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Catastrophe theory (Thom, 1972, 1993) is the study of the many ways in which continuous changes in
a system’s parameters can result in discontinuous changes in 1 or several outcome variables of interest.
Catastrophe theory—inspired models have been used to represent a variety of change phenomena in the
realm of social and behavioral sciences. Despite their promise, widespread applications of catastrophe
models have been impeded, in part, by difficulties in performing model fitting and model comparison
procedures. We propose a new modeling framework for testing 1 kind of catastrophe model—the cusp
catastrophe model—as a mixture structural equation model (MSEM) when cross-sectional data are
available; or alternatively, as an MSEM with regime-switching (MSEM-RS) when longitudinal panel
data are available. The proposed models and the advantages offered by this alternative modeling
framework are illustrated using 2 empirical examples and a simulation study.
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Psychologists are often interested in phenomena that change, adapt,
manifest, or behave in nonlinear, discontinuous ways. Examples in-
clude discontinuities in infant motor skill acquisition (Adolph, Rob-
inson, Young, & Gill-Alverez, 2008), sudden reduction in depression
symptoms in the treatment of depression (Tang & DeRubeis, 1999),
and relapse to alcohol use after a period of successful abstinence
(Witkiewitz, van der Maas, Hufford, & Marlatt, 2007). The notion
that psychological concepts and behavior could be mapped as discon-
tinuous dynamic systems was initially proposed nearly 80 years ago in
Kurt Lewin’s book on topological psychology (Lewin, 1936). Nu-
merous dynamical approaches to understanding and describing psy-
chological systems have been proposed since Lewin’s book (e.g.,
Smith & Thelen, 1993; Vallacher & Nowak, 1994), but few have been
as appealing to a broad audience of psychologists and also rife with
controversy (Kolata, 1977) as the catastrophe theory.

Initially proposed in the early 1970s by the mathematician Rene
Thom (Thom, 1972, 1993), catastrophe theory is the study of the
many ways in which continuous changes in a system’s control

parameters or variables can result in discontinuous changes in one
or several outcome variables of interest. There are seven types of
catastrophe models, each with an increasing number of control
variables, behavioral dimensions, and corresponding mathematical
functions. The cusp catastrophe model, which has two control
variables and one behavioral outcome, has been the most com-
monly applied in the social sciences, and will be the focus of this
article. Zeeman (1976) used this model to describe a dog’s abrupt
shifts in behavioral response between attacking (fight) and retreat-
ing (flight) with continuous changes in rage and fear (i.e., the
control variables; see Figure 1). Several features of the cusp
catastrophe model are evident in Figure 1, including biomodality
(i.e., two modes of behavioral response, either fight or flight),
divergence (increasing extremeness in the behavioral modes with
increasing rage), hysteresis, and bifurcation. Hysteresis refers to
the differences in the value of fear that triggers a sudden change in
behavior from retreating to attacking (i.e., Path B), versus a sudden
change from attacking to retreating (i.e., Path C) depending on
previous values of the system. That is, although it only takes a
slight increase in fear to bring the dog from attacking to retreating
if the dog is located at the tipping point of Path C, a much lower
level of fear is needed to bring the dog from retreating to attacking
again once the dog has settled into the lower layer of the folded
region (i.e., it would now follow Path B, as opposed to Path C).
Bifurcation, another key feature of the cusp catastrophe system,
occurs when continuous changes in one of the independent vari-
ables (e.g., rage) yield sudden, qualitative changes in behavior
(e.g., a shift from a single mode of outcome to the coexistence of
two modes; as shown in the scatterplot of the dog’s behavioral
responses against rage in the top left corner of Figure 1). These
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relations cannot be adequately described using linear equations;
thus, the introduction of nonlinear differential equations.

The popularity of catastrophe theory has evidenced some ebbs
and flows, as well as a fair share of criticism. Substantively,

catastrophe theory has inspired myriad applications in modeling
human driving speed (Poston & Stewart, 1978), attitude (Flay,
1978; Latané & Nowak, 1994; Wimmers, Savelsbergh, & van der
Kamp, 1998), affective states (Allen & Carifo, 1995; Strahan &

Figure 1. (A) Zeeman’s (1976) use of the cusp catastrophe model to represent the ways in which a dog might
undergo sudden transition between attacking and retreating with continuous changes in fear and rage. A plot
summarizing the broad categories of behaviors in the cusp system as a function of � and � is shown in subplot
(A). The densities overlaid on the �-� plane represent the equilibrium points of y at different values of � and
�. See the online article for the color version of this figure.
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Conger, 1999), alcohol use (Clair, 1999; Witkiewitz & Marlatt,
2004), and developmental discontinuities (Freedle, 1977; Klahr &
Wallace, 1976; Preece, 1980; van der Maas & Molenaar, 1992).
Despite its conceptual appeal and contribution, widespread appli-
cations of such models have been impeded by unresolved difficul-
ties in utilizing current approaches of fitting the cusp catastrophe
with empirical data (for more thorough descriptions of the catas-
trophe models and the empirical challenges in fitting these models
see Dultilh, Wagenmakers, Visser, & van der Maas, 2010; Hartel-
man, Van der Maas, & Molenaar, 1998; van der Maas & Molenaar,
1992; Wagenmakers, Molenaar, Hartelman, & van der Maas,
2005; Witkiewitz et al., 2007). We provide a synopsis of these
problems after a brief overview of the mathematical foundation
behind the cusp catastrophe system.

Mathematical Background on the Cusp Catastrophe
System

In catastrophe systems, changes in a system over time are
governed by a deterministic potential function, V�y;��, written as

dy

dt
� �

�V(y; �)

�y
, (1)

where y is a vector of dependent variables of interest, usually
referred to as the behavioral variables in the catastrophe literature,
and � is a vector of control parameters. Equation 1 indicates that
the instantaneous changes in the behavioral variables with each
unit of increase in time (as the increments in time get infinitely
small), dy

dt , are negatively related to changes in the potential func-
tion with respect to each of the behavioral variables contained in

the vector,
�V�y; ��

�y . If the change in the potential function with

respect to the pth behavioral variable,
�V�y; ��

�yp
, is positive, the

potential function increases with increase in that behavioral vari-
able; if this value is negative, the potential function decreases with

increase in the behavioral variable. If
�V�y; ��

�y � 0, then all the
dependent variables are “static” or do not manifest any changes
over time. Thus, the equilibrium points of the cusp catastrophe

systems are values of y for which
�V�y; ��

�y � 0. Finding the equi-
librium points of a catastrophe system and understanding the
dynamics of the system around each of the equilibrium points is a
key step toward deducing the long-term behaviors of the system.

One of the simplest forms of catastrophe is the cusp catastrophe
(shown in Figure 1) in which

�V(y; �) �
1

2
�y2 � �y �

1

4
y4, (2)

where there is only one behavioral variable and � � �� ��� consists
of the two control parameters in the system (Gilmore, 1981;
Stewart & Peregoy, 1983). In practice, these parameters are often
expressed as linear, fixed functions of one or more covariates (e.g.,
Cobb & Zacks, 1985; Grasman, Van der Maas, & Wagenmakers,
2009; Guastello, 1984; van der Maas & Molenaar, 1992). Thus, the
control parameters are sometimes referred to as control variables.
The parameter � is referred to as the normal variable or asymmetry
variable, whereas � is often referred to as the splitting or bifurca-
tion variable. They are responsible for driving hysteresis and
bifurcation, respectively, in the system (Gilmore, 1981; Grasman

et al., 2009; Poston & Stewart, 1978). The equilibrium points of
the cusp catastrophe system can be obtained by differentiating
Equation 2 with respect to y and setting it to zero as

�y � � � y3 � 0. (3)

That is, the roots of (3) depict the equilibrium points of the system
under different values of � and �. A stable equilibrium is defined
as a point into which a system settles in the long run. The different
combinations of � and � values, together with their associated
equilibrium points, constitute a three-dimensional landscape—
referred to as the cusp landscape—as depicted in Figure 1. The
nature of the equilibrium points that arise under different values of
� and � can be deduced from the Cardan’s discriminant of Equa-
tion 3 (Grasman et al., 2009; Poston & Stewart, 1978), defined as

D � 27�2 � 4�3. (4)

The Cardan’s discriminant, D, conveys information about the
nature of the roots of Equation 3 and, thus, helps classify the
behaviors of the system under different � and � values into four
broad categories or sets (A, B, C1, and C2), which are shown in
subplot (A) in Figure 1.1 Figure 1A, denoted herein as the �-�
plane, is a cross-section of the cusp landscape in Figure 1 consist-
ing of different values of � and �. The peaks of the densities
superimposed on the plot show the equilibrium points of y condi-
tional on specific values of � and �.

The shaded region labeled as “A” arises when D � 0: It
corresponds to the folded region of the cusp landscape, in which
multiple equilibrium points—or multimodality—exist for each
combination of � and � values. The precise equilibrium point the
system settles into depends both on the values of � and �, as well
as where the system was located previously. Values of � and � in
this range constitute the “bifurcation set” in Figure 1. The areas
labeled as “B” outside of the shaded region all correspond to D �
0 and in these areas, there is only one stable equilibrium point for
each value of � and � (indicated by the single peak in each
conditional density).2 The origin represents a bifurcation point at
which � � � � 0 and only one equilibrium exists at y � 0;
bifurcation—qualitative changes in the number of equilibrium
points with continuous changes in �—occurs when this bifurca-
tion point is crossed.

The two branches or borders of the shaded region (C1 and C2 in
Figure 1A), for which D � 0, constitute the last set of values.
These branches correspond to the two sets of “tipping points” in
the folded region of the cusp landscape. On each of these branches,
the system is characterized by one unstable equilibrium and a
stable equilibrium. The precise value of the stable equilibrium
depends on whether the system crosses the branch that brings the
system from the top layer of the cusp landscape to the bottom
layer, or the branch the brings the system from the bottom layer up
to the top layer. The more interesting point to note is that these

1 Note that the signs of � and � (whether they are �0 or �0) divide the
plane into four quadrants, but the distinct categories of behavior manifested
by the system are indicated by the labels A, B, C1, and C2.

2 An intuitive way of gauging whether an equilibrium point is stable is
to imagine a ball being placed on the 3-D cusp landscape. A stable
equilibrium is an equilibrium—or a point on the cusp landscape—at which
the ball tends to stay if it is placed at this location. An unstable equilibrium,
in contrast, is an equilibrium from which the ball tends to roll away.
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branches give rise to the feature of hysteresis—that is, the dynam-
ics of the system near these branches depend on previous history
of the system, specifically whether the system was previously
located on the top or bottom layer of the cusp landscape. Thus, it
can be seen from the scatterplot in the lower left corner of Figure
1 that although a particular level of fear (at around .5 to 1.0) is
enough to cause a dog to go from attacking to retreating, a much
lower level of fear (at around �.5 to �1.0) is needed to restore the
dog from retreating to attacking again.

The scatterplot also highlights the differential changes in the
behavioral variable with high versus low � values (i.e., positive vs.
negative values of �, respectively). Specifically, with low �, linear
increases in � are associated with smooth and linear increases in
the behavioral variable; in contrast, with high �, increases in �
would result in sudden jumps in the values of the behavioral
variable near the origin. This discontinuity in the behavioral vari-
able constitutes the region of indeterminacy on the cusp landscape.
Relatedly, this discontinuity also leads to increase in variance in
the behavioral variable near the points of sudden transition, an-
other catastrophe flag known as anomalous variance.

