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ABSTRACT
The collimation and evolution of relativistic outflows in γ -ray bursts are determined by their
interaction with the stellar envelope through which they travel before reaching the much larger
distance where the energy is dissipated and γ -rays are produced. We consider the case of a
Poynting-flux-dominated relativistic outflow and show that it suffers strong inverse-Compton
(IC) scattering drag near the stellar surface and the jet is slowed down to sub-relativistic speed
if its initial magnetization parameter (σ 0) is larger than about 105. If the temperature of the
cocoon surrounding the jet were to be larger than about 10 keV, then an optically thick layer of
electrons and positrons forms at the interface of the cocoon and the jet, and one might expect
this pair screen to protect the interior of the jet from IC drag. However, the pair screen turns
out to be ephemeral, and instead of shielding the jet it speeds up the IC drag on it. Although a
high σ 0 jet might not survive its passage through the star, a fraction of its energy is converted
to 1–100 MeV radiation that escapes the star and appears as a bright flash lasting for about
10 s.

Key words: scattering – gamma-ray burst: general – stars: jets – stars: magnetic field.

1 IN T RO D U C T I O N

Long gamma-ray bursts (long GRBs) are explosions resulting from
the core collapse of massive stars at the end of their nuclear burning
life cycle. The amount of energy produced in these explosions is
estimated to be ∼1048–1052 erg (e.g. Sari, Piran & Halpern 1999;
Frail et al. 2001; Panaitescu & Kumar 2001; Berger, Kulkarni &
Frail 2003; Curran, van der Horst & Wijers 2008; Liang et al. 2008;
Racusin et al. 2009; Cenko et al. 2010). The collapse of the core
of a GRB progenitor produces either a black hole or a neutron
star, and in either case the central compact object is believed to be
rapidly rotating (for a review, Piran 1999; Meszaros 2006; Woosley
& Bloom 2006; Gehrels, Ramirez-Ruiz & Fox 2009). As in other
astrophysical sources such as active galactic nuclei (AGN), micro-
quasars, pulsars and SGRs (soft-gamma-ray repeaters), a rapidly
rotating black hole, or a magnetar, is expected to produce a rel-
ativistic bipolar jet which then interact with the ambient medium
(e.g. Falcke, Körding & Markoff 2004; Markoff, Nowak & Wilms
2005; Bucciantini et al. 2008, 2009; Narayan & McClintock 2008;
Markoff 2010; Yuan & Narayan 2014).

In the scenario where the central engine of a GRB is a rapidly ro-
tating magnetar, a Poynting-flux-dominated jet is generated by the

� E-mail: c.ceccobello@uva.nl (CC); pk@surya.as.utexas.edu (PK)

strong magnetic field with an initial jet magnetization parameter,1

σ 0, of the order of ∼103 (Thompson, Chang & Quataert 2004; Met-
zger, Thompson & Quataert 2007). The magnetization parameter
increases as the neutrino-driven baryonic mass-loss rate at the sur-
face of the neutron star decreases on de-leptonization time-scale of
about half a minute (Metzger et al. 2011). In fact, the increase to
the magnetization parameter can be rather dramatic with σ 0 ∼ 109

as the neutrino luminosity winds down (Metzger et al. 2011). These
authors associate the transition to high σ 0 with the end of the prompt
gamma-ray phase and the steep decline of X-ray afterglow that is
seen for a large fraction of bursts detected by the Swift satellite
(Tagliaferri et al. 2005; O’Brien et al. 2006; Willingale et al. 2010).
The reason for this association, according to Metzger et al. (2011),
is that the acceleration and dissipation are very inefficient processes
for high σ 0 jets. It should be noted that highly magnetized jets are
not limited to the magnetar model, but could also be produced when
the GRB central engine is an accreting black hole as the mechanism
for launching of the jet might be the Blandford–Znajek process
(Blandford & Znajek 1977). In this paper, we address the question
regarding the survival of a highly magnetized jet (σ 0 � 104) as
it propagates through the GRB progenitor star and is exposed an

1 Magnetization parameter is defined as the ratio of Poynting flux and particle
kinetic energy flux carried by the jet.
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intense radiation field that can penetrate all the way to jet axis and
can drag it down.

Inverse-Compton (IC) drag has been considered by a number of
people for AGN jets e.g. Phinney (1987), Melia & Konigl (1989),
Sikora et al. (1996), Ghisellini, Tavecchio & Chiaberge (2005),
Ghisellini & Tavecchio (2010). However, the GRB jets are differ-
ent in that they are highly opaque throughout much of the region
where they undergo acceleration (as opposed to AGN jets which
are transparent throughout their entire length), and thus the IC drag
on GRB jets due to an external field can be treated independently
of the acceleration mechanism.

A jet propagating through the GRB progenitor star envelope cre-
ates a hot cocoon within which the jet is enclosed by the time
it reaches the stellar surface. We describe the interaction of such
highly magnetized jets with photons from the hot cocoon and how
that affects the jet propagation through the envelope of the progen-
itor star. In particular, we analyse the role of the IC drag in braking
the relativistic outflow.

The organization of this paper is as follows. In the next section,
we calculate how far inside the jet can X-ray photons from the
cocoon penetrate the jet, and at the distance from the centre when
the jet becomes transparent. Section 3 provides an estimate for IC
drag on a high magnetization parameter jet due to scattering of
X-ray photons from the cocoon surrounding it, but ignoring the
creation of e± pairs and possible shielding of the jet provided by
these particles. In Section 4, we consider whether the core of the jet
could be shielded by electron–positron pairs produced either at the
base of the jet or at the interface of the jet and cocoon by collision of
X-ray photons with gamma-ray photons that are arise when X-ray
photons are IC scattered by electrons in the jet.

2 PH OTO S P H E R I C R A D I U S F O R
POYNTING-FLUX-DOMINATED JETS

Let us consider a relativistic Poynting-dominated jet composed by
a mixture of baryons, leptons and photons. As seen in the frame co-
moving with the flow, baryons and leptons are thermally distributed
and have the same number density.

The total isotropic equivalent luminosity of a Poynting jet, which
has significant thermal energy, and where mass flux is dominated
by baryons, can be written as

L = πR2θ2
j (R)

[
mpn

′
pvc2�2 + 4

3
u′

γ �2v + B ′2�2v

4π

]
, (1)

where � and v are jet Lorentz factor and speed, n′
p and B′ are jet

comoving frame proton density and magnetic field strength, u′
γ is

the energy density in photons in jet comoving frame, and θ j(R) is
the jet half-opening angle when it is at radius R.

