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In this paper test equating is considered as a missing data problem. The unobserved

responses of the reference population to the new test must be imputed to specify a new

cutscore. The proportion of students from the reference population that would have failed

the new exam and those having failed the reference exam are made approximately the

same. We investigate whether item response theory (IRT) makes it possible to identify

the distribution of these missing responses and the distribution of test scores from

the observed data without parametric assumptions for the ability distribution. We show

that while the score distribution is not fully identifiable, the uncertainty about the score

distribution on the new test due to non-identifiability is very small. Moreover, ignoring the

non-identifiability issue and assuming a normal distribution for ability may lead to bias in

test equating, which we illustrate in simulated and empirical data examples.

Keywords: item response theory, incomplete design, marginal Rasch model, missing data, non-identifiability, test

equating

1. INTRODUCTION

One of the advantages of item response theory (IRT) over classical test theory is its ability to handle
incomplete designs. Among the important applications in which data are missing by design is test
equating, where results of different test forms must be made comparable by accounting for the two
key facts. The first is that the reference and the new tests need not be of the same difficulty, and the
second is that the reference and the new populations need not have the same ability distribution
(Kolen and Brennan, 2004; von Davier, 2011).

Suppose, that the same students respond both to the reference and to the new test. Assume, for
the sake of the argument, that both tests are scored with a number correct score. It is clear that,
if both tests represent the same underlying construct, both scores are automatically equated. The
need for equating scores derives from the fact that for every student we only observe the response
to either the reference or the new test. That is, it derives from the fact that there is a missing data
problem.

Equating procedures are methods to overcome the missing data problem. There are many
different methods for score equating with some methods based on IRT and other on classical
test theory. These methods are covered in detail by, for example, Kolen and Brennan (2004), von
Davier (2011), von Davier et al. (2004), Holland and Dorans (2006), and Livingston (2004). Most
all equating procedures are such that all students with the same score on the reference test get the
same equated score on the new test. This in contrast to both the complete data case we considered
above, and more modern (multiple) imputation based techniques (Rubin, 1987).

The central question we consider in this paper is whether the distribution of the missing data
(marginal or conditionally on the observed data) is in principle identifiable from the observed data.
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Bolsinova and Maris Missing Data Problem in IRT

If the marginal distribution is not identifiable, neither is the
conditional distribution needed to impute the missing data.
Regardless of the preferred equating method, if the distribution
of the missing data is not identifiable, the missing data problem
can not be solved.

Suppose we take the most modest form of equating:
translating the scores on the new test to a pass/fail decision (i.e.,
selecting a cut-score below which a student fails) consistently
with the pass/fail criterion on the reference test, i.e., such the
passing percentage in the reference population would be the same
on the new test as it is on the reference test. To specify a new
cutscore, it is sufficient to estimate the distribution of the scores
of the persons from the reference population to the new test,
denoted by p(X+mis)

1. As we will show in the paper, this is not
possible using an IRTmodel given the observed data only. Hence,
solving more complicated problems of equating (obtaining a full
correspondences between the scores on the two tests) is also not
possible.

When IRT is used for test equating, the joint distribution
of the observed data [responses of the reference population on
the reference test, denoted by p(Xobs)] and the missing data
[responses of the reference population on new test, denoted by
p(Xmis)] is modeled by a marginal IRT model that consists of
a conditional distribution of the data given a latent variable θ

and a population distribution f (θ). Two elements are required
to estimate the distribution of missing responses p(Xmis). First,
the parameters of the items from the new test and from the
reference test must be placed on the common scale. Second,
the ability distribution of the reference population given the
observed data f (θ |Xobs) must be estimated. In this paper, we
have assumed that the tests are well connected through a linking
design2 and the IRT model is correctly specified and, therefore,
the first element of equating is fully satisfied. We have focused
on the second element, which is usually ignored in test equating
practice. The problem is that the full distribution of ability f (θ)
is not identifiable, as has been shown by Cressie and Holland
(1983). Consequently, as we show in this paper, the distribution
p(X+mis) is also not identified from the observed data only. This
issue is usually ignored in test equating practice, and instead a
parametric distribution, usually a normal distribution, is assumed
for f (θ). This assumption is not guaranteed to hold in practice,
therefore it is important to consider to what extent the problem
of inferring the distribution of missing responses can be solved
without extra distributional assumptions.

We will discuss the problem of non-identifiability of p(X+mis)
using the marginal Rasch model (RM) for dichotomous data,
which has only one parameter in the conditional model (Rasch,
1960), as an example. The RM is chosen here for convenience;
the identifiability issues are present at the level of the marginal
model and are therefore not affected by the choice of a particular
parametric conditional model.

1For simplicity, we considered a situation in which the new and the reference test

do not have any common items. In the general case, the missing data are responses

to the items that belong to the new test but not the reference test.
2For a review of different linking designs see, for example, Angoff (1971), Wright

and Stone (1979), Lord (1980), Petersen et al. (1989), and Kolen and Brennan

(2004). Some of these linking designs are presented in Appendix D.

In this study we investigate the extent to which the
unavoidable uncertainty about the score distribution p(X+mis)
that comes from non-identifiability is problematic in practice.
The main purpose of this study is not to introduce a new method
for test equating, but to highlight a fundamental property of
marginal IRT models. This property is that in IRT equating
the score distribution p(X+mis) can not be identified without
making extra assumptions about the parametric shape of the
ability distribution, and the practical consequences of ignoring
this property.

