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a b s t r a c t

A prescription is presented for the interpolation between multi-dimensional distribution templates
based on one or multiple model parameters. The technique uses a linear combination of templates, each
created using fixed values of the model's parameters and transformed according to a specific procedure,
to model a non-linear dependency on model parameters and the dependency between them. By
construction the technique scales well with the number of input templates used, which is a useful
feature in modern day particle physics, where a large number of templates are often required to model
the impact of systematic uncertainties.
& 2014 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In particle physics experiments, data analyses generally use
shapes of kinematical distributions of reconstructed particles to
interpret the observed data. These shapes are simulated using
Standard Model or other theoretical predictions, and are deter-
mined separately for signal and background processes. Simula-
tions of known fundamental physics processes are run through a
detailed detector simulation, and are subsequently reconstructed
with the same algorithms as the observed data. These simulated
samples may depend on one or multiple model parameters, for
example the simulated Higgs particle mass, and a set of such
samples may be required to scan over the various parameter
values. Since Monte Carlo simulation can be time-consuming,
there is often a need to interpolate between the limited number
of available Monte Carlo simulation templates.

In particular, the statistical tests widely used in particle physics,
e.g. for the construction of confidence intervals on model para-
meters or the discovery of new phenomena, rely strongly on
continuous and smooth parametric models that describe the signal

and background processes in the data.3 These parametric models
describe parameters of interest, such as a shifting mass param-
eter or the rate of a signal process, and the so-called nuisance
parameters that parametrize the impact of systematic uncertainties.
As such, the models are often constructed in terms of those
parameters by interpolating between simulated Monte Carlo tem-
plates, thereby ensuring continuity in those parameters.

Several algorithms exist that can be used to interpolate between
Monte Carlo sample distributions [1,2]. Interpolation techniques have
been used on multiple occasions in particle physics, for example to
predict kinematic distributions for intermediate values of a model
parameter, e.g. the simulated Higgs boson, W boson or top quark
mass, or to describe the impact of systematic uncertainties, which are
often modeled as shape or rate variations about a nominal template
of a kinematic distribution.

This work describes a new morphing technique, moment
morphing, which has the advantage over existing methods in that
it is fast, numerically stable, allows for both binned histogram and
continuous templates, has proper vertical as well as horizontal
morphing (explained in Section 2), and is not restricted in the
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number of input templates, the number of model parameters or
the number of input observables. In particular, the latter feature
allows the moment morphing technique to model the impact of a
non-factorizable response between different model parameters,
where varying one model parameter at a time is insufficient to
capture the full response function.

The paper is organized as follows: Section 2 describes in detail
how the moment morphing function, used to interpolate between
histograms, is constructed using one or more morphing para-
meters. Section 3 describes how the moment morphing technique
can be used to properly take into account systematic uncertainties
in a high energy physics analysis, giving an example of a typical
application. A comparison in terms of accuracy of moment
morphing with alternative morphing algorithms is provided in
Section 4. Section 5 describes the implementation of the moment
morphing algorithm in publicly available Cþþ code, including
benchmarking of its performance.

2. Construction of the morphing p.d.f.

This section details the construction of the moment morphing
probability density function (p.d.f.). The method proposed here is
based on the linear combination of input templates. The depen-
dency on the morphing parameter(s) can be non-linear, and is
captured in multiplicative coefficients and a transformation of the
template observables. Interpolation using a single morphing para-
meter is described in Section 2.1. Section 2.2 describes interpolation
using multiple morphing parameters and shows that dependencies
between morphing parameters can be readily modeled. Other
choices of basis functions for the construction of the morphing
p.d.f. are considered in Section 2.3.

2.1. Interpolation with a single morphing parameter

Consider an arbitrary p.d.f. f ðxjmÞ, where f depends on the
single morphing parameter m and describes the observables x. The
true dependency on m is not known or difficult to obtain. Instead,
the p.d.f. f has been sampled at n different values of m, with each
f ðxjmiÞ representing a known input template shape for a single
value of the morphing parameter, labeled as mi. In the following
the goal is to construct a parametric approximation of f ðxjmÞ for
arbitrary m, which is continuous and smooth in the model
parameter, as required for example by the statistical tests used
in particle physics alluded to in Section 1. There are two steps
to this.

First, given the sampling points, f ðxjmÞ can be expanded in a
Taylor series up to order n�1 around reference value m0:

f ðxjmÞ � ∑
n�1

j ¼ 0

dðjÞf ðxjm0Þ
dmðjÞ

ðm�m0Þj
j!

¼ ∑
n�1

j ¼ 0
f 0jðxjm0Þðm�m0Þ j ð1Þ

where the second equality defines f 0ðxjmÞ. For the n given values of
m follows the vector equation:

f ðxjmiÞ � ∑
n�1

j ¼ 0
ðmi�m0Þjf 0jðxjm0Þ ¼ ∑

n�1

j ¼ 0
Mijf

0
jðxjm0Þ ð2Þ

where Mij ¼ ðmi�m0Þ j defines a n� n transformation matrix.
Inverting Eq. (2) gives

f 0jðxjm0Þ ¼ ∑
n�1

i ¼ 0
ðM�1Þjif ðxjmiÞ ð3Þ

which allows us to determine the n values f 0jðxjm0Þ. Substituting
this in Eq. (1), f ðxjmÞ reads