Using the mass conservation equation and the definition of the
magnetization parameter, which are the following:

Ṁ± = πθ2
j R2mpn

′
p�v (2)

σ = B ′2

4πmpn′
pc

2
, (3)

we obtain

L = Ṁ±c2� (1 + ξ + σ ) , (4)

where

ξ ≡ 4u′
γ

3mpn′
pc

2
(5)

is the ratio of thermal energy and baryon rest-mass energy densities.
From equations (2)–(4), we calculate proton number density in the
comoving frame

n′
p(R) ≈ L

�0(1 + ξ0 + σ0)c2

1

πθ2
j R2mpc�

≈ L

πθ2
j R2mpc3(σ0 + ξ0)�

, (6)

where �0, ξ 0 and σ 0 are values at the base of the jet at radius R0,
and the last part of the above equation is obtained by assuming that
�0 ∼ 1 and σ 0 + ξ 0 � 1.

While the jet is inside the star, it is collimated by the pressure of
the cocoon and the ambient stellar medium, and we take its Lorentz
factor to increase with radius as

� ∼
[

r

R0

]α

, (7)

as long as � < (ξ 0 + σ 0). The index α in the above equation can
be shown to be related to the pressure (p) stratification of GRB pro-
genitor star; for p ∝ r−a, α = a/4 as long as a ≤ 2 (Kumar & Zhang
2014). The pressure in the He-envelope of the GRB progenitor star
declines as ∼r−2, and therefore we expect α ∼ 0.5 for a Poynting
jet. The transverse size of the jet increases with radius in the same
way as � (Kumar & Zhang 2014), i.e.

Rj,⊥(r) ∼ R0

[
r

R0

]α

, (8)

and therefore the jet angle is given by

θ (r) ∼
[

R0

r

]1−α

. (9)

The photospheric radius where the Thompson optical depth of
the jet in the jet-longitudinal direction is unity, is determined from

τT ≈
∫

dr

2�2
σTn′

p(r)� ≈ σTL

2π(4α − 1)R0mpc3(σ0 + ξ0)

[
R0

R

]4α−1

,

(10)

where we made use of equation (6) for electron number density
(which is assumed to be equal to proton number density), and equa-
tions (7) and (9) to substitute for � and θ j, respectively. Thus the
photospheric radius is

Rph = R0

[
σTL

2π(4α − 1)mpc3(σ0 + ξ0)R0

] 1
4α−1

∼ (
2.4 × 109cm

)
L50 σ−1

0,6 (�2θj,−1)−2. (11)

So in case of initially large magnetization parameter (�104), pho-
tons can escape from the jet well before the jet reaches the stel-
lar surface. We note that the maximum Lorentz factor of a ther-
mal fireball with σ 0 = 0 is obtained when the jet acceleration
continues out to the photospheric radius Rph and is given by
�max ∼ [σTL/(2π(4α − 1)mpc

3R0)]α/(5α−1) as long as Rph < R∗;
for α = 1, �max ∼ 5.4 × 102L

1/4
51 R

−1/4
0,7 .

Photons from the cocoon surrounding the jet cannot penetrate
very far inside the jet at radius Rph because of the much larger
optical depth in the transverse direction. To estimate the IC drag
of the jet due to scattering of X-ray photons from the cocoon by
electrons in the jet, we first determine the radius where the jet
becomes transparent in the transverse direction.

MNRAS 449, 2566–2575 (2015)
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2568 C. Ceccobello and P. Kumar

Figure 1. Schematic sketch of a photon trajectory (red line) from the hot cocoon passing through the jet axis (dotted line). The angle between the photon
initial direction of motion and the jet axis is labelled as θγ and the jet opening angle is θ j. R is the radial distance between the centre of explosion and the
injection point where the cocoon photon enters the jet and r is the radial coordinate. Although the jet is shown to be conical in this representation, its transverse
radius increases more slowly than r while it is confined by the pressure of the star/cocoon.

2.1 Jet transparency radius in the transverse direction

The optical depth of the jet for photons of frequency νc travelling
in a direction perpendicular to the jet axis, including Klein–Nishina
correction to the scattering cross-section, is

τ⊥(r) ≈ σTn′
p(r)�θjr

1 + hνc�/(mec2)

[
1 + 2 ln

(
1 + 2 hνc�

mec2

)]

≈ σTL

πθjmpc3(σ0 + ξ0)r[1 + hνc�/(mec2)]
, (12)

where we used equation (6) for n′
p. The radius where the jet becomes

transparent to photons moving in the transverse direction is

Rph,⊥ ≈ (
5 × 1012cm

) L50σ
−1
0,6

θj,−1[1 + hνc�/(mec2)]
. (13)

A more general situation is where photons are travelling at an
angle θγ with respect to the jet axis. We calculate the optical depth
for these photons to travel from the interface of jet and the cocoon
to the jet axis. Consider a photon travelling at an angle θγ with
respect to jet axis and electrons moving in the radial direction (see
Fig. 1). The optical depth for a photon of frequency to scatter off
electrons along its trajectory starting from cocoon–jet interface to
the jet axis is

τ (θγ ) ≈
∫ θj

0
dθ r

σTnp(r)[1 − v cos(θ + θγ )/c]

[1 + hν ′/mec2] sin(θ + θγ )
, (14)

where np = �n′
p is electron density in star rest frame,

ν ′
c(θ + θγ ) = νc�

[
1 − v cos(θ + θγ )/c

]
, (15)

is photon frequency in electron rest frame, and we have assumed that
there is one electron per proton in the jet; Klein–Nishina correction
to Thompson cross-section is included in equation (14). The photon
trajectory in the polar coordinate is described by (see Fig. 1)

r sin(θ + θγ ) = R sin(θj + θγ ). (16)

Using

np(r) = L

πθ2
j r2mpc3(σ0+ξ0)

= (7 × 1017cm−3)
L50

θ2
j,−1r

2
10(σ0,6+ξ0,6)

,

(17)

we find

τ = σTL

πθ2
j mpc3(σ0 + ξ0)

∫ θj

0
dθ

[
1 − v cos(θ + θγ )/c

]
r[1+hν ′

c(θ+θγ )/mec2] sin(θ+θγ )
.