2. WHY IRT CANNOT SOLVE THE MISSING
DATA PROBLEM

In this section we describe a simple model for test equating
that tries (unsuccessfully) to predict missing responses from the
observed data without additional distributional assumptions. The
marginal RM is:

p(Xobs = x) =

∫

R

∏

i

exp(xi(θ − δi))

1+ exp(θ − δi)
f (θ) dθ, (1)

where x is a vector of dichotomous responses with xi = 1 if
item i is answered correctly and 0 otherwise; δi is the difficulty
parameter of item i. There is assumed to be a population
distribution f (θ); however, its parametric shape is not known.

Following Cressie and Holland (1983), the marginal RM in
Equation (1) can be re-written as

p(Xobs = x) =
∏

i

(exp(−δi))
xi

∫

R

(exp(θ))x+
∏

i

1

1+ exp(θ − δi)

f (θ) dθ, (2)

where x+ is the number of items answered correctly. It can be
seen that

f (θ |Xobs = 0) ∝
∏

i

1

1+ exp(θ − δi)
f (θ), (3)

which is the posterior distribution of ability given that the
responses to all items are incorrect. Therefore,

p(Xobs = x) ∝
∏

i

(exp(−δi))
xiE((exp(2))x+ |Xobs = 0). (4)

To make p(Xobs = x) a proper density, a normalizing constant
should be added. A convenient parameterisation of the marginal
RM (Maris et al., 2015) is:

p(Xobs = x) =

∏

i b
xi
i λx+

∑n
s= 0 γs(b)λs

, (5)

where b = {b1, b2, . . . , bn} is a vector of item parameters that
are transformations of difficulty parameters: bi = exp(−δi); λ =

{λ0, λ1, . . . , λn} is a vector of population parameters, and γt(b)
denotes a t-th order elementary symmetric polynomial (Verhelst
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et al., 1984). The denominator ensures that the distribution
integrates to 1. The model in Equation (5) is a marginal Rasch
model if and only if λ is a sequence of moments of a distribution.
This imposes a set of inequality constraints on the parameters
(Shohat and Tamarkin, 1943):

det











λ0 λ1 . . . λm
λ1 λ2 . . . λm+ 1

...
...

. . .
...

λm λm+ 1 . . . λ2m











≥ 0,m = 0, 1, 2, . . . (6)

and

det











λ1 λ2 . . . λm+ 1

λ2 λ3 . . . λm+2

...
...

. . .
...

λm+ 1 λm+2 . . . λ2m+ 1











≥ 0,m = 0, 1, 2, . . . (7)

The extended Rasch model [ERM] (Tjur, 1982; Cressie and
Holland, 1983; Maris et al., 2015) does not have these restrictions.

We now apply the ERM to test equating. Let us consider the
joint density of the response vectors Xobs and Xmis:

p(Xobs = x,Xmis = x∗) =

∏n
i= 1 b

xi
i

∏m
j= 1 d

x∗j
j ηx++x∗+

∑n+m
t= 0 γt(b, d)ηt

, (8)

where d = {d1, . . . , dm} are the parameters of the items in
the new test (analogous to b) and η = {η0, η1, . . . , ηn+m} is a
vector of (n+m+ 1) population parameters corresponding to a
combined test consisting of the items from both the reference and
the new exams. It can be derived that the marginal distribution
of the scores of the reference population on the new test is (see
Appendix A, for details):

Pr(X+mis ≤ T) =

T
∑

t= 0

p(X+mis = t) =

T
∑

t= 0

γt(d)
n
∑

s= 0
γs(b)ηs+ t

∑n+m
u= 0 γt(b, d)ηu

.

(9)
The expression for this distribution contains parameters η,
whereas the density of the observed data contains parameters λ.
The parameters η and λ are related to each other as follows (see
Appendix A, for details):

λs =

m
∑

t= 0

γt(d)ηt+s,∀s ∈ [0, n]. (10)

The parameters λ are identified from the data (up to a
multiplicative constant), whereas parameters η are not; this is
because in this system of (n+1) Equations (4) there are (n+m+1)
unknowns. Therefore, having observed only dataXobs, we cannot
make direct inferences about the distribution of X+mis. Hence,
IRT cannot solve the missing data problem.

3. WHAT IRT ALLOWS US TO INFER
ABOUT THE DISTRIBUTION OF MISSING
RESPONSES

The conclusion at the end of the previous section does not
mean that we do not know anything about the parameters η or
the score distribution. The relations between λ and η impose
restrictions on the values that η can take, and therefore, on the
score distribution. Before considering what is and is not known
about the score distribution p(X+mis), we should discussed some
additional constraints for parameters η.

Along with the restriction given by the relations with the
identified parameters (10), there are other restrictions that the
parameters η must satisfy in order to be parameters of the
ERM. First, they must be positive to ensure that all probabilities
in Equation (9) are positive. To derive a second constraint,
consider the probability of answering item i correctly given the
rest score on the test:

Pr(Xi = 1 |X
(i)
+obs

+ X+mis = s)

=
Pr(Xi = 1,X

(i)
+obs

+ X+mis = s)

Pr(X
(i)
+obs

+ X+mis = s)

=
biγs(b

(i), d)ηs+ 1

biγs(b(i), d)ηs+ 1 + γs(b(i))ηs
=

bi
ηs+ 1
ηs

1+ bi
ηs+ 1
ηs

, (11)

where b(i) denotes a vector of item parameters of all items in the

reference test except item i, and X
(i)
+obs

is the sum score on these
items; that is, the rest score. From the measurement perspective,
this probability should increase when s increases (Junker, 1993;
Junker and Sijtsma, 2000). This ensures that all item-rest
correlations are positive, so that it makes sense to score the
particular set of items together as one test. For this to be true,
the ratios ηs+ 1

ηs
must form a monotonically increasing sequence.

The inequality constraint

η1

η0
≤

η2

η1
≤

η3

η2
≤ · · · ≤

ηn+m

ηn+m− 1
(12)

can be specifies as a part of in the prior distribution of the
population parameters (see Appendix E, for details).