f ðxjmÞ � ∑
n�1

i;j ¼ 0
ðm�m0ÞjðM�1Þjif ðxjmiÞ ð4Þ

which can be used to predict the template shape at any new value
of the morphing parameter given by m0:

f predðxjm0Þ ¼ ∑
n�1

i ¼ 0
ciðm0Þf ðxjmiÞ ð5Þ

which is a linear combination of the input templates f ðxjmiÞ, each
multiplied by a coefficient

ciðm0Þ ¼ ∑
n�1

j ¼ 0
ðm0 �m0ÞjðM�1Þji ð6Þ

which themselves are non-linear and depend only on the distance
to the reference points. This approach of weighting the input
templates is also known as vertical morphing. Note that the
coefficients ci are independent of the derivatives of f with respect
to morphing parameters or to the observable set x, making their
computation easy.

The coefficient for a point included in the set of input templates
is one, i.e.

ciðmjÞ ¼ δij ð7Þ
and by construction the sum of all coefficients ci equals one:

∑
i
ciðmÞ ¼ 1: ð8Þ

This turns out to be a useful normalization, as will be seen below.
To illustrate, one can consider a morphed p.d.f. using only input

templates at two values of the morphing parameter, mmin and
mmax. The coefficients ci(m) become linear in m and reduce to the
simple fractions:

cimin
¼ 1�mfrac ð9Þ

cimax ¼mfrac ð10Þ
where mfrac ¼ ðm�mminÞ=ðmmax�mminÞ, cimin

and cimax sum up to
one, and all other coefficients are zero.

Second, it may be that the sampled input p.d.f.s fi describe
distributions in x that vary strongly as a function of m in shape and
location. This is equivalent to the first and second moments (i.e.
the means and variances) of the input distributions having a
dependence on the morphing parameter m.

Since the input p.d.f.s in Eq. (5) are summed linearly, it is
imperative to translate all input distributions f iðxÞ in the sum
before combining in the morphed p.d.f. such that their locations
match up. The process of translating the input observables (but not
scaling; see below) is also called the horizontal morphing. In
addition it is necessary to take into account the change in the
width of the input distributions as a function of the morphing
parameter.

To achieve this, the mean μij and width σij of each input
distribution i and observable xj are shifted to the common values
of μ0jðmÞ and σ0jðmÞ. These are obtained by multiplying the under-
lying means and widths with the coefficients ci(m) of Eq. (6):

μ0jðmÞ ¼∑
i
ciðmÞ � μij ð11Þ

σ0jðmÞ ¼∑
i
ciðmÞ � σij ð12Þ

In order to shift the input p.d.f.s a linear transformation of each
observable is applied. For each p.d.f. i and observable j define

x0ij ¼ aijxjþbij; ð13Þ
with slope

aij ¼
σij
σ0j

ð14Þ

and offset

bij ¼ μij�μ0jaij: ð15Þ
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to replace the original observables xj in the input p.d.f.s:

f ðxjmiÞ-f ðx0jmiÞ: ð16Þ

Since only a linear transformation is applied to each observable,
i.e. only the first two moments of the input p.d.f.s are modified, the
normalization of the scaled input template is analytically related
to the normalization of the original template asZ þ1

�1
f ðx0jmiÞ dx¼ 1

∏jajðmÞ
Z þ1

�1
f iðxjmiÞ dx ð17Þ

with the slope aj ¼ σj=σ
0
j, where j refers to the observable xj. The

construction of the complete morphed p.d.f. as the sum of the
transformed input p.d.f.s then gives

pðxjm0Þ ¼∑
i
ciðm0Þf ðx0;miÞ∏

j
ajðm0Þ: ð18Þ

As the coefficients ci add up to 1 by construction, the morphed p.d.f.
of Eq. (18) is unit-normalized as well for normalized input templates.

This leads to an important computational advantage and
novelty: for models where the input templates are constant, such
as histogram-based templates, no normalization integrals need to
be recalculated during the minimization of the likelihood function,
which is often a bottle-neck when using morphed p.d.f.s. As a result,
the number of input templates is generally increasable without
significant performance loss.

Note that the self-normalization of Eq. (17) remains valid when
applying a rotation to the set of (multiple) observables, which
would introduce covariance moments to the modified input p.d.f.s.
Though technically possible, such rotations are avoided here as
they obscure the physical interpretation of the observable set. A
consequence of this on the accuracy of the morphed p.d.f. to
model changing correlations between observables is discussed
in Section 4.2.

The processes of vertical and horizontal morphing (i.e. sum-
ming and translating) and of scaling the input morphed p.d.f.s are
illustrated in Fig. 1a, which morphs between two normal distribu-
tions. The technique proposed also accurately models the evolu-
tion of rapidly changing distributions as illustrated in Fig. 1b. In the
sample, the application of moment morphing is used to describe
the non-linear transition of a Cauchy distribution via a Crystal Ball
line shape into a normal distribution. The parameters of the used
p.d.f.s are chosen such that the positions of their means as well as
their shapes vary substantially as a function of the morphing
parameter α, in particular in the tails of the distributions which
change dynamically along the morphing path.