(18)

With use of equation (16) for r, this reduces to

τ (r) ≈ σTL
[
1 + hν ′

c(θγ )/mec
2
]−1

πθ2
j mpc3(σ0 + ξ0)r sin(θj + θγ )

× [
θj − v

{
sin(θj + θγ ) − sin θγ

}
/c

]
. (19)

The GRB jet Lorentz factor near the surface of the progenitor star
is expected to be much larger than θ−1

j . In that case for θγ � θ j,
equation (19) reduces to

τ ≈ 1.5L50(σ0,6 + ξ0,6)−1r−1
11

[
1 + hν ′

c(θγ )/mec
2
]−1

, (20)

and for θγ � θ j the expression for optical depth reduces to equa-
tion (12). The jet optical depth in the transverse direction at a given
radius for these two limiting cases differs by a factor ∼10.

3 IC D R AG FO R
POYNTI NG-FLUX-DOMI NATED JETS

We calculate the IC loss for an electron when it is exposed to a beam
of photons moving at an angle θγ with respect to electron velocity.
The electron moves with the jet and therefore its Lorentz factor
and velocity are � and v, respectively. Let us consider the specific
intensity of the photon beam from the cocoon in the rest frame of the
star to be Iν(θγ ). The transformations of photon frequency, specific
intensity and angle from star rest frame to jet comoving frame are

MNRAS 449, 2566–2575 (2015)
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given by

ν ′ = ν�(1 − v cos θγ /c), I ′
ν′ (θ ′) = Iν(ν ′/ν)3,

sin θ ′ = (ν/ν ′) sin θγ . (21)

The rate of loss of energy for an electron due to IC scatterings is
proportional to photon energy flux in its comoving frame. Using
the above transformations, the comoving flux can be shown to be
proportional to θ2

γ �2(1 − v cos θγ /c)2 ∝ θ6
γ �2 for �θγ > 1. Thus,

the IC drag on electrons increases very rapidly with increasing θγ ,
and that nearly compensates for the smaller flux at the jet axis due to
larger optical depth for larger θγ . So from here on we specialize to
θγ ∼ 1. Consider a photon of frequency νc scattered by an electron
of Lorentz factor �. In the comoving frame, the scattered photon
energy is

hν ′
ic = hν ′

c

1 + hν′
c

mec2 (1 − cos θγ )
. (22)

The average energy of the scattered photon in the Klein–Nishina
limit can be calculated as

〈hνic〉 =
∫

d�′
γ

dσkn
d�′

γ
hνic∫

d�′
γ

dσkn
d�′

γ

, (23)

where the differential Klein–Nishina cross-section is taken from
Blumenthal & Gould (1970). When 2 � hνc�/(mec2) � �2, the
average energy of the scattered photon can be shown to be

〈hνic〉 ≈ 2mec
2�

1 + 2 ln[1 + 2 hνc�/(mec2)]

[
3mec

2

2 hνc�
+

(
1 − mec

2

hνc�

)

× ln

(
1 + hνc�

2mec2

)]
. (24)

The equation for IC drag is

dmpc
2�

dt
≈ −Fc(t)

hνc
σkn hνic ζ±, (25)

where ζ± is number of electrons and positrons per proton, Fc is co-
coon thermal flux given by equation (A23) and the electron–photon
scattering cross-section as a function of dimensionless photon en-
ergy in electron rest frame (hνc�/mec2) is

σkn(hνc�/mec
2) ≈ 3σT

16 hνc�/(mec2)

[
1 + 2 ln

(
1 + 2hνc�

mec2

)]
.

(26)

In deriving equation (25), we assumed that electrons and protons
are coupled and move together.

The IC cooling time in the stellar rest frame for an electron in
the jet, at radius r and time tr after the formation of cocoon, follows
from equations (25) and (26):

tkn
ic ≈ 8mpc

2�(hνc/mec
2)2

3σTζ±Fc(tr)

[
3mec

2

2 hνc�
+

(
1 − mec

2

hνc�

)

× ln

(
1 + hνc�

2mec2

)]−1

. (27)

Substituting for hνc = 3kBTc (equation A16) and Fc (equation A23),
we obtain the IC cooling time in Klein–Nishina regime to be

tkn
ic ∼ (8 × 10−5s) exp(τ⊥)t1/2

r �2η
−1/2
c,1 ζ−1

± , (28)

where ηc is the terminal Lorentz factor of the cocoon. The IC
cooling time when the scattering is in the Thompson regime, i.e.
hνc� � mec2, is given by

t ts
ic ∼ (5 × 10−7s) exp(τ⊥)t1/2

r �−1
2 η

−1/2
c,1 ζ−1

± . (29)

The dynamical time at the stellar surface is R∗/c ∼ 3 s. The IC
cooling time is much smaller than this dynamical time as long as
the optical depth of the jet in the transverse direction (τ⊥) is smaller
than about 10. equation (27) can be solved to find the radius, RCC,
where the IC drag time-scale at the jet-axis (tic) is comparable to
the dynamical time-scale of the jet (tdyn ∼ r/c), namely

8mpc
2�t1/2

r (hνc/mec
2)2

3σTσBT 4
c t

1/2
fs e−τ⊥ζ±

≈ RCC

c
, (30)

where tr is the time when IC cooling is considered – it is in general
larger than the dynamical time since cocoon formation begins with
the launch of the relativistic jet and jet duration should exceed R∗/c
in order for the jet to break through the stellar surface – and tfs (given
by equation A22) in the meantime in between scatterings of a photon
while inside the cocoon; the equation is valid for hνc�/(mec2) � 1.