An alternative motivation for using the constraints in
Equation (12) is that they follow from an important feature of
the marginal RM, namely that

ηs+ 2

ηs
−

(

ηs+ 1

ηs

)2

(13)

is the (posterior) variance of exp(θ) of a person with a score
of s (Maris et al., 2015). The monotonicity constraints in
Equation (12) follow from non-negativity of variance. Therefore,
the constraints in Equation (12) are necessary but not sufficient
for the parameters to satisfy the moment constraints of the
marginal RM. Hence, the model we are using for equating is an
ERM with the monotonicity constraints. As will be shown in the
next subsection this restriction enables to reduce the uncertainty
about the score distribution on the new test.
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3.1. A Simple Case: m = 1
In this subsection we derive the uncertainty about the marginal
probability of answering a new item correctly, given the observed
responses to n items. Let us consider the simplest case in which
the number of items in the new test is equal to one (m = 1).
Because we are ignoring the effect of sampling variability on the
uncertainty, we consider all identifiable parameters (b and λ)
known.

Let λ = {λ0, λ1, . . . , λn} denote the set of identifiable
population parameters; η = {η0, η1, η2, . . . , ηn+ 1} the set
parameters for the combined test; and d the item parameter of
the new item. The relations between λ and η form a system of
linear equations:











λ0
λ1
...

λn











=











1 d . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 d

























η0
η1
...

ηn
ηn+ 1















. (14)

This system of n + 1 equations does not have a unique solution
because the number of unknowns (n + 2) is larger than the
number of equations. The general solution is:











η0
η1
...

ηn+ 1











=













k
λ0
d
− k

d
...

∑n
t= 0

(−1)n− tλt
dn+1− t + (−1)n+ 1 k

dn+ 1













, (15)

where k is a parameter that captures all uncertainty about η,
such that the unique solution to the system of equations can be
computed when k is known. This parameter is not completely
free because η must satisfy the set of inequalities:

{

ηs > 0,∀s ∈ [0 : (n+ 1)],
ηs+ 1
ηs

≥
ηs

ηs− 1
,∀s ∈ [1 : n].

(16)

We are interested in the probability of answering the new item
correctly, which can be written as a function of k:

Pr(Xmis = 1) = π+(k) =
d
∑n

t= 0 γt(b)ηt+ 1

d
∑n

t= 0 γt(b)ηt+ 1 +
∑n

t= 0 γt(b)ηt
.

(17)
Using the solutions of the system of equations, one can derive (for
details, see Appendix B):

π+(k) = 1−
k
∑n

t= 0
(−1)t− 1γt(b)

dt
∑n

t= 0 γt(b)λt
+

∑n
t= 1

∑t− 1
s= 0

(−1)t− sγt(b)λt
dt− s

∑n
t= 0 γt(b)λt

.

(18)
This expression is linear in k. Therefore, the uncertainty about
the probability of answering the new item correctly depends on
the difference between the maximum and the minimum of k.
The upper and the lower bounds for k can be derived from the
inequalities for η in Equation (16).

From the non-negativity of the parameters η (the first set
of inequalities in Equation 16), we have (see Appendix B, for
details):

max(0,
⌊ n+ 1

2 ⌋

max
u= 1

2u− 1
∑

t= 0

(−1)tλtd
t) < k <

⌊ n2 ⌋

min
u= 0

2u
∑

t= 0

(−1)tλtd
t . (19)

Moreover, the second set of inequalities in Equation (16) leads to
(see Appendix B):

⌊ n− 1
2 ⌋

max
u= 0

(

λ22ud
2u

λ2u+ 1d + λ2u
+

2u− 1
∑

t= 0

(−1)tλtd
t

)

≤ k ≤
⌊ n2 ⌋

min
u= 1

(

2u− 2
∑

t= 0

(−1)tλtd
t −

λ22u− 1d
2u− 1

λ2ud + λ2u− 1

)

. (20)

Equations (19) and (20) together provide the lower and the upper
bounds for k.

Next, we present a small example to show how the bounds
on k change and what the uncertainty about the marginal
probability of a correct response to the new item under the
ERM is for different values of n. The item parameter d of
this item varied from exp(−2) to exp(2), corresponding to the
difficulty parameter varying from 2 to –2. We show how large the
uncertainty is when only the non-negativity constraints are used,
and when both the non-negativity and monotonicity constraints
are used.

A data set with responses of persons sampled from a
population with an ability distribution N (0, 1) to a test of six
items with difficulties sampled from ln(bi) ∼ N (0, 1) was
simulated. First, only three items were taken into account, then
four items, five items and, finally, all six items. We considered the
identifiable parameters b and λ known in order to evaluate the
uncertainty about π+ coming only from the non-identifiability of
η. The identifiable parameters were fixed at their EAP-estimates
obtained with a Gibbs sampler for the ERM (Maris et al., 2015),
see Table 1.

The possible range of values for the free parameter k, and
therefore for the probability of interest π+ (given the fixed values
of b and λ) was evaluated for different values of the difficulty of
the new item. Figure 1 shows the possible ranges of values for the
probability of answering the new item correctly when only the
constraints in Equation (19) were used (in gray) and when the
constraints in Equations (19) and (20) were used (in black).