Fig. 2 shows an application of the technique described in this
paper to a complex physics and detector simulation. The recon-
structed invariant mass distribution for a Standard Model Higgs
boson with a mass 125 GeV decaying to four leptons is described by
non-linearly interpolating between a series of templates correspond-
ing to simulation response estimates for four assumed Higgs boson
masses, at 123, 124, 126 and 127 GeV. As reference templates kernel
estimation p.d.f.s modeling events simulated with MadGraph [3] and
an ATLAS-type PGS [4] simulation are used. Despite rapidly evolving
features, the template predicted by the morphing technique repro-
duces the true template at 125 GeV. The resulting morphed p.d.f. is
parametrized in terms of the ‘true’ Higgs boson mass, as opposed to
the reconstructed invariant mass, and a fit of the morphed p.d.f. to a
dataset with an assumed true Higgs boson of 125 GeV directly and
accurately measures that true Higgs boson mass.

2.2. Interpolation with multiple morphing parameters

The non-linear implementation of multiple morphing para-
meters is analogous to the single parameter case of Section 2.1. We
illustrate here the expansion to two parameters, including corre-
lated effects in the template distribution caused by changing two
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0 50 100 150 200 250 300 350 400

P
ro

je
ct

io
n 

of
 p

.d
.f.

s

0

0.02

0.04

0.06

0.08

0.1

0.12

morphing parameter
0 0.5 1

observable-10 -8 -6 -4 -2 0 2 4 6 8 10
morphing parameter 012345678910

E
ve

nt
s 

/ (
 0

.4
 x

 1
 )

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Fig. 1. Two examples of moment morphing. (a) Construction of the morphed p.d.f. The interpolation is done between two normal distributions, shown as solid lines,
corresponding to values 0 and 1 of the morphing parameter. After vertical morphing, the mean of the templates is shifted to the common value and their widths are adjusted
accordingly. The dashed p.d.f. shows the morphed p.d.f., which is a linear combination of the modified inputs. (b) Non-linear morphing of a Cauchy distribution (m¼0) via a
Crystal Ball line shape (m¼5) into a normal distribution (m¼10).
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Fig. 2. Example of p.d.f. interpolation. The reconstructed invariant mass distribu-
tion of for a 125 GeV Standard Model Higgs boson decaying to four leptons (solid,
red) has been predicted by non-linearly interpolating between the reference
distributions for surrounding mass hypotheses (solid, green), as described in the
text. The prediction is compared to the true 125 GeV template (dashed, yellow)
derived from the simulated data for this hypothesis and a fit of the morphed p.d.f.
to this dataset (solid, blue). The predicted, true, and fitted curves match almost
perfectly. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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or more morphing parameters simultaneously, before generalizing
the approach to an arbitrary number of parameters.

The general Taylor series expansion of f ðxjm1;m2Þ, depending
on parameters m1 and m2, around ðm10 ;m20 Þ reads

f ðx m1;m2Þ ¼ f ðx m10 ;m20 Þ
����

þ 1
1!

ðΔm1Þ
∂

∂m1
f ðxjm10 ;m20 ÞþðΔm2Þ

∂
∂m2

f ðxjm10 ;m20 Þ
#"

þ 1
2!

ðΔm1Þ2
∂2

∂m2
1

f ðx m10 ;m20 Þ
��"

þ2ðΔm1ÞðΔm2Þ
∂2

∂m1∂m2
f ðx m10 ;m20 Þ
��

þðΔm2Þ2
∂2

∂m2
2

f ðx m10 ;m20 Þ
�� �þ⋯ ð19Þ

which, for a 2�2 square grid with reference points surrounding
ðm1;m2Þ, is approximated by

f ðx m1;m2Þ ¼ f ðx m10 ;m20 Þ
����

þðΔm1Þ
∂

∂m1
f ðx m10 ;m20 Þ
��

þðΔm2Þ
∂

∂m2
f ðx m10 ;m20 Þ
��

þðΔm1ÞðΔm2Þ
∂2

∂m1∂m2
f ðx m10 ;m20 Þ:
�� ð20Þ

Here the middle two terms are the linear expansions along m1 and
m2, and the last term represents the expansion along both m1 and
m2 simultaneously. The addition of the fourth “corner” point
allows one to model functions that cannot be factorized into
functions depending only on m1 or m2.

Repeating the Taylor series expansion for a grid of k� l refe-
rence points, and again writing the truncated series as a vectorial
equation, leads to Eq. (2) with additional mixed terms in the
transformation matrix M and the derivatives f 0j. The transforma-
tion matrix M now reads

where Δmin0 ¼min �mi0 is a short notation for the distance
between reference point n and reference point 0 in the ith
dimension of the parameter space. The distance vector Δm is in
multiple dimensions defined as

Δm¼ 1 ðΔm2l0
Þ ⋯ ðΔm2l0

Þk ðΔm1l0
Þ

�
⋯ ðΔm1l0 ÞðΔm2l0 Þk ⋯ ðΔm2l0

ÞlðΔm2l0
Þk
�T

: ð22Þ

Following Eq. (5), the coefficients ci for a new point ðm0
1;m

0
2Þ ¼

ðm1q ;m2q Þ are now given by

ciðm0
1;m

0
2Þ ¼ ∑

ðk�lÞ�1

j ¼ 0
ðM�1Þji � ðΔmÞj: ð23Þ

The construction of the morphed p.d.f. pðxjm1;m2Þ using these
coefficients is as in Eq. (18).