Making use of equation (12) for τ⊥, we can rewrite the above
equation for RCC in a more explicit form:

exp

{
σTL

πθjmpc3(σ0 + ξ0)RCC[1 + hνc�/(mec2)]

}

= 3σTσBT 4
c t

1/2
fs ζ±RCC

8mpc2�t
1/2
r (hνc/mec2)2

. (31)

Equation (31) can be rewritten with the use of equation (7) for
�

eA/RCC = K R
β
CC, (32)

where

A = σTL

πθjmpc3(σ0 + ξ0)[1 + hνc�/(mec2)]
,

K = 3σTσBRα
0 T 4

c t
1/2
fs ζ±

8mpc2t
1/2
r (hνc/mec2)2

, and β = 1 − α. (33)

The equation for the Compton cooling radius RCC is a transcendental
equation which can be solved perturbatively after we transform it
into the following logarithmic transcendental equation:

A

RCC
= log(K) + β log(RCC). (34)

At the zeroth order, log (RCC) term on the right-hand side of the
above equation is neglected and, the solution is

R∗
CC = A

log(K)
, (35)

which, when substituted back into (34), provides the first order
solution for the Compton cooling radius

RCC = A

log(K) + β
[
log(A) − log(log(K))

] . (36)

The estimate for RCC using equation (36) and the exact solution of
equation 32 for fixed parameters L50 = 1, θ j = 0.1, T0, 7 = 1, �2 = 1,
σ 0, 6 = 1, ζ± = 1 and α = 1/2 are RCC(α = 1/2) = 7.17 × 109 cm
and RCC(α = 1/2) = 7.23 × 109 cm, respectively.

The radius is proportional to L52, inversely proportional to σ 0,
and has a very weak dependence on α.
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4 SH I E L D I N G J E T S F RO M I C D R AG B Y
C R E AT I O N O F E L E C T RO N S A N D P O S I T RO N S

Thus far, we have assumed that the jet energy is carried outward by
magnetic fields, protons and electron–positron pairs. However, we
have not estimated the number of e± that might have been produced
in the hot plasma at the base of the jet, or pairs that might be created
in the collision of IC-scattered photons. The presence of these pairs
could shield the inner part of the jet from IC drag due to thermal
photons from the cocoon. In the next sub-section, we take up the
calculation of thermal e± that owe their existence to the initial hot
plasma at the base of the jet, and show that their number density is
too small far away from the jet launching site to be able to shield
the jet. In Section 4.2, we provide an estimate of the density of
pairs generated when thermal photons from the cocoon collide with
photons that are IC scattered by e± in the jet. This process is shown
to be effective in shielding the jet for a while but eventually pairs
annihilate and pair screen disappears exposing the jet–core to severe
IC drag (Section 4.2).

4.1 Thermal pairs and shielding of Poynting jets

The number density of thermal pairs at any r is given by the standard
thermal distribution formula corresponding to the local temperature
of the jet as long as the e± annihilation time is less than the dy-
namical time.2 The radius where the two time-scales become equal,
Rfreeze, is the freeze-out radius for pairs. Beyond this radius, the total
number of e± does not change barring the dissipation of jet kinetic,
or magnetic, energy and using that to create new pairs; non-thermal
pair creation will be taken up in Section 4.2. We calculate the num-
ber density of pairs at Rfreeze and show that to be much smaller than
the density of protons. Therefore, thermal pairs are unimportant for
shielding the jet.

The temperature at the base of a Poynting jet is

kBT0 ≈ kB

[
ξ0L

iso

4πR2
0σB(σ0+ξ0)

]1/4

≈ (41 keV) (ξ0L
iso
52 /σ0,6)1/4R

−1/2
0,7 ,

(37)

which is considerably smaller than the temperature for a thermal
fireball with σ 0 < 1; Liso ≡ 4L/θ2

j is isotropic equivalent of jet
luminosity (θ j ∼ 1 at the jet base).

Considering the conservation of entropy in a shell of plasma as it
moves to larger radius with the jet, we find the decrease of comoving
frame temperature with r

T ′(r) ∼ T0

(
R0

r

)2α/3

�−1/3 ∼ T0

(
R0

r

)α

, (38)

where we have made use of equation (8) for the transverse size of
the jet and equation (7) for �; as noted above equation (8), α ∼ 0.5
in the helium-envelope of GRB progenitor star.

The cross-section for pair annihilation when the average thermal
speed of e± is v± is σ T/(v±/c). The annihilation time for a positron
in jet comoving frame, given the density of electrons to be n′

±/2, is
therefore

t ′
ann ≈ 2

σTn′±c
. (39)

2 A more precise statement is that number density of pairs at any given radius
is given by the balance between creation and annihilation rates. However, it
can be shown that the assumption of thermal equilibrium is approximately
valid as long as annihilation time is short compared with the expansion time.

The pair annihilation ceases, and their total number freezes, at a
radius where t ′

ann ∼ r/c�(r). Thus, the freeze-out radius is given
by

Rfreeze ∼ 2�

σTn′±
, (40)

and the pair density at Rfreeze is

n′
±(Rfreeze) ≈ 2�(Rfreeze)

σTRfreeze
. (41)

To determine the pair freeze-out radius, we substitute for thermal
pair density, i.e. the following equation

n′
± = 2(2πkBmeT

′)3/2

h3
exp

(−mec
2/kBT ′) , (42)

and r dependence of � and T′ into equation (40):

exp

{
5.9 × 109

T0

(
R

R0

)α}
∼ R0T

3/2
0

6.2 × 108

(
R0

R

)5α/2−1

. (43)

Let us define

C ≡ 5.9 × 109

T0
, and D ≡ R0T

3/2
0

6.2 × 108
, (44)

and rewrite equation (43) as

C

(
R

R0

)α

= log(D) +
(

5

2
α − 1

)
log

(
R0

R

)
, (45)

which is easier to solve analytically. Neglecting, at first, the log R-
term on the right-hand side, we find R = ((log D)/C)1/α . Substituting
that back into equation (45), the approximate analytical solution for
the freeze-out radius is found to be(

Rfreeze

R0

)
∼ 1

C1/α

[
log(D)+

(
5

2
−1

α

)
(log(log(D))−log(A))

]1/α

.

(46)

The results for the freeze-out radius obtained as exact numerical
solution of equation (43) are in good agreement with the above-
approximated expression.

The freeze-out radius has a weak dependence on α, and for
σ 0 = 106 and T0 = 41 keV, pair density freezes out fairly close
to the jet launching site.

