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      Stem Cells and Neurogenesis in Relation 
to Dementia and Alzheimer’s Disease 
Mouse Models 

             Paul     J.     Lucassen     ,     Edwin     H.     Jacobs    ,     Lianne     Hoeijmakers    ,     Sylvie     Lesuis    , 
    Harm     Krugers    ,     Aniko     Korosi    ,     H.     Georg     Kuhn    , and     Karin     Boekhoorn   

           Introduction 

 Dementia is a neurodegenerative disorder that results in progressive memory loss 
and cognitive defi cits and affects millions of people in the Western world. The most 
common form is  sporadic  Alzheimer’s disease (AD). It is characterized by a late 
onset and the gradual accumulation of β-amyloid peptide (Aβ)-containing senile 
plaques, which are derived from the amyloid precursor protein (APP). Also many 
neurofi brillary tangles (NFTs) are found that contain hyperphosphorylated tau pro-
tein and correlate well with cognitive decline. Early onset forms of AD exist as well, 
but these are rare and mostly familial. They are caused by mutations in the APP or 
presenilin 1 or 2 (PS1/2) genes, which eventually all result in the overproduction of 
the longer Aβ species. Alterations in intracellular APP processing by specifi c secre-
tases are thought to cause accumulation of mainly the longer forms of beta amyloid 
(Aβ1-42/43) that are secreted and, over time, aggregate in extracellular amyloid 
plaques. As the toxic forms are most likely the oligomeric forms of Aβ that, prior to 
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accumulation in extracellular plaques, may form already intracellularly, increasing 
attention is nowadays paid to a role for different forms of intraneuronal Aβ as well 
(Bayer and Wirths  2011 ,  2014 ; Gouras et al.  2010 ). 

 In addition to β-amyloid plaques, extensive numbers of neurofi brillary tangles 
are found in the AD brain. In AD, the neurofi brillary tangles are based on tau pro-
tein that is hyperphosphorylated at numerous sites by specifi c kinases. Protein tau is 
a microtubule-associated protein (MAP) involved in cytoskeletal stability and inter-
nal vesicle transport. Its hyperphosphorylation is thought to contribute directly to 
neuronal dysfunction. In support, the extent of neurofi brillary tangle pathology cor-
relates well with cognitive decline in AD (Nelson et al.  2012 ), which is not the case 
for the amyloid plaque load, where considerable overlap exists between control 
subjects and AD patients (Musiek and Holtzman  2012 ; Perl  2010 ). 

 In addition to AD, frontotemporal dementia is a specifi c form of dementia that 
lacks amyloid deposits but is characterized by the select and abundant presence of 
neurofi brillary tangles. These “tangle-only” forms of dementia are caused by spe-
cifi c mutations in tau or tau-related proteins like progranulin (van Swieten and 
Heutink  2008 ; Seelaar et al.  2011 ). Together, the gradual accumulation in the brain 
of amyloid and tau neuropathology is thought to induce progressive neuronal dys-
function and degeneration, which eventually results in cognitive defi cits, brain atro-
phy, and limited cell death in distinct subregions of the AD brain (Duyckaerts and 
Hauw  1997 ; Masters et al.  2006 ;    Perl  2010 ; Ferrer  2012 ; Krstic and Knuesel  2013 ; 
Ferrer  2012 ). 

 AD is furthermore a very heterogeneous disorder with a wide variation in age of 
onset, disease duration, as well as in the extent of neuropathology between brain 
regions. In many instances, e.g., amyloid plaque load does not correlate well with 
the patients’ symptoms, and despite considerable progress in understanding the bio-
chemical, genetic, and molecular mechanisms underlying AD and despite promis-
ing trials aimed at inhibition of secretases or at vaccination against amyloid (Pul 
et al.  2011 ; Lambracht- Washington and Rosenberg  2013 ; Wisniewski and Goñi 
 2014 ), knowledge of the exact AD etiology is poor and effective treatment or pre-
vention remains elusive. 

 While many of the current therapeutic strategies are aimed to slow down or stop 
the degenerative process of amyloid accumulation, novel strategies could focus on 
other substrates like tau and tangle pathology as well as on the regeneration of dam-
aged tissue. This could take place by utilizing the therapeutic potential of stem cells 
that could in theory be introduced and/or recruited into damaged brain regions 
where they could be stimulated to differentiate into new neurons. The proper deliv-
ery of exogenous neural stem cells to restricted areas of the affected AD brain still 
remains a major challenge, but the discovery of ongoing neurogenesis and the pres-
ence of endogenous stem cells in the adult brain, and their regenerative potential, 
holds considerable promise for recruiting endogenous populations and potentially 
restoring neuronal populations and improving functional neural circuits. 

 As various studies have now shown that it is the local microenvironment that 
determines the neurogenic potential and properties of endogenous as well as 
 exogenously transplanted stem cells, it will be critical to fi rst obtain a better under-
standing of the effects of the different elements of the AD disease process and its 
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main mediators, on the endogenous stem cell population. In this chapter, we will 
therefore review the state of the art on stem cells in the brain and their responses 
in relation to Alzheimer pathology. We focus on hippocampal neurogenesis and 
available AD mouse models.  