The extension to an arbitrary number of morphing parameters,
n, is a matter of using an n-dimensional grid of input p.d.f.s, with
k� l�… grid points, and consistently expanding the transforma-
tion matrix M with the additional higher order terms.

Returning to the 2�2 square grid of input p.d.f.s with reference
values surrounding ðm1;m2Þ, the coefficients in ðm1;m2Þ reduce to

c00ðm1;m2Þ ¼ ð1�m1;fracÞ � ð1�m2;fracÞ ð24Þ

c10ðm1;m2Þ ¼m1;frac � ð1�m2;fracÞ ð25Þ

c01ðm1;m2Þ ¼ ð1�m1;fracÞ �m2;frac ð26Þ

c11ðm1;m2Þ ¼m1;frac �m2;frac; ð27Þ
with m1;frac ¼ ðm1�m100 Þ=ðm110 �m100 Þ and m1;frac ¼ ðm2�m200 Þ=
ðm201 �m200 Þ. Note that the coefficients are all positive when staying
within the boundaries of the grid, and add up to 1. Towards the corner
point ðm111 ;m211 Þ, the nominal coefficient c00 and linear-expansion
coefficients c10 and c01 are turned off, and the quadratic term m1;frac �
m2;frac in c11 is turned on in full, describing the change caused by
changing m1 and m2 simultaneously.

Shown in Fig. 3 is an illustration of a multivariate normal
distribution modeling the dependency between two observables.
The covariance matrix as well as the mean changes as a function of
two parameters α1 and α2. In the given example the distributions are
known for 2�2 grid points fulfilling αi ¼ f0;1g; i¼ 1;2. The informa-
tion is used to linearly interpolate the p.d.f. to any desired point in the
two-dimensional parameter space. The yellow contours in the center
of the grid, i.e. at ðα1; α2Þ ¼ ð0:5;0:5Þ, represent the true temp-
late, which is compared with the prediction by the moment morphed
p.d.f. (red) and the prediction by vertical morphing only (green).

Fig. 3. Example of multi-dimensional moment morphing. Linear interpolation
between multivariate normal distributions in a multi-dimensional parameter
space. For illustration purposes only, the plot has a 1-to-1 mapping between the
corners of the morphing parameter and observable space. The example is
constructed such that mean and covariance of the multivariate normal distribu-
tions follow an analytic description, in particular the variation of Pearson's
correlation coefficient can be described bi-linearly. The corner contours (blue) of
the grid represent the input templates to the morphing algorithm. Dashed and
solid contours indicate one and two standard deviations from the mean respec-
tively. The true template in the center of the grid, i.e. at ð0:5;0:5Þ, is shown in
yellow. The prediction of the morphed p.d.f. for the central point is shown in red.
The green contours represent the prediction from vertical interpolation. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

M¼

1 0 ⋯ 0 0 ⋯ 0 ⋯ 0
1 ðΔm210 Þ ⋯ ðΔm210 Þk ðΔm110 Þ ⋯ ðΔm110 ÞðΔm210 Þk ⋯ ðΔm110 ÞlðΔm210 Þk
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮
1 ðΔm2n0 Þ ⋯ ðΔm2n0 Þk ðΔm1n0 Þ ⋯ ðΔm1n0 ÞðΔm2n0 Þk ⋯ ðΔm1n0 ÞlðΔm2n0 Þk

0
BBBB@

1
CCCCA ð21Þ
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Similar to the example presented in Fig. 1a, vertical morphing only
does not yield a central template with shifted mean. The difference
between the moment morphed template and the true template is
induced by the change of the correlation between the two observa-
bles with varying morphing parameter values. In case of constant
correlation between the observables of the input templates, the
prediction of the moment morphed p.d.f. is exact. More discussion
on this follows in Section 4.2.

2.3. Other choices of basis functions

Finally, having derived the morphed p.d.f. using a Taylor series
expansion, the dependency on a morphing parameter m can be
easily re-expressed in any orthonormal basis fΨ 0;…;Ψn�1g ¼
fΨ igi ¼ 0;…;n�1. The choice of the basis functions can simplify the
studied problem and thus lead to a better approximation, even to an
exact description. For example, if the dependency on model para-
meters is expected to be periodic, it can be expressed
in Fourier space as a linear combination of the eigenvectors Ψi:

pðxjmÞ ¼ ∑
n�1

i ¼ 0
diðxÞΨ iðmÞ ð28Þ

where the coefficients di read

diðxÞ ¼
Z

pðxjmÞΨ iðmÞ dm: ð29Þ

Thus, the dependency of the morphed p.d.f. on the observables enters
through the coefficients diðxÞ only, while the basis functions are
independent of x.

Note that the number of sampling points limits the number of
utilizable basis functions Ψ iðmÞ. Analogously to Eq. (5), p can then
be predicted at any new point m0:

ppredðxjm0Þ ¼ ∑
n�1

i;j ¼ 0
Ψ jðm0ÞðM�1ÞjipðxjmiÞ ð30Þ

with the modified n� n transformation matrix Mij ¼Ψ jðmiÞ.

