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Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583
To Assess Amino Acid Uptake and Its Impact on Central Metabolism

Nadine Veith,a Margrete Solheim,b Koen W. A. van Grinsven,c Brett G. Olivier,d Jennifer Levering,a* Ruth Grosseholz,a

Jeroen Hugenholtz,c Helge Holo,b Ingolf Nes,b Bas Teusink,d Ursula Kummera

Department of Modeling Biological Processes, Center for Organismal Studies/Bioquant, Heidelberg University, Heidelberg, Germanya; Department of Chemistry,
Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norwayb; Molecular Microbial Physiology, Swammerdam Institute for Life Sciences,
University of Amsterdam and Netherlands Institute of Systems Biology, Amsterdam, The Netherlandsc; Systems Bioinformatics, Amsterdam Institute for Molecules,
Medicines, and Systems, VU University of Amsterdam, Amsterdam, The Netherlandsd

Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering
with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more de-
tailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a
genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises
642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined
medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain
the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the
metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential
amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthe-
tase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and
increased uptake rates of multiple amino acids, especially L-glutamine and L-glutamate. The model was used to understand the
altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the meta-
bolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon per-
turbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use
for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.

Enterococcus faecalis plays an important role in both biotechnol-
ogy and medicine (1, 2). Some strains are used in the dairy

industry for food fermentation and flavor production. At the same
time, other strains play an increasingly important role as patho-
gens, especially in hospital-acquired infections (1). E. faecalis
strains show multiple antibiotic resistances and are therefore the
cause of serious complications. Alternative strategies for combat-
ing multiple resistant bacteria such as E. faecalis are urgently
needed. Targeting vulnerable points in the bacterial metabolism
could offer such an alternative route and has been discussed as a
promising strategy (3, 4). However, surprisingly little is known
about the detailed metabolism of E. faecalis, and it is therefore
mandatory to explore this in a more elaborate fashion than previ-
ously reported.

E. faecalis shows a high stress tolerance and is adapted to a
variety of different native environments ranging from soil up to
human or animal digestive tracts (1, 2). This environmental vari-
ability requires a highly flexible metabolic system to quickly adapt
to diverse and changing environmental conditions. Therefore,
strategies that target the bacterial metabolism must take this flex-
ibility into account and must use a systemic view on the entire
metabolism.

Computational models allow studying the properties and dy-
namics of complex metabolic networks and may allow the identi-
fication of potential new drug targets. Of the different approaches
available, kinetic models allow a quantitative investigation of the
dynamics of specific metabolic behavior and offer a very detailed
and quantitative view on the involved mechanisms. However,
they also require detailed knowledge of the involved reaction ki-

netics and the associated kinetic parameters. Genome-scale stoi-
chiometric models, on the other hand, lack this detail and also
only require the information about the stoichiometry of the indi-
vidual reactions, which is more readily available (5). They can
offer a complete overview of the stoichiometric network of the
cell, allowing the identification of essential processes and the as-
sociated genes and enabling an at least semiquantitative view of
how fluxes can be distributed in a complete metabolic network
using constraint-based modeling techniques. Constraints are rep-
resented by physicochemical constraints such as mass or charge
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balances and reaction reversibility. The environment and the
physiology of the organism are reflected by input and export
fluxes. On the basis of these constraints, genome-scale metabolic
models are used to characterize the metabolic capabilities of an
organism and are used for the prediction of growth rates, minimal
media, or maximal metabolite production rates (6).

At present, genome-scale models of many organisms are avail-
able. Within the group of lactic acid bacteria, the genome-scale
metabolic model of Lactobacillus plantarum provided novel in-
sights into the amino acid catabolism (7). The model was used to
define a minimal growth medium, determine energy parameters
for growth and maintenance, and revealed the presence of futile
cycles under rich growth conditions. A recently published ge-
nome-scale model of the lactic acid bacterium Lactococcus lactis
focused in detail on flavor-forming pathways that might have im-
portant implications in dairy industry, where this organism is fre-
quently used (8). Outside the group of lactic acid bacteria, it is
worth mentioning the genome-scale model of the human patho-
gen Listeria monocytogenes that was studied in a novel combina-
tion with transcriptome data and revealed a strong link between
changes in the metabolism and induction of virulence (9). An-
other interesting example is the genome-scale model of the patho-
gen Mycobacterium tuberculosis. Here, gene-protein-reaction as-
sociations were integrated and used to predict lethal gene
mutations and potential drug targets (10, 11).

Following a similar strategy, we set up a genome-scale meta-
bolic model of the vancomycin-resistant human pathogen E.
faecalis V583 based on the genomic information comprising the
overall cellular metabolism as required for growth. The model
allowed us to learn about the metabolic capabilities of the organ-
ism and to study the network behavior at different experimental
conditions. We used constraint-based modeling techniques, com-
puted energy parameters for maintenance and growth-associated
processes based on anaerobic glucose-limited chemostat condi-
tions, and compared biomass formation at different growth rates.
The model constraints were based on experimentally measured
uptake and product fluxes. Amino acid auxotrophy experiments
were performed for model validation. Since L-glutamate and L-
glutamine play a central role in amino acid metabolism and the
incorporation of free ammonium ions into metabolites with im-
plications on many pathways, we constructed an L-glutamine syn-
thetase mutant (�glnA) of E. faecalis and compared it to the wild
type. With the genome-scale model, we could link changes in the
fermentation pattern to changes in the amino acid uptake profiles.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The bacterial strains and plas-
mids used in the present study are listed in Table 1. E. faecalis V583 (12)
was grown anaerobically at 37°C in the chemically defined medium for
lactic acid bacteria (CDM-LAB) medium containing (per liter): 1 g of
K2HPO4, 5 g of KH2PO4, 0.6 g of ammonium citrate, 1 g of sodium
acetate, 2.5 g of NaHCO3, 0.25 g of tyrosine, 0.24 g of alanine, 0.5 g of
arginine, 0.42 g of aspartic acid, 0.13 g of cysteine, 0.5 g of glutamic acid,
0.15 g of histidine, 0.21 g of isoleucine, 0.475 g of leucine, 0.44 g of lysine,
0.275 g of phenylalanine, 0.675 g of proline, 0.34 g of serine, 0.225 g of
threonine, 0.05 g of tryptophan, 0.325 g of valine, 0.175 g of glycine, 0.125
g of methionine, 0.1 g of asparagine, 0.2 g of glutamine (0.4 g of glutamine
for the �glnA mutant), 11 g of glucose, 0.5 g of L-ascorbic acid, 38.5 mg of
adenine sulfate, 27.5 mg of guanine, 22 mg of uracil, 50 mg of cysteine, 10
mg of xanthine, 2.5 mg of D-biotin, 1 mg of vitamin B12, 1 mg of riboflavin,
5 mg of pyridoxamine-HCl, 10 �g of p-aminobenzoic acid, 1 mg of pan-