   Hippocampal Neurogenesis 

 The hippocampus is well known for its involvement in cognitive processes, such as 
learning and memory (Morris et al.  1982 ; Jaffard and Meunier  1993 ), and is severely 
affected in the dementias. It is furthermore unique as it is one of the very few brain 
regions where neurogenesis continues to occur in adult individuals (Altman  1962 ). 
Stem cells located in the subgranular zone (SGZ) of the adult hippocampal dentate 
gyrus (DG) undergo extensive proliferation before they migrate into its granular cell 
layer. In young adult rats, approximately 9,000 new hippocampal cells are born per 
day. Many of these adult-generated cells die within the fi rst few weeks (Dayer et al. 
 2003 ), due to a selection probably determined by local neuronal activity and trophic 
support (Deisseroth et al.  2004 ). Signifi cant proportions of the new cells survive and 
differentiate in about 3–4 weeks into mature neurons. During this process, they are 
eventually incorporated into the adult hippocampal circuitry where they become 
functionally active and contribute to the properties of the DG network. Various 
molecular (Schouten et al.  2012 ) and epigenetic factors have been identifi ed that 
modulate this process, e.g., in relation to Alzheimer-related factors (Fitzsimons 
et al.  2014 ; Mu and Gage  2011 ). 

 In addition to the DG, neurogenesis occurs in the subventricular zone (SVZ) of 
the lateral ventricle. Here, committed progenitor cells migrate via the rostral migra-
tory stream (RMS) into the olfactory bulb (OB) where they differentiate into inter-
neurons that are involved in olfactory discrimination learning (Gheusi et al.  2000 ; 
Alonso et al.  2006 ). The location of these two adult neurogenic zones in the hippo-
campus and the lateral ventricle wall, i.e., close to the corpus callosum and neocor-
tex, indicates strategic positions for potential repair processes. However, the 
generation of new neurons is involved in cognitive function and could, therefore, 
also be infl uenced by disease pathology. Moreover, aberrant neurogenic responses 
or mechanisms could even be a part of the pathological events of neurodegenerative 
diseases, as will be discussed below. 

 Adult hippocampal neurogenesis is prominent in young rodents, but the amount 
of neuronal progenitors decreases over time (Kuhn et al.  1996 ; Bondolfi  et al.  2004 ; 
Heine et al.  2004 ; Kronenberg et al.  2006 ; Montaron et al.  2006 ; Shetty et al.  2005 ; 
   Jinno  2011 ) to low levels in middle-aged and particularly aged animals. Additional 
studies have shown that similar levels exist in older primates (Gould et al.  1999 ; 
Kornack and Rakic  1999 ). The very few studies on this subject indicate that the 
adult and elderly human brain is no exception in this respect: while the extent of 
neurogenesis and its different stages is diffi cult to study in a controlled manner in 
the postmortem human brain or under in vivo conditions, these numbers are likely 

Stem Cells and Neurogenesis in Relation to Dementia…



56

low and, as in rodents, appear to decrease with advancing age (Couillard-Després 
 2013 ;    Manganas et al.  2007 ; Spalding et al.  2013 ; Knoth et al.  2010 ; Mirochnic 
et al.  2009 ; Eriksson et al.  1998 ; Curtis et al.  2011 ; Ho et al.  2013 ).  

   Regulation of Neurogenesis 

 The fact that neurogenesis occurs in many different animal species suggests an 
important functional role that is conserved throughout evolution. Interestingly, the 
process is not only changed with age but also highly susceptible to environmental- 
or experience-dependent modulation: voluntary exercise and environmental enrich-
ment, e.g., are well known to change the in vivo fates of the newborn cells. Various 
studies have identifi ed factors that can regulate production, maturation, and survival 
of the new hippocampal neurons during rodent adulthood. Some, like estrogen, 
environmental complexity, antidepressants, learning, physical exercise, and NMDA- 
related excitatory input, positively regulate neurogenesis, whereas factors like 
stress, cholinergic denervation, drugs of abuse, and aging decrease levels of neuro-
genesis (Marlatt and Lucassen  2010 ; Marlatt et al.  2012 ,  2013 ; Lee et al.  2012 ; 
Cooper-Kuhn et al.  2004 ; Mohapel et al.  2005 ; Lucassen et al.  2010 ; Schouten et al. 
 2012 ; Bruel-Jungerman et al.  2011 ; Zhao et al.  2008 ). 

 Although it seems somewhat counterintuitive, acute and chronic brain disorders 
or insults also stimulate the endogenous NSC population. For instance, head injury, 
epileptic seizures, and transient global and focal ischemia increase hippocampal 
proliferation and neurogenesis. The effects of insults on hippocampal circuit prop-
erties and characteristics of a slowly developing disorder like AD, however, are 
variable, depend probably on the stage of the disease, and are in general poorly 
understood (Winner et al.  2011 ; Coras et al.  2010 ; Gomez-Nicola et al.  2014 ; Perry 
et al.  2012 ). It is important to note that a variety of stimuli can affect different stages 
of the neurogenic process independently, e.g., each targeting specifi c populations of 
proliferating versus differentiating adult-generated cells. 