3. A p.d.f. for modeling systematic uncertainties

In a typical analysis performed in a particle physics experiment, the
impact of systematic uncertainties is typically quantified by varying
one-by-one the model parameters relating to detector modeling and
physics models (e.g. energy calibrations, factorization scales) and to
record the template distribution with these modified settings. The
resulting pairs of alternate templates, corresponding to ‘up’ and ‘down’
variations of the uncertain model parameters, must then be incorpo-
rated in the likelihood model of the physics analysis, in the form of a
model nuisance parameter that causes the template distribution to
deform as prescribed by the pair of ‘alternate’ templates.

For the most widely used statistical test at the LHC, the profile
likelihood ratio, it is required that the modeling of the systematic
uncertainty in terms of a nuisance parameters is done in a
continuous way. In particular, the maximization of the likelihood
function, as needed (twice) in the profile likelihood ratio, requires
continuous and smooth parametric models to describe the signal
and background processes present in the data.4

This section builds a parametrized p.d.f. describing a set of
systematic variations about the nominal prediction for a signal or
background process, using the morphing technique of Section 2.
Each systematic uncertainty i is described with a nuisance para-
meter, ηi, that continuously morphs between the variation and
nominal templates such that ηi ¼ 71 corresponds to the 71σ
(1σ¼1 standard deviation) variations, and ηi ¼ 0 corresponds to
the nominal template.5 Additional variation templates may be
added for different values of ηi.

The response of the likelihood function to changes in the nuisance
parameters is here assumed to be factorized, i.e. it is assumed that
the effect of a simultaneous changes in two or more nuisance
parameters can be described as a superposition of the effects of
changing each nuisance parameter individually. (Unfactorizable
uncertainties are not discussed here; their treatment is handled
following the recipe of Section 2.2.) Where n unfactorizable uncer-
tainties would require a full n-dimensional grid of input templates,
this assumption reduces the number of required inputs to a set of n
one-dimensional variations, with only the nominal template in
common – a “star” shape in the nuisance parameter space.

The construction of the morphed p.d.f. as the sum of the input
templates becomes

ppredðxjηÞ ¼ 1� ∑
i ¼ 1

∑
j ¼ 71;7m

cijðηiÞ
 !

� pðx;0Þ

þ ∑
i ¼ 1

∑
j ¼ 71;7m

cijðηiÞ � pijðxjηi ¼ jÞ ð32Þ

where the double-sum runs over the implemented systematic
uncertainties and their available 71…7mσ variations. The
morphed p.d.f. is self-normalized, as by construction all coeffi-
cients add up to one.

In the publicly available implementation, detailed in Section 5.1,
the coefficients cijðηiÞ are linear, and depend only the two closest
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Fig. 4. Example application of the star-morphed p.d.f. to describe the effect of
different uncertainties. Three example uncertainties affecting different regions of
the shown spectrum have been added to the star-morphed p.d.f. The black curve
shows the fitted template for the qq-ZZ process along with the total uncertainty
derived from all included sources indicated by the yellow band. The green, red and
blue curves show the partial uncertainties corresponding to a flat, low mass and
high mass effect, respectively. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this paper.)

4 Specifically, the likelihood for a physics measurement, Lðμ; ηÞ, where μ is the
physics parameter of interest and η are the nuisance parameters that parametrize
the impact of systematic uncertainties on the signal and background predictions,
must be defined for all values of μ and η. The profile likelihood ratio is given by

λðμÞ ¼ Lðμ; ^̂ηÞ
Lðμ̂ ; η̂Þ ð31Þ

where μ̂ and η̂ represent the unconditional maximum likelihood estimates of μ and
η, and ^̂η represents the conditional maximum likelihood estimate for the chosen

(footnote continued)
value of μ. Therefore λ is a function of μ. (Note that the data is omitted in the short-
hand notation of L.) For a more detailed discussion on the profile likelihood ratio
test statistic, see Ref. [5].

5 A Gaussian constraint is applied separately for each systematic uncertainty to
account for uncertainty in the external measurement. This constraint preferably
centers each systematic variation around the nominal prediction, with a reduced
likelihood for potential shifts; however, a combined fit to the observed data may of
course prefer shifts in the nuisance parameters.
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input points surrounding ηi, as in Eq. (9). Also, the linear transforma-
tion of the observables x-x0, responsible for scaling and horizontal
morphing, can be turned on or off. (By default it is off.) Henceforth
this p.d.f. is called the star-morphed p.d.f.

This type of star-morphed p.d.f. has been used in the analysis of
Higgs decay to 4 leptons (H-ZZn-4l) by the ATLAS experiment
[6] to describe the various background components contributing
the ZZ mass spectrum, each including the variations of all relevant
systematic uncertainties.

Fig. 4 shows an example application of the star-morphed p.d.f.,
used to describe the dominant background process for a typical
H-4l analysis, labeled qq-ZZ. As in Section 2.1, this background
prediction has been obtained from events simulated with Mad-
Graph [3] and PGS [4]. For illustration, three non-physical sys-
tematic uncertainties have been added to the star-morphed p.d.f.
One is a shape variation in the low mass region, the second is a
shape variation in the high mass region, and the third is an overall
normalization uncertainty that affects the entire mass region. The
effects of these systematic uncertainties on the template distribu-
tion are shown in Fig. 4.

4. Accuracy of moment morphing and comparison to
alternative morphing algorithms

The accuracy of a moment morphing function f predðxjαÞ is
assessed here using a series of benchmark models for which the
true distribution f trueðxjαÞ is defined.