tothenate, 5 mg of inosine, 1 mg of nicotinic acid, 5 mg orotic acid, 2 mg
of pyridoxine, 1 mg of thiamine, 2.5 mg of lipoic acid, 5 mg of thymidine,
200 mg of MgCl2, 50 mg of CaCl2, 16 mg of MnCl2, 3 mg of FeCl3, 5 mg of
FeCl2, 5 mg of ZnSO4, 2.5 mg of CoSO4, 2.5 mg of CuSO4, and 2.5 mg of
(NH4)6Mo7O24 (13).

Chemostat cultures were grown in a Biostat B plus fermentor (Sarto-
rius Stedim Biotech) with a working volume of 750 ml at dilution rates (d)
of 0.05, 0.15, and 0.4 h�1. The bioreactor was set for both pH (pH 6.5) and
temperature (37°C) control. For pH control, sterile 4 M NaOH was auto-
matically added. Cultivation was carried out under anaerobic condition
(60 ml/min N2), with a stirring speed of 250 rpm. The cultures were
considered to be in steady state when there was no detectable glucose in
the culture supernatants and the optical density, cell dry weight, and prod-
uct concentrations of the cultures were constant in samples taken on two
consecutive days. Samples used for metabolite analysis were taken from
cultures grown for six generations after the sample confirming steady state
had been taken. All experiments were performed in triplicate.

Culture samples of 20 to 50 ml were centrifuged at 4°C at 6,000 � g for
10 min, and pellets were treated according to the protocols for measuring
the dry weight as previously described (14). Supernatants were frozen at
�20°C until metabolite analysis.

Metabolite measurement. After removal of bacterial cells by centrif-
ugation (5 min, 6,000 � g), the metabolites were analyzed by high-per-
formance liquid chromatography (HPLC) and headspace gas chromatog-
raphy, as previously described (15). Amino acid analysis was performed
using HPLC with a 1:1 (vol/vol) ratio of sample supernatant and internal
standard solution (0.1 M HCl, 0.4 �mol of L-Norvalin/ml; Sigma) as pre-
viously described (16).

Generation of �glnA mutant. E. faecalis V583 and the vector pLT06
were used for generation of a glnA deletion mutant (17). The �800- and
500-bp regions upstream and downstream of the target gene were ampli-
fied using the primer pairs glnA-5 (AAAAAGTTCATAAATGGAACAC
TCG) and glnA-6 (CGACATTATGGGAACAATTAAAAATTTGGAGTT
GTACTAAAAGCCGTTAC) and glnA-7 (ATTTTTAATTGTTCCCATAAT
GTCG) and glnA-8 (GTTTTTCCAATTGGTACAGTTATGA), respectively.
The PCR products were ligated and reamplified using the primers glnA-5 and
glnA-8, resulting in a 1.3-kb product. The 1.3-kb PCR product was subcloned
into pCR-Blunt-TOPO (Life Technologies) and then excised by BamHI and
PstI and ligated with pLT06. The resulting construct was propagated in Esch-
erichia coli EC1000 and grown on Luria broth (LB) agar plates containing
15 �g of chloramphenicol (Cm) and 20 �g of X-Gal (5-bromo-4-chloro-
3-indolyl-�-D-galactopyranoside)/ml at 30°C. Blue colonies were
screened for the presence of the 1.3-kb insert using the primers OriF and
KS05SeqR (17). Positive clones were grown overnight in liquid LB me-
dium containing Cm at 30°C. The plasmid was purified by using an ENZA
plasmid minikit (Omega Bio-Tek), and the insert was sequenced to con-
firm the integrity. The deletion construct was then transformed into E.
faecalis V583 by electroporation as described previously (18), and double-

TABLE 1 Bacterial strains and plasmids

Strain or plasmid Characteristics
Source or
reference

Strains
E. coli EC1000 59
E. faecalis

V583 Parental strain (ATCC
700802)

12

�glnA mutant glnA knockout mutant This study

Plasmids
pCR-Blunt II-TOPO Life Technologies
pLT06 Integrational vector; P-pheS

counterselectable marker
17
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crossover markerless deletion of glnA was obtained as previously de-
scribed (17).

Reconstruction of the metabolic network. The first step in building a
genome-scale model of E. faecalis was the reconstruction of the metabolic
network from the genome sequence of E. faecalis V583. This process was
accelerated by using the AUTOGRAPH (automatic transfer by orthology
of gene reaction associations for pathway heuristics) method (19). The
second step was the extensive gap filling and manual curation process of
the predicted metabolic network based on the information in Uniprot,
KEGG, and partially EnteroCyc (http://enterocyc.broadinstitute.org), as
well as on literature information. For the function assignment of transport
reactions, the TransportDB and TCDB (Transport Classification Data-
base) databases were used. If no genes were found even though experi-
mental evidence about a metabolic reaction exists, the reaction was in-
cluded as a “non-gene-associated reaction.” Gene-protein-reaction
assignments were based on the reference genome-scale models of L. plan-
tarum, L. lactis, B. subtilis, E. coli, and literature or database information. A
detailed description of the reconstruction and the model building process
was published previously (20).