 Consistent with the important role of the hippocampus in cognition, many stud-
ies have found changes in adult neurogenesis to be paralleled by changes in hippo-
campal functional plasticity and/or cognition (Drapeau et al.  2007 ; Koehl and 
Abrous  2011 ). For example, housing rodents in an enriched environment, or allow-
ing them access to a running wheel, not only increases the survival of progenitor 
cells, but also leads to an enhanced performance in the hippocampus-dependent 
water maze learning task (van Praag et al.  1999 ). Conversely, factors like stress, 
which are linked to a decrease in neurogenesis, impair behavioral performance on 
such tasks (Abrous et al.  2005 ; Brummelte and Galea  2010 ; Gould et al.  1999 ; 
Lucassen et al.  2010 ). 

 One of the most direct studies to address the relation between neurogenesis and 
cognition utilized an inducible transgenic model to ablate adult-born hippocampal 
neurons through expression of the proapoptotic gene  Bax  in hippocampal neural 
precursors. These mice showed impairment of spatial memory while less complex 
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forms of spatial memory were unaltered. Previous work has established that spatial 
learning requires  different phases of cellular plasticity. Moreover, learning increases 
levels of newborn cells and their dendritic spines, which is associated with improved 
cognitive performance. Thus, cellular plasticity and neurogenesis contribute to vari-
ous types of hippocampus-dependent learning and memory particularly when learn-
ing is challenging and diffi cult (Abrous et al.  2005 ; Curlik and Shors  2011 ; Dupret 
et al.  2007 ; Zhao et al.  2008 ; Cameron and Glover  2014 ). 

 One of the fi rst demonstrations of a functional role for newly born cells was by a 
study that substantially reduced the number of newly generated granule cells using 
treatment with the antimitotic agent MAM, which also disrupted trace eyeblink con-
ditioning and trace fear conditioning, both known to be hippocampus-dependent 
tasks (Shors et al.  2002 ; Anderson et al.  2011 ). Notably, the reduction in new neu-
rons had no effect on learning during tasks that were hippocampus-independent. 
Additional studies showed a functional incorporation of adult-generated cells into 
the hippocampal circuit (van Praag et al.  2002 ), while hippocampal learning itself 
also increased neurogenesis, which depended on the diffi culty of the task (Gould 
et al.  1999 ; Curlik and Shors  2011 ). Together, this directly implicates adult neuro-
genesis in hippocampal function. Subsequent studies utilizing irradiation or genetic 
modifi cation aimed to eliminate adult neurogenesis in rodent models observed an 
impaired performance of the animals in spatial- navigation learning, spatial memory, 
spatial pattern discrimination, and fear conditioning tasks. Later studies revealed a 
reorganization of memory to extrahippocampal substrates, a role for adult neuro-
genesis in spatiotemporal learning and memory and the encoding of time in new 
memories with pattern separation as one of the most prominent tasks (Sahay et al. 
 2011 ; Clelland et al.  2009 ). Thus, neurogenesis is involved in several aspects of hip-
pocampal function and may prove important in disorders associated with cognitive 
impairments, like AD (Abrous et al.  2005 ; Zhao et al.  2008 ; Oomen et al.  2014 ).  

   Regulation of Plasticity by Disease 

 In contrast to many of the stimuli mentioned above, and important for the context of 
this review, pathological alterations involving the hippocampal trisynaptic circuit 
can trigger changes in neurogenesis as well. Neurogenesis is e.g. modifi ed by hip-
pocampal and cortical damage. This includes acute excitotoxic, ischemic, or epilep-
tic insults or by more gradual accumulation of aberrant proteins (Parent et al.  1997 ; 
Covolan et al.  2000 ; Blumcke et al.  2001 ; Jiang et al.  2001 ; Jin et al.  2001 ; Mu and 
Gage  2011 ). Whereas the extent and severity of the insult may modulate the extent 
of the neurogenic response, it is generally insuffi cient in functional terms as many 
of the newly formed cells turn into glial cells and/or contribute to the formation of 
scar tissue. In fact, in epilepsy, a popular concept even implicates neurogenesis 
in its etiology, assuming that the neurogenic response that occurs following the 
initial, and damaging, status epilepticus contributes to the occurrence of chronic 
epilepsy due to the fact that new neurons “rewire” inappropriately and form 
new contacts, such as new excitatory synapses on previously inhibitory synapses. 
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Thereby, neurogenesis may hamper the restoration of the damaged circuit and/or 
contribute to the emergence of chronic epilepsy and disease progression (Parent 
et al.  1997 ; Bielefeld et al.  2014 ), a possibility that may be of interest for AD etiol-
ogy as well (Palop and Mucke  2010 ; Yan et al.  2012 ). 

 Some of the regulatory factors involved in the neurogenic responses could be 
growth-related peptides like BDNF, IGF-1, FGF-2, and VEGF, which are upregu-
lated after ischemic damage (Kiyota et al.  1991 ; Gluckman et al.  1992 ; Plate et al. 
 1999 ; Schmidt-Kastner et al.  2001 ) and which are known stimulators of adult neu-
rogenesis when studied in isolated conditions (Kuhn et al.  1997 ; Zigova et al.  1998 ; 
Aberg et al.  2000 ; Schänzer et al.  2004 ; Van Tijn et al.  2011 ; Marlatt et al.  2012 , 
 2013      ). Much less is known about whether neurogenesis is also increased after 
 chronic  lesions, or during “slow” neurodegenerative processes, like those expected 
in AD, and in close relation to the neuropathology (Marlatt et al.  2014 ). To address 
the spatiotemporal characteristics of these responses, animal models have provided 
important tools, as will be discussed later.  