A priori one can demonstrate that moment morphing provides
an exact solution for any set of true distributions in which the first
and second moments (i.e. the mean and the width) of f trueðxjαÞ
change linearly with the morphing parameter α and all other
moments are constant (i.e. the shape of the distribution does not
change other than through its first and second moments). The
simplest example of such a distribution is a Gaussian distribution
with a linearly changing mean and width. However, the class of
true distributions that are exactly reproduced by moment morph-
ing is not restricted to this example: any distribution with linearly
changing first and second moments and fixed higher-order
moments is exactly described. In particular, when considering
use cases in particle physics, the physics parameters of interest
(particle masses, resonance widths, etc.) are often related to the
first and second moments; hence a correct description of these is
most critical.

Deviations from the exact solution can occur in two ways:
(a) the dependence of the first and second moments of f trueðxjαÞ
become non-linear in α, or (b) higher moments of the shape of the
distribution depend on α, either linearly or non-linearly. The
magnitude of both types of deviations are under explicit control
of the user, as the moment morphing algorithm allows templates
to be specified at any number of freely choosable values of α.

Deviations of the first type are generally unproblematic as it is
always possible to construct a configuration of templates in which
(a) the dependence of the first and second moments between any
pair of adjacent templates is sufficiently close to linear (when
choosing the piece-wise linear interpolation option), or (b) where
the dependence of the moments over the entire domain of α is
well approximated by a nth-order polynomial for n templates
(when choosing the non-linear interpolation option). For this
reason, no attempt is made here to quantify the accuracy of
moment morphing due to (local) non-linearity of the first and
second moments of f trueðxjαÞ.

Deviations of the second type, introduced by changing higher-
order moments, may be more limiting in cases where higher-order
moments of the true distribution change rapidly as a function of α.
It should be noted that changes in the truth distribution related to

higher-order moments are empirically accounted for in the
morphing algorithm, by gradually changing the weight of
moment-adjusted input templates as a function of α. However,
the morphed distribution does not guarantee a linear change in
these higher-order moments as a function of α, as is done for the
first and second moments.

The impact of this empirical modelling of changes in higher-
order moments is quantified in the following sub-sections.

4.1. Performance on benchmark models

The accuracy of moment morphing is evaluated here on nine
analytical benchmark models that are similar to various particle
physics use cases, and the accuracy is compared to two other
morphing algorithms that have historically been used in particle
physics: vertical morphing and “integral morphing”.

In the vertical morphing approach6 templates are interpolated
with a simple weighting strategy:

VðxjαÞ ¼ ð1�αÞ=2 � TLðxÞþðα�1Þ=2 � TRðxÞ
where TL=R are the left and right template models corresponding to
α¼ 71. The vertical morphing approach is widely used in LHC
physics analyses, notably in the modeling of distributions in the
discovery analysis of the Higgs boson. In contrast, in the integral
morphing approach [1] interpolation occurs between the cumula-
tive distribution functions of the templates TL=R. The integral
morphing approach is more suited to models with rapidly shifting
means, like moment morphing and unlike vertical morphing, but is
computationally intensive due to (numeric) integration and root-
finding steps, and is restricted to the description of one-dimensional
distributions. The integral morphing approach has been used,
among others, in physics analyses published by the D0 and CDF
collaborations.

The nine analytical benchmark models tested here are detailed
in Table 1. For the first three benchmark models Nμ, Nσ and Nμσ ,
based on the normal distribution, moment morphing provides an
exact solution, and these models are included in the benchmark to
facilitate accuracy performance comparisons with the other
morphing approaches. The second set of benchmark models is
based on the Gamma distribution:

Γðxjk; θÞ ¼ xk�1e�x=θ

θkΓðkÞ
and are included as an example of a distribution where also higher-
order moments of the true distribution changes as a function of the
morphing parameter. The last set of three benchmark models is

Table 1
Benchmark models used to quantify accuracy of moment morphing and alternative
morphing algorithms.

Name Model description Dependence on morphing parameters

Nμ Gaussianðxjμ; σ ¼ 1Þ μ¼ 2 � α
Nσ Gaussianðxjμ¼ 0; σÞ σ ¼ 1þ0:5 � α
Nμσ Gaussianðxjμ; σÞ μ¼ 2 � α σ ¼ 1þ0:5 � α
Γk GammaDistðxjk; θ¼ 1Þ k¼ 3þ0:7 � α
Γθ GammaDistðxjk¼ 3; θÞ θ¼ 1þ0:7 � α
Γkθ GammaDistðxjk; θÞ k¼ 3þ0:7 � α θ¼ 1þ0:7 � α
C1 Chebychevðxja1 ; a2 ¼ 0Þ a1 ¼ 0:5þ0:4 � α
C2 Chebychevðxja1 ¼ 0:5; a2Þ a2 ¼ 0:4 � α
C12 Chebychevðxja1 ; a2Þ a2 ¼ 0:5þ0:4 � α a2 ¼ 0:4 � α

6 Note that the moment morphing algorithm reduces to vertical morphing
strategy if the adjustment step of the first and second moments of the input
templates is omitted.
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based on the 2nd-order Chebychev polynomials:

cðxja1; a2Þ ¼ 1þa1xþa2ð2x2�1Þ
as a distribution that is representative of typical background
distributions.