Model construction. The reconstructed metabolic network was used
to build the genome-scale metabolic model by using the software PySCeS
CBMPy, a python-based framework for stoichiometric modeling (http:
//cbmpy.sourceforge.net) (21). We used an implemented task in PySCeS
CBMPy to guarantee mass and charge balance. We further tested the
genome-scale model for the presence of loops, as reported for the ge-
nome-scale model of L. lactis (8). The model was annotated and exported
as SBML level 3 (22) and will be publicly available in BIOMODLES and
SysMO SEEK and is additionally provided as a spread sheet in the appen-
dix (see Table SA1 in the supplemental material). The model reactions are
described by reaction names and EC numbers. The metabolites are char-
acterized by elemental formula, charge state, and ChEBI identifiers (23).

Model simulation. Experimental constraints are represented as up-
take and product fluxes based on experimentally measured metabolite
concentrations. The fluxes qi are calculated as shown in an equation: qi �
([Csupernatant] – [Cmedium])·d/X, where C represents the concentration of a
measured metabolite in mmol liter�1, d is the dilution rate in h�1, and X
is the dry weight of cells in grams (gDW) liter�1. For other medium
components, theoretical uptake rates (qitheor) were calculated by setting
Csupernatant to zero.

The experimental constraints were then defined as flux bounds for the
respective exchange reactions in the model. Upper and lower bounds (u
and l, respectively) were defined as qi 	 |SD| (the absolute value of the
standard deviation), but at least qi 	 10%. Thus, S · v � 0, lj � qi � uj for
all measured fluxes qi, li � qitheor � ui, and � � d, where S represents the
stoichiometric matrix, v the flux vector, and � the growth rate.

In the case of L-glutamine, the HPLC analysis resulted in a constant
underestimation of the medium concentration compared to the theoret-
ically used L-glutamine concentration. We therefore corrected the lower
bound of the L-glutamine uptake flux for the observed divergence. All
measured metabolite fluxes, including the flux bounds, are presented in
the supplemental material (see Table SA2).

We defined maximal growth as an objective function and applied flux
balance analysis (FBA) to compute optimal flux distributions through the
metabolic system. Since we used specific uptake rates as constraints, the
flux through the biomass equation corresponds to the specific growth rate
(mmol gDW�1 h�1) and effectively FBA finds the optimal yield strategies
(24, 25) since the maximal growth rate is conditional on the input fluxes.

We further used flux variability analysis (FVA) (26) in order to study
feasible flux ranges. Both FBA and FVA were applied as implemented in
PySCeS CBMPy, including IBM ILOG CPLEX, to solve the optimization
problems.

Computation of growth-associated and non-growth-associated en-
ergy parameters. A detailed description of the computation of energy
parameters with a genome-scale metabolic model was reported by
Teusink et al. (7). For the traditional method, the energy parameters were

estimated from the experimentally measured fluxes of fermentation prod-
ucts by summing up the fluxes of L-lactate, ethanol, and 1.5 times the flux
of acetate. In order to directly compare the traditional and the computa-
tional method, the reduced cost value of the biomass flux on the maximal
ATP production rate was calculated and combined with the previously
computed energy parameter for biomass assembly.

Analysis of the flux distribution between mixed acid and homolactic
fermentation. We used FVA to study the flux distribution between mixed
acid (production of ethanol, acetate, and R-acetoin) and homolactic (pro-
duction of L-lactate) fermentation. Since the amount of R-acetoin is com-
paratively small, we did not consider this metabolite in the subsequent
analysis. First, we computed the possible flux ranges while applying the
experimentally determined uptake and product fluxes as flux bounds on
the exchange reactions. Second, we computed an FVA again, for which we
released the flux bounds on the fermentation products L-lactate, ethanol,
and acetate while setting the lower and upper flux bounds to 0 and 1,000,
respectively. To maintain comparability, we kept the specific growth rate
constant. The increased ATP consumption rate was translated into the
model by increasing the lower bound of the ATP maintenance reaction
(by 7 mmol gDW�1 h�1). An increased NAD
 requirement (by 7 mmol
gDW�1 h�1) was introduced by an artificial NAD
-consuming reaction
that resulted in NADH production.

Simulation of amino acid auxotrophies. The omission of an amino
acid in the growth medium was simulated by changing the respective
exchange flux in the model to zero. If FBA resulted in an optimal solution,
the respective amino acid was predicted to be nonessential. In cases where
no feasible solution was observed, the respective amino acid was predicted
to be essential. To be able to compute realistic results and prevent false-
negative predictions, we relaxed the constraints on the exchange reactions
such that upper and lower bounds of the amino acid exchange reactions
were set to “�1, 0” or “0, 1”. The direction of the amino acid exchange
fluxes were kept constant.

RESULTS
Reconstruction of the genome-scale metabolic model. We gen-
erated a genome-scale model of the central metabolism of E. faeca-
lis V583 based on its genome sequence (28). The model contains
all metabolic reactions that are required for cell growth in CDM-
LAB medium (13): the central energy metabolism (glycolysis, fer-
mentation, pentose phosphate pathway), the nucleotide biosyn-
thesis and the production of DNA and RNA, the amino acid
metabolism and protein biosynthesis, the synthesis of vitamins
and cofactors, the fatty acid biosynthesis, the production of phos-
pholipids and its derivatives, and teichoic acid production, as well
as the biosynthesis of peptidoglycan and capsular polysaccharides.
All reactions are listed in Table SA1 in the supplemental material.

An initial draft of the metabolic network was automatically
reconstructed by the AUTOGRAPH method (19). This method
uses orthology searches against existing genome-scale models to
predict genes in a genome sequence that code for metabolic reac-
tions and their respective metabolic function. Identification of
“metabolic” genes and the respective function predictions were
based on the existing, well-curated genome-scale models of L.
plantarum, L. lactis, Bacillus subtilis, and Escherichia coli (7, 29–
31). A genome-scale model of L. plantarum served as the template
model for setting up the individual reaction equations of each
metabolic reaction that are common in both lactic acid bacteria.
The initial draft was then manually refined by adding metabolic
reactions that are specific for E. faecalis based on the genome se-
quence and/or literature information.