Divergence is another flag manifested by the cusp catastrophe
system. In the context of the aggression example, divergence
means that with increased values of rage, the dog would manifest
more extreme transitions in the behavioral variable—namely,
showing abrupt transition between retreating and attacking (Paths
B and C), as opposed to more graduated changes between avoiding
and growling (e.g., Path A in Figure 1). This tendency further
attests to the complex roles of � in instigating bifurcation and
divergence. On the one hand, � serves as a categorical indicator of
when the cusp system changes from having one (when � � 0) to
multiple (when � � 0) equilibrium points (see the top-left plot in
Figure 1). On the other hand, as part of the divergence flag, if the
system settles into the top bifurcation branch, increasing values of
� are associated with increases in the values of the behavioral
variable. In contrast, in the lower branch, increasing � values are
associated with decreasing values of the behavioral variable. This
is reflected in the slight upward versus downward tilt in the cusp
landscape with increasing values of �.

Closely associated with divergence are the two remaining ca-
tastrophe flags of Divergence of linear response and critical slow-
ing down. These flags are only evident when slight changes are
induced in the control variables—either mathematically or exper-
imentally. These flags occur when changes in � and � values near
the tipping points of the cusp landscape lead to larger fluctuations
in the system (divergence of linear response), and longer time for
the system to settle into an equilibrium (critical slowing down).

Limitations of Current Approaches for Fitting the
Cusp Catastrophe Models

Current approaches for fitting this model are plagued by several
practical and potentially severe methodological limitations. One of the
most widely utilized methods, Guastello’s (1982, 1992) approach to
fitting the catastrophe models as polynomial regression model, uti-
lizes empirical difference scores as the dependent variable in model
fitting. Thus, although this approach is convenient and can be readily
implementable with standard statistical packages, it suffers from the
same unreliability issues known to plague empirical difference scores
(Harris, 1963). The same unreliability issue is inherent in another

approach proposed by Brown (1995), who used nonlinear least
squares with a Runge-Kutta integration procedure to fit catastrophe
models to empirical difference scores. In addition, when Guastello’s
approach is used, specialized relationships exist among the parameters
from the polynomial regression model and those from the catastrophe
models; however, such nonlinear constraints as well as other distri-
butional assumptions are not explicitly imposed in Guastello’s poly-
nomial regression approach. Thus, a researcher may unknowingly
interpret the estimates from model fitting assuming that they are
linked to parameters from the cusp catastrophe model although, in
fact, these estimates are linked to parameters from a completely
different model. This issue has been discussed previously by other
researchers in the context of fitting linear stochastic differential equa-
tion models (Singer, 1992, 1993).

Other approaches for fitting catastrophe models include Oliva’s
(Olivia, Desarbo, Day, & Jedidi, 1987) least-squares extension,
which allows for multiple manifest measures via principal com-
ponent analysis and factor analysis in a two-step model-fitting
process, Cobb’s (Cobb, 1981; Cobb, Koppstein, & Chen, 1983)
likelihood approach to fitting a stochastic formulation of the ca-
tastrophe models, and related computational improvements (e.g.,
Grasman et al., 2009; Hartelman et al., 1998). These modified
approaches are still characterized by other practical data analytic
challenges. First, none of these current approaches readily account
for heterogeneities and uncertainties in the timing of switches
between behavioral modes, either within or across subjects. Sec-
ond, model fitting is not performed at the latent variable level;
therefore, rendering it difficult to distinguish process noise from
measurement noise. Third, none of these approaches accommodate
longitudinal panel data with multiple subjects, missing data or
categorical indicators. Finally, there lacks a straightforward mech-
anism for comparing the fit of the cusp catastrophe model to
alternative models given that (a) it is unclear what a reasonable
comparison model might be, (b) indices such as R2 can take on
negative values in the presence of skewed data (Grasman et al.,
2009), and (c) some of the proposed comparison models (e.g.,
linear and logistic regression models) have very different proba-
bility density functions, and thus, distinct parameter sets, than
those associated with the cusp system. Such discrepancies may
violate some of the asymptotic conditions needed to derive infor-
mation criterion (IC) measures such as the Akaike information
criterion (AIC) and their correction terms (Bozdogan, 1987; Wit-
kiewitz et al., 2007). More elaborate discussions of the difficulties
in fitting the cusp catastrophe model can be found elsewhere
(Hartelman et al., 1998; Rosser, 2007; van der Maas, Kolstein, &
van der Pligt, 2003; Wagenmakers et al., 2005).

To circumvent the aforementioned modeling and practical limita-
tions, several researchers have begun to consider approximations to
the cusp catastrophe models that are more amenable to real-life
modeling contexts but still capture selected features of the cusp
catastrophe model. Examples include the hidden Markov model
(HMM) considered by Dultilh et al. (2010) and a mixture structural
equation model with regime switching (to be detailed in the next
section) considered by Chow, Witkiewitz, Grasman, Hutton, and
Maisto (2014). Still, these models were designed to capture only
limited aspects of the cusp system. For instance Chow et al. (2014)
only focused on representing the sudden transitions between the
extreme modes of behavior in the cusp catastrophe system (e.g., the
transitions between attacking and retreating), while bypassing the fact

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

145CUSP CATASTROPHE MODEL AS MSEM AND MSEM-RS



that with low (or negative) � values, changes in the behavioral
variable with changes in � are smooth and do not show sudden jumps.
In addition, no formal study has been conducted to evaluate on how
well conventional model fit indices and diagnostic tools can help
detect cusp-related features when such approximation models are
used. Our goals in this article were to (a) present a formal framework
for reformulating the cusp catastrophe model as a mixture structural
equation model (MSEM) for use with cross-sectional data, and a
mixture structural equation model with regime-switching (MSEM-
RS) for use with longitudinal data; and (b) evaluate the extent to
which evidence for cusp-related features can be detected using con-
ventional model fit indices and diagnostic tools when these “misspeci-
fied” approximation models are used.

The remainder of the article is organized as follows. We first
present the general MSEM-RS framework, followed by cross-
sectional and longitudinal special cases designed to circumvent
some of the practical difficulties associated with fitting the cusp
catastrophe model. The new models are then tested and illustrated
using a simulation study and two empirical examples. We con-
clude by discussing the implications of our results, as well as the
strengths and limitations of the proposed modeling framework.

Mixture Structural Equation Models With
Regime Switching

Structural equation modeling (Jöreskog, 1973) is a statistical tech-
nique for representing multivariate relationships involving both ob-
served and latent variables. A mixture SEM (MSEM; Dolan & van
der Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997; Vermunt & Mag-
idson, 2005) is an extension of SEM that allows for heterogeneities in
the mean and covariance structures of a SEM model conditional on
individual i’s unobserved group membership, Ci0, (i � 1 . . . , n),
typically referred to as the individual’s latent class.

In a MSEM, the measurement and structural models for an
individual i in latent class h, namely, Ci0 � h, can be expressed,
respectively, as

(zi | Ci0 � h) � �h � �h	i � �i, (�i | Ci0 � h) ~ �(0, �
,h),

(5)

(�i | Ci0 � h) � �h � �h�i � 	i, (	i | Ci0 � h) ~ �(0, ��,h),

(6)

where zi is a p � 1 vector of continuous observed variables for
individual i, �i is a w � 1 vector of latent variables, �h and �h are,
respectively, a p � 1 and a w � 1 vector of intercepts, �h is a p �
w matrix of factor loadings, �i is a p � 1 vector of measurement
errors, �h is a w � w matrix of class-dependent regression effects
among the latent variables and 	i is a w � 1 vector of disturbances.
The subscript h highlights the class-specific nature of the param-
eters and the index of “0” in Ci0 is used to highlight the time-
invariant nature of the latent class membership in MSEM in
contrast to the MSEM-RS to be described later. In cases involving
discrete or categorical indicators, the corresponding elements in zi

are unobserved and appropriate link functions are used to relate
these unobserved continuous variables to their observed indicators
(see, e.g., Jöreskog & Moustaki, 2001). For instance, with ordinal
observed variables, the lth unobserved continuous variable, zil, is

linked to the corresponding manifest ordinal response, zil
*, as

(Jöreskog & Moustaki, 2001; Muthén, 1984)

zil
* � s ⇔ �l,s�1 
 zil � �l,s, s � 1, . . . , S, (7)

where 	l,h, is a set of threshold values for variable l that is held
invariant across individuals.

A multinomial logistic regression model is typically used to
represent the class probabilities as

Pr(Ci0 � h | xi0)–�h,i0 �

exp �ah0
� b

h0

� xi0�
�
s0�1

K0

exp �as0
� b

s0

� xi0�
, (8)

where ah0
is the logit intercept for class h; xi0 is a vector of

covariates used to predict class membership, bh0
is the associated

vector of logit slopes and K0 is the number of latent classes. For
identification purposes, one of the classes has to be designated to
be the reference class, with aK0

and bK0
set to zeros.

Mixture structural equation models with regime switching
(MSEMs-RS) are longitudinal extensions of MSEMs in which
individuals are allowed to transition among different latent classes
over time (Chow, Grimm, Guillaume, Dolan, & McArdle, 2013;
Kaplan, 2008; Muthén & Asparouhov, 2011; Nylund-Gibson,
Muthén, Nishina, Bellmore, & Graham, 2013). These different
latent classes can be conceived as distinct phases of a process over
time and are commonly referred to as regimes in the time series and
econometric literature (Hamilton, 1994; Kim & Nelson, 1999). Here,
we use the terms latent class and regime interchangeably, and refer to
within-person switches between latent classes as regime switching.

To deal with repeated measures in SEM, zi and 	i are expanded

to include zi � [z
i1
� . . . z

iT
� ]� and �i � ��

i1
� . . . �

iT
� ��. The sizes of all

other components in Equations 5 and 6 are also expanded accord-
ingly to accommodate the presence of multiple time points (e.g., 
h

is now of size pT � 1, as opposed to p � 1; �h is of size pT � wT,
etc.). The Ci0 in Equation 8 may then be conceptualized as an
indicator of membership in an initial (baseline) class. A separate
multinomial logistic regression model is used to describe each
individual i’s class membership at time t, denoted as Cit, condi-
tional on membership at time t � 1. In the general MSEM-RS
framework, the transition in class membership can depend on all
previous class membership information (e.g., including Ci0; Asp-
arouhov & Muthén, 2011). One of the simpler special cases is a
first-order Markov specification, which allows the class membership
at time t to only depend on the class membership at time t � 1 as

Pr(Cit � k | Ci,t�1 � j, xit)–�jk,it �

exp �akt
� b

jkt

� xit�
�
st�1

Kt

exp �ast
� b

jst

� xit�
(9)

where 
jk,it is individual i’s transition probability of moving from
class j at time t � 1 to class k at time t; Kt denotes the number of
classes at time t, highlighting the possibility that latent classes may
emerge or diminish over time. The parameter akt

is the logit
intercept for the kth class at time t, xit is a vector of fixed covariates
for predicting the transition probabilities, with an associated vector
of logit slopes, bjkt

. Included in xit are Kt�1 � 1 binary constants
reflecting the deviation in log-odds of switching into latent class k
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at time t from latent class j (i.e., Ci,t – 1 � j, Cit � k), compared
with switching into Cit � k from the reference class, that is, Ci,t�1 �
Kt�1. Note that no binary constants are included in xi0 in Equation
8 because at Time 1, there are no transition probabilities to be
predicted, only class probabilities. In addition, time index is in-
cluded in elements such as Kt, akt

and bjkt
to allow the possibility

for them to vary over time. Similar to the need to select a reference
class among the initial latent classes for model identification
purposes, a reference class also has to be selected for each time
point and all the logit-related parameters for the reference class
have to be set to zeros. This has the effect of setting each row
of person i’s Kt�1 � Kt transition probability matrix at time t to
sum to 1.

Maximum likelihood estimates of the parameters in the MSEM
and MSEM-RS can be obtained via the expectation-maximization
(EM; Dempster, Laird, & Rubin, 1977; Everitt & Hand, 1981;
Titterington, Smith, & Makov, 1985) algorithm. The estimation
details have been documented elsewhere (see, e.g., Asparouhov &
Muthén, 2011; Muthén & Shedden, 1999) and are not reiterated
here. All model fitting presented herein was performed using a
commercial structural equation modeling software, Mplus (L. K.
Muthén & B. O. Muthén, 2001).