Given a pair of input templates positioned at α¼ 71, the
accuracy of the morphing methods is quantified using the Kolmo-
gorov–Smirnov (KS) distance. This is the largest distance between
the cumulative distribution functions of the truth model and the
cumulative distribution function of the morphing interpolation
model for any value of x, as a function of the morphing parameter
α. The KS distance values range between zero (perfect agreement

between the two distributions) and one (complete spatial separa-
tion of the distributions in x). Fig. 5 illustrates the accuracy of the
three morphing approaches on the Nμσ ;Γkθ and C1 models, along
with the KS statistic as a function of α for all morphing approaches.

Accuracy metrics for all nine benchmark models are given in
Table 2, which summarizes for each benchmark model and each
morphing strategy the KS distance at α¼ 0 (the morphing mid-
point), and the worst KS distance that occurs in the morphing
range αA ½�1;1�.

As expected, the moment morphing approach exactly replicates
the Nμσ benchmark model, unlike the vertical morphing approach.
The integral morphing algorithm can also exactly replicate the Nμσ
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model, center row: the Γk model, bottom row: the C1 model. The plots in the left column overlay the truth model distributions for various values of the morphing parameter
α (α¼ 71 shown in dark blue, which also serve as templates for the morphing algorithms, other values of α shown in yellow dashed) on the predicted distribution by
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model, but is limited to an accuracy of about 0.001 due to numerical
precision limitations, related to integration and root-finding in the
algorithm's implementation. For the Γkθ benchmark model, no
morphing algorithm can exactly reproduce the truth model due to
changing higher-order moments, but the moment and integral
morphing algorithms perform about equally, and significantly better
than the vertical morphing algorithm. For the C1 benchmark model
both the moment morphing and the vertical morphing perform
identically, as the first and second moments of the true distribution
do not depend on α, hence both approaches reduce to the same
algorithm, which happens to describe the C1 model perfectly.7

In summary, in these tests the moment morphing approach is
as good as and usually better than the two alternative morphing
methods.

4.2. Accuracy for multi-dimensional distributions and multi-
parameter morphing

For morphing models with multiple morphing parameters,
and/or with input distributions with multiple observables, it is
challenging to capture the accuracy with a limited set of bench-
mark models as KS tests have no simple equivalent for multi-
dimensional distributions, and the number of benchmark
permutations to test becomes large with multiple morphing
parameters.

Nevertheless, one can illustrate the challenges of morphing and
the performance of moment morphing with a single simple yet
challenging 2-parameter benchmark model for 2-dimensional
distributions: a multivariate normal distribution:

f trueðxjα; βÞ ¼Gaussianðxj μ!;VÞ

for which all five degrees of freedom, μx; μy, σx � Vxx; σy � Vyy and
ρ� Vxy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VxxVyy

p
depend linearly on two morphing parameters α

and β.
In the case where the correlation coefficient ρ is independent of

α and β, moment morphing provides the exact solution for this
multi-variate Gaussian model, similar to the one-dimensional case,
even if the dependence of μx; μy, σx; σy is strong, as long as it is
linear. Conversely, vertical morphing will perform poorly, espe-
cially if μx or μy depend strongly on α and β, while integral
morphing is not available for multi-dimensional distributions.

The more challenge scenario where also ρ depends on α and β is
visualized in Fig. 3. Moment morphing will not provide an exact

solution for this class of models as the covariance moments are not
explicitly corrected for, nevertheless the covariance of the interpo-
lated shape at ðα; βÞ ¼ ð0:5;0:5Þ reasonably matches the covariance of
the true model, although the shape is no longer perfectly Gaussian.

5. Implementation

This section discusses the publicly available morph classes, and
is followed by details of the chosen extrapolation approach of a
morph parameter beyond the provided input range.

5.1. Available morph classes

Moment morphing has been implemented in Cþþ for the
RooFit toolkit [7]. As of ROOT release 5.34.22, the morphing
features described in this document are available in the RooFit

models library. Common to all classes is the ability to handle one
or multiple observables, as well as the implementation of a cache
that stores pre-calculated expensive components such as numeri-
cally computed moments, e.g. the means and widths of each input
template, required for the translation of the corresponding
observables.

The following moment morph classes are available in RooFit:

� The RooMomentMorph p.d.f. can be used to interpolate between
an arbitrary number of reference distributions using a single
morphing parameter. The algorithms settings described in this
paper, e.g. linear or truly non-linear, can be used.
Furthermore, a sine-linear variant transforms mfrac to sin ðπ=2 �
mfracÞ before calculating the coefficients, thus ensuring a con-
tinuous and differentiable transition when crossing between
two adjacent sets of enclosing grid points. In addition, non-
linear coefficients for adjusting the moments of the p.d.f.s can be
mixed with linear coefficients when constructing the morph
p.d.f., and an option is available to select positive non-linear
coefficients only.

� RooStarMomentMorph is the natural extension for combin-
ing multiple one-dimensional RooMomentMorph p.d.f.s with
one common sampling point. The class supports linear and sine-
linear interpolation. The transformation of the template observa-
bles can be turned on or off.

Table 2
Accuracy of the moment morphing, vertical morphing and integral morphing
algorithms on the nine benchmark models define in Table 1, expressed in the KS
distance at α¼ 0 and the largest KS distance that occurs in the range �1oαo1.