Further extensive manual curation was necessary since many
metabolic pathways were incomplete or contained gaps where one
or more genes were either missing or are not yet annotated. We
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performed extensive literature studies to find information about
the presence or absence of both genes and gene functions, and we
applied homology searches to identify genes and gene functions
that are not yet annotated in the E. faecalis V583 genome.

In the end, the newly constructed genome-scale model con-
tained 642 metabolites and 706 reactions in total. A summary of
the model features is shown in Table 2. The model consists of
metabolic reactions within the cell and the transport reactions that
represent the uptake of nutrients and the export of metabolic end
products by the cell, as well as exchange reactions that describe the
exchange of metabolites with the environment.

Constraint-based modeling. The finalized genome-scale
model provided insights into the metabolic capabilities and adap-
tations of E. faecalis by allowing us to study the flux distribution
through the metabolic network. We defined additional con-
straints to restrict the model behavior to physicochemically and
biologically feasible states only. We ensured mass and charge bal-
ance and defined irreversible reaction steps for enzymatic reac-
tions, which are reported to be “irreversible” on a macroscopic
scale. Information about reaction reversibility were based on the
template model of L. plantarum or derived by literature search.
We identified physiologically relevant flux distributions through
the metabolic network by using flux balance analysis (FBA) (32–
34). For this purpose, a biologically meaningful objective function
had to be defined. Since maximal growth seems to be a reasonable
objective for microbes, we defined the flux through the biomass
equation to be maximized as objective function (32, 33). The bio-
mass equation is a phenomenological description of the cell com-
position. It sums up all macromolecules that build a cell. The
corresponding stoichiometric information was derived from the
genome-scale model of L. plantarum (7) since, to our knowledge,
no information is available about the exact biomass composition
of E. faecalis.

Since FBA does often not result in one unique flux distribution
and alternative optimal flux distributions exist that satisfy the
same constraints, we also applied flux variability analysis (FVA)
(26). FVA calculates a range (or interval) of possible flux values for
each flux in the model while satisfying the constraints and reach-
ing the same optimal value.

In addition, we applied constraints in the form of uptake and
production fluxes based on experimental data to learn about
physiological flux distributions. For this purpose, E. faecalis V583
was cultured in a glucose-limited anaerobic chemostat at three
different dilution rates: 0.05, 0.15, and 0.4 h�1. The metabolite
concentrations of glucose, the fermentation end products and
amino acids in the medium, and the supernatant of the cultures
were measured (Fig. 1) and used to compute the net uptake or
production fluxes (see Materials and Methods).

Under steady-state conditions, the dilution rate equals the
growth rate of the cells. By constraining the model with the net
uptake or product fluxes, represented as exchange fluxes in the
model, we were able to predict the growth rate by maximizing the
flux through the biomass function and compare the network be-
havior at different growth rates.

Energy parameters of E. faecalis V583. The ATP demand is
one of the central aspects in microbial metabolism since ATP is
required for cell growth and maintenance. Traditionally, the en-
ergy requirement for growth-associated processes (saATP) and
maintenance (mATP) were calculated from experimentally mea-
sured fluxes of the fermentation products L-lactate, acetate, and
ethanol at different dilution rates. The fermentation fluxes were
used to calculate the total ATP production rates at the respective
dilution rates (35). However, the traditional method relies only on
fermentation product formation for estimating energy parame-
ters and does not account for additional metabolic substrates such
as L-ascorbate or various amino acids that can contribute to the
energy production without products feeding into fermentation.

The computation of energy parameters for growth and main-
tenance is a central aspect in genome-scale metabolic models (36).
The model distinguishes between growth-associated energies re-
quired for macromolecule biosynthesis (sATP) and the assembly
macromolecules in the biomass equation (aATP). The sum of both
is estimated by the traditional method, whereas only the parame-
ter for the latter one is required for the genome-scale metabolic
model because the amount of energy that is required to form
macromolecules is already accounted for by the stoichiometric
network.

With the genome-scale metabolic model, we obtained a main-
tenance coefficient (mATP) of 0.81 mmol h�1 gDW�1 and an ATP
demand for the assembly of macromolecules (aATP) of 26.48
mmol gDW�1. The estimated coefficients are similar to the values
as previously reported for the genome-scale models of L. planta-
rum and L. lactis (7, 8).

In order to compare the results observed with the genome-
scale metabolic model with the traditional method, the amount of
energy that is required for macromolecule biosynthesis (sATP)
must be computed. This parameter is equal to the relative effect of
the flux through the biomass equation on the maximal ATP pro-
duction rate. When summing up the computed energy parameters
for macromolecule biosynthesis and assembly, similar results
were observed for the computational (saATP � 69.3 mmol
gDW�1; mATP � 0.6 mmol h�1 gDW�1) and traditional (saATP �
71.2 mmol gDW�1; mATP � 0.7 mmol h�1 gDW�1) methods.

Fermentation pattern of E. faecalis V583. In E. faecalis, the
fermentation pattern is affected by the growth rate (37). In our
experiments, a transition from mixed acid fermentation to in-
creased homolactic fermentation was observed while changing the
dilution rate from low to intermediate and high dilution rates
(Fig. 1). Mixed acid fermentation results in a higher yield of ATP

TABLE 2 Characteristics of genome-scale metabolic model of E. faecalis
V583

Gene, reaction, or metabolite Total no. (%)

Genes
In genomea 3,412
In model 668 (19.6)

Reactions 706
Non-gene associatedb 183
Blocked 152
Balanced 553
Exchange 72
Transport 128

Metabolites 642
Extracellular 105
Intracellular 537

a Chromosome and plasmids (NCBI webserver, genome database).
b Inclusive exchange reactions and reactions representing the assembly of
macromolecules.
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than homolactic fermentation. The mechanism that causes a
switch from homolactic to mixed acid fermentation or vice versa is
not yet fully understood, but it involves the growth rate-depen-
dent regulation of pyruvate formate lyase (EC 2.3.1.54) expres-
sion. In addition to the growth rate (37) and the glucose concen-
tration, the culture pH seems to play a role as reported by Fiedler
et al. (13), who observed a shift to more homolactic fermentation
at a low culture pH.