The temperature at freeze-out can be calculated using equa-
tion (38), and it can be shown to be T ′

freeze ≈ 10 keV that is al-
most independent of various parameters. The isotropic equivalent
luminosity carried by pairs for r ≥ Rfreeze is

Liso
± ≈ 4πR2

freezemec
3n′

±�2 ≈ 4πRfreezemec
3�3/σT

≈ 4πR0mec
3

σT

(
Rfreeze

R0

)1+3α

, (47)

where we made use of equation (41) for pair density at Rfreeze, or

Liso
±

Liso
∼ 5 × 10−16 R0,7

Liso
52

[
2Liso

52
1/4R

−1/2
0,7 σ

−1/4
0,6

](3α+1)/α
. (48)

The jet kinetic luminosity at r is L/σ (r), and we see from the above
equation that thermal pairs are insignificant carriers of jet kinetic
luminosity – most of the kinetic luminosity is being carried by
protons. The ratio of e± pair to proton number density above the
freeze-out radius is given by

n′
±

n′
p

∼ 10−12σ (Rfreeze)Liso
52

−1R0,7

[
2Liso

52
1/4R

−1/2
0,7 σ

−1/4
0,6

](3α+1)/α
,

(49)
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where σ (Rfreeze) ∼ σ 0/�(Rfreeze) is the magnetization parameter
at r = Rfreeze. Substituting this expression for σ (Rfreeze) back into
equation (49), it becomes

n′
±

n′
p

∼ 10−6σ0,6

(
R0

Rfreeze

)α

Liso
52

−1R0,7

×
[
2Liso

52
1/4R

−1/2
0,7 σ

−1/4
0,6

](3α+1)/α
. (50)

Equation (50) shows that thermal pairs are too small in number to
affect the propagation of photons into the jet, and hence they cannot
shield the jet from the severe IC drag.

4.2 Pair creation due to photon collisions and shielding
of jet from IC drag

The calculation in previous sections ignored the possibility that ther-
mal photons IC scattered by the jet might have sufficient energy for
electron–positron pair creation. These IC-scattered photons could
give rise to an optically thick layer of e± on the side wall of the jet
that is in contact with the cocoon, and this could potentially shield
the interior of the jet from IC drag. We investigate that possibility
in this sub-section.

Let us consider the mean frequency of thermal photons in the
cocoon to be νc, and after colliding with an electron in the jet with
Lorentz factor � the frequency increases to ν ic (these frequencies
are in the rest frame of the star). The scattered photon travels within
an angle �−1 of the electron’s velocity vector due to relativistic
beaming, and hence its chances of undergoing a second collision
with another electron is drastically reduced since the photon is
moving in nearly the same direction as electrons in the jet.

The condition for pair production when averaged over the angle
between colliding photons is: (hνic)(hνc) > 2m2

ec
4 (e.g. Gould &

Schréder 1967). Since hν ic ∼ mec2�/2 (equation 24) for large angle
collisions in the Klein–Nishina regime – i.e. when hνc� > mec2 –
the pair production condition becomes hνc� � 4mec2. Thus, for a
given cocoon temperature (Tc) at a certain radius where jet Lorentz
factor becomes larger than the following critical value:

�crit ∼ 4mec
2

3kBTc
, (51)

pair production at the interface of the jet and cocoon begins. For
cocoon temperature of ∼10 keV, �crit ∼ 70. The Lorentz factor of
magnetic jets increases with radius as ∼r1/2, and therefore � ∼ 102

can be attained near the stellar surface where the jet also becomes
transparent in the transverse direction (in the absence of e±) for
σ 0 > 106; the Lorentz factor of a thermally driven jet increases
more rapidly with r, and it too is likely to develop an e± layer
surrounding it before reaching the stellar surface.

For the remainder of this section, we assume that the condition
for pair production is satisfied, and describe the effect that has on
jet structure and dynamics.

The distance travelled by a high energy IC photon – which is
moving almost parallel to the jet axis (within an angle �−1 to be
precise) – before it is turned into e± as a result of collision with a
thermal photon from the cocoon is

λγ = (σ±nγ )−1 ∼ (2 × 102 cm) t1/2R
1/2
∗,11(L50/θj,−1)−1/4η

−3/8
c,1 ,

(52)

where σ± is the cross-section for γ + γ → e− + e+ (the maximum
value for σ± is 2.5 × 10−25 cm2 at photon energy 1.4 times the

threshold value given above (e.g. Svensson 1982),

nγ (t) ∼ Fc(t)

hνcc
∼ (1.8 × 1022 cm−3) t−1/2R

−1/2
∗,11 (L50/θj,−1)1/4η

3/8
c,1 ,

(53)

is the number density of thermal photons at the interface of the co-
coon and the jet at time t (in seconds) in star rest frame, νc = 3kBTc

and Fc(t) are given by equations (A16) and (A23). We see from
equation (52) that high-energy IC photons do not travel very far
from their place of creation before undergoing pair production. The
newly produced e±s have thermal Lorentz factor less than ∼2 in
jet comoving frame3 but they cool rapidly via the synchrotron pro-
cess on a time-scale much smaller than the dynamical time; mag-
netic field in the jet comoving frame is B ′ = (4L/θ2

j �2r2c)1/2 =
(1.2 × 108 G)L1/2

50 /[θj,−1�2r11], and hence the synchrotron cooling
time in jet comoving frame is ∼(5 × 10−8 s) [θj,−1�2r11]2L−1

50 .
The rate of pair production per electron is approximately equal

to the number of photons it scatters per unit time, i.e.

ṅ±
ne

≈ σTnγ c

1 + hνc�/(mec2)
≈ (3 × 107 s−1)t−1/2�−1

2 η
1/2
c,1 . (54)

The second equality is obtained for the case where thermal photons
from the cocoon are scattered by electrons in the jet in Klein–
Nishina regime, i.e. hνc�/(mec2) = 3kBTc�/(mec2) � 1, and in that
case we find the surprising result that the rate of pair production
per electron depends only on the Lorentz factors of the jet and
cocoon.4 Once pair production starts, it proceeds rapidly since newly
produced e± also IC scatter thermal photons which have sufficient
energy for more pair production. However, the number of pairs
produced per proton cannot much exceed mp�/(me�crit) because
the Lorentz factor of protons and e± in that case drops below �crit

(in order to conserve momentum), and IC scattered photons then no
longer have sufficient energy for further production of pairs. Thus,
pair production saturates on a time-scale

tsat ∼ (3 × 10−8 s)t1/2 �2 η
−1/2
c,1 ln

[
mp�/me�crit

]
. (55)

The physical thickness of the pair screen corresponding to optical
depth unity, �±(τ± = 1), is given by

�±(τ± = 1) = (me/mp)

σTnp(�/�crit)

∼ (1.2 × 105 cm)
R2

∗,11(σ0,6 + ξ0,6θ
2
j,−1)

L50
, (56)

where np is proton density in the jet at r = R∗ which is given by
equation (17), and ξ 0 is thermal energy per proton divided by mpc2

at the base of the jet.
We note that as long as the Lorentz factor of e± is larger than �crit,

gamma-rays from pair annihilation are converted back to e± within
a short distance of a few metres (equation 52) due to collisions
with thermal photons from the cocoon. Pair production process is
terminated when the Lorentz factor of the screen falls below �crit

and its optical depth becomes so large that X-ray photons from the
cocoon are prevented from entering the faster moving interior of
the jet where � > �crit.