The uncertainty about π+ decreases when n increases.
For n = 3, the difference between the maximum and the
minimum of π+ is for some d larger than 0.15 when only

TABLE 1 | Item and population parameters used in the illustrative example.

n b λ

3 {1.00,0.58,0.41} {1.00,0.80,1.16,3.25}

4 {8.90,1.00,0.58,0.41} {1.00,0.52,0.45,0.68,1.99}

5 {8.91,1.12,1.00,0.58,0.41} {1.00,0.42,0.29,0.32,0.60,2.01}

6 {8.86,1.12,1.00,0.85,0.58,0.41} {1.00,0.36,0.22,0.19,0.27,0.63,2.43}
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FIGURE 1 | Uncertainty about the marginal probability of answering a new item correctly (gray—without monotonicity constraints, black—with

monotonicity constraints) given the difficulty of the new item (on the x-axis). (A) n = 3, (B) n = 4, (C) n = 5, (D) n = 6.

the constraints in Equation (19) were used and larger than
0.05 when all the constraints were used; however, when n =

6, the maximum discrepancy is 0.03 and 0.006 when only
non-negativity constraints and all the constraints were used,
respectively. Moreover, the uncertainty about π+ for the items
with the difficulty parameter close to the items that have been
answered is already very small if n = 3. In general, the
uncertainty is larger for items with extreme difficulty3.

We have used this small example to explicitly show that it is
not possible to compute the marginal probability of answering
the new item correctly. However, there uncertainty about this
probability is not large.

It is difficult to extend the analytic solution described in this
section to realistic settings, with n andm being usual test lengths,
because of the accumulation of error while computing the bounds
for k. Therefore, below we present a simulation-based approach
to the problem. Appendix C presents a proof of the fact that a
simulation based approach is justifiable.

3.2. Simulated Examples
This subsection provides two simulated examples to illustrate the
following:

3The graphs are not symmetric because the difficulties of the items in the reference

test (− ln b) were also not symmetric around zero.

1. the size of the uncertainty about the score distribution and
which part of it is due to the non-identifiability of the
parameters;

2. the practical consequences of ignoring the issue of non-
identifiability of f (θ) when the true ability distribution is not
normal.

In the first example, the data were simulated according to the
non-equivalent group design with three linking groups. Each
group consisted of 500 persons who gave responses to 15 items
from the new test and 15 items from the reference test. The
relevant equating designs are described in the Appendix D.
The following parameters were used: n = m = 60, N =

M = 5000. Responses were simulated according to the simple
RM, with person parameters sampled from N (0, 1) for the
reference population, N (0.5, 0.82) for the new population and
N (−0.5, 22), N (−0.2, 22), N (−0.1, 22) for the three linking
groups4. The item difficulties (− ln bi) were sampled from a
standard normal distribution.

First, the data augmented Gibbs sampler for the ERM
with monotonicity constraints was used to estimate the total

4These values could be seen as matching empirical practice in the sense that the

persons in the linking groups perform worse than in the examination conditions

and are more heterogeneous.
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uncertainty about the score distribution. Second, to eliminate
the uncertainty coming from the sampling variability, the new
data were simulated with the same parameters but larger sample
sizes (N = M = 1, 000, 000) and the algorithm was used
with all the item parameters fixed at their true values. The
posterior variance of the score distribution that remained was
almost entirely due to the non-identifiability of the population
parameters. Figure 2 presents the widths of the 95% credibility
intervals of Pr(X+mis ≤ T),∀T ∈ [0 : m] based on 50,000 draws
from the posterior distribution after 10,000 iterations of burn-in.
With a large N and fixed item parameters, the uncertainty about
the score distribution becomes very small, not exceeding 0.002 on
the probability scale.

In the second example, we compared the results of test
equating using a marginal RM assuming a normal distribution
of ability in the population with the results of test equating
using the ERM without the normality assumption. For the R-
code of the analysis and the output, see Supplementary Material.
The data with different distributions of ability in the reference
population were simulated. To show what happens if normality is
violated, we used skew-normal distribution for ability (Azzalini,
2005). The parameters of the skew-normal distribution were
chosen such that the mean was equal to 0, variance was equal

FIGURE 2 | Uncertainty about the score distribution of the reference

population on the new test.

FIGURE 3 | Specification of the skewed ability distributions.

to 1, and skewness was varied γ = −0.25,−0.5,−0.75. These
distributions can be seen in Figure 3 (dotted lines) next to the
standard normal distribution (solid line).

FIGURE 4 | Estimated score distributions with MML and ERM when the

ability distribution in the reference population is skewed. (A) γ = −0.25;

(B) γ = −0.5; (C) γ = −0.75.
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For each of the three degrees of skewness, we simulated
the data of 5000 persons from both the reference and the
new populations taking the tests, which consisted of 40 items
each, connected through three linking groups consisting of 500
persons responding to 20 items (10 from the reference test
and 10 from the new test). For the new population and the
three linking groups, person parameters were sampled from
a normal distribution [N (0.5, 0.92), N (−0.5, 22), N (−0.2, 22),
N (−0.1, 22), respectively]. Item difficulties were sampled from
N (0, 1). The data were simulated according to a RM.

The score distribution Pr(X+mis ≤ T) was estimated
with marginal maximum likelihood (MML) assuming a normal
distribution and with the Gibbs Sampler for the ERM. The ERM
score distribution together with the 95% credibility intervals
of Pr(X+mis ≤ T) based on 50,000 draws from the posterior
distribution (after 10,000 iterations of burn-in) are presented
in Figure 4, together with the MML-estimate of the score
distribution. The more skewed the ability distribution is, the
greater the difference between equating results for the MML and
ERM approaches. When γ = −0.25, the MML-estimate does not
fall outside of the 95% credibility interval obtained with the ERM.
When γ = −0.5, the estimate based on the normality assumption
is outside the credible interval for low and high scores, but
within the interval for the middle range of the scores. Finally,
when γ = −0.75, the MML-estimate is also outside the credible
bound in the middle range of test scores. This is the range of
scores within which the cutscore is usually placed, which means
that different score distributions are likely to result in different
cutscores. This has consequences for the pass/fail decision for
hundreds of students.