We used FVA and analyzed the flux distribution between the
reactions of the mixed acid and homolactic fermentation. The
experimentally determined net uptake and production fluxes (Fig.
1) were applied as experimental constraints in the form of flux
bounds that restrict the uptake and product fluxes in the model
(Fig. 2A, thick black lines). Next, we released the experimentally
observed flux bounds for the fermentation products L-lactate, ac-
etate, ethanol, and formate (Fig. 2A, gray bars). While comparing
the ranges of the possible fermentation product fluxes in the
model, no preference for homolactic or mixed acid fermentation
could be observed. Based on the model and the experimental con-
straints, we suggest that there are not stoichiometric but rather

FIG 1 Experimentally measured metabolites consumed and produced by E. faecalis V583. (A) Consumption of glucose and production of fermentation products
at three different dilution rates (d). (B and C) Results for citrate, amino acids, and some derivatives. Consumed metabolites are represented by negative values,
and produced ones are represented by positive values. All metabolite concentrations were averaged over three data sets, and the standard deviations are displayed,
except for the amino acid concentrations measured at a dilution rate of 0.15 h�1, which were averaged over two datasets. Significant differences in the metabolite
data were computed with Student’s t test and indicated for P values of �0.05. glc, glucose; cit, citrate; pyr, pyruvate; lac-L, L-lactate; for, formate; ac, acetate; etoh,
ethanol; actn_R, R-acetoin; orn-L, L-ornithine; citr-L, L-citrulline. The amino acids are represented in one-letter code style.

FIG 2 Comparison of constraint and unconstraint feasible flux ranges for the
fermentation product fluxes. (A) Feasible flux ranges for a dilution rate of 0.15
h�1 when all experimentally determined metabolite fluxes are applied as con-
straints (black section) and flux ranges when the constraints of the fermenta-
tion product fluxes are released (gray section). (B) Changes in the flux intervals
when an additional artificial ATP (light gray bars) or NAD
 (dark gray bars)
requirement is introduced. for, formate; ac, acetate; etoh, ethanol; lac-L, L-lac-
tate;.
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regulatory effects that are crucial for the decision between mixed
acid and homolactic fermentation, at least under these conditions.
Although the regulatory mechanism remains unclear, both an in-
creased ATP demand and an increased NADH/NAD
 ratio
showed the potential to redirect the model flux toward mixed acid
fermentation (Fig. 2B) based on the experimental constraints used
here.

Amino acid auxotrophies. The amino acid metabolism of E.
faecalis V583 is not fully characterized. Many enzymes are not
annotated, and there seem to be many strain-specific differences.
Murray et al. studied the amino acid auxotrophies of 23 different
E. faecalis strains (38). According to the results of Murray et al.,
these strains share common auxotrophies of only four amino ac-
ids, i.e., L-histidine, L-isoleucine, L-methionine, and L-tryptophan,
whereas high variability is observed for most other amino acids.
This high strain specificity might be related to adaptation to the
various different native environments of different E. faecalis
strains. Since the studies of Murray et al. did not include the van-
comycin-resistant strain V583, we experimentally performed
amino acid “leave-out” experiments to understand completely the
essentiality of amino acids in E. faecalis V583 and concomitantly
to validate our genome-scale model. Therefore, E. faecalis V583
was inoculated in batch cultures in CDM-LAB medium where one
or two amino acids were omitted from the medium and cell
growth was monitored. To account for adaptation processes such
as changes in gene expression, we performed sequential inocula-
tion steps, where the cells were cultured for 24 h in the respective
medium, washed, and transferred to fresh medium again. This
method allowed the removal of residual amounts of the respective
amino acid from the growth medium and thus allowed us to better
distinguish between prototrophy and auxotrophy (Fig. 3A).
The amino acids L-histidine, L-arginine, and L-tryptophan, the
branched-chain amino acids, and L-methionine were observed to
be essential. We further defined a threshold (optical density at 600
nm of �0.3) to distinguish between growing and nongrowing
cultures to reduce false-positive predictions. The threshold was
defined such that all confirmed essential amino acids (based on
literature information or the fact that all genes required for bio-
synthesis are absent) fall directly below the threshold. With this
strategy, the interpretation for glycine was ambiguous, since the
visually observed growth only marginally passed the threshold
during the first two subsequent inoculations. After the third inoc-
ulation, the final optical density obtained was well above the
threshold, suggesting that glycine might be considered nonessen-
tial (Fig. 3C). However, as discussed below, alternative explana-
tions with glycine being essential are also still possible.

We used the experimental information of the amino acid aux-
otrophies to validate the reconstructed metabolic network. We
have reconstructed the amino acid metabolism based on initial
annotations and subsequent intense manual curation using ho-
mology searches and literature. One difficulty in the reconstruc-
tion is that some enzymes in the amino acid metabolism are char-
acterized by a weak substrate or reaction specificity, which makes
a precise network prediction difficult. Thus, we estimated both the
specific substrate specificity and the reaction reversibility based on
information from closely related organisms. In cases of the degra-
dation of sulfur compounds, such as methionine, weak substrate
and reaction specificity was observed (39, 40). The presence of
certain degradation routes can only be inferred from measure-
ments of volatile sulfur compounds (41). For the validation of the

metabolic network, we simulated the amino acid auxotrophy ex-
periments and could successfully predict all amino acid auxotro-
phies with the genome-scale metabolic model (Fig. 3D).