   Cell Cycle Markers in the Alzheimer Brain 

 Earlier studies had already suggested that cellular plasticity responses occur during 
AD. These were based on the presence of marker proteins selectively identifying 
specifi c stages of the cell cycle. Despite the fact that they were not expected to be 
present in the adult postmitotic brain, considerably more cells actively engaged in 
cell cycle were found in the AD hippocampus compared to control (Smith and 
Lippa  1995 ; Arendt et al.  1996 ; Kondratick and Vandré  1996 ; McShea et al.  1997 ; 
Nagy et al.  1997 ; Vincent et al.  1997 ; Busser et al.  1998 ; Yang et al.  2003 ). For 
instance, neurons containing neurofi brillary tangles in both the “dynamic” DG to 
which new neurons are added every day, as well as in the more “stable” cornu 
ammonis (CA) areas, co-express various cyclins, mitotic phosphoepitopes, and 
cyclin-dependent kinases (Smith and Lippa  1995 ; Arendt et al.  1996 ; Kondratick 
and Vandré  1996 ; McShea et al.  1997 ; Vincent et al.  1997 ; Busser et al.  1998 ). 
While on the one hand seen as endangered neurons that attempt to reenter the cell 
cycle (Smith and Lippa  1995 ; Kondratick and Vandré  1996 ; Busser et al.  1998 ; 
Herrup et al.  2004 ), cell cycle marker re-expression was on the other hand consid-
ered part of a more general regenerative process associated with neurogenic cells in 
the adult brain that depends on the “permissiveness” of the local environment. 

 Thus far, evidence from mouse models demonstrates that the induction of cell 
cycle changes after the onset of amyloid pathology is limited (   Yang et al.  2006 ). This 
could depend on the limited age of the mice studied or on the artifi cial condition of 
transgene-controlled protein expression that is intrinsically different from the human 
situation. The re-expression of these markers in mature human neurons could also 
induce an abortive exit of the cell cycle or lead to cell cycle arrest, followed by last-
ing cellular dysfunction. Cell cycle protein expression in mature neurons is regarded 
as a maladaptive response of cells “stuck” in a cycle they cannot complete that is 
expected to precede cell death (Yang et al.  2003 ; Herrup et al.  2004 ).  

P.J. Lucassen et al.



59

   Cellular Plasticity and Neurogenesis in the Human 
and Alzheimer Brain 

 After the initial studies using cell cycle markers, interest quickly turned to a possible 
role of stem cells and neurogenesis in the human brain. While BrdU pulse-chase and 
viral labeling have been instrumental in a better understanding of stem cell kinetics and 
regulation in rodents, such studies were not possible in living AD patients. Also, they 
were hampered by intrinsic diffi culties with obtaining human postmortem tissue of suf-
fi cient quality but also by the lack of reliable makers to identify the different stages of 
the neurogenic process in postmortem tissue. Although specialized immunocytochemi-
cal markers, e.g., from the tumor research fi eld, had been promising, the methodologi-
cal issues of postmortem delay, specifi city and fi xation turned out to be not trivial. One 
example was doublecortin (DCX), a reliable and common marker to detect adult neu-
rogenesis in rodents (Brown et al.  2003 ; Rao and Shetty  2004 ; Couillard-Despres et al. 
 2005 ). Unlike BrdU, detection of DCX does not require prior BrdU injections in living 
subjects, which made DCX a promising candidate marker. However, DCX, like many 
other microtubule-associated proteins (MAP) (Swaab and Uylings  1988 ), is very sensi-
tive to degradation during postmortem delay (   Boekhoorn et al.  2006a ) and also labels 
subsets of astrocytes (Verwer et al.  2007 ). Hence, this marker has its drawbacks when 
used for detecting quantitative differences in neurogenesis in the human brain. 

 So far, only a few studies have reported changes in these and other young neuro-
nal markers in human healthy or AD brain (Curtis et al.  2011 ; Winner et al.  2011 ; 
Zhao et al.  2008 ; Knoth et al.  2010 ). One report showed increases in various imma-
ture neuronal markers in a cohort of senile AD cases, suggesting that neurogenesis 
could be increased in AD (Jin et al.  2004b ). In another study in younger, presenile 
patients, these results could not be replicated (   Boekhoorn et al.  2006a ). Although a 
signifi cant increase in the number of Ki-67 positive, proliferating cells was found, 
quantifi cation revealed that these cells were mostly located in nonneuronal com-
partments and associated with glial cells and the vasculature, while for proliferating 
cells located in neuronal layers, no differences were found between control subjects 
and AD patients. Additional causes for these discrepancies could be the age differ-
ence between the cohorts. Senile dementia is generally associated with a slower 
deterioration of cognition over time, whereas pathology in presenile dementia is 
often more severe, and reactions to hippocampal injury were thus expected to be 
more prominent in the younger group. Regardless of this, no indications were found 
for changes in cellular plasticity of neurons in presenile AD (Boekhoorn et al. 
 2006b ) as was later confi rmed for senile cases too (Marlatt et al.  2014 ). 