4. EMPIRICAL DATA EXAMPLE

Using an empirical example we show the consequences of
ignoring the problem of non-identifiability of f (θ) and assuming

a normal distribution. We do this by comparing the estimated
score distributions with and without the normality assumption.

4.1. Method and Data
We analyzed data from the paper-and-pencil French language
test for preparatory middle-level applied secondary education
from examinations in 2011 and 2012. The sample sizes were 5518
for the reference exam and 5606 for the new exam. Both tests
consisted of 41 items, but only dichotomous items were selected
for analysis (35 and 34 in the reference and the new exams,
respectively). The tests were linked through seven linking groups
(with sample sizes ranging from 337 to 460) that responded to
some items from either the reference test or the new test and
some external anchor items (14 per group). The equating design
is shown in Figure 5. There were 30 items from the reference test
and 25 items from the new test answered by the linking groups.
The items taken by the linking groups had been also answered by
students in 2008.

First, the parameters of the ERM were estimated using the
data augmented Gibbs sampler (see Appendix E). The algorithm
was run for 60,000 iterations, of which the first 10,000 were
discarded as a burn-in. The score distribution of the reference
population on the new test was calculated at every iteration of the
algorithm. Second, the marginal Rasch model with the normal
distribution was fitted to the data and the MML-estimate of the
score distribution was obtained. See Supplementary Material, for
the data, software code of the analysis and the output.

4.2. Results
Figure 6 shows the posterior mean of the score distribution
estimated with the ERM (together with the 95% credible interval)
and the MML-estimate of the the score distribution. The
estimated score distributions differ and the MML-estimate is
outside of the credible interval at the lower and the higher scores.
The posterior mean is also different from the MML-estimate in

FIGURE 5 | Equating design.
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FIGURE 6 | Score distribution of the reference population on the new test: posterior mean for the ERM (dashed line) and the MML-estimate based on

the assumption of the normal distribution (solid line).

the middle range of scores, which could have consequences for
establishing the new cutscore tnew. For example, if the desired
proportion of persons from the reference population failing the
new test was 55%, then the MML procedure would result in a
cutscore of 17, whereas the ERM procedure would result in a
cutscore of 18 as illustrated in Figure 6. The consequence of this
would be that 476 students would have passed the test if a normal
distribution were assumed, but would have failed if the ERMwere
used.

5. DISCUSSION

Using a simple case, we have shown that, without the assumption
of a parametric distribution, the score distribution on the new
test is not identified. Knowing the difficulty parameter of the
new item is not enough to predict the proportion of correct
responses to this item in the population, after observing the
responses to a finite set of items. When the number of items
observed increases, the uncertainty about the score distribution
decreases. This uncertainty tends to zero with n going to infinity,
but is always there. Hence, IRT cannot, strictly speaking, solve
the missing data problem, since it does not allow us to impute

the unobserved responses of the reference population on the
new test. We have investigated the degree of uncertainty about
the score distribution in realistic applications. With realistic
test lengths, the uncertainty coming from non-identifiability of
population parameters is small enough to be ignored for practical
purposes. Therefore, test equating can be done effectively without
the not-fully-testable assumption of a particular parametric shape
of the ability distribution, despite the non-identifiability issue.

The theoretical importance of this paper is that it has shown
what one can and cannot do with respect to test equating using

IRT based only on the observed data without the assumption of a
parametric shape of the distribution. Although we have used the
marginal RM for illustration, the issue of non-identifiability that
is discussed holds inmore general marginal IRTmodels, since the
problem of the ability distribution not being identified will not go
away if more parameters are added to the conditional model.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.01956
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APPENDIX A

From Equation (8), we can derive the joint distribution of the
scores on the reference test and the new test:

p(X+obs = x+,X+mis = x∗+)

=
p(Xobs = x,Xmis = x∗)

p(Xobs = x,Xmis = x∗ |X+obs = x+,X+mis = x∗+)

= p(Xobs = x,Xmis = x∗)
/

∏n
i= 1 b

xi
i

∏m
j= 1 d

x∗j
j

γx+ (b)γx∗+ (d)

=
γx+ (b)γx∗+ (d)ηx++x∗+
∑n+m

t= 0 γt(b, d)ηt
. (A1)

The marginal probability of obtaining a particular score on the
new exam is then:

p(X+mis = x∗+) =

n
∑

s= 0

p(X+obs = s,X+mis = x∗+)

=

γx∗+ (d)
n
∑

s= 0
γs(b)ηs+x∗+

∑n+m
u= 0 γu(b, d)ηu

. (A2)

To derive the relations between the parameters λ and η, let us
consider the probability of observing a particular response vector
Xobs. On the one hand, it is given in Equation (5). On the other
hand, it can be presented as follows:

p(Xobs = x) =

m
∑

t= 0

p(Xobs = x,X+mis = t)

=

m
∑

t= 0

n
∏

i= 1
b
xi
i γt(d)ηx+ + t

n+m
∑

u= 0
γt(b, d)ηu

=

n
∏

i= 1
b
xi
i

m
∑

t= 0
γt(d)η++ t

n
∑

s= 0
γs(b)

(

m
∑

t= 0
γt(d)ηs+ t

) . (A3)

Hence,

λs =

m
∑

t= 0

γt(d)ηt+ s,∀s ∈ [0, n]. (A4)

APPENDIX B

The probability of answering the new item correctly is:

Pr(Xmis = 1) =
∑

x

Pr(Xmis = 1,Xobs = x)

=
d
∑n

t= 0 γt(b)ηt+ 1

d
∑n

t= 0 γt(b)ηt+ 1 +
∑n

t= 0 γt(b)ηt
(A5)