Let us consider that the optical depth of e± layer surrounding the
jet at radius r is τ±(r). The flux of photons from the cocoon that

3 Newly produced pairs are swept up by the magnetic field in the jet and
forced to move with the outflow.
4 The time dependence for pair production rate of t−1/2 (equation 54) is due
entirely to the cocoon thermal flux Fc.
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2572 C. Ceccobello and P. Kumar

Figure 2. Schematic view of the layered jet structure while it has been braked by the IC interaction with the hot photons from the cocoon. If the magnetization
parameter σ is larger than 107, the jet build up a self-shielding e+/e−-pair screen created by photons from the cocoon and IC-scattered photons.

crosses this layer is

fnγ (t, τ±) ≈ Fc(t) exp(−τ±)

3kBTc
∼ (5.5 × 1038 cm−2 s−1)

× exp(−τ±)
L

1/4
50 η

3/8
c,1

θ
1/4
j,−1R

1/2
∗,11 t1/2

, (57)

where we made use of equations (A16) and (A23). Pair production
can proceed in the interior to the e± screen as long as the distance
travelled by an IC-scattered photon before it collides with a thermal
photon (equation 52) is smaller than R∗, i.e.

λγ ∼ (2 × 102 cm) eτ± t1/2 R
1/2
∗,11 (L50/θj,−1)−1/4η

−3/8
c,1 < R∗. (58)

Moreover, the time it takes for a photon from the cocoon to cross this
layer should also be less than R∗/c. Thus, we find that the optical
depth of the screen is

τ± ∼ 20 + log
[
t−1/2 R

−1/2
∗,11 (L50/θj,−1)1/4η

3/8
c,1

]
, (59)

and the physical thickness of the pair screen is max {20�±, R∗/�},
where �± is given by equation (56); pair screen thickness is R∗/�
when IC photons – moving at an angle �−1 with respect to the jet
axis – travel a distance R∗ before colliding with thermal photons
from the cocoon.

Electrons and positrons in the pair screen continue to scatter
X-ray photons from the cocoon and the resulting drag slows down
the jet below �crit (Fig. 2). The time it takes for � to fall below
�crit is of the order of 10−4 s exp (τ⊥)/ζ± (equation 28). When the
Lorentz factor of pairs falls below �crit (equation 51), gamma-rays
produced in pair annihilation no longer have sufficient energy for
pair creation, and at that time the pair screen begins to evaporate.

The time (measured in the rest frame of the star) for a positron to
run into an electron and annihilate is

te±,an(r) = �2

σe±−>γγ n±v±
= �2

σTn±c

∼ (5 × 102 s)
�2

2r
2
11(σ0,6 + ξ0,6)

ζ±Liso
52

, (60)

where σe±−>γγ = σT/(v±/c) is annihilation cross-section, v± is
the average relative speed between electrons and positrons in
jet comoving frame and n± ∼ ζ±np is the pair density; for
ζ± ∼ (mp/2me)(�/�crit), i.e. the maximum possible number of
pairs per protons when � > �crit, the annihilation time is ∼0.3 s.
The ratio of annihilation and dynamical times at radius r is

te±,an(r)

tdyn
∼ 1.5 × 102 �2

2r11(σ0,6 + ξ0,6)

ζ±Liso
52

, (61)

which is smaller than 1 for r � 109 cm even for ζ± = 1, and
that means that any pairs produced at the base of the jet or at any
radius smaller than 109 cm cannot survive as the jet moves to larger
radii. Hence, only an ongoing process of pair formation can support
ζ± > 1.

The Lorentz factor of pair screen continues to decrease due to
IC drag and that causes the annihilation time – which scales as �2

(equation 60)5 – to decrease rapidly. Since the time-scale for the

5 For a time-independent relativisic outflow, particle density in star rest frame
does not vary as we follow the flow-streamlines even though the Lorentz
factor might increase or decrease. This is due to the conservation of particle
flux and the fact that the speed is a constant c for a relativistic system. The
particle density along a flow-line, of course, varies as �−1 in the comoving
frame of the outflow.
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IC drag on a highly magnetized GRB jet 2573

creation of pair screen is smaller than the IC drag time which is
much smaller than the pair annihilation time, soon after the pair
screen forms its Lorentz factor decreases rapidly to order unity (on
0.1 μs time – equation 29), pairs annihilate and screen evaporates on
time-scale of the order of 1 ms (equation 60). Once the optical depth
of the screen decreases, photons from the cocoon pass through it,
and the process of formation of e± and IC drag progresses deeper
inside the jet. At any given radius, this process is only terminated
at a distance from jet axis where the Thompson optical depth out to
the jet–cocoon boundary, for ζ± ∼ 1, is of the order of 10. Hence,
as we get closer to the stellar surface, we find an increasingly larger
fraction of the jet to have gone through the process of forming pair
screen, e± annihilation and IC drag. If the jet with ζ± = 1 becomes
transparent in the transverse direction near the stellar surface – as
it in fact does for σ 0 � 106 according to equation (13) – then self-
generated pair screen is too short lived to protect it from IC drag.
It should be noted that that the transient nature of the pair screen in
fact speeds up the process of jet IC drag because the drag time is
proportional to ζ−1

± (see equations 28–29).
Although very high-σ jets (σ 0 � 106) are unlikely to survive their

passage through the GRB progenitor star and cocoon, they do not
disappear without leaving an observational signature. Annihilation
of pairs in the screen when the jet Lorentz factor decreases from
�crit to of order unity produces photons of energy between 0.5 MeV
and ∼mec2�crit ∼ 50 MeV which can escape the jet in the longitudi-
nal direction to arrive at the observer. The jet is slowed down by pair
creation and IC drag, and these processes are about equally impor-
tant for decelerating the jet. Hence, the observer-frame luminosity
carried by pairs is of the order of the jet kinetic luminosity or Lj/σ

(where σ is the magnetization parameter of the jet when it is near
the stellar surface). The total energy carried by the photons resulting
from pair annihilation is of the order of the energy of the pairs, and
therefore, the total luminosity of pair annihilation photons, Lγ , is of
the order of L/σ . The duration of the annihilation pulse we expect
to be of the order of the activity time of the central engine, which
for long GRBs is typically around 5–100 s.