Cusp Catastrophe-Inspired MSEM and MSEM-RS

In this section, we describe one possible way of circumventing
the methodological difficulties behind fitting the nonlinear cusp
catastrophe model by approximating it using variations of MSEM/
MSEM-RS composed of multiple regimes within which the sys-
tem’s dynamics are all linear, but differ in meaningful and mea-
surable ways. In this way, we are approximating the multimodal
density of y by combining a series of conditional distributions of y
that are assumed to be normal within a regime. This approach is
similar in rationale to those adopted by others to approximate
nonnormal data using mixture of normal distributions (e.g., Dolan
& van der Maas, 1998), or to approximate nonlinear functions
using mixture of linear functions (e.g., Bauer, 2005). Thus, con-
ditional on (i.e., within) a particular regime, a linear structural
equation model can be used, and the presence of selected cusp-
related features can be tested by means of model fit indices and
diagnostic tools designed for use with MSEM and MSEM-RS.

As described earlier, the � variable in the cusp system plays a
dual-role: On the one hand, it controls, in a categorical way, when
the system bifurcates from a single (when � � 0) to multiple
(when � � 0) equilibrium points; on the other hand, higher
positive values of � also give rise to increasingly divergent
changes in the behavioral variable in a continuous fashion (see
Figure 1). In behavioral sciences, however, it is difficult to pin-
point the precise point at which a system undergoes a bifurcation
(if at all), unless a researcher has perfect knowledge on the model,
which is never the case in practice. To deal with this challenge, we
consider both the scenario that �i is available as an observed,
person-specific covariate, as well as the case that �i is a latent
factor indicated by a number of manifest variables. Furthermore, to
capture the emergence of multimodality at high values of � (�0 in
the cusp system), we define an initial class indicator, Ci0, that
consists of K0 � 2 regimes, representing, respectively, a high- and
a low-� regime as

(�it | Ci0 � high �) ~ N(��,high, ��,high), and

(�it | Ci0 � low �) ~ N(��,low, ��,low). (10)

In this case, membership in the � regimes is latent, as opposed
to observed, as is � itself. �i is assumed in the context as an
observed, person- and time-specific covariate, but this assumption
can also be relaxed in other applications. Next, we describe ways
to test cusp-related characteristics separately for the cases in which
the behavioral variable is available cross-sectionally versus longi-
tudinally. In both scenarios, we assume that data from multiple
subjects are available (n � 1).

Cusp-Inspired MSEM

Many applications of the cusp catastrophe model utilize
cross-sectional data. In this case, �i in Equations 5 and 6 reduce
to a scalar, yi. We define three latent classes corresponding,
respectively, to a medium (the cusp region in which � � 0 and
the distribution of the behavioral variable is unimodal), low (the
“retreating” region in Figure 1 with � � 0) and high (the
“attacking” region in Figure 1) behavioral regime. These three
regimes, denoted, respectively, as Rmed, Rlow, and Rhigh,
are further defined as showing the following properties:

Regime Model

Rhigh : High y yi � �high � b�,high,low�i � b�,high�i � �i, �i ~ N(0, ��,high&low),

Rmed : Medium y yi � �med � b�,med�i � b�,med�i � �i, �i ~ N(0, ��,med),

Rlow : Low y yi � �low � b�,high,low�i � b�,low�i � �i, �i ~ N(0, ��,high&low).

(11)

where �high, �med, and �low denote, respectively, the intercept of
the high, medium, and low behavioral regimes. b�,high, b�,med,
and b�,low represent the effects of �i— either as a latent factor
or an observed covariate— on yi, for the high, medium and low
regime, respectively. The term b�,high,low denotes the effect of
�i on yi in both the high and low behavioral regimes, whereas
b�,med is the effect of �i on yi in the medium regime. This was
motivated by the cusp-based characteristic that the effect of �i

on yi is of comparable magnitude in the high and low behavioral
regime (i.e., the top and bottom layers of the fold), but not in the
medium behavioral regime. In a similar vein, the residual, 
i, is
assumed to be normally distributed with zero mean and vari-
ance, �
,med, for the medium regime, and �
,high&low for both
the high and low behavioral regimes. Of course, these invari-
ance constraints between the high and low regimes may also be
relaxed as needed.
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The tendency for the cusp system to show bifurcation with
continuous increase in � beyond � � 0 is captured in the
MSEM through the specification of two, as opposed to one
regime for individuals with high �. The related phenomenon of
divergence, namely, the increasingly extreme modes of behav-
ior with increasing �, is operationalized by having regime-
specific regression weight of � on yi. In particular, in the
medium regime, corresponding to cases with � � 0, the regres-
sion coefficient for � (i.e., b�,med) may be fixed at zero based
on characteristics of the cusp system, or freely estimated as a
testable hypothesis. For those in the high behavioral regime
(i.e., those who bifurcate into the top branch), the regression

weight for � is expected to be positive. In contrast, those in the
low behavioral regime are expected to have a negative regres-
sion weight for �.

When group membership with regard to � is known and
observed, the model is a multiple-group latent class model with
two known � groups and three latent classes (as defined in
Equation 11). When �i is unobserved, the model has two latent
class indicators: one indicating membership in the � regimes
(see Equation 10), and another indicating the three behavioral
regimes a shown in Equation 11. Furthermore, the log odds of
being in the high- versus low-� class, and the log odds of being
in the three behavioral regimes given membership in the �
regimes, are specified, respectively, as

Log odds (Ci0 � h)

High �

Low � �a10

0 �
Log odds (Ci1 � k | Ci0 � h, �i)

High �

Low �

High y Low y Medium y

�a11
� b111,� � b111,��i a21

� b121,� � b121,��i 0

a11
� b211,��i a21

� b221,��i 0 � (12)

The first matrix is the log odds form of Equation 8, which shows
the probability of being in a particular regime h at Time 0, 
h,i0.
Here, a10

indicates the logit intercept associated with being in �
regime 1 (i.e., the high � regime) at Time 0 (baseline); the
log-odds of the last � regime (i.e., the low � regime, the reference
class) is set to zero for identification purposes. If � is observed and
membership in the � regime is known, a10

is no longer a modeling
parameter but can be obtained using the observed proportions of
cases that have positive versus negative values of �.

The second matrix in Equation 12 shows the log odds form of
Equation 9, indicating the log odds of being in each of the three
behavioral regimes given initial membership in the two � regimes,
whether membership in the � regime is known (observed) or unob-
served. The rows of the matrix reflect � membership at baseline,
whereas the columns of the matrix denote the event Ci1 � k. In this
case, ak1

represents the logit intercept associated with being in behav-
ioral regime k (e.g., 1 � the high y regime and 2 � the low y regime)
at Time 1, and b1k1,�

represents the deviation in log odds of switching
into the kth behavioral regime given initial membership in the first
(i.e., the high) � regime compared with switching into the kth behav-
ioral regime given initial membership in the reference � regime (i.e.,
the low-� regime). The null elements in the matrix represent elements
that are fixed at zero for identification purposes.

The cusp-inspired MSEM provides several possibilities for testing
cusp-related properties. For instance, based on the tendency of the
cusp system to only bifurcate into the high and low behavioral
regimes with positive � value, one may impose the constraints that
a11

� a21
� � 10, and that b211,�

� b221,�
� 0. In this way, the log

odds of appearing in the two extreme behavioral models are extremely
low given membership in the low-� regime regardless of the values of
�.3 Alternatively, these values may be freely estimated. In addition, to
evaluate the cusp-related constraint that sudden jumps in behavioral
tendency because of � tend to occur only in the high-� region and not
in the low-� region, one may evaluate whether the values of b211,�

and
b221,�

are significantly different from zero by means of a Wald test or
a likelihood ratio test (LRT).

The covariate �i is used as a person-specific predictor of ele-
ments of the transition matrix to allow continuous changes in � to
yield sudden jumps in the values of the behavioral variable con-
ditional on membership in the � regimes. As noted earlier, evi-
dence of hysteresis is revealed in part by having distinct probabil-
ities of appearing in the high and low behavioral regimes given
initial membership in the high-� regime. As also mentioned ear-
lier, because of the tendency of the cusp catastrophe system to only
move into the high or low behavioral regimes with positive �
values, one may set the values of a11

and a21
to equal to some large

negative constant (e.g., �10). In addition, according to the cusp
catastrophe model, individuals with high � can only transition
between the high and low behavioral regimes. Thus, it may be
reasonable to also impose the constraint that b111,� � �b121,� so
that the log odds of moving into the high behavioral regime
increases (decreases) at the same rate as the decrease (increase) in
the log odds of moving into the low behavioral regime with
changes in �. Consequently, controlling for �, unequal probabil-
ities of appearing in the high and low behavioral regimes are
attained when b111,� � b121,� (see similar postulate by Dultilh et al.,
2010). As we will demonstrate using a simulation study and two
empirical examples, however, whether one can find asymmetry in
these class probabilities depends largely on whether there are
sufficient cases that are more likely to show sudden jumps in one
direction than the other (e.g., cases with � and � values that are

3 Note that the value of �10 for a11
and a21

is somewhat arbitrary.
In general, any sufficiently large negative number would serve the
purpose provided that a11

� b211,��i and a21
� b221,��i both take on

relatively large negative values when b211,� � b221,� � 0. With
these specifications, for instance, the probability of appearing in
the high-y regime given membership in the low-� class, given by

(see Equation 8)
exp�a11

�b211,��i�

exp�a11
�b211,��i��exp�a21

�b221,��i��exp�0�
�

exp��10�
exp��10��exp��10��exp�0�

	 0, is always near zero despite changes

in the value of �i.
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closely clustered around the tipping point of the top layer of the cusp
so that the system is much more likely to show a sudden drop, as
opposed to a sudden increase, in the behavioral variable). When only
cross-sectional data are available, sudden jumps are simply mani-
fested as between-person differences in transition patterns. We next
consider a longitudinal cusp-inspired MSEM-RS that can be used to
represent within-person sudden jumps in the behavioral variable.

Longitudinal Extension: A Cusp-Inspired MSEM-RS

Longitudinal data afford researchers the opportunity to test postu-
lates of within-person transitions among the behavioral regimes. In
this case, a t subscript would have to be added to the terms, yi, �i and

i in Equation 11 to highlight their time-varying nature. The bifurca-
tion variable, �i, can also be time-varying, but we focus herein on
time-invariant �. As in Chow et al. (2014), we assume that the
transition between regimes from time t � 1 to time t depends both on
the operating regimes at time t � 1, as well as the initial � regime. As
distinct from Chow et al., however, we impose additional constraints
to eliminate some of the less prevalent regime transition patterns to
reduce computational costs.4 In particular, we capitalize on features of
the cusp model to specify the presence of two behavioral regimes—a
high and a low behavioral regime—only for the high-� group/class.
For those in the low-� class, only one behavioral regime—the me-
dium behavioral regime—is present. One possible way to implement
this specification is to define a higher-order Markov dependency in
the transition probability equation as

Pr(Cit � k | Ci,t�1 � j, Ci0 � h, xit)–�jk,h,it

�

exp �ah,kt
� b

h,jkt

� xit�
�
st�1

Kt

exp �ah,st
� b

h,jst

� xit�
, (13)

to capture the dependency of the current regime on the regime at
time t � 1, as well as the initial � regime. In this way, while the
matrix of log odds for the initial � regime is identical to the first
matrix in Equation 12, only two regimes exist for t � 1 . . ., T. The
critical point here is that the characteristics of these regimes are
dependent on an individual’s initial � membership. The log odds
of transitioning into the behavioral regimes (the second log odds
matrix in Equation 12 then becomes

Log odds (Ci1 � k | Ci0 � h, �it)

High y Low y

High �

Low � 

a11

� b111,� � b111,��it 0

Medium y Medium y

a11
0

��

High y Low y

High �

Low � 

10 � b111,� � b111,��it 0

Medium y Medium y

10 0
� ,

and there are two additional 2 � 2 transition matrices conditional
on � memberships that are parameterized as

