii) perform resampling such that the bootstrap

samples taken over the imputed data sets differ by both the selected subjects and

imputed values, (iii) perform the resampling process using only one of the imputed

data sets, hence facilitating implementation, or (iv) resample the incomplete data set

before performing MI. This issue had not been addressed in the literature.

In chapter 8 we summarize our findings and conclusions and, give some directions

for future research.