 Later studies have also used other markers like Musashi-1, nestin, and PSA-
NCAM to show that neurogenic abnormalities in AD differ between phases and areas 
of neurogenesis and stages of AD: while hippocampal stem cells (Musashi-1) 
decrease, proliferation increases and differentiation/migration phase as well as axo-
nal/dendritic targeting (DCX and β-III-tubulin) remain unchanged. This suggests an 
attenuation of stem cells together with compensatory increased proliferation that, 
however, does not result in an increased number of migratory neuroblasts and differ-
entiated neurons in AD (Perry et al.  2012 ). Similar fi ndings on microtubule- associated 
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protein isoforms showed that the mature high-molecular weight isoforms MAP2a 
and b were dramatically decreased in the AD dentate gyrus. The total amount of 
MAP2 protein, including expression of the immature neuronal marker, the MAP2c 
isoform, was less affected. These fi ndings suggest that newly generated neurons in AD 
dentate gyrus do not become mature neurons, although proliferation is increased, con-
fi rming this general picture (Taupin  2009 ). Another study reported a decrease in DCX- 
and sex-determining region Y-box 2 (Sox2)-positive cells in human AD but an increase 
in bone morphogenetic protein 6 (BMP6) levels that was also found in APP transgenic 
mice, suggesting a role in defective neurogenesis in AD (   Crews et al.  2010a, b ). 

 In 1998, co-labeling of BrdU was shown with neuronal markers in human post-
mortem hippocampus in a unique patient cohort (   Eriksson et al.  1998 ). Although this 
study was the fi rst to show defi nite proof of adult neurogenesis in the human hippo-
campus, the methodology and cohort was unique and not suitable for experiments at 
larger scales in different populations. More recent methods used MRS spectroscopy 
(Manganas et al.  2007 ; Ho et al.  2013 ) or carbon dating in human postmortem tissue 
(Spalding et al.  2005 ,  2013 ). The latter technique takes advantage of the fact that dur-
ing the 1950s and 1960s, radioactive atmospheric  14 C levels were increased due to 
nuclear testing and gradually declined after the ban in 1963. Similar to normal carbon, 
 14 C is stably incorporated into the DNA of dividing cells, and its level can accurately 
predict the age of any neuron derived from tissue. In this manner, it has been shown 
that in contrast to the cortex, a signifi cant proportion of hippocampal neurons is born 
during adulthood (   Spalding et al.  2013 ). In contrast to a common view in the fi eld that 
adult hippocampal neurogenesis in the human brain should be a very limited phenom-
enon, this study demonstrated that about one-third of the hippocampal neurons pres-
ent at birth is replaced during life and that the rate of neurogenesis in middle-aged 
individuals is comparable to that found in mice (Spalding et al.  2013 ). Also, extensive 
cell birth was identifi ed in the human striatum (Ernst et al.  2014 ). So far, however, this 
technique has not yet been applied to AD material, but it could require defi nite proof 
as to how much neurogenesis is actually affected during AD. 

 Given the methodological pitfalls, the limited availability, presence of medica-
tion, and the variation between individual patients, together with the “end-stage” 
quality of human postmortem AD tissue, various research groups now focus on 
mouse models that overexpress AD-related proteins, like APP, PS, or tau (Crews 
et al.  2010a ; Marlatt and Lucassen  2010 ; Mu and Gage  2011 ; Webster et al.  2014 ). 
Although aspects of redundancy, artifi cal overexpression of a transgene and indirect 
effects are of course important, these models recapitulate aspects of AD and FTD 
and provide a basis to address cause and effect and the temporal aspects of neuro-
genesis in response to AD neuropathology.  

   Neurogenesis and AD Mouse Models 

 The extent of neurogenesis may infl uence vulnerability to accumulating deleterious 
events, e.g., during aging, and as such may to some extent also refl ect susceptibility to 
brain disorders like AD (Thompson et al.  2008 ; Zhao et al.  2008 ). Hippocampal neu-
rogenesis is modulated by the expression of AD-related genes with the direction of the 
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effect often depending on the age and brain region under study, on the presence of 
neuropathology, and/or on the promoter used (Kuhn et al.  2007 ; Thompson et al. 
 2008 ; Crews et al.  2010a ; Marlatt and Lucassen  2010 ; Mu and Gage  2011 ; Webster 
et al.  2014 ). In Alzheimer mouse models, APP, PS1, and APP/PS1 mutations gener-
ally cause reductions in neurogenesis when neuropathology is apparent, but also stim-
ulatory effects have been reported but then mostly at earlier ages. Effects of mutated 
tau on neurogenesis are less well characterized or have been studied only postnatally 
and/or at young ages (Boekhoorn et al.  2006b ; Sennvik et al.  2007 ). 