We also performed double leave-out experiments for some
amino acids where we simultaneously omitted two amino acids in
the culture medium. Since we observed very weak growth when
glycine was omitted, we performed a double-leave-out experi-
ment wherein glycine and L-serine were absent in the culture me-
dium (Fig. 3A and C). Since E. faecalis seems to lack threonine
aldolase (EC 4.1.2.5), glycine appears to be only producible from
L-serine by glycine hydroxymethyltransferase (GHMT) (glyA;
EF2250; EC 4.4.1.1). GHMT catalyzes the reversible conversion of
L-serine into glycine while producing 5,10-methylene tetrahydro-
folate from tetrahydrofolate, respectively. Tetrahydrofolate deriv-
atives, such as 5,10-methylene tetrahydrofolate, form the C1 folate
pool, an important pool of metabolites that supply CH3-moieties
for many metabolic pathways like the nucleotide biosynthesis
(42). Upon omitting both glycine and L-serine from the culture
medium, we experimentally detected weak growth, whereas nor-
mal growth was detected in silico. One possible explanation for
this observation, namely, poor growth in the absence of glycine
alone and in the absence of both glycine and L-serine, might be a
regulatory effect on the transcriptome level. In L. lactis, the gene
glyA that codes for GHMT, as well as several genes of the C1 folate
metabolism, is reported to be under the control of PurR, a tran-
scriptional regulator of purine biosynthesis (43). PurR activity
was shown to be affected by the presence of the purine hypoxan-
thine and PRPP. Assuming that the transcription of the GHMT
gene is low or absent under our experimental conditions, the
omission of glycine will not be sensed by the cell directly, and
growth will be significantly reduced as long as sufficient nucleo-
tides are available. A PurR repressor protein was identified on the
genome of E. faecalis V583 (purR, EF0058) sharing high sequence
identity with the one of B. subtilis (0.55 sequence identity) and L.
lactis MG1363 (0.53 sequence identity) (see Table SA1 in the sup-
plemental material). A PurR binding motif that resembles the
consensus sequence of L. lactis and B. subtilis was found upstream
of the glyA gene in E. faecalis, which suggests the presence of a
similar PurR based regulatory mechanism in this organism (see
Table SA2 in the supplemental material).

We also performed double-leave-out experiments for amino
acids that are involved in central nitrogen metabolism, namely,
L-aspartate and L-asparagine, as well as L-glutamic acid and L-glu-
tamine (Fig. 3B). The combined omission of L-asparagine and
L-aspartate did not lead to growth inhibition, whereas the simul-
taneous omission of L-glutamine and L-glutamate did lead to
growth inhibition. The model predictions were in agreement with
the experimental findings. The metabolic network shows that L-
glutamate and L-glutamine can be converted into L-aspartate and
L-asparagine but not vice versa. In the model, L-aspartate, and
subsequently L-asparagine, can be produced by the aspartate
transaminase (ASPTA; EC 2.6.1.1), which catalyzes the reversible
transamination of oxaloacetate to L-aspartate while converting L-
glutamate to 2-oxoglutarate. The latter metabolite can be recycled
to L-glutamate by the glutamate dehydrogenase (GDH; EC
1.4.1.4) reaction (Fig. 4). Since L-glutamate and 2-oxoglutarate
form a balanced pool in E. faecalis, L-glutamate formation from
L-aspartate by the reverse reaction of ASPTA is not possible under
steady-state conditions. Furthermore, there is no indication for an
L-glutamate de novo biosynthetic pathway in E. faecalis. This ex-
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plains the growth impairment upon the simultaneous omission of
L-glutamine and L-glutamate.

Glutamine synthetase mutant. To learn more about the cen-
tral amino acid metabolism, we experimentally generated a glu-
tamine synthase knockout mutant (�glnA) in E. faecalis V583.
Glutamine synthetase (GLNA; glnA; EF2159; EC 1.4.1.13) cata-
lyzes the ATP-dependent formation of L-glutamine from L-gluta-
mate and NH4


 and therefore performs nitrogen assimilation for
growth. In many lactic acid bacteria, glnA expression is highly
upregulated and essential during growth in milk, whereas L-glu-
tamine is present in trace amounts only (42, 44). In E. faecalis, the
�glnA mutant was experimentally shown to be an auxotroph for

L-glutamine (Fig. 3F). In contrast, L-glutamine production was
observed in the genome-scale metabolic model via the reverse
reaction of the glutamate synthase (GLUS; EC 1.4.1.13). GLUS
catalyzes the formation of two L-glutamate molecules from one
molecule of L-glutamine and 2-oxoglutarate, respectively. Omit-
ting the reverse reaction, the production of L-glutamine from L-
glutamate in the genome-scale metabolic model abolishes in silico
growth without L-glutamine. There is some evidence that the glu-
tamate synthase of Escherichia coli, Bacillus megaterium, and Ba-
cillus licheniformis are irreversible. These enzymes are reported to
require the presence of L-glutamine and NADPH for activity (45–
47). Assuming that there might be a similar sensitivity of the glu-

FIG 3 Amino acid auxotrophy experiments with E. faecalis V583. (A) Averaged final optical density (OD) during three consecutive passages over 72 h while
omitting single amino acids from the growth medium. We defined a threshold (OD � 0.3), indicated by the dashed red line, to distinguish growth from
nongrowth. The standard deviation was calculated from OD measurements of three sequential inoculation steps. (B) Averaged final OD over 72 h while omitting
simultaneously two or three amino acids. (C) Measured ODs at 24, 48, and 72 h. Cells were washed and reinoculated in fresh medium after every 24 h. (D and
E) Comparison between the experimental results of the amino acid auxotrophy experiments (EXP) and the simulation results with the genome-scale metabolic
model (GSM). Green squares indicate growth in the absence of the respective amino acid. Red represents no growth. (F) Comparison between EXP and GSM
when omitting L-glutamine in either the wild-type (wt) culture or a glutamine synthase knockout mutant (�glnA) of E. faecalis V583. The yellow square indicates
the dependence of the simulation results on the reversibility of the glutamate synthase reaction (R_GLUS). X, full growth medium; ø, no amino acids; cyn,
L-cystine.
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tamate synthetase in E. faecalis, we defined the glutamate synthase
reaction as an irreversible reaction. In addition to this, the gluta-
mate synthase activities in E. coli and B. subtilis have both been
shown to be inhibited by L-glutamate (47, 48). High intracellular
concentrations of L-glutamate can therefore lead to a general in-
hibition of the glutamate synthase activity. In addition to the po-
tential kinetic effects, which are obviously lacking in a stoichio-
metric model, the lack of expression of glutamate synthase at the
experimental conditions used here could also explain the observed
discrepancy. Omitting either the reverse reaction of GLUS or the
complete reaction by a knockout of this reaction resulted in iden-
tical simulation results in the genome-scale metabolic model un-
der the conditions applied here.