The picture that emerges is that the outer layers of GRB jets are
slowed down due to IC drag. However, inner regions continue to
accelerate with r, and at some radius their Lorentz factor exceeds
�crit. At that point, a very rapid generation of e± ensues provided
that the optical depth of the slower moving layer outside of this
region is less than about 20. The IC drag slows down the pair screen
rather quickly and then e± annihilate on a relatively short time-scale
of ∼1 ms, and the formation of a new pair screen moves closer to
the jet axis. This process continues until the jet becomes opaque
in the transverse direction due to just the electrons associated with
protons, i.e. for ζ± = 1. Jets of initial magnetization (σ 0) smaller
than 106 are sufficiently opaque in transverse direction even when
they rise above cocoon surface that they are essentially protected
from IC drag. However, photons from the cocoon can penetrate a
jet all the way to its axis when σ 0 � 106, and the strong IC drag
then slows down the outflow to sub-relativistic speed. It turns out
that high-σ jets cannot escape this fate in spite of the e± pair screen
they create because these screens are rather short lived.

5 C O N C L U S I O N S

Relativistic jets in GRBs are surrounded by a hot cocoon of plasma
that was created during the initial passage of the jet through the star
when it shock heated the gas along its path and pushed it sideways
to clear a cavity through the polar region of the GRB progenitor
star. Thermal photons from this cocoon are scattered by electrons in

the jet and that provides a strong drag force on the jet. Jets of initial
magnetization parameter (σ 0) smaller than about 106 are highly
opaque in the transverse direction while travelling inside the GRB
progenitor star, and thus they have a core region that is protected
from this IC drag. The outer layers of this jet (about 20 Thompson
optical depth thick), however, suffer IC drag and are slowed down
considerably.

Jets with σ 0 � 106 are transparent to photons from the cocoon
near the stellar surface, and they are slowed down to sub-relativistic
speeds due to IC drag. This is in spite of the fact that an optically
thick layer of electrons and positrons forms at the interface of the
cocoon and jet and that tries to protect the core of the jet from IC drag
(Fig. 2); these pairs are formed by the collisions of thermal photons
from the cocoon with high-energy photons that are produced when
cocoon photons are IC scattered by the jet. However, the problem
is that the pair screen itself slows down rapidly due to IC drag, and
that causes pairs to annihilate and the e±-shield to evaporate rather
quickly. Pair production then moves closer towards the jet axis,
and the story is repeated until the entire jet is slowed down by the
IC drag.

The process of pair screen formation and annihilation associated
with a high-σ jet has observational consequences. For jets with
σ 0 � 106, we should see a pulse of high-energy photons of energy
between ∼ 1 MeV and ∼mec2�crit ∼ 50 MeV with luminosity of
the order of the Poynting jet luminosity. The duration of this pulse
should be of the order of the central engine activity time.

Even Poynting jets of σ 0 � 106 – which are highly opaque in
the transverse direction – might suffer effects of IC drag indirectly.
As the outer layers of these jets are slowed down by IC scatterings,
the resulting shear instabilities might slow down the inner regions
as well. Moreover, if magnetic field lines thread the outer and the
inner regions of the jet, then slowing down of the outer part of the jet
would get communicated to the inner region, and that could affect
the entire jet. The details of this would depend on the magnetic field
configuration and that is something that needs to be looked into.

If a highly magnetized jet manages to escape IC drag while
travelling inside the GRB progenitor star – for instance, if it is
encapsulated inside a highly opaque baryonic outflow to shield it
from X-rays from the cocoon – it would be subjected to rapid
dissipation due to charge starvation before reaching the deceleration
radius (Appendix B).
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A P P E N D I X A : R A D I ATI O N FRO M C O C O O N
S U R RO U N D I N G R E L AT I V I S T I C J E T

We describe in this appendix a simplified, analytical, treatment of
cocoon dynamics and radiation. This follows the work of Ramirez-
Ruiz, Celotti & Rees (2002) and Matzner (2003) except for one thing
and that is that we do not assume that the jet is conical in shape
while inside the star. Numerous investigations of relativistic jets,
e.g. Lazzati & Begelman (2005), Morsony, Lazzati & Begelman
(2007), Mizuta & Aloy (2009), Mizuta & Ioka (2013), Bromberg
et al. (2011, 2014) have shown that the cocoon created by the jet
can be very effective in collimating it, and hence we take the jet
opening angle to be a function of distance from the centre.

The energy in the cocoon (Ec) is of the order of the energy carried
by the jet while it makes its way through the polar region of the
GRB progenitor star, i.e.

Ec ∼ LR∗/vh, (A1)

where vh is the average speed at which the jet head moves through
the star. The jet head speed can be calculated from the conservation
of momentum flux in the radial direction of the unshocked stellar
gas as viewed from the rest frame of the jet head:

ρjc
2(�2

j /4�2
h) ≈ ρa�

2
hv

2
h, (A2)

where ρ j and ρa are densities of the unshocked jet and the stellar
envelope, respectively, and �j and �h are the Lorentz factors of the
unshocked jet and the jet head with respect to the unshocked star

(the Lorentz factor of the unshocked jet with respect to jet head is
�j/2�h). Considering that the jet luminosity at the stellar surface
can be written as

L = πθ2
j R2

∗ρj�
2
j c

3, (A3)

and the mass of the swept-up gas by the jet is

mc ∼ πθ2
j ρaR

3
∗, (A4)

we obtain

2�2
hvh ∼

[
R∗L
cmc

]1/2

, (A5)

where θ j is jet opening angle which is a function of distance from the
centre due to collimation provided by the cocoon. We can simplify
this expression further by substituting for L using equation (A1)

4�4
hvh ∼ cηc (A6)

where

ηc ≡ Ec

mcc2
(A7)

is the terminal Lorentz factor of the cocoon plasma (provided that
ηc ≥ 1) after it escapes through the stellar surface and its thermal
energy is converted to bulk kinetic energy.

