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a b s t r a c t

Cellini and Lambertini [2009. Dynamic R&D with spillovers: competition vs cooperation. J.
Econ. Dyn. Control 33, 568–582] study a dynamic R&D game with spillovers. This com-
ment demonstrates that, contrary to what is claimed in their paper, the game is not state
redundant and the open-loop Nash equilibrium is not subgame perfect.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Dynamic models are popular in modern industrial organization. They allow to model firms smoothing their investments
over a long time, as well as reacting to each other's past actions. Cellini and Lambertini (2009), CL in what follows, presented
a continuous-time generalization of the seminal static R&D model of d'Aspremont and Jacquemin (1988). Their paper
compares R&D incentives of firms that compete on R&D to those that cooperate on R&D. They claim that in a dynamic model
the conflict between individual and social incentives does not necessarily arise, unlike the situation for the static model.

In particular, their analysis consists of three steps: they characterize the open-loop Nash equilibrium, they claim to prove
that it is subgame perfect, and then they analyze the steady-state allocation. Their proof of subgame perfectness rests on the
claim that the closed-loop equilibrium collapses to the open-loop equilibrium.

The aim of this comment is to show that the second step of their analysis, embodied in their Lemma 1, is incorrect. First
we shall show that the proof of this lemma is flawed, and subsequently we give a simple argument why the statement of the
lemma cannot hold either. That is, we show that the open-loop equilibrium is not subgame perfect and the game is not state
redundant or perfect. The solution analyzed in their paper therefore reduces to the open-loop situation, where firms commit
to the entire investment schedule at the beginning of the game.
(G. Smrkolj), f.o.o.wagener@uva.nl (F. Wagener).

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2016.10.011
http://dx.doi.org/10.1016/j.jedc.2016.10.011
http://dx.doi.org/10.1016/j.jedc.2016.10.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2016.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2016.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2016.10.011&domain=pdf
mailto:grega.smrkolj@newcastle.ac.uk
mailto:f.o.o.wagener@uva.nl
http://dx.doi.org/10.1016/j.jedc.2016.10.011
http://dx.doi.org/10.1016/j.jedc.2016.10.011


G. Smrkolj, F. Wagener / Journal of Economic Dynamics & Control 73 (2016) 453–457454
2. The model

We quickly summarize the model of CL. Time tZ0 is continuous. There are two firms that compete in a market with
market demand

pðtÞ ¼ A�q1ðtÞ�q2ðtÞ: ð1Þ

Firms decide simultaneously how much to produce (qi) and how much R&D effort to exert (ki). Instantaneous production
costs are CiðtÞ ¼ ciðtÞqiðtÞ, i¼1,2, where ci is the marginal cost of firm i. Marginal costs evolve over time as

_ciðtÞ ¼ ciðtÞ �kiðtÞ�βkjðtÞþδ
� �

; ð2Þ

where, as always, ja i, where 0rβr1 is the level of spillover, and where δZ0 is the technology depreciation rate. R&D
costs ðΓiÞ are quadratic,

ΓiðkiÞ ¼ bk2i ; ð3Þ

with b40, and the instantaneous profit of firm i is therefore

πiðtÞ ¼
�
A�qiðtÞ�qjðtÞ�ciðtÞ

�
qiðtÞ�bkiðtÞ2: ð4Þ

Total discounted profits are

Πi ¼
Z 1

0
πiðtÞe�ρtdt; ð5Þ

where ρ40 is a constant discount rate that is equal for both firms. The optimal control problem of firm i is to find controls
q�i and k�i that maximize the profit functional Πi subject to the state equations (2) and the initial conditions cið0Þ ¼ ci0.
3. The open-loop Nash equilibrium is not subgame perfect

3.1. Subgame perfectness and time consistency

Introduce the notation ui(t) for an open-loop strategy. Recall that an open-loop Nash equilibrium ðu�
1ðtÞ;u�

2ðtÞÞ of this
differential game is subgame perfect, or strongly time consistent, if for every time T40, we can change the strategies u�

i ðtÞ for
times 0rtoT at will, as long as the resulting strategies are still admissible, and the resulting strategies still provide an
open-loop Nash equilibrium for tZT .