Log odds (Cit � k | Ci,t�1 � j, Ci0 � high �, �it)

High y Low y

High y

Low y �a2,1t
� a1,1t

� b1,11t,�
� b1,11t,�

�it 0

a2,1t
� a1,1t

� b1,21t,�
�it 0 � and

Log odds (Cit � k | Ci,t�1 � j, Ci0 � low �, �it)

Medium y Medium y Medium y Medium y

Medium y

Medium y �a2,1t
� b2,11t,� 0

a2,1t
0 ��

Medium y

Medium y �10 0

�10 0 �
(14)

As defined previously, the zeros in the last column of all the log
odd matrices are needed for identification purposes. A few other
constraints (highlighted in bold font) are unconventional but the-
oretically driven constraints that are imposed to improve compu-
tational costs. First, we define the two regimes that arise under low
� to possess identical distributional and behavioral characteristics,
and including additional constraints to specify one of the two to be
a spurious regime by (a) setting the log odds of transitioning from
the low-� regime to the first medium behavioral regime at a11

� 10
to dictate that individuals in the low � regime to always transition
into the first of the two medium regimes; and (b) requiring indi-
viduals to always stay within either one of the medium regimes by
setting a2,1t

� �10, and b2,11t,�
� 20 so the log odds of staying

within the first medium regime is a2,1t
� b2,11t,�

� 10. In addition,
parameters such as a1,1t

, a2,1t
, b1,11t,�

and b1,11t,�
now allow us to

study the prevalence of different within-person transition patterns
in targeted ways. For instance, for those in the high-� regime, a1,1t
indicates the deviation in log odds of showing sudden jump from
the low to the high behavioral regime relative to a2,1t

, and b1,21t,�

indicates the extent to which this jump is related to the value of �it

at that specific time point. In a similar vein, b1,11t,�
reflects the

deviation in log odds of staying within the high behavioral regime
whereas b1,11t,�

captures the extent to which this deviation is driven
by �it. Similar to the cusp-inspired MSEM, the MSEM-RS may be
used to detect evidence for hysteresis through asymmetry in the
probability of transitioning from the high to the low behavioral
regime, compared with transition in the reverse direction (see, e.g.,
Dultilh et al., 2010).

Other specification details pertaining to the behavioral variable
while in the high, low, and medium behavioral regimes are iden-
tical to those specified in the cross-sectional model. We further
assume longitudinal invariance by constraining all parameters to
be invariant over time. Although the formulation in Equation 11
does not postulate any additional within-person overtime changes
in the behavioral variable, or any lagged dependencies of the
current behavioral variable on previous values of the behavioral
variable, Equation 11 can be modified to accommodate other
within-person trends. For instance, as will be illustrated in one of
the empirical examples, autoregressive processes can be included
by allowing values of yi,t�q from more distant time points (e.g.,
from q � 1, 2, and so on) to influence the current yit. Secular trends

4 If three behavioral regimes are specified for each time point, there is a
total of 3T possible ways in which an individual may transition among the
three behavioral regimes over time. With T � 6, for example, there are
3T � 729 possible transition patterns, which would lead to considerable
computational costs in the estimation process.
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such as the weekend and time of the day effects can be included in
the structural model by adding exogenous binary indicators at
appropriate time points to capture deviations in levels on weekends
and specific times of the day. Exogenous variables may also be
included in the multinomial logistic regression in Equations 8, 9,
and 13 as needed. Examples may include extraneous events, age
and life span developmental changes, gender, and other possible
determinants of intraindividual change.

Simulation Study

The proposed cusp-inspired MSEM and MSEM-RS are approx-
imations to the cusp catastrophe model and as such, they may be
regarded as misspecified models. This simulation study was de-
signed to illustrate and evaluate the extent to which standard model
selection and comparison indices used within the MSEM and
MSEM-RS literature—that were developed on the basis that the
true model is among the models considered, or that the degree of
misspecification is mild (e.g., no larger than sampling error;
Browne, 1984)—can be used to detect evidence for cusp-like
characteristics.

Using the cusp package in R (Grasman et al., 2009), we simu-
lated data using the cusp catastrophe model in Equation 2 to yield
(a) cross-sectional data with T � 1, observed versus unobserved
group membership, and n � 200 or 500; (b) longitudinal data with
T � 6, observed versus unobserved group membership, and n �
200 or 500. With two designs (cross-sectional vs. longitudinal),
each with two sample size conditions and two � membership
conditions, there were 2 � 2 � 2 � 8 conditions. The conditions
considered were by no means exhaustive; our goal is simply to
showcase how the MSEM and MSEM-RS models may be used to
evaluate selected cusp-based features as testable hypotheses, as
opposed to assuming them as true and irrevocable. The sample size
configurations were selected to be comparable with the sample
sizes in studies utilizing MSEM and MSEM-RS (e.g., Chow et al.,
2013), including those utilized in our empirical illustrative exam-
ples. The decision to compare conditions with observed versus
unobserved � group membership, in contrast, was motivated by
fact that the bifurcation variable � in social/behavioral sciences is
often a latent construct and it is of interest to evaluate the viability
of the proposed approaches in such scenarios. Five hundred Monte
Carlo (MC) replications were run for each condition to provide
insights into the asymptotic performance of the proposed ap-
proaches. All variations of MSEM and MSEM-RS considered
were fitted using Mplus (L. K. Muthén & B. O. Muthén, 2001).
Sample Mplus scripts for fitting cusp-inspired MSEM and
MSEM-RS to simulated data are available in the supplementary
material.5

For the cross-sectional conditions, values of � were drawn from
a uniform distribution with a range of [�6, 6]. For conditions with
observed � membership, we also generated � values from a
uniform distribution with range [�6, 6]. These observed � values
were used to define an observed group membership (with �
group � 0 if � � 0, and � group � 1 otherwise), and also included
as an observed continuous predictor of the behavioral variable, yi,
as shown in Equation 11. For conditions with latent � membership,
we generated � values from a mixture of two normal distributions
with equal probability, with means of �2.5 and 2.5, respectively,
and the same SD of .7. We further assumed that these � values

were not available directly but rather, were identified using three
manifest indicators, with factor loadings ��,1 � 1.0, ��,2 � 1.2,
and ��,3 � .9, respectively, and measurement error variances,
��1

2 � ��2

2 � ��3

2 � 0.09, respectively. These values were
selected to yield relatively reliable manifest indicators for �. In
fitting each cusp-inspired model, ��,1, was set to 1.0 to identify
the model.

For each cross-sectional condition, we fitted 8 MSEM models
and examined whether conventional model comparison indices
such as LRTs (in cases involving nested models), and IC measures
such as the AIC (Akaike, 1973), Bayesian information criterion
(BIC; Schwarz, 1978), and sample-size-adjusted BIC (aBIC;
Sclove, 1987) can be used to detect evidence for specific properties
of the cusp system. The eight models considered and the research
questions to answer are summarized in Table 1.

For the longitudinal conditions, we generated all � values from
a mixture of two normal distributions with equal probability, with
means of �2.5 and 2.5, respectively, and the same SD of .7. These
� values were either available directly as an observed variable, or
were contaminated with measurement errors to yield three mani-
fest indicators, z�1

� z�3
, with the same measurement specifica-

tions as the cross-sectional models. To ensure that there were
sufficient instances of sudden jumps between the high and the low
behavioral regimes, we drew independent samples of �it for each
individual and time point from a uniform distribution with a
slightly narrower range (i.e., Unif[�4, 4]) to yield cases that were
more closely clustered around the bifurcation set (see Figure 1). As
described earlier, in the interest of improving computational effi-
ciency, we imposed the higher-order Markov transition patterns
specified in Equation 14 in the longitudinal MSEM-RS to preclude
transition into the two extreme behavioral regimes given member-
ship in the low-� regime. The resultant list of MSEM-RS models
considered and the research questions we sought to address are
summarized in Table 1.

Simulation Results

Plots of IC and entropy measures obtained from model fitting, as
averaged across the 500 MC runs, are shown in Figures 2A–D and
3A–D, respectively, for the two � membership and sample size
configurations considered. Entropy values may range between 0
and 1, with values approaching 1 indicate clear delineation of
classes, and the value of .90 being a commonly adopted “rule of
thumb” for indicating reasonable class separation in empirical
studies (Celeux & Soromenho, 1996). Further details pertaining to
testing questions 1–6 are summarized in Tables 2 and 3. Because
of space constraints, we only show the summary statistics of the
parameter estimates from MSEM Model 6 and MSEM-RS Model
5, the least restrictive MSEM and MSEM-RS models with un-
known � membership of the models considered, for the condition
where n � 500 (see Tables 4 and 5). Parameter estimates from
fitting these two models to data with n � 200 and their corre-
sponding variations with known � membership are available as
online supplementary materials. To aid interpretation, the logit
intercept and slope parameter estimates obtained from model fit-

5 The supplementary material may also be downloaded from “Resources”
page of the first author’s Web site at http://quantdev.ssri.psu.edu.
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ting were used in conjunction with Equations 8, 9, and 13 to yield
the transition probability estimates shown in the tables.

Across all the cross-sectional conditions considered, the less
restrictive MSEM Model 2 and Model 6, which allowed cases
from the low-� regime to appear in the two extreme behavioral
regimes, were found to yield the best fit among the models
considered based on AIC and aBIC. The initial transition proba-
bility estimates shown in Table 4 suggested that on average, even
though cases with low values of � were more likely (with .62
probability) to transition into the medium behavioral regime and
cases with high values of � were likely to move into the two
extreme behavioral regimes (combined probability � .80), some
cases still deviated from such patterns. LRTs comparing MSEM
Models 1 and 2, conducted to answer Q1, further confirmed that
significant improvements in model fit were found in 68–100% of
the MC runs when the logit intercept parameters enabling cases
with low � values to transition into the high and low behavioral
regimes, a11

and a21
, were freely estimated, as opposed to fixed

at �10 (see Table 2).
In answering Q2, we found that the IC measures were able to

detect the medium behavioral regime, but not all low-� cases were
correctly classified to only transition into the medium regime.
When � membership was known, the AIC and aBIC almost always
(�84% of the time) favored the less restrictive three-regime Model
(MSEM Models 2 and 6) to the two-regime model (MSEM Models
3 and 7) across both sample size conditions (see Table 2). The
more conservative BIC, in contrast, tended to favor the two-regime

model. In the conditions with unknown � membership, which was
characterized by more pronounced separation in � values between
cases in the high- and low-� regimes, differences in the IC values
across models were relatively small. The best entropy, in contrast,
almost always favored the cusp-inspired three-regime model (i.e.,
MSEM Models 1 and 5) to all other models considered. This
indicates the utility of using multiple fit indices and model selec-
tion criteria to determine the best approximation model, even if the
approximation model is a misspecified model. More post hoc
explorations indicated that, in terms of IC measures, the extent to
which the two-regime model was favored over the cusp-inspired
three-regime model decreased with (a) clearer separation in �
values between the low- and high-� regimes, and (b) less extreme
values of �—both of which reduced the tendency for cases from
the low-� regime to be classified into the two extreme behavioral
regimes. The very wide range of � values (from �6 to 6) consid-
ered in this particular simulation study led to notable instances of
extreme behavioral values even in the low-� region and, conse-
quently, reduced need for a third, medium behavioral regime.

The less restrictive three-regime model was associated with
other challenges. Specifically, because of the unique transition
patterns of the cusp system and their linkages to the � values, some
of the logit transition parameters were close to their boundary
values (e.g., because of the scarcity of cases with low � values that
appeared in the extreme behavioral regimes). Thus, the point
estimates for some of the logit transition parameters were highly
variable in the n � 200 conditions (e.g., parameters such as

Table 1
Summary of Models Used in the Simulation Study

Descriptions Questions to address

MSEM
Model 1 The cusp-inspired MSEM in Eqs 11–12, with a11

� a21
�

�10 and b211,� � b221,� � 0 to prevent cases in the
low-� regime from moving into the high and low
regimes.