Therefore, the jet head speed is sub-relativistic when ηc < 4 and
is given by

vh ∼ cηc/4. (A8)

For ηc > 4, the jet head speed is relativistic and its Lorentz factor
is given by

�h ∼ (ηc/4)1/4. (A9)

The expansion speed of the cocoon in the direction perpendicular
to its surface, vc, is determined by equating the ram pressure with
the thermal pressure inside the cocoon (pc), e.g. Matzner (2003),

vc = (pc/ρa)1/2. (A10)

The average thermal pressure inside the cocoon is approximately

pc ∼ Ec

3Vc
. (A11)

where

Vc ∼ πt3vhv
2
c /3 ∼ R3

∗(vc/vh)2 (A12)

is the volume of the cocoon at the time it emerges at the stellar
surface. Combining equations (A10) and (A11), we find

v4
c ∼ Ecv

2
h

3ρaR3∗
∼ θ2

j ηcv
2
hc

2/3. (A13)

Substituting for vh from equations (A8) and (A9), we find

vc

c
∼

{
(θ2

j η3
c/48)1/4 for ηc < 4

(θ2
j ηc/3)1/4 for 4 < ηc < θ−2

j .
(A14)

The thermal pressure of the cocoon can be obtained using equa-
tions (A10) and (A14) and is given by

pc ∼ L

θjR2∗c(3ηc)1/2
, (A15)

and its temperature is

kBTc = kB(3pc/σa)1/4 ∼ (24 keV)
L

1/4
50

θ
1/4
j,−1 R

1/2
∗,11η

1/8
c,1

, (A16)
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where σ a is the radiation constant. We note that the cocoon tem-
perature has a weak dependence on jet luminosity and angular size,
and so it is unlikely to be larger than ∼30 keV.

The number density of thermal e± pairs at temperature Tc is given
by

n± = 2(2πkBmeTc)3/2

h3
exp

(−mec
2/kBTc

)
. (A17)

Therefore, for kBTc = 20 keV, n± = 1.1 × 1017 cm−3, and for 30 keV
cocoon temperature n± = 1.1 × 1021 cm−3. We next calculate the
number of electrons associated with protons in the cocoon, and
show that these exceed e± as long as kBT < 30 keV.

The average number density of electrons associated with baryons
in the cocoon is

ne,c ∼ mc

mpVc
∼ 3pc

mpc2ηc
∼ (1.5 × 1021cm−3)

L50

θj,−1R
2
∗,11η

3/2
c,1

.

(A18)

The electron number density near the stellar surface, however, is
smaller than the average density given above. The density at the
stellar photosphere is ∼1/(σ THρ), where

Hρ = C2
s /g ∼ (108cm)T∗,5R

2
∗,11M

−1
∗,1, (A19)

is the density scaleheight, Cs is sound speed, T∗ is photospheric tem-
perature and M�, 1 is stellar mass in units of 10 M�. Thus, the elec-
tron density at the photosphere is of the order of 1.5 × 1016 cm−3,
and it increases with depth as (z/z∗)1/(γ − 1); where γ ∼ 1.5 is the ef-
fective polytropic index that describes stratification near the stellar
surface, and

z∗ = Hρ/(γ − 1). (A20)

Therefore, pair density in cocoon is larger than proton density at the
photosphere as long as kBT > 15 keV, but at a depth of more than a
few scaleheight below the photosphere the proton density exceeds
n±. So the electron density in the cocoon as a function of radius can
be written as

ne,c ∼ n± + min

{(
1

σTHρ

) [
1 + (R∗ − r)

z∗

]1/(γ−1)

,

(1.5 × 1021cm−3)
L50

θj,−1R
2
∗,11η

3/2
c,1

}
. (A21)

The time in between scattering for a photon (photon mean free time)
in the cocoon is given by

tfs ∼ 1

σT c ne,c
. (A22)

The thermal flux at the interface of the cocoon and the jet is dictated
by diffusion of photons in cocoon, and is given by

Fc(t) = σBT 4
c [tfs/(t + tfs)]

1/2. (A23)

This expression is valid as long as t is less than the cocoon expansion
time ∼R∗/vh. The flux at an optical depth τ inside the jet is fc(t)
exp (−τ ).

A P P E N D I X B : C H A R G E STA RVAT I O N
O F A POY N T I N G J E T

Let us consider a Poynting jet of isotropic equivalent luminosity Liso

and magnetization parameter at its base of σ 0. The magnetic field
in the jet is assumed to change direction on a length-scale of �B (in
star rest frame) which corresponds to �′

B = �B� in the jet comoving
frame. The current required for supporting this non-zero curl is

j ′ ∼ B ′c/(4π�′
B), (B1)

where

B ′ = 1

�

[
Liso

cr2

]1/2

(B2)

is magnetic field in jet comoving frame.
The electron density in jet comoving frame for a Poynting jet of

high magnetization parameter is obtained using equation (6) and is
given by

n′
e(r) ≈ ζ±Liso

4πr2mpc3σ0�
, (B3)

where ζ± is the number of e± per proton which we know from the
discussion in Section 4 should be of the order of unity for r � R∗.

The current required to support the jet magnetic field must be
smaller than the maximum current that can be carried by charged
particles in the jet, i.e. j ′ < q n′

ec. It follows from this requirement
that beyond a certain radius, Rcs, the jet becomes charge starved, i.e.
it does not have sufficient number of electrons to carry the required
current. Using the above equations, we find this radius to be

Rcs ∼ q�B�
√

Liso

mpσ0c5/2
∼ (1.5 × 1017cm)

√
Liso

52

�B,7�2

σ0,6
. (B4)

This should be compared with the deceleration radius, Rd, where
the energy of the medium swept-up and shock heated by the jet is
approximately half the total energy of the explosion:

Rd ∼
(

3Eiso

4πmpc2n0�2

)1/3

∼ (1.2 × 1017cm)

[
Eiso

53

n0�
2
2

]1/3

, (B5)

where Eiso is the isotropic equivalent of total energy carried by the
jet, and n0 is the mean number density of protons in the circumstellar
medium of the GRB. Thus, a high magnetization jet that stops
accelerating when it attains a Lorentz factor of ∼ σ

1/3
0 will become

charge starved near the deceleration radius and its magnetic field
will dissipate rapidly.

We note that if the jet were to start spreading in the radial direction
at r < Rcs, then it would never become charge starved since in that
case the required current (j′) and the charge density (n′

e) both decline
with radius as r−2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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