The equilibrium is time consistent, or weakly time consistent, if after having played up to time T according to the strategies
u�
i ðtÞ, the players are given the option to reconsider their strategies for the remainder of the time, and the strategies

ðu�
1ðtÞ;u�

2ðtÞÞ, restricted to tZT , still form an open-loop Nash equilibrium.

3.2. First argument

CL claim, in their Lemma 1, that the open-loop equilibrium of this game is subgame perfect.
We contest this. Our argument runs as follows: Fershtman (1987) showed that to be subgame perfect, a Nash equilibrium

in open-loop strategies has to be an equilibrium in feedback strategies; in particular the open-loop equilibrium strategies
have to be independent of initial conditions. For infinite horizon games like the present one, where the only explicit time
dependence is exponential discounting, the set of feedback strategies is necessarily invariant under time-shifts (Basar and
Olsder, 1999). That is, if t↦u�ðtÞ is an equilibrium strategy tuple, then so is t↦u�ðτþtÞ, for each τ40. Moreover, if u�ðtÞ tends
to a limit u�

1 as t-1, which is the case in the present game, then uðtÞ ¼ u�
1 is also an equilibrium feedback strategy tuple,

which is moreover independent of both time and initial conditions; that is, it is a real constant. This follows from letting τ

tend to infinity.
In the present game, this would imply that the state variables are constant — as a consequence of Eq. (16) below — and

hence that every state is a steady state. However, CL have showed that under open-loop Nash equilibrium dynamics, there
are at most three steady states. This constitutes a contradiction.

A second, more detailed argument is given in Section 3.5.

3.3. First-order optimality conditions

It follows that the proof of Lemma 1 cannot be correct: we shall try to point out its flaws.
CL use the memoryless closed-loop information structure (cf. Basar and Olsder, 1999): a strategy is memoryless closed-

loop, if it conditions the action of the player on the current state and time, as well as on the initial state. That is, in the
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present game a closed-loop strategy u�
i of player i is of the form

u�
i ¼ q�i ðt; c10; c20; c1ðtÞ; c2ðtÞÞ; k�i ðt; c10; c20; c1ðtÞ; c2ðtÞÞ

� �
;

where ci0 ¼ cið0Þ for i¼1,2.
The necessary optimality conditions for firm i can be derived from the Maximum Principle, assuming that player j has

announced a closed-loop strategy u�
j ðt; c10; c20; c1ðtÞ; c2ðtÞÞ. Denoting the costates that firm i associates with the states ci and cj

as λii and λij, the current-value Hamiltonian of firm i is

Hiðλii; λij; ci; cj; qi; q�j ; ki; k�j Þ ¼ ðA�qi�q�j �ciÞqi�bk2i

�λiiciðkiþβk�j �δÞ�λijcjðk�j þβki�δÞ: ð6Þ

Here we use the convention that arguments t are suppressed, as in ci ¼ ciðtÞ, and that the arguments of the closed-loop
strategy functions like q�i ðt; c10; c20; c1; c2Þ are suppressed as well. The non-starred variables qi and ki indicate mere variables.

If the maximum is obtained for an interior solution, the first-order conditions with respect to the controls qi and ki are

∂Hi

∂qi
¼ A�2qi�q�j ðc1; c2Þ�ci ¼ 0 3 q�i ¼

A�q�j �ci
2

; ð7Þ

∂Hi

∂ki
¼ �2bki�λiici�βλijcj ¼ 0 3 k�i ¼ �λiiciþβλijcj

2b
: ð8Þ

The first costate equation reads

_λ ii ¼ ρλii�
∂Hi

∂ci
�∂Hi

∂qi

∂q�i
∂ci

�∂Hi

∂q�j

∂q�j
∂ci

�∂Hi

∂ki
∂k�i
∂ci

�∂Hi

∂k�j

∂k�j
∂ci

ð9Þ

¼ ρλii�
∂Hi

∂ci
�∂Hi

∂q�j

∂q�j
∂ci

�∂Hi

∂k�j

∂k�j
∂ci

: ð10Þ

The third and fifth terms on the RHS in (9) are enveloped out using the first-order conditions (7) and (8). Evaluating the
derivatives, we obtain