We further studied the metabolic profile of the �glnA mutant
and used the metabolic genome-scale model to compare the be-
havior of the mutant to the wild-type strain of E. faecalis V583. The
�glnA mutant shows a slight shift in the fermentation pattern
away from L-lactate production toward increased ethanol produc-
tion, accompanied by an increased formate production (Fig. 5).

FIG 4 Schemata for L-glutamate and 2-oxoglutarate interconversion. L-Glu-
tamate (glu-L) and 2-oxoglutarate (akg) form a balanced pool, though this is
not the case for L-aspartate (asp-L) and L-asparagine (asn-L). Interrupted ar-
rows indicate lumping of reactions. oaa, oxaloacetate; ASPTA, aspartate
transaminase; GDH, glutamate dehydrogenase; ASNN, asparaginase;
ASNTAL, asparaginyl-tRNA synthase (glutamine hydrolyzing); ASNPTH,
aminoacyl-tRNA hydrolase.

FIG 5 Experimentally measured metabolites consumed and produced by wild-type cultures and a glutamine synthetase mutant of E. faecalis V583. (A)
Consumption of glucose and production of fermentation products at a dilution rate of 0.15 h�1. (B and C) Similarly, results for citrate, amino acids, and some
derivatives are shown. Consumed metabolites are represented by negative values, and produced ones are represented by positive values. All metabolite concen-
trations were averaged over three data sets, and the standard deviations are displayed, except for the amino acid concentrations of the wild-type data set, which
were averaged over two datasets. Statistically significant changes computed with Student’s t test and with a P value of �0.05 were observed for all metabolites
except for L-tryptophan (W) and L-lysine (K). glc, glucose; cit, citrate; pyr, pyruvate; lac-L, L-lactate; for, formate; ac, acetate; etoh, ethanol; actn_R, R-acetoin;
orn-L, L-ornithine; citr-L, L-citrulline. Amino acids are represented in one-letter code style.
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Both ethanol and lactate production regenerate NAD
, whereby
ethanol fermentation results in the production of one additional
NAD
 compared to lactate production. Apart from this, the
�glnA mutant shows also strongly altered amino acid profiles. The
uptake rates of the many amino acids are increased, especially that
of L-glutamine, but also those of L-glutamate, L-asparagine, and
L-aspartate (Fig. 5). While studying the flux distributions through
the genome-scale model, we were able to relate the shift from
homolactic fermentation to increased ethanol production to the
altered amino acid uptake profile in the following way.

In wild-type cells, different strategies are used to compensate
the absence or low levels of L-glutamine intracellularly. One pos-
sibility is to upregulate L-glutamine uptake, which assumes L-glu-
tamine is present in the growth medium. Another possibility is to
increase the biosynthesis of L-glutamine and the uptake of its pre-
cursor, L-glutamate. In the �glnA mutant, both increased L-glu-
tamine and L-glutamate uptake rates are observed compared to
the uptake rates in wild-type cells (Fig. 5). The strongly increased
uptake rates of both amino acids indicate the presence of a regu-
latory mechanism at the level of glutamine synthase.

In L. lactis, glutamine synthase and the glutamine uptake sys-
tem are controlled by the transcription regulator GlnR (49), a
repressor protein also found in E. faecalis V583 (EF2160). GlnR is
known to repress enzymes of the nitrogen metabolism in the pres-
ence of L-glutamine (49, 50). In the �glnA mutant, the drop in the
L-glutamine level might induce an increased transcription of L-
glutamine and L-glutamate uptake systems, which results in the
observed increased uptake rates.

The L-glutamine permease of E. faecalis was experimentally
observed to have weak substrate specificities and is able to trans-
port many other amino acids, such as L-asparagine with similar
transport efficiencies (51). Upregulation of the L-glutamine per-
mease may therefore account for the increased uptake rates of
L-arginine, L-valine, L-threonine, L-tryptophan, glycine, L-methi-
onine, L-cysteine, L-serine, and L-alanine. L-Glutamate and L-as-
partate share a transport system in E. faecalis. An upregulation of
the L-glutamate transport therefore readily explains the increase in
the L-aspartic acid uptake rate (52).

In this model, the experimentally observed increased uptake
rates of L-glutamine and L-glutamate in the glnA mutant require
an additional degradation of both amino acids. Since there is no
indication of an L-glutamine or an L-glutamate degradative path-
way in E. faecalis, the model suggested the conversion of both
amino acids into L-proline or folate and their derivatives (Fig. 6).
The production of L-proline and folate from L-glutamate requires
additional ATP, which is provided by the complete uptake and
degradation of L-serine and the additional degradation of the
branched-chain amino acids in the genome-scale metabolic
model. This can explain the experimentally observed increased
uptake rates of the branched-chain amino acids that could not be
explained thus far (Fig. 5). The branched-chain amino acids are
thought to be oxidized via the alpha-keto acid dehydrogenase
complex (bkdABCD; EF1660, EF1659, EF1658, and EF1661) (53,
54). Thereby, one ATP is formed per branched-chain amino acid
and NAD
 is converted to NADH, which in turn requires addi-
tional regeneration of NAD
 (53). Variations in the NADH/
NAD
 ratio can be sensed by transcription regulators of the Rex
family (55), which might cause the system to change slightly from
homolactic fermentation to ethanol production, as observed ex-
perimentally.