 In an attempt to link changes in neurogenesis to specifi c aspects of the disease, 
such as tauopathy or amyloid pathology, various mouse models of AD have been 
studied, either under naive conditions or under conditions when neurogenesis was 
modulated, e.g., by exercise, drugs, enrichment, or stress (Kronenberg et al.  2006 ; 
Hu et al.  2010 ;    Cotel et al.  2012 ; Chadwick et al.  2011 ; Crews et al.  2010a ; Marlatt 
and Lucassen  2010 ; Mu and Gage  2011 ; Marlatt and Lucassen  2010 ; Marlatt et al. 
 2010 ,  2013 ; Lazarov et al.  2005 ; Webster et al.  2014 ; Rodríguez et al.  2011 ). The 
majority of these have been APP- and/or PS1-based mouse models and, to a lesser 
extent, tau transgenic mice. Even though the exact cause of the age-associated 
decline in neurogenesis remains to be determined, the loss of growth factors from 
the local hippocampal microenvironment, such as FGF-2, IGF-1, BDNF, and VEGF, 
which are potent stimulators of adult hippocampal neurogenesis and neural stem 
cell growth in vitro, suggests a reduced neurogenic potential with age (Hattiangady 
et al.  2005 ; Shetty et al.  2005 ). This bears considerable relevance for AD itself, 
where many of these growth factors are reduced in their expression as well. Given 
the stimulatory effects of growth factors and of Aβ on stem cells in vitro, this could 
provide a putative mechanism for an impairment of neurogenesis in AD. Similar 
arguments hold for the prominent loss of cholinergic neurons and innervation in 
AD, which may contribute to impaired neurogenesis (Cooper-Kuhn et al.  2004 ; 
Mohapel et al.  2005 ; Bruel-Jungerman et al.  2011 ). Even though the exact function 
of APP remains elusive, PS1 has a well- established role in γ-secretase cleavage, and 
is also known for its prominent role in regulating β-catenin, a protein involved in 
Wnt signaling, which regulates hippocampal neurogenesis (Lie et al.  2005 ; Inestrosa 
and Varela-Nallar  2014 ). In addition, neurogenesis may be changed in AD mice due 
to a “loss of function” of normal APP and PS1. 

 In different transgenic models, adult neurogenesis is compromised in AD and 
generally precedes neuronal loss: dysfunctional neurogenesis, both decreased and 
increased, has been reported for AD transgenic models in both regions of adult neu-
rogenesis, i.e., the SVZ and SGZ (Marlatt and Lucassen  2010 ; Mu and Gage  2011 ; 
Webster et al.  2014 ; Rodríguez and Verkhratsky  2011 ). Importantly, experimental 
conditions in these animal studies largely differ, depending on the use of transgenic 
expression of PSEN1, PSEN2, or of different APP single mutations, or knock-ins, or 
combinations thereof. Importantly, Aβ is not the only product of APP processing, 
and different APP metabolites may have different effects on different stages of neu-
rogenesis (Mu and Gage  2011 ; Lazarov et al.  2010 ). For example, whereas the APP 
intracellular domain (AICD) negatively regulates proliferation and survival in the 
hippocampus, the soluble APP produced by α secretase may even stimulate neuro-
genesis (Ghosal et al.  2010 ; Demars et al.  2013 ; Winner et al.  2011 ). Therefore, the 
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net outcome will depend on the differential contributions of each APP metabolite 
produced within a certain model and how they are infl uenced by experimental condi-
tions. In addition, BrdU regimens, doses, the time points analyzed after BrdU treat-
ment, the genetic backgrounds of the mice, and the brain regions investigated vary 
considerably (Demars et al.  2010 ; Marlatt and Lucassen  2010 ; Lazarov and Marr 
 2010 ; Rodríguez and Verkhratsky  2011 ). 

 Furthermore, promoters determine expression in specifi c neuronal populations 
and thus the topographical distribution of the overexpressed transgene. For exam-
ple, the use of the platelet-derived growth factor (PDGF) promoter results in the 
production of diffuse plaques, whereas prion protein and mouse thymocyte differ-
entiation antigen 1 (mThy1) promoters favor plaque formation in the hippocampus 
and neocortex, etc. We will fi rst discuss APP and PS1 mutant or deletion studies and 
then proceed to the discussion of tau mutant studies.  

   Amyloid Precursor Protein Transgenic Mice 

 Popular transgenic models of AD include mice expressing mutant APP. As single 
APP transgene, the FAD V717F (Indiana) mutation has negative effects on adult 
neurogenesis at an aged and symptomatic stage, mainly after amyloid deposition 
(Donovan et al.  2006 ). Double K670N M671L (Swedish) and triple (Swedish and 
Indiana) mutations of APP under many circumstances result in increased prolifera-
tion, and, in some cases, increased survival of the new neurons (Mirochnic et al. 
 2009 ; Haughey et al.  2002 ). Most earlier studies indicated that hippocampal neuro-
genesis is decreased in mice overexpressing the APP Swedish mutation that elevate 
Aβ (Donovan et al.  2006 ; Dong et al.  2004 ). In either an Aβ peptide injection model 
or in a mouse model expressing the APP mutant under control of the platelet-derived 
growth factor promoter (PDGF-APP), neurogenesis was found to be unaltered as 
long as Aβ pathology was absent, but its rate decreased as soon as plaque pathology 
developed (Haughey et al.  2002 ; Donovan et al.  2006 ). In contrast to the decreased 
number of dividing cells within the SGZ, PDGF-APP mice had signifi cantly 
increased numbers of immature neurons in the outer portion of the granule cell 
layer. Whether the occurrence of these ectopic cells is due to abnormal APP func-
tion awaits further study, but changes in this subregion may at least explain some of 
the discrepancies with previous studies that combined all DG subregions in their 
quantitative analyses. Neurogenesis was also decreased in mouse models carrying 
three PS1 mutations (M146V, P117L, or A246E) (Wang et al.  2004 ; Wen et al. 
 2004 ; Chevallier et al.  2005 ). Also in a commonly used AD model, the triple trans-
genic AD mice (3xTg) harboring three mutant genes (PS1(M146V), APP(Swe), and 
tau(P301L)), decreased proliferation was found in male mice. This reduction in 
proliferation was directly associated with the occurrence of the fi rst Aβ plaques and 
an increase in the number of Aβ-containing neurons in the hippocampus, which, in 
the case of 3xTg females, was directly correlated (Rodríguez et al.  2008 ). 