_λ ii ¼ q�i þλiiðk�i þβk�j þρ�δÞþq�i
∂q�j
∂ci

þðβλiiciþλijcjÞ
∂k�j
∂ci

: ð11Þ

The second costate equation reads

_λ ij ¼ ρλij�
∂Hi

∂cj
�∂Hi

∂qi

∂q�i
∂cj

�∂Hi

∂q�j

∂q�j
∂cj

�∂Hi

∂ki
∂k�i
∂cj

�∂Hi

∂k�j

∂k�j
∂cj

ð12Þ

¼ ρλij�
∂Hi

∂cj
�∂Hi

∂q�j

∂q�j
∂cj

�∂Hi

∂k�j

∂k�j
∂cj

: ð13Þ

The third and fifth terms on RHS in (12) have again been enveloped out using the first-order conditions (7) and (8).
Evaluating the derivatives, we obtain

_λ ij ¼ λij k�j þβk�i þρ�δþcj
∂k�j
∂cj

 !
þβλiici

∂k�j
∂cj

þq�i
∂q�j
∂cj

: ð14Þ

In a closed-loop Nash equilibrium, the conditions (7), (8), (11) and (14) need to hold for both firms, together with the
state equation (2), the initial conditions cið0Þ ¼ ci0 and transversality conditions as t-1.

Note that Eq. (7) for the quantities q�i does not involve any costates; in a Nash equilibrium in either closed-loop or
feedback strategies, they form the system

q�i ¼
A�q�j �ci

2
; q�j ¼

A�q�i �cj
2

; ð15Þ

which can be solved to obtain the optimal controls q�i as functions of the states

q�1ðt; c10; c20; c1; c2Þ ¼
A�2c1þc2

3
; q�2ðt; c10; c20; c1; c2Þ ¼

A�2c2þc1
3

: ð16Þ

From this we obtain in particular that ∂q�j =∂cj ¼ �2=3.
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3.4. Cross-multipliers cannot always vanish

We can now examine the claim of CL that there is always a possible solution in this model for which the cross-multipliers
λij vanish identically for all t. Setting β¼ 0 and assuming that λijðtÞ ¼ 0 for all t, Eq. (14) implies that

0¼ �2
3
q�i ð17Þ

for all t, implying that there is never any production. But in the steady state given by CL, q�i 40; this is a contradiction.
The incorrect conclusion is caused by two mistakes made in the derivation of Lemma 1, which is contained in Appendix A

of CL. First, it is stated incorrectly that “Observe that (9) only contains firm i's state variable, so that in choosing the optimal
output at any time during the game firm i may disregard the current efficiency of the rival” (CL, Appendix A). Their Eq. (9) is
equivalent to our Eq. (7). This error possibly resulted from not writing out the argument of q�j .

Second, in the derivation of the all-important equation (14), that is Eq. (A.2) in CL, it is claimed that this equation is equal
to the following equation, which is written in our notation as

_λ ij ¼ ρλij�
∂Hi

∂cj
�∂Hi

∂ki
∂k�i
∂cj

: ð18Þ

Note the differences with our Eq. (14): the terms involving ∂q�j =∂cj and ∂k�j =∂cj are missing, while a term involving ∂Hi=∂ki is
present. But for an interior solution, this latter term vanishes because of the Maximum Principle.

3.5. Second argument

Here we give a more detailed argument, not relying on Fershtman (1987), showing that the claim of Lemma 1 of CL
cannot hold.

In CL it has been shown that the game under open-loop strategies has at most three possible symmetric steady states,
of which one is of a saddle type. Take initial cost levels ðc1ð0Þ; c2ð0ÞÞ ¼ ðc0; c0Þ, not equal to a steady state-value, and such
that under the associated open-loop Nash equilibrium strategies ðu�

1ðtÞ;u�
2ðtÞÞ the system tends to the symmetric steady

state of a saddle type. Arguing by contradiction, let us assume that the open-loop Nash equilibrium is strongly time
consistent.