Name Moment morphing Vertical morphing Integral morphing

KS ðα¼ 0Þ KSmax KS ðα¼ 0Þ KSmax KS ðα¼ 0Þ KSmax

Nμ 0 0 0.28 0.28 4.8�10�4 8.1�10�4

Nσ 3.7�10�9 5.3�10�9 0.044 0.046 2.8�10�4 9.1�10�4

Nμσ 1.1�10�8 1.3�10�8 0.36 0.40 4.4�10�4 9.2�10�4

Γk 0.0064 0.0069 0.032 0.032 0.0033 0.0036
Γθ 9.2�10�4 1.1�10�3 0.28 0.32 5.4�10�4 6.9�10�4

Γkθ 0.11 0.14 0.32 0.35 0.11 0.14

C1 0 0 0 0 0.018 0.018
C2 0.0086 0.0086 0.0086 0.0086 0.013 0.013
C12 0.020 0.020 0.020 0.020 0.040 0.040
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Fig. 6. Benchmark results for RooMomentMorph. The figure shows the average CPU
time for the evaluation of the morph p.d.f. as a function of the reference templates
used for the interpolation for linear (red) and non-linear (blue) algorithm settings.
This was measured on an Intel(R) Xeon(R) CPU E5-2450 @ 2.10 GHz with 2 GB of
memory per core. As reference p.d.f.s normal distributions with varying mean are
used. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)

7 This perfect performance is specific to the C1 benchmark that changes the
first Chebychev coefficient only. Truth models that change high-order coefficients
are imperfectly described by all morphing algorithms, as detailed in Table 2.

M. Baak et al. / Nuclear Instruments and Methods in Physics Research A 771 (2015) 39–4846



� RooMomentMorphND allows the parametrization of a n-dimen-
sional parameter space, interpolating linearly or sine-linearly
between reference points sitting on a hyper-cube or arbitrary size.

� Roo1DMomentMorphFunction and Roo2DMomentMorphFunc-

tion are similar to the top moment morph p.d.f., but can be used
to interpolate between functions, not p.d.f.s. Available for one or two
morph parameters.

Example code of how to use the moment morph p.d.f. is given
below.

Listing 1. Sample code to build the model shown in Fig. 1a.

5.2. Extrapolation beyond input boundaries

By construction, the validity of the morph p.d.f. of Eq. (18) is
highest when interpolating its morph parameter(s) within the
provided range(s) of input values. Beyond these the predictive power
is a priori unknown, but of course can be interesting to investigate.
Some ad hoc choices need to be made for extrapolation cases, which
were not covered by the description of the algorithm so far.

As apparent from Eq. (6), when extrapolating m beyond the
input boundary values mmin and mmax, the coefficients ci(m)
increase in size and may become highly negative. In this situation
the morph p.d.f. can become smaller than zero, and as such ill-
defined. To prevent this, the following extrapolation approach is
implemented:

� Whenever one of the morph parameters extends beyond the
input range, i.e. mommin or m4mmax, the coefficient multi-
plied with the nearest input p.d.f. is forced to one, and all other
coefficients are set to zero.

� The same is done for the transformed width of Eq. (11), which
is to remain greater than zero.

� Beyond the input boundaries, the transformed mean of Eq. (11)
does remain well-defined, and uses the coefficients of either
Eq. (6) or Eq. (9), depending on the linearity setting used.

5.3. Computational performance of moment morphing

Template morphing is one of the computationally limiting
factors in current HEP analyses, which makes understanding the
performance of the algorithm at hand crucial. Fig. 6 compares the
performance of the linear and non-linear algorithms settings in
terms of average CPU time needed for the evaluation of the morph
p.d.f. as a function of the used reference templates. The benchmark
makes use of the caching described in Section 5.1. It excludes the
computation time needed for the calculation of the moment
integrals over the input templates, which is a one-time calculation,
the result of which can be cached in the RooFit workspace file

along with the model if desired by the user. Details of the setup are
described in the caption of the figure.

For the interpretation of performance numbers it should be
noted that the evaluation time for non-linear morphing models
depends quadratically on the number of reference templates n, as
for every template the associated coefficient is a product of n
distances. In the linear case, the evaluation time is driven by the
efficiency of the algorithm finding the two closest reference points
surrounding the point at which the p.d.f. is evaluated. For 10 (20)
reference templates, the ratio of non-linear over linear evaluation
time is 1.4 (2.2).

6. Conclusion

We have described a new algorithm to interpolate between
Monte Carlo sample distributions, called the moment morphing.
The proposed technique is based on a linear combination of the
input templates, has a non-linear dependence on the parameters
that control the morphing interpolation, and can be constructed in
any orthogonal basis.

Compared with existing methods, it allows for both binned
histogram and continuous templates, has both horizontal and
vertical morphing, and is not restricted in the number of input
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templates, observables, or model parameters. In particular, the
latter feature allows the moment morphing technique to model
the impact of a non-factorizable response between different model
parameters. The moment-morphed p.d.f. is self-normalized, and
therefore, in terms of speed and stability, scales well with the
number of input templates used. This is a useful feature in modern
day particle physics where large numbers of templates are often
required to model the variations by systematic uncertainties.

In a suite of comparison tests the moment morphing method
proofs to be as accurate as, or better than, two commonly used
alternative techniques.

Various implementations of the moment morphing technique
are publicly available through the RooFit toolkit.
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