DISCUSSION

We constructed a new manually curated genome-scale metabolic
model of E. faecalis V583 and studied physiological flux distribu-
tions within the metabolic network based on experimentally mea-
sured metabolic profiles of E. faecalis determined at different di-
lution rates. The metabolic data were used to constrain the
genome-scale metabolic model and allowed us to compute energy
parameters for growth-associated processes and maintenance.
The metabolic network was validated against experimentally de-
termined amino acid auxotrophies of the respective strains. The
seven amino acids—L-arginine, L-histidine, L-methionine, L-tryp-
tophan, and the branched-chain amino acids L-isoleucine, L-leu-
cine, and L-valine—were found to be essential, as well as the com-
bination of L-glutamate and L-glutamine. Growth in the absence
of glycine was difficult to assess. To distinguish between growing
and nongrowing cultures, we defined a threshold marginally
higher than the optical density observed for cultures lacking
proven essential amino acids. Depending on the selected thresh-
old value, glycine could be assessed as an essential or a nonessen-
tial amino acid. Inherent point mutations, the absence of glyA
gene expression, or the absence of glycine formation by GHMT
are possible explanations for glycine auxotrophy. In order to as-
sess the impact of this result, we took both possible scenarios into
account when performing our model analyses. Neither an imple-
mented glycine auxotrophy nor prototrophy affected presented
modeling results discussed above.

To further study the amino acid metabolism, we constructed a
�glnA mutant and compared its metabolic characteristics to those
of the wild-type strain. We were able to predict the metabolic
differences and related the experimentally observed changes in the
flux distribution to potential gene regulatory mechanisms using
the genome-scale model, thereby demonstrating that genome-
scale metabolic models are useful tools to investigate the meta-
bolic capabilities and possible flux distributions in a metabolic
network.

We also studied the fermentation pattern at different growth
rates where we introduced an artificial ATP and NAD
 demand
that both showed the potential to redirect the metabolic flux to-
ward mixed acid fermentation. The role of NADH as an allosteric
effector in regulation of gene expression through a transcriptional
regulator of the Rex family was recently demonstrated in E. faecalis
(55). Rex factors have been shown to sense the redox potential of
the cell through changes in the NADH/NAD
 balance, and genes
that were demonstrated to be under the control of a Rex-like reg-
ulator in E. faecalis included ldh (EF0255, lactate dehydrogenase
1), adhE (EF0900, alcohol dehydrogenase), and pflAB (EF1612,
pyruvate formate lyase-activating enzyme; EF1613, pyruvate for-
mate lyase), among others (55).

Since transcriptional activation by transcription regulators of
the Rex family activates enzymes of both mixed acid and homo-
lactic fermentation, these regulators might not be the sole mech-
anism causing a switch in E. faecalis. When the enzymes of both
pathways are expressed simultaneously, kinetic regulation of the
enzyme activity might be responsible. In L. lactis, Garrigues et al.
reported the accumulation of triose phosphates (glyceraldehyde
3-phosphate and dihydroxyacetone-phosphate) at high glycolytic
flux that led to a subsequent inhibition of the pyruvate formate
lyase (PFL; EC 2.3.1.54) and consequently to a redirection of the
glycolytic flux toward L-lactate production (56). The accumula-
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tion of triose phosphates is due to changes in the NADH/NAD


ratio that affect the activity of glyceraldehyde-3-phosphate dehy-
drogenase (EC 1.2.1.12), a key regulatory enzyme in the glycolytic
pathway of L. lactis.

Besides the NADH/NAD
 ratio, the ATP level is shown to have
crucial effects on metabolic flux distributions. In E. faecalis,
changes in the ATP levels are sensed by HPr-kinase/phosphatase
(hprK, EF1749), a kinase that phosphorylates or dephosphorylates
the phosphocarrier protein (HPr; ptsH, EF0709) at Ser-46 (P-Ser-
HPr), a component of the phosphoenolpyruvate-carbohydrate
phosphotransferase system, depending on the intracellular ATP
level (57). A complex of P-Ser-HPr and the transcriptional regu-
latory protein CcpA (ccpA, EF1741) were reported to increase the
expression of lldh1 (29, 30). A kinetic inhibition of the PFL in
combination with increased lldh expression might therefore ex-
plain high L-lactate production rates at high glucose concentra-
tions.

Metabolic regulation via global transcription regulators like
CcpA-dependent carbon catabolite repression or transcription

regulators of the Rex family are common principles in many
Gram-positive bacteria. Recent studies on the intracellular human
pathogen bacterium L. monocytogenes indicate a direct link be-
tween metabolism and the expression of virulence genes upon
changes in metabolite levels (9). Lobel et al. (9) could link the
expression of virulence genes to the global metabolic transcription
regulator CodY that responds to changes in the levels of branched-
chain amino acids, especially L-isoleucine. It might be interesting
to see whether a similar situation is observed for E. faecalis and
other pathogenic lactic acid bacteria. The levels of L-isoleucine are
comparatively low in human blood and might therefore be able to
trigger virulence gene expression in these pathogens upon growth
in human blood plasma (58).

The incorporation of gene-regulatory information into ge-
nome-scale metabolic models might provide novel and valuable
insights into metabolic regulation. In combination with the gene-
protein-reaction associations integrated here, as well as the con-
sideration of environmental conditions mimicking the human
body, this might allow the identification and analysis of essential

FIG 6 Coupling of metabolic pathways that lead to the redirection of the metabolic flux and the change in the fermentation pattern in the glutamine synthetase
mutant of E. faecalis V583. The metabolic scheme shows three metabolic pathways: the L-glutamine and L-glutamate (gln-L/glu-L) metabolism, the branched-
chain amino acid (bcAA) metabolism, and the fermentation. Dashed lines show exemplarily the coupling between the three pathways. Interrupted arrows
indicate lumping of reactions. The enzymes responsible for single reaction steps are indicated in blue with its respective enzyme commission number (EC
number). The knockdown of the glutamine synthetase reaction (GLNA) is indicated by a red “�.” The production or consumption of protons and phosphate
ions is not displayed. glu5p, L-glutamine-5-phosphate; accoa, acetyl coenzyme A; actp, phospho-acetate. The terms bc-acid-CoA and bc-acid refer to the
degradation products 2-methylbutanoate, isovalerate, and isobutyrate of the three branched-chain amino acids.
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genes, proteins, or reactions and the prediction of potential new
drug targets.
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