Recall that in order to be subgame perfect, for any T40 the restriction of the u�
i ðtÞ to tZT should yield an open-loop

Nash equilibrium for the trajectory starting at time T from the state ci(T).
We introduce the modified controls

~kiðtÞ ¼
δ

1þβ for 0rtrT ;

k�i ðtÞ for t4T ;

(

~qiðtÞ ¼ q�i ðtÞ;

for i¼1,2. It follows that the modified state evolutions satisfy _~c iðtÞ ¼ 0 for 0rtrT: that is, ~ciðtÞ is constant on this time
interval and ~ciðTÞ ¼ ~cið0Þ ¼ c0. The proof rests on the observation that the controls u�

i ðtÞ, and hence also the modified controls
~uiðtÞ, tend exponentially to their steady-state values as t-1; by subgame perfectness, ~uiðtÞ form an open-loop Nash
equilibrium for the system starting at ~ciðTÞ; hence ~ciðtÞ have to tend to one of the possible three steady-state values. On the
other hand, _~c iðtÞ ¼ 0 for 0rtrT and _~c iðtÞ is almost 0 for t4T: this limits the maximal distance between the initial values c0
and the limiting values of ~ciðtÞ as t-1, leading to a contradiction.

In order to execute the details, note that since the state trajectory tends to the steady state, we have

lim
t-1

k�i ðtÞ ¼ lim
t-1

~kiðtÞ ¼
δ

1þβ
:

We introduce ΔiðtÞ by

~kiðtÞ ¼
δ

1þβ
þΔiðtÞ:

From the theory of differential equations, we can find C40, λAR, such that

jΔiðtÞjrCe� λt :

Such an inequality holds clearly for large t and λ close to the largest negative real part of an eigenvalue of the saddle steady
state; by taking C sufficiently large, it can be made to hold for all tZ0.

Substituting these expressions in the state dynamics (2) yields

d
dt
log ~ciðtÞ ¼

_~c i

~ci
¼ δ�kiðtÞ�βkjðtÞ ¼ �ΔiðtÞ�βΔjðtÞ:
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From this relation, we derive the estimate

jlog ~ciðtÞ� log ~cið0Þj ¼ jlog ~ciðtÞ� log ~ciðTÞjr
Z t

T

���Δi�βΔj
��dsr Z t

T
ð1þβÞCe� λsdsr2Ce� λT : ð19Þ

Take ε40 sufficiently small such that the steady state ðc; cÞ of the differential game does not satisfy e� εc0rcreεc0; for the
rest is ε arbitrary. We now choose T such that 2Ce� λT ¼ ε. Then it follows from (19) that

e� εc0r ~ciðtÞreεc0

for all t, and hence that ~ciðtÞ tends to a steady-state value in this interval. As ε40 was arbitrary, it follows that ðc0; c0Þ is a
limit point of steady states, and therefore a steady state itself. But ðc0; c0Þ has been chosen such that it is not a steady state;
hence we have reached a contradiction, and the open-loop Nash equilibrium cannot be subgame perfect.

This shows again that the claim of Lemma 1 is not correct.
4. Concluding remarks

Contrary to what is claimed in CL, the closed-loop solution of the R&D game does not coincide with the open-loop
solution. Consequently, the game under consideration is not state-redundant or perfect, and the paper effectively discusses
only the open-loop solution.

Some of the main conclusions in CL relate to the private and social desirability of R&D cooperation. This analysis depends
on the present value of variables that are affected by the R&D investments of firms over time. As the closed-loop solution
differs from the open-loop solution, it is open to question to what an extent (if at all) are conclusions in CL relevant to great
many industries in which firms do not commit to the entire investment schedules at the very beginning but can later
strategically alter them at will in response to competitors. It is also open to question how realistic the formulation of R&D
cartel in CL is. In their derivations for the R&D Cartel (pp. 573–574 in CL), CL implicitly assume that if marginal cost within
the R&D cooperative changes, the opponent's quantity does not change. Besides clearly violating the feedback principle
underlying the closed-loop solution, this imposition also appears counterintuitive as firms in the R&D cooperative are
(usually) supposed to jointly decide on their R&D efforts taking into account that marginal cost in any period affects the
ensuing Nash-equilibrium profits in the product market. These specific modelling choices in CL are important to bear in
mind also when one potentially considers comparing other possible regimes (i.e., market collusion) to regimes considered in
CL. Conclusions in other papers that use the same analytical approach (e.g., Cellini and Lambertini, 2005, 2011) should also
be reexamined in a similar way.
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