Model 2 Same specifications as Model 1, with the exceptions that
the values of a11

, a21
, b211,� and b221,� were all freely

estimated.

Q1: Can the MSEM be used to detect the unique transition
patterns of the cusp system?

What proportion of MC replications shows significant LRT
results in comparing Model 1 to Model 2?

Model 3 A 2-regime model with no explicit constraint. Q2: Can IC measures detect the existence of 3 regimes?
Model 4 Same specifications as Model 2, with the exception that

b�,high � b�,low in Eq (11).
Q3: Can evidence of bifurcation be detected?
What proportion of MC replications shows significant LRT

results comparing Model 2 to Model 4?
Model 5–Model 8 Identical to Models 1–4, respectively, but � was latent;

membership in the high- vs. low-� regime was unknown.
Relative differences in performance between Models 1–4

(with known � membership) compared to Models 5–8.
MSEM-RS

Model 1 The cusp-inspired MSEM-RS described in Eqs 11 (with
time index to denote repeated measurements), 13 and 14

Model 2 Less restrictive 3-R model: same specifications as MSEM-RS
Model 1, with the exception that b�,high,low � b�,med in
Eq (11).

Q4: Can the differential effects of � on yit be detected?
What proportion of MC replications shows significant LRT

results in comparing MSEM-RS Model 1 to 2?
Model 3 The longitudinal analog of the 2-regime MSEM Model 3 Q5: Can IC measures detect the higher order Markov

dependency on Ci0?
Model 4 The longitudinal analog of MSEM Model 4, with b�,high �

b�,low in Eq. (11).
Q6: Can evidence of bifurcation be detected?
What proportion of MC replications shows significant LRT

results comparing Model 1 to Model 4?
Model 5–Model 8 Identical to Models 1–4, respectively, but � was latent;

membership in the high- vs. low-� regime was unknown.
Relative differences in performance between Models 1–4

compared to Models 5–8 when longitudinal data are
used.

Note. MSEM � mixture structural equation model; MC � Monte Carlo; LRT � likelihood ratio test; IC � information criterion; MSEM-RS � mixture
structural equation model with regime-switching.
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a11
, a21

, b111,�, and b121,�). SE estimates could not be obtained in
many replications on these logit parameters. These estimation issues
were greatly alleviated in the n � 500 compared with the n � 200
conditions. With the exception of the logit parameters, the SE esti-
mates of other parameters in the MSEM models generally mirrored
the variability of the parameters across MC runs. Furthermore, in the
models with unknown � membership, factor loading, and mean/

covariance parameters involving the latent variable distribution of �
were all characterized by high accuracy, precision, and close corre-
spondence between the estimated SEs and the empirical SEs (SDs of
these parameter estimates across MC runs; see Table 4). Finally, the
power for detecting evidence of bifurcation and divergence by means
of LRTs (i.e., Q3) was consistently high (100%) throughout all
sample size and � membership conditions.

Figure 2. Information criterion (IC) measures obtained from fitting different cross-sectional mixture structural
equation model (MSEM) models (T � 1) across two parameter conditions (with known and unknown �), and
two sample sizes (n � 500 and 200). The eight models considered were (a) Models 1 and 5: cusp-inspired models
with special constraints on transition between regimes, with known and unknown � membership; (b) Models 2
and 6: cusp-inspired models with no constraints on the transition between regimes, with known and unknown
� membership; (c) Models 3 and 7: two-regime models, with known and unknown � membership; and (d)
Models 4 and 8: models with equal � regression weight on yi, with known and unknown � membership. AIC �
Akaike information criterion; BIC � Bayesian information criterion; aBIC � sample-size-adjusted Bayesian
information criterion. See the online article for the color version of this figure.
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In the longitudinal conditions, it is possible to detect within-
person instances of sudden jumps, in addition to interindividual
differences in the tendency to show sudden jumps in the be-
havioral variable. The estimated transition probabilities ob-
tained from fitting the cusp-inspired MSEM-RS Model 5 (see
Table 5) help convey the role of �it in driving the cusp system
to show sudden jumps between the high and low behavioral

regimes with changes in �it. By parameterizing the model to explic-
itly preclude the possibility for cases with high � values to transition into
the medium regime and cases with low � values to transition into
the two extreme behavioral regimes, noticeably fewer estimation
problems arose. The average SE estimates from MSEM-RS Model
5 across MC runs also appeared to be close to the MC SDs for all
the parameters, particularly the logit parameters (see Table 5).

Figure 3. Information criterion (IC) measures obtained from fitting different longitudinal mixture structural
equation model with regime-switching (MSEM-RS) models (T � 6) across two parameter conditions (with
known and unknown �), and two sample sizes (n � 500 and 200). The eight models considered were\ (a) Models
1 and 5: cusp-inspired models with special constraints on transition between regimes, with known and unknown
� membership; (b) Models 2 and 6: cusp-inspired models with equal regression weight of �it on yit, with known
and unknown � membership; (c) Models 3 and 7: two-regime models, with known and unknown � membership;
and (d) Models 4 and 8: models with equal � regression weight on yit, with known and unknown � membership.
AIC � Akaike information criterion; BIC � Bayesian information criterion; aBIC � sample-size-adjusted
Bayesian information criterion. See the online article for the color version of this figure.
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The power for detecting the differential continuous effects of �it

on yit in the high/low versus the medium behavioral regime (Q4)
was high, as indicated by the high proportions of MC runs that
showed significant LRTs when the regression weight for � was
constrained to be invariant across the three regimes (�.97). To
address Q5, we found that the differences in fit between the
three-regime models (MSEM-RS Models 1 and 5) and two-regime
models (MSEM-RS Models 3 and 7) were relatively minor when
longitudinal panel data were used. In addition, not only was the
entropy notably higher in the three-regime model than in the two-
regime model, entropy of the two-regime MSEM-RS actually fell
below .90, the commonly adopted “rule of thumb” for indicating
clarity in class assignment (Celeux & Soromenho, 1996). This dem-
onstrates the utility of using longitudinal panel data to investigate
cusp-related properties. Finally, as in the cross-sectional conditions,
the power for detecting evidence of bifurcation and divergence by
means of LRTs (i.e., Q6) was also very high (close to 100%).

Overall, results from the present simulation study illustrated
that the proposed cusp-inspired MSEM and MSEM-RS model
can in fact be used to capture selected features of the cusp
catastrophe model. The results are especially encouraging for
two reasons. First, the proposed models are not really the true
model, but rather, a mixture approximation to the true cusp
model. Second, the means of the conditional distributions of y
in the three regimes we sought to identify were extremely close
to one another because of the skewed nature of these distribu-

tions. Cases that appear in the bifurcation set are especially
prone to being assigned to the wrong regimes given the coex-
istence of multiple equilibrium points. Of note is that some of
the key differences in the three regimes lie in how individuals
transition into and out of their previous regimes—an aspect of
model testing and assumption falsification that we have shown
to be greatly facilitated by the availability of longitudinal data. For
instance, using IC measures as well as entropy, stronger evidence in
favor of the cusp-inspired three-regime models (as opposed to their
two-regime counterparts) was found with longitudinal than cross-
sectional data. The power for detecting bifurcation, divergence, and
differential roles of � on the behavioral variable were also high for the
simulation settings considered.

Illustrative Examples

Example 1: Sudden Transition in Attitude
The first example involves the reanalysis of a set of cross-

sectional data collected by Felling, Peters, and Schreuder
(1985), for which van der Maas et al. (2003) previously ana-
lyzed using the cusp catastrophe model and subsequently made
available as part of the R library “cusp” (Grasman et al., 2009).
The dependent variable consisted of 3000 Dutch respondents’
levels of agreement with respect to the statement, “The gov-
ernment must force companies to let their workers benefit from

Table 2
Summary Statistics of Results From Testing Questions 1–3 Using MSEMs as Highlighted in the Simulation Design Section

Known � membership, T � 1 and n � 500
Q1: Proportion of MC runs with significant LRT from freeing LO (low � ¡ high) and LO (low � ¡ low) � 1.00
Q2: Proportion (AIC favors less restrictive 3-R Model to 2-R Model) � 1.00

Proportion (BIC favors less restrictive 3-R Model to 2-R Model) � .51
Proportion (aBIC favors less restrictive 3-R Model to 2-R Model) � .95
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .97

Q3: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � .94

Known � membership, T � 1 and n � 200
Q1: Proportion of MC runs with significant LRT from freeing LO (low � ¡ high) and LO (low � ¡ low) � .96
Q2: Proportion (AIC favors less restrictive 3-R Model to 2-R Model) � .93

Proportion (BIC favors less restrictive 3-R Model to 2-R Model) � .17
Proportion (aBIC favors less restrictive 3-R Model to 2-R Model) � .90
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .89

Q3: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � .54

Unknown � membership, T � 1 and n � 500
Q1: Proportion of MC runs with significant LRT from freeing LO (low � ¡ high) and LO (low � ¡ low) � .97
Q2: Proportion (AIC favors less restrictive 3-R Model to 2-R Model) � .99

Proportion (BIC favors less restrictive 3-R Model to 2-R Model) � .35
Proportion (aBIC favors less restrictive 3-R Model to 2-R Model) � .93
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .88

Q3: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � .69

Unknown � membership, T � 1 and n � 200
Q1: Proportion of MC runs with significant LRT from freeing LO (low � ¡ high) and LO (low � ¡ low) � .68
Q2: Proportion (AIC favors less restrictive 3-R Model to 2-R Model) � .87

Proportion (BIC favors less restrictive 3-R Model to 2-R Model) � .06
Proportion (aBIC favors less restrictive 3-R Model to 2-R Model) � .84
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .82

Q3: Proportion of MC runs with significant LRT with equal b� across regimes � .99
Proportion(cases free of SE estimation problems for logit parameters in Model 2) � .38

Note. MSEM � mixture structural equation model; MC � Monte Carlo; LO � log odds; LRT � likelihood ratio test; AIC � Akaike information
criterion; BIC � Bayesian information criterion; aBIC � sample-size-adjusted Bayesian information criterion.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

154 CHOW, WITKIEWITZ, GRASMAN, AND MAISTO



the profit as much as the shareholders do,” as measured on a
5-point scale (1 � totally agree to 5 � totally disagree). Thus,
higher values on the behavioral variable correspond to greater
disagreement toward the attitude statement. Political orienta-
tion, as measured on a 10-point scale from 1 � left wing to 10 �
right wing, was used as the asymmetry variable (�). The total
score on a 12-item political involvement scale was used as the
bifurcation variable (�), with higher values indicating higher
political involvement.

Consistent with Grasman et al. (2009), we only present
results (see Figure 4A) from fitting the cusp catastrophe model
in which the bifurcation factor is determined exclusively by
political engagement, whereas the asymmetry factor is deter-
mined by political orientation. In this model, political involve-
ment loaded positively on �, suggesting greater divergence in
opinions toward social cultural developments among individu-
als with high political involvement. The positive loading of
political orientation on � suggests that among those with low
political involvement (�), one’s advocacy for right-wing per-
spectives at the moment (i.e., higher �) was associated with
greater disagreement (again, note the negative coding of the
behavioral variable such that higher values indicate higher
disagreement) with the attitude statement, but slight changes in
political orientation near the bifurcation region may propel

individuals to show sudden transition in attitude. This variation
of cusp catastrophe model yielded lower AIC and BIC than a
linear regression model and a logistic regression model, pro-
viding some evidence that the cusp catastrophe model was a
better-fitting model among the three models considered.