Using the general solution of the system of equations in
Equation (6), the two sums in this expression can be

re-written as:

d

n
∑

t= 0

γt(b)ηt+ 1 = d

n
∑

t= 0

(

γt(b)

t
∑

s= 0

(−1)t− sλs

dt+ 1− s
+ (−1)t

k

dt+ 1

)

=

n
∑

t= 0

γt(b)

t
∑

s= 0

(−1)t− sλs

dt− s
+ k

n
∑

t= 0

γt(b)
(−1)t

dt

=

n
∑

t= 0

γt(b)

t− 1
∑

s= 0

(−1)t− sλs

dt− s
+

n
∑

t= 0

γt(b)λt + k

n
∑

t= 0

γt(b)
(−1)t

dt

(A6)

and

n
∑

t= 0

γt(b)ηt =

n
∑

t= 0

(

γt(b)

t− 1
∑

s= 0

(−1)t−1−sλs

dt− s
+ (−1)t− 1 k

dt

)

= −

n
∑

t= 0

γt(b)

t− 1
∑

s= 0

(−1)t− sλs

dt− s
− k

n
∑

t= 0

γt(b)
(−1)t

dt
. (A7)

Hence,

Pr(Xmis = 1) =

∑n
t= 0 γt(b)

∑t− 1
s= 0

(−1)t− sλs
dt− s

+
∑n

t= 0 γt(b)λt + k
∑n

t= 0 γt(b)
(−1)t

dt
∑n

t= 0 γt(b)λt
=

= 1−
k
∑n

t= 0
(−1)t− 1γt(b)

dt
∑n

t= 0 γt(b)λt
+

∑n
t= 1

∑t− 1
s= 0

(−1)t− sγt(b)λt
dt− s

∑n
t= 0 γt(b)λt

.(A8)

First, we will consider the constraints on k, following from the
parameters η being positive:
{

k = η0 > 0,
∑s− 1

t= 0
(−1)s− t+ 1λt

ds− t + (−1)s k
ds

> 0,∀s ∈ [1 : (n+ 1)].
(A9)

For even indices s = 2u, u = 1, 2, . . . , ⌊ n+ 1
2 ⌋, we have:

k

d2u+ 1
>

2u
∑

t= 0

(−1)tλt

d2u+ 1− t
⇔ k >

2u
∑

t= 0

(−1)tλtd
t . (A10)

For odd indices s = 2u+ 1, u = 0, 1, . . . , ⌊ n2 ⌋, we have:

k

d2u
<

2u− 1
∑

t= 0

(−1)tλt

d2u− t
⇔ k <

2u− 1
∑

t= 0

(−1)tλtd
t . (A11)

Second, we consider the monotonicity constraints (12):
ηs+ 1ηs− 1 > η2s ,∀s ∈ [1 : n]. Using the the general solution of
the system of equations in Equation (10), we have:

(

s
∑

t= 0

(−1)s− tλt

ds+1− t
+ (−1)s+ 1 k

ds+ 1

)

(

s−2
∑

t= 0

(−1)s−t−2λt

ds−1− t
+ (−1)s− 1 k

ds− 1

)

>

(

s− 1
∑

t= 0

(−1)s−t− 1λt

ds− t
+ (−1)s

k

ds

)2

. (A12)
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If we multiply both sides by d2s and denote S =
s−2
∑

t= 0
(−1)s− tλtd

t ,

then we get

(

S+ λsd
s − λs− 1d

s− 1 − (−1)sk
) (

S− (−1)sk
)

>
(

−S+ λs− 1d
s− 1 + (−1)sk

)2
. (A13)

When multiplying the elements on the left side and taking a
square on the right side, most of the element on the both
sides are the same, hence they cancel out, and the remaining
inequality is:

(S− (−1)sk)λsd
s > −(S− (−1)sk)λs− 1d

s− 1 + (λs− 1d
s− 1)2 ⇔

S− (−1)sk >
λ2s− 1d

s− 1

λsd + λs− 1
. (A14)

For even indices s = 2u, u = 1, 2, . . . , ⌊ n2 ⌋, we have:

k <

2u−2
∑

t= 0

(−1)tλtd
t −

λ22u− 1d
2u− 1

λ2ud + λ2u− 1
. (A15)

For odd indices s = 2u+ 1, u = 0, 1, . . . , ⌊ n− 1
2 ⌋, we have:

k >
λ22ud

2u

λ2u+ 1d + λ2u
+

2u− 1
∑

t= 0

(−1)tλtd
t . (A16)

APPENDIX C

For a simulation approach (such as a Gibbs Sampler) to be
applicable, we have to show that the solutions of the system
of Equation (10) and inequalities (16) constitute a convex and
bounded set, which ensures that the sampler can easily cover the
full subspace of possible values of the non-identified parameters.
All coefficients in the system of equations are positive, so are the
parameters λ, and therefore each of the parameters ηs is bounded:

0 < ηs <
min(s,n)
min

t=max(0, s−m)

λt

γs− t(b)
,∀s ∈ [0 : (n+m)]. (A17)

For every s ∈ [1 : (n + m − 1)] the solutions of the following set
of inequalities:



















ηs+ 1
ηs

≥
ηs

ηs− 1

ηs− 1 > 0

ηs > 0

ηs+ 1 > 0

(A18)

form a convex set. The interaction of convex sets from each
s is itself a convex set. The intersection of the set formed by
solutions of all inequalities and the set formed by the system of
linear equations (which is always a convex set) is also a convex
set. Therefore, all possible values of η constitute a convex set,
and for each individual parameter there is only one range of

possible values. Although the parameters are not identified, it is
still possible to sample from their joint posterior distribution. The
data augmented Gibbs Sampler for test equating with the ERM
which is an extension of the algorithm of Maris et al. (2015) was
developed for this. The details of our algorithm can be found in
the Appendix E.