 In contrast to the abovementioned using PDGF-APP mice, Jin and colleagues 
have shown an increase in hippocampal neurogenesis in these mice that bear both the 
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Swedish and Indiana mutations (Jin et al.  2004a ). These effects were found at 
3 months of age, still in the absence of plaques, and at 1 year of age, at which time 
the hippocampus contained many plaques. Of importance, a considerable number of 
BrdU-positive cells in the hilus and molecular layer contribute to the total number of 
newborn cells that incorporate in the DG cell layer (Jin et al.  2004a ; Donovan et al. 
 2006 ). These studies differ from others regarding the SVZ, where, at 3 months of age, 
no difference was found in the number of dividing cells; however, they detected a 
signifi cant increase at 1 year of age (Jin et al.  2004a ). These data suggest an opposite 
hypothesis, namely, that amyloid pathology, at least to the extent that it is derived 
from two different types of APP mutations, i.e., APPswe and APPind, increases neu-
rogenesis. Alternative triggers, such as soluble or intraneuronal forms of amyloid, are 
still poorly studied in this respect. 

 In different strains of APPswe mutant mice, various cell cycle events were found 
to be increased (Yang et al.  2006 ), which resembles the situation in human AD 
where aberrant and ectopic expression of cell cycle markers has also been reported 
repeatedly. In contrast to the conclusion of Jin et al. ( 2004b ), an alternative explana-
tion is that expression of cell cycle markers selectively occurs in cells destined to 
die. In addition, this suggests that amyloid not only affects cell division but also 
survival of neurons. 

 Together, these studies suggest that the emergence of Aβ in the early stages of the 
pathology decreases, rather than increases, neurogenesis in mice (Jin et al.  2004a ; Yang 
et al.  2006 ). It is important to note that changes in neurogenesis further depend on the 
pathological state of the AD-related protein, be it aggregated or mutated, or overex-
pressed (Haughey et al.  2002 ; Donovan et al.  2006 ), an assumption that was supported 
by Wen et al. who reported increases in hippocampal neurogenesis in a cohort of mice 
overexpressing the wild type but not mutated (P117L) form of PS1 (Wen et al.  2002 ).  

   Presenilin 1 Transgenic Mice 

 Interest in γ-secretase, the enzyme that generates highly fi brillogenic Aβ42, has led to 
the development of PS1 transgenic mice expressing mutant PS1. While PS1 is part of 
the γ-secretase complex, this pleiotropic gene also participates in mechanisms regu-
lating cellular proliferation. PS1 is a key regulator in e.g., Notch and Wnt signaling 
mechanisms, but there is no direct evidence demonstrating that familial PS1 can infl u-
ence proliferation or survival of NPCs in humans. PS1 signaling is responsible for the 
developmental maturation of glia and neurons. In Wnt signaling, PS1 is directly 
involved in β-catenin turnover, a mechanism responsible for proliferation of progeni-
tor cells in the developing brain (Inestrosa and Varela-Nallar  2014 ). Normal PS1 
facilitates phosphorylation of β-catenin, which leads to proteosomal degradation; 
mutant PS1 cells have an increased stability of β-catenin that leads to downstream 
nuclear signaling events. It is therefore not surprising that neuronal expression of 
mutant PS1 using a Thy1 promoter increased cell proliferation in the DG of 4-month-
old transgenic mice. An increased cell proliferation did not result, however, in, an 
increased neuron survival in the hippocampus of these mice (Wen et al.  2002 ,  2004 ). 
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 In a follow-up study, the same authors found decreased neurogenesis in mice 
overexpressing mutant PS1, whereas no effect was found of WT overexpression 
(Wen et al.  2004 ). The only difference with the previous study was that now older 
mice were used. Hence, the effects of WT PS1 on neurogenesis are either positive 
or neutral, whereas mutated PS1 had a neutral or negative effect on neurogenesis, 
with a clear age-dependency for the neurogenic effects of PS1. 

 Animal models for AD based on familial PS mutations (Elder et al.  2010 ) show 
elevated generation of Aβ42. Chevallier et al. ( 2005 ) used PS1 A246E mutant mice 
and determined an increased proliferation of subgranular progenitor cells in the DG, 
but only 25 % of the newly generated cells survived after four weeks. In the PS1 
M146V knock-in mice, Wang et al. ( 2004 ) observed that neurogenesis was decreased 
as supported by decreases in proliferation, differentiation, and survival of precursor 
cells, while the P117L mutation also decreases neuronal differentiation of embry-
onic murine neural progenitor cells (Wen et al.  2004 ; Eder-Colli et al.  2009 ). 