Several unresolved issues remained. For one, the cusp model
and other comparison models assume very different probability den-
sity functions for y, with distinct and nonoverlapping parameter sets.
It remains unclear whether the asymptotic conditions required to
obtain the correction term in the IC measures (see, e.g., Bozdogan,
1987) are met in this case. For another, we obtained a negative R2

value when the cusp stochastic differential equation (SDE) was fitted
because of the skewed nature of the distribution of y (as discussed e.g.,
in Grasman et al., 2009). These issues lead to direct difficulties in
falsifying features of the cusp model against other alternatives. In
addition, both the behavioral variable (agreement toward the state-
ment concerning government intervention in company policy) and �
were ordinal items, but were assumed to be continuous in fitting the
cusp SDE.

To provide some comparisons with the cusp SDE-based results,
we first fitted the cusp-inspired three-regime MSEM model spec-
ified in Equations 11 and 12 to the data as if they were continuous,
and subsequently reran the analysis by specifying the attitude

Table 3
Summary Statistics of Results From Testing Questions 4–6 Using MSEM-RSs as Highlighted in
the Simulation Design Section

Known � membership, T � 6 and n � 500
Q4: Proportion of MC runs with significant �� � b�high,low

– b�med
� 1.00

Q5: Proportion (AIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (BIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (aBIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .97

Q6: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � 1.00

Known � membership, T � 6 and n � 200
Q4: Proportion of MC runs with significant �� � b�high,low

� b�med
� .97

Q5: Proportion (AIC favors cusp-inspired 3-R Model to 2-R Model) � .32
Proportion (BIC favors cusp-inspired 3-R Model to 2-R Model) � .32
Proportion (aBIC favors cusp-inspired 3-R Model to 2-R Model) � .32
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .86

Q6: Proportion of MC runs with significant LRT with equal b� across regimes across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � .93

Unknown � membership, T � 6 and n � 500
Q4: Proportion of MC runs with significant �� � b�high,low

� b�med
� .98

Q5: Proportion (AIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (BIC favors cusp-inspired 3-R Model to 2-R Model) � .21
Proportion (aBIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .73

Q6: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion (cases free of SE estimation problems for logit parameters in Model 2) � 1.00

Unknown � membership, T � 6 and n � 200
Q4: Proportion of MC runs with significant �� � b�high,low

� b�med
� .97

Q5: Proportion (AIC favors cusp-inspired 3-R Model to 2-R Model) � .30
Proportion (BIC favors cusp-inspired 3-R Model to 2-R Model) � .24
Proportion (aBIC favors cusp-inspired 3-R Model to 2-R Model) � .29
Proportion (Entropy favors cusp-inspired 3-R model among all models considered) � .62

Q6: Proportion of MC runs with significant LRT with equal b� across regimes � 1.00
Proportion(cases free of SE estimation problems for logit parameters in Model 2) � .99

Note. MSEM-RS � mixture structural equation model with regime-switching; MC � Monte Carlo; AIC �
Akaike information criterion; BIC � Bayesian information criterion; aBIC � sample-size-adjusted Bayesian
information criterion; LRT � likelihood ratio test.
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variable as ordinal.6 As distinct from our simulation results, the
three-regime cusp-inspired MSEM yielded better model fit in
terms of IC measures as well as entropy value (AIC � 7,446.01;
BIC � 7,555.95; aBIC � 7,489.24; and entropy � .66 with 21
parameters) than the two-regime model (AIC � 7,545.66; BIC �
7,644.12; aBIC � 7,583.77; and entropy � .44 with 19 parame-
ters). This may be related to the narrower range of � values
(between �1.0 and 1.2) for this empirical example (see Figure
4A). The intercept value of the high and medium agreement
regimes were indistinguishable from each other7 (�high � 0.52
(SE � .03), �med � 0.52 (SE � .03), while �low � �1.11 (SE �
.02)), with residual variances �high

2 � 0.02 (SE � 0.006); �medium
2 �

0.40 (SE � 0.03), and �low
2 � 0.18 (SE � 0.02), respectively.

To ease presentation, we denote the third regime as the low
disagreement regime, and the first two regimes as the “avid sup-
porter” regime and “avid antagonist” regime, for reasons that are

to be elaborated next. Specifically, even though � was found to
show a significant positive relationship with the behavioral vari-
able in all three regimes, the symmetry in the regression effect of �
evidenced in the “high” and “low” behavioral regimes evidenced in

6 We retained the 10-point political orientation variable as continuous
because there appeared to be sufficient variability in this covariate to
regard it as approximately continuously distributed.

7 In the catastrophe theory setting, this lack of difference in means is
relatively inconsequential because the cusp model is in canonical form,
meaning that its key properties still hold regardless of how much one
“compresses” and “stretches” the cusp landscape, as long as one does not
tear it or fold it. So even if the “medium” behavioral regime (i.e., the region
with � � 0) has the same behavioral height (i.e., same mean) as the “low”
behavioral regime, the resultant system is still a valid cusp system. From an
empirical standpoint, however, this lack of distinction in means may lead
to difficulties in drawing empirical conclusions.

Table 4
Summary Statistics of Parameter Estimates From MSEM Model 6, T � 1 and n � 500 Across
500 MC Replications

True � Mean �̂ SD 2.5 %tile 97.5 %tile aSÊ

��,1 1.20 1.20 0.01 1.19 1.22 0.01
��,2 0.90 0.90 0.01 0.89 0.91 0.01

�
,�1

2 0.09 0.09 0.01 0.07 0.11 0.01

�
,�2

2 0.09 0.09 0.01 0.07 0.11 0.01

�
,�3

2 0.09 0.09 0.01 0.08 0.10 0.01

��,high 2.50 2.50 0.05 2.41 2.59 0.05
��,high 0.49 0.49 0.05 0.40 0.58 0.05
��,low �2.50 �2.50 0.05 �2.60 �2.41 0.05
��,low 0.49 0.49 0.05 0.39 0.59 0.05
�high 1.06 0.10 0.83 1.21 0.07
b�,high&low 0.12 0.01 0.09 0.15 0.01
b�,high 0.20 0.03 0.17 0.27 0.02
�
,high&low 0.12 0.01 0.09 0.14 0.01
�low �1.06 0.10 �1.22 �0.84 0.07
b�,low �0.20 0.03 �0.28 �0.16 0.02
�med �0.00 0.24 �0.52 0.47 0.15
b�,med 0.18 0.08 0.01 0.31 0.06
�
,med 0.19 0.07 0.04 0.31 0.06
a10

, logit intercept for Rhigh � 0.00 �0.00 0.00 �0.01 0.01 0.09
b111,�, �LO (high � ¡ high) 2.84 3.99 �2.02 13.93 2.24
b121,�, �LO (high � ¡ low) 2.74 3.76 �2.21 11.84 2.34
a11

, logit intercept for LO (low � ¡ high) �1.99 3.84 �11.75 2.93 2.09
a21

, logit intercept for LO (low � ¡ low) �1.93 3.63 �10.85 3.02 2.23
b111,�, � ¡ �LO (high � ¡ high) 1.74 1.01 0.48 4.17 0.65
b121,�, � ¡ �LO (high � ¡ low) �1.75 1.11 �3.94 �0.45 0.66
b211,�, � ¡ LO (low � ¡ high) 1.01 1.12 �0.69 3.95 0.69
b221,�, � ¡ LO (low � ¡ low) �0.88 1.10 �3.72 0.81 0.69

Pr (high � ¡ high)a 0.41 0.11 0.18 0.60 0.10
Pr (high � ¡ low) 0.39 0.11 0.19 0.58 0.10
Pr (high � ¡ med) 0.20 0.09 0.05 0.42 0.09
Pr (low � ¡ high) 0.19 0.15 0.00 0.55 0.12
Pr (low � ¡ low) 0.20 0.16 0.00 0.55 0.12
Pr (low � ¡ med) 0.62 0.24 0.02 0.98 0.18

Note. MSEM � mixture structural equation model; MC � Monte Carlo; True � � true parameter values; Mean
�̂ � average point estimate for each parameter across Monte Carlo runs; 2.5 %tile and 97.5 %tile � 2.5th and

97.5th percentiles for each parameter across Monte Carlo runs; aSÊ � average standard error estimate for a
parameter across Monte Carlo runs.
a The class and transition probabilities were computed using Equations 8, 9, and 12 with �i set to 0. LO � log
odds; Pr � Probability.
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the simulation study was no longer present (b�,avid supporter � 0.64
(SE � 0.03); b�,low � 0.06 (SE � 0.03); and b�,avid antagonist � 0.19
(SE � 0.03)). Evidence of bifurcation was found, however. Greater
political engagement (i.e., higher �) was associated with less disagree-
ment with government intervention (b�,avid supporter � �0.82 (SE �
0.03) in the avid supporter regime), but increased disagreement
among those in the avid antagonist regime b�,avid antagonist � 0.14
(SE � 0.03). In the low disagreement regime, while increased
right-wingedness (i.e., higher �) was also associated with
greater disagreement with government intervention, the effect
of political involvement on agreement was not statistically
significant. Thus, results from fitting the MSEM to the attitude
data under continuous data specification already revealed some

discrepancies between features of the empirical data and those
manifested by the cusp system.

We fit the three-regime model again with level of disagree-
ment specified as ordinal data. We set the residual variances of
y (i.e., the � parameters) in all regimes to be 1.0 and freely
estimated the intercepts in all regimes. The four threshold
parameters for the attitude question were estimated to be �1.44
(fixed based on the observed proportion of participants who
endorsed the lowest category of disagreement to aid conver-
gence), �0.49 (SE � 0.04), 0.32 (SE � 0.04), and 1.43 (also
fixed using observed proportion of responses). The threshold
values suggest that although it was relatively easy for the
participants to express some level of agreement/disagreement

Table 5
Summary Statistics of Parameter Estimates From MSEM-RS Model 5, T � 6 and n � 500
Across 500 MC Replications

True � Mean �̂ SD 2.5 %tile 97.5 %tile aSÊ

��,1 1.20 1.20 0.01 1.18 1.22 0.01
��,2 0.90 0.90 0.01 0.89 0.91 0.01

�
,�1

2 0.09 0.09 0.01 0.07 0.11 0.01

�
,�2

2 0.09 0.09 0.01 0.07 0.11 0.01

�
,�3

2 0.09 0.09 0.01 0.07 0.11 0.01

��,high 2.50 2.50 0.05 2.41 2.60 0.05
��,high 0.49 0.50 0.05 0.40 0.61 0.05
��,low �2.50 �2.50 0.04 �2.59 �2.42 0.05
��,low 0.49 0.48 0.05 0.40 0.58 0.05
�high 0.58 0.12 0.03 0.73 0.06
b�,high & low 0.24 0.01 0.23 0.26 0.01
b�,high 0.27 0.04 0.22 0.46 0.02
�
,high & low 0.18 0.01 0.17 0.20 0.01
�low �0.57 0.13 �0.72 �0.02 0.06
b�,low �0.27 0.05 �0.47 �0.22 0.02
�med �0.00 0.01 �0.03 0.03 0.01
b�,med 0.24 0.01 0.23 0.26 0.01
�
,med 0.26 0.01 0.24 0.28 0.01
a10

, logit intercept for Rhigh � 0.00 0.00 0.01 �0.00 0.02 0.09
b111,�, �LO (high � ¡ high) �10.00 0.33 �10.60 �9.38 0.31
a1,1t,�

, �LO (low ¡ high | high �) 9.99 0.18 9.63 10.38 0.19
b11t,�

, �LO (high ¡ high | high �) 0.01 0.25 �0.47 0.50 0.26
b111,�, � ¡ �LO (high � ¡ high) 2.67 0.67 1.92 4.17 0.48
b11t,�

, � ¡ LO (high ¡ high) 2.57 0.30 2.07 3.31 0.29
b21t,�

, � ¡ LO (low ¡ high) 2.56 0.31 2.06 3.24 0.29
Pr (high ¡ high | high �, low �)a 0.00 0.00 0.00 0.01 0.00
Pr (high ¡ low | high �, low �) 1.00 0.00 0.99 1.00 0.00
Pr (low ¡ high | high �, low �) 0.00 0.00 0.00 0.01 0.00
Pr (low ¡ low | high �, low �) 1.00 0.00 0.99 1.00 0.00
Pr (high ¡ high | high �, high �) 1.00 0.00 0.99 1.00 0.00
Pr (high ¡ low | high �, high �) 0.00 0.00 0.00 0.01 0.00
Pr (low ¡ high | high �, high �) 1.00 0.00 0.99 1.00 0.00
Pr (low ¡ low | high �, high �) 0.00 0.00 0.00 0.01 0.00
Pr (high ¡ high | high �, avg �) 0.50 0.04 0.42 0.59 0.05
Pr (high ¡ low | high �, avg �) 0.50 0.04 0.41 0.58 0.05
Pr (low ¡ high | high �, avg �) 0.50 0.05 0.41 0.59 0.05
Pr (low ¡ low | high �, avg �) 0.50 0.05 0.41 0.59 0.05

Note. MSEM-RS � mixture structural equation model with regime-switching; MC � Monte Carlo; True � �
true parameter values; Mean �̂ � average point estimate for each parameter across Monte Carlo runs; 2.5 %tile

and 97.5 %tile � 2.5th and 97.5th percentiles for each parameter across Monte Carlo runs; aSÊ � average
standard error estimate for a parameter across Monte Carlo runs.
a The transition probabilities were computed using Equations 13 and 14. Avg � � value of � was set to 0;
high � � value of � was set to 1 SD above the mean of 0; low � � value of � was set to 1 SD below the
mean of 0. LO � log odds; Pr � Probability.
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with the attitude question, extreme levels of agreement/dis-
agreement were relatively rare.