APPENDIX D

Non-Equivalent Group Equating Designs
The most simple non-equivalent group design one is the anchor-
item design, in which both the reference and the new tests
include a common set of items. The second design is a post-
equating design, in which the link between the two tests is
established through the data collected in the so called linking
groups, answering some items from the reference test together
with some items from the new test. The third design is a variation
of the post-equating design, in which persons from some of the
linking groups answer the items from the reference test and some
other items from the item bank, while persons from the other
linking groups answer the items from the new test and the same
items from the item bank. The items that do not belong to either
the reference test or the new test might also be taken by students
from some historic population in one of the previous years. The
simplest forms of these designs are visualized in Figure A1.

Let us by Y denote the M × m data matrix with responses of
a sample of persons from the new population to the new test, by
κ denote the m + 1 identified population parameters of the new
population, by {r} the set of items in the reference test and by
{c} the set of items in the new test. If the design includes linking
groups, then Z is the data coming from the equating groups with
K(g) and k(g) being the number of persons in the g-th linking
group and the number of items answered by them; {e(g)} denotes
the set of items answered by the g-th linking group and τ (g) are
the population parameters of this linking group. Then the density
of the observed data is:

f (Xobs,Y,Z) =

∏

i b
ui
i

n
∏

s= 0

(

|c/r|
∑

t= 0
γt(bc/r)ηt+s

)Ns
m
∏

s= 0
κ
Ms
s

(

|r∪c|
∑

t= 0
γt(br∪c)ηt

)N
(

m
∑

t= 0
γt(bc)κt

)M

∏

g

k(g)
∏

s= 0

(

τ
(g)
s

)K
(g)
s

(

k(g)
∑

t= 0
γt
(

be(g)
)

τ
(g)
t

)K(g)
, (A19)

where ui is the total number of correct responses to item i

by all students which answered this item, Ns, Ms, and K
(g)
s

are the number of persons from the reference population, new
population and the g-th linking group, respectively, that gave
exactly s correct responses to the items in the corresponding tests.

The score distribution of the reference population on the
new test depends on the population parameters η and the item
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FIGURE A1 | Three non-equivalent group equating designs. (A) Design 1, (B) Design 2, (C) Design 3.

parameters b:

p(X+mis ≤ T) =

T
∑

t= 0

γt(bc/r)(
∑n

s= 0 γs(br/c)ηs+ y)

|r∪c|
∑

u= 0
γu(b)ηu

(A20)

To make inferences about this distribution we obtain samples
from the posterior distribution p(η, b | . . . ). This is done using
a data augmented Gibbs sampler.

APPENDIX E

We describe here how the samples from the joint posterior
distribution

p(η, b | . . . ) (A21)

can be obtained using a Markov chain Monte Carlo algorithm.
We describe it for the post-equating non-equivalent groups
design (see Figure A1B) with G linking groups. The density of
the data given this equating design is given in Equation (A19) in
Appendix D. The algorithm can be easily altered for the different
kinds of non-equivalent group designs.

Data Augmented Gibbs Sampler
For computational convenience, instead of parameters η, we use
a different parametrization with the ratios of the consecutive
parameters ηs+ 1

ηs
. To place the parameters on the scale common

in IRT we consider logarithms of these ratios:

ps = ln

(

ηs+ 1

ηs

)

,∀s ∈ [0 : n+m− 1]. (A22)

We use a prior which in addition to the monotonicity
constraint (5) has a lower and an upper bound for the parameters:

p(p) ∝

n+m− 1
∏

s= 0

I[ps− 1,ps+ 1](ps), (A23)

where p− 1 = −100 and pn+m = 100. This is a reasonable
constraint, since it follows from the Dutch identity (Holland,
1990) that

ps = ln
(

E(exp(2) |X+obs + X+mis = s)
)

. (A24)

A priori, item and population parameters are independent.
For item parameters we choose a uniform prior for difficulty
parameters− ln(bi), which is p(bi) ∝

1
bi
.

After the re-parametrization, the density of the observed
data is:

f (Xobs,Y,Z(1), . . . ,Z(G)) =

G
∏

g= 1

∏

i∈{r∩eg }

b
x+i + z

(g)
+i

i

∏

i∈{c∩eg }

b
y+i + z

(g)
+i

i

k(g) − 1
∏

s= 1
exp(r

(g)
s )

∑

j> s
K
(g)
j

(1+
∑k(g)

t= 1 γt(beg )
∏

j< t
exp(r

(g)
j ))K

(g)
×

∏

i∈{r/e}

b
x+i
i

∏

i∈{c/e}

b
y+i

i

n
∏

s= 0
(1+

m
∑

t= 1
γt(bc)

∏

j< t
exp(pj))

Ns

m− 1
∏

s= 0
exp(qs)

∑

j> s
Mj

(1+
n+m
∑

t= 1
γt(b)

∏

j< t exp(pj))
N(1+

m
∑

t= 1
γt(bc)

∏

j< t exp(qj))
M

,

(A25)

where p, q, r(1), . . . , r(G) are the population parameters of the
reference population, the new population and G linking groups,
respectively.