Consistent with results from continuous data modeling, the
intercepts of the “high” and “medium” regime were also not
clearly distinguishable from one another. Besides the differences
in the magnitudes of the parameter estimates because of scaling
differences with the ordinal specification, several differences can
be noted in the results from using the ordinal specification. First,
the entropy for the model was higher (.75 compared with .66 with
continuous specification, with 21 parameters in both models).

Second, although an “avid supporter” regime (in which the regres-
sion effects associated with political orientation and political en-
gagement were positive and negative, respectively) was still iden-
tified, the sign of the regression coefficient for political orientation
in the “avid antagonist” regime was flipped. In this regime, al-
though greater political engagement (�) was still associated with
more disagreement with the attitude question (b�,avid antagonist �
0.65; SE � 0.19), increased right-wingedness (i.e., higher �) was
associated with less disagreement (i.e., more agreement) with the
statement (b�,avid antagonist � �0.53; SE � 0.29). In other words,

Figure 4. Selected plots from illustrative examples I (Panel A) and II (Panels B–D). (A) Classification of cases
into the respective regions of the �-� plane based on results from fitting the cusp SDE to Felling et al.’s (1985)
data. At the bottom, a scatter plot of the residuals versus fitted values is displayed. In the cusp region with
multimodality, each fitted value was computed post hoc based on the mode that gave the smallest residual (hence
the label “Delay convention”). Shown in the right are empirical kernel density plots whose shapes are similar
to the theoretical densities depicted in Figure 1(A). (B) A plot of the biweekly proportion of heavy drinking days
scores over the course of the treatment program against the distal risk composite score; (C) a plot of the biweekly
proportion of heavy drinking days scores against proximal risk; and (D) a plot of the estimated posterior
probabilities of being in the abstinence regime (Rabs) and the estimated proportion of participants in the complete
abstinence regime at any single time point (as a thick solid line marked with “A”). See the online article for the
color version of this figure.
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although evidence of bifurcation in attitude because of political
engagement was still found, the effect of right-wingedness was
reversed.

Finally, in the regime with the lowest intercept, the effects of
political engagement and orientation were both positive and
statistically significant. This is consistent largely with the re-
sults seen in the continuous data for the lowest disagreement
regime, although the marginally significant effect of political
involvement in the continuous case now became statistically
significant with the ordinal specification (b�,low � 0.06, SE �
0.03, p � .06; in contrast to b�,low � 0.16, SE � 0.04, p � .001
in the ordinal case). There was also an increase in the effect size
associated with political orientation in the ordinal case
(b�,low � 0.06, SE � 0.03, p � .03; in contrast to b�,low � 0.41,
SE � 0.05, p � .001 in the ordinal case). The estimated
proportion of participants who resided in each of the regimes
also differed substantially (e.g., for participants in the high
political engagement class, �23.5% of them were assigned to
the avid supporter regime in the ordinal model, compared with
only 4.0% in the continuous case).

In summary, consistent with findings in the literature, which
suggest that misspecifying ordinal data as continuous can, in
some cases (e.g., with very irregularly spaced thresholds), lead
to biases in parameter estimates and incorrect inference results
(Babakus, Ferguson, & Jöreskog, 1987; Mooijaart, 1983;
Muthén & Kaplan, 1992), we found discrepancies in modeling
results between the continuous and ordinal models. The MSEM
framework offers a way to accommodate ordinal and other
types of responses (e.g., binary, censored, and Poisson distrib-
uted responses) and thus, offers considerable gain in flexibility
in testing cusp-related hypotheses in empirical settings.

Example 2: Nonlinear Shifts in Alcohol Use Tendency

After alcohol treatment, individuals with alcohol use disor-
ders often undergo sudden, nonlinear transitions between peri-
ods of abstinence/nonproblem drinking and periods of heavy
drinking (Witkiewitz, 2008; Witkiewitz, Maisto, & Donovan,
2010; Skinner, 1989). Such nonlinear transitions are associated
with hysteresis-like characteristics, as suggested by the dis-
tinctly higher prevalence rate of lapses in comparison to pro-
lapses (i.e., returning to abstinence after heavy drinking). Wit-
kiewitz and Marlatt (2004) represented such transitions using
the cusp catastrophe model, in which distal and proximal pro-
cesses serve as � and �, respectively, to affect drinking out-
comes (i.e., the behavioral variable). Distal risks may be con-
ceived as background or relatively stable characteristics (e.g.,
previous history of alcohol dependence). Proximal risks, in
contrast, encompass transient precipitants that change an indi-
vidual’s tendency to drink on a moment-to-moment basis (e.g.,
momentary stress). Witkiewitz and colleagues (2004, 2007)
stipulated that for individuals with low distal risk, drinking
changes linearly with changes in proximal risk (Path A in
Figure 1). However, for those with high distal risk, the associ-
ated alcohol use pathways may resemble Paths B and C in
Figure 1 more closely: A small increase in proximal risk may
push an individual “over the edge,” leading to an episode of
lapse. A prolapse then requires a substantially larger reduction
in proximal risk to help the individual regain abstinence.

Thus far, the cusp-based analyses conducted by Witkiewitz and
colleagues were restricted to cross-sectional analyses because of
the inability of current software routines to handle longitudinal
panel data as well as missing values. As demonstrated in our
simulation study, longitudinal panel data contain valuable infor-
mation about within-person instances of sudden jumps that are not
available in cross-sectional data. In addition, not all empirical data
sets conform to every mathematical premise of the cusp model.
This example serves to demonstrate the flexibility of the
MSEM-RS framework in adapting to specific features of alcohol
use data.

Data from Project Matching Alcohol Treatments to Client Het-
erogeneity (Project MATCH; Project MATCH Research Group,
1997) were used. Participants in Project MATCH (n � 1,726)
were recruited from nine research units and randomly assigned to
one of three treatments: cognitive-behavior therapy, 12-step facil-
itation, or motivation enhancement therapy. For the current study,
only those treated in the outpatient condition were included in the
analyses.

Perceived stress (Cohen, Kamarck, & Mermelstein, 1983),
difficulty abstaining from alcohol, and alcohol craving (Anton,
Moak, & Latham, 1995) were used to derive a composite
indicator of proximal risk. As a measure of distal risk (�), we
considered a composite score derived by averaging the partic-
ipants’ self-reported alcohol dependence severity using the
Alcohol Dependence Scale (ADS; Skinner & Horn, 1984),
previous history of psychiatric problems as measured using the
Global Severity Index of the Brief Symptom Inventory (BSI;
Derogatis, 1993; Hufford, Witkiewitz, Shields, Kodva, &
Caruso, 2003) and family support (reverse coded based on
scores on the original 0 –7 scale). However, preliminary graph-
ical analyses suggested no categorical divergence in drinking
patterns as a function of this distal composite score. Thus, we
used early treatment proportion of heavy drinking days (at
Week 1) to define a grouping factor such that the high-� group
was defined as participants who showed early lapses at the start
of the treatment program (�35% of the participants), whereas
the low-� group comprised those who maintained early absti-
nence. This was motivated by an emphasis in previous research
on the importance of maintaining abstinence or preventing early
lapses after the start of a treatment program. That is, early
individual differences in responsiveness to the treatment effects
may be regarded as a source of distal risk, as opposed to
individual differences in drinking dynamics. The composite
distal risk score was still retained as a continuous indicator of
� in Equation 15 (to appear next).

We used each participant’s proportion of heavy drinking days
(PHD; defined as 4 or more drinks per day for women and 5 or
more drinks per day for men) since the last assessment occasion
as our key dependent variable of interest. For model fitting
purposes, we aggregated data every 2 weeks from Week 2 to
Week 12, yielding a set of longitudinal panel data with six
equally spaced time points. Plots of the PHD scores of the
participants against their composite distal and proximal risk
scores are shown in Figure 4B–C. It can be seen that a large
number of abstainers were present at each time point. Thus, the
low behavioral regime as posited in the cusp system may not be
adequate to capture the limited drinking variability shown by of
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this group of abstainers. This motivated us to reformulate our
cusp-inspired MSEM-RS so the low behavioral regime corre-

sponded to an abstinence regime with no alcohol consumption.
Thus, we modified Equation 11 to yield

Regime Model

Rhigh : High drinking (yit � �high) � �high(yi,t�1 � �high) � b�,high�i � b�,high�i � �it

Rmed : Medium drinking (yit � �med) � �med(yi,t�1 � �med) � b�,med�i � b�,med�i � �it,

Rabs : Complete abstinence 0,

(15)

The regime denoted as Rabs was specified to be a complete
abstinence regime, with no variability in drinking level and no
effect of � or �. The two remaining regimes were distinguished by
within-person, overtime fluctuations in yit around two different
baseline levels, �high, and �med, with the constraint that �high �
�med. In both the high and medium drinking regime, deviations in
drinking level around �high and �med were modeled as an autore-
gressive process of order 1 (i.e., an AR(1) process) with AR weight
�high and �med, respectively, and as subjected to regime-specific
effects of � and �. An AR(1) value that is significantly different
from zero would suggest some continuity or regularity in how
individuals manifested drinking from occasion to occasion. The
process noise variable, 
it, was assumed to be normally distributed
with mean 0 and variances �high

2 and �medium
2 , respectively, for the

high and medium drinking regimes.
The cusp-inspired three-regime model (with low, medium, and

high regimes) with early lapses as a known grouping variable
did not yield better fit (AIC � �3311.51; BIC � �3249.72;
aBIC � �3303.62 with 17 parameters) than a two-regime model with
a drinking and a complete abstinence regime (AIC � �9264.21,

BIC � �9220.05 and aBIC � �9258.11 with 12 parameters). Entropy
value for the two-regime model was estimated to be .96, indicating
clear classification of participants into their respective classes (Celeux
& Soromenho, 1996). Based on the parameter estimates from the
two-regime model, the two regimes may be interpreted as a complete
abstinence and a (moderate) drinking regime, with an estimated
intercept of � � 0.32 (SE � .035), and an AR(1) coefficient of 0.65
(SE � 0.08). The magnitude of the AR coefficient, given that it is less
than 1 in absolute value, indicated that any deviations away in drink-
ing level from � were expected to diminish over time at a moderate
pace. Contrary to our expectation, continuous changes in composite
distal risk did not have a statistically significant effect on drinking
(b� � 0.03, SE � 0.02).