Although, we are interested only in the parameters bc and
p, the other parameters (br, q, r

(1), . . . , r(G)) are also sampled
as nuisance parameters. Moreover, to make the full conditional
posterior distribution of ps tractable, at every iteration we will
sample augmented data x∗: responses of persons from the
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reference group to the items of the new test (Tanner and Wong,
1987; Zeger and Karim, 1991). This amounts to sampling from
the joint posterior:

p(p, q, r(1), . . . , r(G), b, x∗ |Xobs,Y,Z(1), . . . ,Z(G)). (A26)

A Gibbs sampler is used, i.e., all parameters are subsequently
sampled from their full conditional distributions given the new
values of all other parameters (Geman and Geman, 1984; Casella
and George, 1992). After starting from the initial values (1
for all item parameters, and the population parameters equally
distanced from –3 to 3), the algorithm goes through the following
steps:

Step 1. Sample the augmented data x∗.
For every person j ∈ [1 : N], sample a vector of responses x∗j

from its full conditional posterior p(x∗j | . . . ), which is factored in

the following way:

p(x∗j | . . . ) = p(x∗j+ | xj+, bc, p)p(x
∗
j | x

∗
j+, bc)

= p(x∗j+ | xj+, bc, p)

×p(x∗j,1 | x
∗
j+, bc)p(x

∗
j,2 | xj,1, x

∗
j+, bc) . . .

p(x∗j,m | x∗j,1, . . . , x
∗
j,m− 1, x

∗
j+, bc), (A27)

where xj+ is the sumscore of person j. First, sample x∗j+ from the

categorical distribution with probabilities

Pr(x∗j+ = s | xj+, p, bc) =
γs(bc)

∏

u< (xj++s) exp(pu)

1+
∑m

t= 1 γt(bc)
∏

u<(xp++t) exp(pu)
.

(A28)
And then for every item i ∈ [1 : m] sample x∗j,i from a Bernoulli

distribution with probability:

Pr(x∗j,i = 1 | x∗j+, x∗j,s<i, bc) =
biγx∗j+−

∑i− 1
s= 0 x

∗
j,s − 1(bi+ 1, . . . , bm)

γx∗j+−
∑i− 1

s= 0 x
∗
j,s
(bi, bi+ 1 . . . , bm)

(A29)
Step 2. Sample from the full conditional posterior of the

distribution of the item parameters.
For every i ∈ {r/e}, sample bi from its full conditional

posterior:

p(bi | . . . ) ∝
b
x+i − 1
i

(1+ cbi)N
, (A30)

where c =

∑n+m
t= 1 γs− 1(b

(i))
∏

j< t exp(pj)
∑n+m− 1

t= 0 γs(b(i))
∏

j< t exp(pj)
. This is an scaled beta-prime

distribution, to sample from which first sample y = cbi
1+ cbi

from

B(x+i,N − x+i), and then transform it: bi =
1
c

y
1−y .

For every g ∈ [1 : G], for every i ∈ {r ∩ eg}, sample bi from its
full conditional posterior:

p(bi | . . . ) ∝
b
x+i + z

(g)
+i − 1

i

(1+ c1bi)N(1+ c2bi)K
(g)

, (A31)

where c1 =

∑n+m
t= 1 γs− 1(b

(i))
∏

j< t exp(pj)
∑n+m− 1

t= 0 γs(b(i))
∏

j< t exp(pj)
and c2 =

∑kg

t= 1 γs− 1(b
(i)
eg )
∏

j< t exp(r
(g)
j )

∑k(g) − 1
t= 0 γs(b

(i)
eg )
∏

j< t exp(r
(g)
j )

. Unlike the full conditional of the

item parameters of the items taken by persons from only
one population, this distribution is not easy to sample from
directly. It is more convenient to sample from the distribution
of βi = − ln(bi) using a Metropolis-Hasting algorithm
(Metropolis et al., 1953). We use N (− ln(bi), τ

2 = 0.01)
as a proposal density with bi being the current value of the
parameter.

For every i ∈ {c/e}, sample bi from its full conditional
posterior analogously to sampling bi, i ∈ {r ∩ eg}, because
these items are not only taken by the new population, but
responses to these items by the reference population are
imputed.

For every g ∈ [1 : G], for every i ∈ {c ∩ eg} sample bi from its
full conditional posterior:

p(bi | . . . ) ∝
b
y+i + z

(g)
+i + x∗+i − 1

i

(1 + c1bi)N(1 + c2bi)K
(g)
(1 + c3bi)M

, (A32)

where c3 =

∑m
t= 1 γs− 1(b

(i)
c )
∏

j< t exp(qj)
∑m− 1

t= 0 γs(b
(i)
c )
∏

j< t exp(qj)
. Use the same Metropolis-

Hastings algorithm as for the items, taken by two populations.
If the equating design specifies more than 3 populations taking
some of the items, then the full conditional posteriors of those
items can be extended accordingly.

Step 3. Sample the population parameters.
For every s ∈ [0:(n+m−1)], sample ps from its full conditional

posterior:

p(ps | . . . ) ∝
exp(ps)

∑

j> s N
∗
s

(1+ c exp(ps))N
I[ps− 1,ps+ 1](ps), (A33)

where c =

n
∑

t= s+ 1
γt(b)

∏t− 1
j 6= s,j= 0 exp(pj)

1+
s
∑

t= 1
γt(b)

t− 1
∏

j= 0
exp(pj)

. To sample from this

distribution, we first sample y =
c exp(ps)

1+ c exp(ps)
from the truncated

beta distribution

f (y) ∝ y
∑

j> s N
∗
s − 1

(1− y)
N−

∑

j> s N
∗
s − 1

I[a1,a2](y), (A34)

where a1 =
c exp(ps− 1)

1+c exp(ps− 1)
and a2 =

c exp(ps+ 1)
1+c exp(ps+ 1)

, using rejection

sampling with U(a1, a2) as a proposal distribution, and then
transform it: ps = ln( 1c

y
1− y ).

For every s ∈ [0 : (m− 1)], sample qs from its full conditional
posterior analogously to sampling ps. For every g ∈ [1 : G], for

every s ∈ [0 : k(g) − 1], sample r
(g)
s form its full conditional

posterior analogously to sampling ps.
At every iteration of the Gibbs sampler, we compute the

expected score distribution for the reference population on the
new exam Pr(X+mis ≤ T).
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