Composite distal risk and proximal risk were used as predic-
tors of initial class probability at Week 2. Proximal risk, but not
composite distal risk, was found to have a statistically signifi-
cant effect on the initial class probabilities. The corresponding
estimates of the log odds parameters and the initial class/
transition probabilities are given by (with SEs included in
parentheses)

Log odds (Ci1 � k) Pr(Ci1 � k�avg proximal risk level)

Drink

Abs ��1.62(0.16) � 0.42(0.12)Proxi1 � 0.19(0.15)Distali
0 � Drink

Abs �.17(0.02)

.83(0.02) �
Log odds (Cit � k�Ci,t�1 � j, Proxi)

Drink Abs

Drink

Abs ��2.56(0.14) � 3.37(0.26) � 0.12(0.18)Proxit 0

�2.56(0.14) � 0.63(0.18)Proxi 0 �

We found that the participants were 1.62 times more likely to be
in the abstinence than in the drinking regime at Time 1. Proximal
risk was found to play a statistically significant role in increasing
the log odds of being in the drinking regime at Week 2, as well as
the log odds of transitioning from abstinence to drinking. How-
ever, it did not show a significant effect on the log odds of staying
within the drinking regime, or a significant continuous effect on
drinking (b� � 0.04; SE � 0.02). Overall, the abstinence regime
was characterized by a higher staying probability (.93; SE � 0.01)
than the drinking regime (.69; SE � 0.04).

The posterior probabilities from model fitting (see Figure 4D)—
namely, each individual’s estimated probability of being in a
particular regime (e.g., the complete abstinence regime) at each

time point conditional on the data—indicated that the participants
continued to show ongoing transitions into and out of the absti-
nence regime throughout the treatment period. The proportion of
participants assigned to the complete abstinence regime at each
time point based on their highest posterior probabilities is also
included in the plot as a thick solid line marked with “A.” On
average, the prevalence of the complete abstinence regime re-
mained relatively stable over time. A small but relatively constant
proportion of individuals continued to be assigned to the drinking
regime throughout the 3-month treatment period.

In summary, results from model fitting suggested that the two-
regime model provided a more parsimonious representation of
individuals’ recovery pathways after alcohol treatment than the
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adapted cusp-inspired three-regime model. In particular, partici-
pants with high distal risk did not appear more susceptible to a
lapse at Week 2 posttreatment, nor did they show recovery path-
ways that were clearly distinct from the pathways of participants
with low distal risk (e.g., showing sudden jumps between extreme
drinking modes with changes in proximal risk). In addition, al-
though changes in proximal risk did not give rise to smooth,
proportionate changes in the participants’ drinking patterns, in-
creased proximal risk was associated with significant increase in
the log odds of a lapse. As a whole, the general MSEM-RS
framework offers enough flexibility for model explorations, eval-
uations, and comparisons to allow us to detect the ways in which
the data deviate from the theoretically hypothesized model.

Discussion

Researchers well versed to the tradition of a linear regression or
structural equation modeling framework may be accustomed to
transforming away skewness or other nonnormalities in the data
before model fitting. Few researchers have asked or tested whether
such transformations are warranted, or whether the nonnormalities
are indeed part of the intrinsic dynamics of the system, as is the
case with the cusp catastrophe system. In this article, we proposed
a MSEM/MSEM-RS framework for capturing selected charac-
teristics of the cusp catastrophe model in exchange for greater
flexibility in handling practical data analytic and model com-
parison issues. A simulation study and two empirical examples
were included to illustrate the strengths and limitations of the
proposed approach in detecting catastrophe flags. Structuring the
cusp catastrophe model as an MSEM or MSEM-RS has some clear
advantages. First, the proposed models can be readily fitted using
available software programs with built-in options for handling
incomplete and categorical data, and a variety of fit indices for
model comparison purposes. Second, measurement noise can be
distinguished from process noise. Third, lagged effects among the
behavioral and control variables can be readily accommodated,
and the model can be expanded, as needed, to test multivariate
extensions involving other dependent variables of interest. Fourth,
by using person- and time-specific covariates to predict the prob-
abilities of transitioning between regimes, the new approach also
allows for heterogeneous timing of sudden jumps within and
across subjects. Other advantages we demonstrated in the contexts
of our empirical examples include the added flexibility offered by
the MSEM/MSEM-RS framework to capture data characteristics
that deviate from those posited in the cusp framework, such as the
presence of the zero-inflation phenomenon in the MATCH reanal-
ysis example.

We have shown how postulates concerning the equilibrium
points of a dynamic system can be tested as hypotheses con-
cerning the number of regimes in an MSEM/MSEM-RS using
standard model comparison indices such as entropy and IC
measures. Other more complicated catastrophe models may also
be structured in a similar vein. Of course, the validity of the
cusp-inspired MSEM-RS still depends on the tenability of the
normality assumptions imposed on the behavioral variable
within regimes. We only managed to test a selected set of
assumptions in our simulation study and empirical examples.
There are many other possible assumptions that can be relaxed
or evaluated in other empirical applications, as deemed appro-

priate by the researchers. Some examples might include testing
the tenability of measurement invariance, evidence for
between-class heterogeneities in measurement structure (e.g.,
measurement error variance), and possible between-person or
between-groups differences in the transition probabilities or
other modeling components. In addition, one alternative way in
which researchers can test the stability of the latent classes/
regimes is to use different covariates to predict class member-
ship and assess whether the model parameters and conclusions
change in anyway when different covariates are used. If they
do, researchers may want to impose additional constraints to
facilitate the extraction of substantively meaningful latent
classes/regimes.

The present article is not the first application of MSEM-RS (see,
e.g., Chow et al., 2013; Dolan, Schmittmann, Lubke, & Neale,
2005). By including an explicit longitudinal model within each
regime or class, MSEM-RS as a whole differs from another class
of well-known longitudinal models of discrete changes—the
HMMs (Elliott, Aggoun, & Moore, 1995), or the related latent
transition models (LTA; that emphasize categorical indicators;
Collins & Wugalter, 1992; Lanza & Collins, 2008). HMM may be
regarded as a generalization of latent class/mixture models because
of the inclusion of a Markov chain that governs the transition
between classes over time. It is worth noting that in HMMs, there
is no continuous latent variable vector, �, or any longitudinal
model specifying lagged dependencies between the current �it and
those from previous time points. The specification of a continuous
model of change within each regime allows the intraperson dy-
namics within regimes in an MSEM-RS to be continuous in nature,
even though the shifts between regimes or classes are discrete. In
this way, MSEM-RS models are more suited to representing pro-
cesses wherein the changes that unfold within regimes are contin-
uous, and of central interest to the researcher. In addition, a
first-order Markov chain is typically assumed in HMMs. As a
result, algorithms for estimating HMMs, such as the Baum-Welch
algorithm8 (Baum, Petrie, Soules, & Weiss, 1970; Welch, 2003)
can reasonably assume that the density of the observations in yit

only depends on the latent regime at time t namely, Cit, and not on
other earlier regime information (see, e.g., Welch, 2003, p. 10).
The computational costs are thus, greatly reduced. This assump-
tion generally does not hold in regime-switching models with
continuous latent variables that show lagged dependencies (e.g., in
Equation 15 and in other regime-switching state-space models; see
discussion on p. 69 of Kim & Nelson, 1999), or in models where
the first-order Markov assumption is relaxed, such as the general
MSEM-RS framework implemented in Mplus.

It is worth noting, however, that all exact likelihood approaches,
including the EM algorithm implemented in Mplus, requires the
storage of the entire regime history for estimation purposes, unless
simplifying assumptions are made, such as in the case of estimat-
ing HMMs. In fact, the full Markov dependency built into the
MSEM-RS is consistent with the modeling conventions in the
SEM framework, in which repeated measurement occasions of
yit, �it, and Cit are included as separate variables within yi, �i, and
Ci, respectively. When T is small, this modeling framework pro-

8 The Baum-Welch algorithm can be regarded as a special case of the
EM algorithm (Dempster et al., 1977).
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vides great flexibility, for instance, in allowing the number of
latent classes to vary for each time point. However, when T is
large, considerable increase in computational costs may be ob-
served. In this case, alternative regime-switching estimation tech-
niques commonly adopted in the time series/state-space literature
(e.g., the Kim filter; Kim & Nelson, 1999; Yang & Chow, 2010)
may be used.

Several unresolved methodological challenges associated with
the proposed modeling approach should be noted. Models with
multiple regimes are notorious for their large numbers of local
maxima. The use of multiple starting values to check the sensitiv-
ity of the estimation results to different starting values can help
detect possible local maxima. Sample size consideration is also a
critical issue, because sufficient observations have to be available
from every regime to adequately model the dynamics within
regimes and differences across regimes (Chow et al., 2013; Chow
& Zhang, 2013; Tueller & Lubke, 2010). Influence analysis in the
context of MSEM/MSEM-RS and related models is another im-
portant topic that warrants further investigation. In particular, it is
possible to develop diagnostics similar to those considered else-
where (Chow, Hamaker, & Allaire, 2009) to identify outlying
cases (i.e., individuals) and measurement occasions that are influ-
ential to the modeling results and perform data processing proce-
dures as needed.

Fixed covariates were used in the multinomial logistic re-
gression models shown in Equations 8, 9, and 13 to predict the
initial class and transition probabilities. When missingness is
present in the covariates, such missingness in the covariates
cannot be handled directly using full-information maximum
likelihood approaches. If the bifurcation and asymmetry vari-
ables are incorporated into the model as other key variables
with distributional assumptions, data that are missing at random
can be readily accommodated. However, new computational
challenges may arise with the added modeling complexity,
particularly when categorical predictors are involved. In this
application, cases with missing covariates were removed from
model fitting as the default option in Mplus. Future applications
should consider multiple imputation or other approaches that
model the missingness in the covariates explicitly (e.g., Green-
land & Finkle, 1995; Ibrahim, Chen, & Lipsitz, 1999; Lee &
Tang, 2006).

Model identification in MSEM/MSEM-RS is another key issue
that warrants more attention from researchers. When the number of
regimes is large or the distinctions between regimes are not pro-
nounced, researchers may want to impose more than the necessary
number of constraints to aid estimation. The regime-switching
models considered in this study are highly constrained compared
to other conventional mixture models. That is, in addition to the
constraints imposed to avoid the well-known problem of “label
switching” (McLachlan & Peel, 1995; Tueller & Lubke, 2010), we
also incorporated many theoretically and model-driven constraints.
Such constraints allow us to explicitly represent the continuous
changes that unfold within regimes and offer a useful alternative to
models such as HMMs. Although such constraints may help aid
model identification, researchers also have to be wary of whether
such constraints put some of the parameters on the boundary of
the parameter space over which optimization is done, thereby
violating one of the regularity conditions for standard LRTs
(Savalei & Kolenikov, 2008). In the examples considered in the

simulation study and empirical examples in which LRTs were
used, we did not have this problem. However, in other situa-
tions, such as in cases where the more restrictive model (the
null hypothesis) involves restrictions on the transition proba-
bility patterns (e.g., the probability of transitioning into a par-
ticular regime is zero), other model comparison indices will
have to be used (e.g., bootstrapped LRTs, which are currently
available in Mplus for cross-sectional but not mixture models;
Nylund, Asparouhov, & Muthén, 2007).

In closing, we note that, although the proposed models were
able to retain some of their features, our intention is not to discount
the roles of the cusp catastrophe or other related catastrophe
models. Using a mixture model to approximate the differing path-
ways of change also did not fully capture the distinctions between
the linear and the nonlinear pathways of change posited in the cusp
catastrophe model. Whereas the proposed MSEM/MSEM-RS
framework helps to circumvent several challenges in the analysis
of empirical data, we still acknowledge the general appeal of the
catastrophe models as possible ways of representing change.
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