 Mice defi cient for both PS1 and PS2 were found to have increased proliferation 
and survival when evaluated at two ages (Chevallier et al.  2005 ). A study of PS1 
expressed under the neuron-specifi c enolase (NSE) promoter found that cell prolifera-
tion was reduced by both wild-type and mutant P117L PS1 (Wen et al.  2004 ; Eder-
Colli et al.  2009 ). Interestingly, wild-type PS1 mice had increased survival of immature 
neurons, whereas the mutants did not. A follow-up to this study incorporated groups 
with environmental enrichment and found that expression of the wild-type protein 
was suffi cient to increase survival of immature neurons. Enriched environmental 
housing in these mice increased proliferation and newborn cell survival compared to 
the non-enriched group. This normal physiology was not preserved in mice express-
ing mutant PS1; enrichment increased proliferation, but there were no changes in Tuj1 
expression and lower numbers were found of less surviving BrdU-positive cells. A 
more sensitive experiment was produced by crossing mutant PS1 M146V knock-in 
mice with PS1-defi cient mice. Investigators generated mice with one mutant copy of 
PS1. Expression of mutant PS1 resulted in impaired learning in a contextual fear con-
ditioning test. This impaired associative learning was positively correlated with 
impaired neurogenesis. The investigators, by comparing with the parental knock-in 
line, concluded that expression of wild-type PS1 can override the mutant PS1 gene. 
Although the expression of human PS1 transgenes does impact on neurogenesis, it is 
diffi cult to assess whether behavioral changes are due to increased neurogenesis or to 
the expression of the transgene per se (Wang et al.  2004 ; Elder et al.  2010 ).  

   APP/PS Bigenic Mice 

 As murine APP does not generate fi brillogenic peptides, typically bigenic mice are 
generated that express mutant PS1 and human mutant APP. As reviewed before, 
most APP and APP/PS1 mouse models show reductions in cell proliferation 
(Lazarov et al.  2010 ; Marlatt and Lucassen  2010 ; Mu and Gage  2011 . A study 
evaluating mutant APPswe and APP-PS1L166P mice showed that APP mice had no 
difference in hippocampal neurogenesis when evaluated by BrdU incorporation at 
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5 months of age. At this age, the mice do not have amyloid deposits, but when 
 evaluated at 25 months of age, APP mice exhibited signifi cant increases in the number 
of BrdU- and DCX-positive cells (Ermini et al.  2008 ). A separate study utilizing 
different APP-PS1 mice at 8 months of age showed increased BrdU- and NeuN- 
positive cells compared to controls despite fi ndings that APP-PS1x nestin-GFP 
mice exhibited decreases in nonproliferative, nestin-positive NPCs (Gan et al. 
 2008 ). Hence, endogenous neurogenesis appears to be elevated early in response to 
pathology, and to later decrease again. However, the molecular mechanisms and 
functionality of these new neurons remains unclear. 

 Aβ pathology reduces neurogenesis in several mouse lines (Haughey et al.  2002 ; 
Dong et al.  2004 ; Wang et al.  2004 ; Donovan et al.  2006 ), and, with the exception 
of in vitro data (Lopez-Toledano and Shelanski  2004 ), that lack true neuropathology 
(Feng et al.  2001 ; Caille et al.  2004 ; Yasuoka et al.  2004 ), many of these studies are 
consistent with the hypothesis that AD initially stimulates neurogenesis, and later 
decreases it, coinciding with the accumulation of amyloid pathology. Considering 
the roles of both APP and PS1 in embryonic development, e.g., as regulators of Wnt 
signaling (Caricasole et al.  2003 ; Chevallier et al.  2005 ; Wines-Samuelson and Shen 
 2005 ; Chen and Tang  2006 ), both genes are likely to be of general importance dur-
ing both developmental and adult neurogenesis. Therefore, stimulatory effects of 
APP on increased neurogenesis could refl ect a delayed or repeated developmental 
role rather than a pathological one. A developmental role is further supported by the 
fact that the total number of neurons was increased at 8 months of age (when no 
pathology is present) in the neocortex of APP23 mice overexpressing the Swedish 
mutation. However, at 27 months of age, these mice have developed a considerable 
plaque load that negatively correlated with the number of neurons (Bondolfi  et al. 
 2002 ). In a related model, also cortical changes were found (Lemmens et al.  2011 ). 

 In other studies, Zhang et al. ( 2007 ) used APP, PS1, and both APP-PS1 mutants 
and only observed diminished neurogenesis in the double knock-in mice (Zhang 
et al.  2007 ). Jin et al. ( 2004a ) observed an increased neurogenesis in PDGF- 
APP(Sw,Ind) mice, which express human APP isoforms APP695, APP751, and 
APP770 with the FAD’s Indiana (V717F) and Swedish (K670N M671L) mutations 
driven by a platelet-derived growth factor promoter. They observed elevated neuro-
genesis in AD mice, which suggested that a compensatory mechanism may be 
active and that neurogenesis is increased in the early phases in response to emerging 
pathology, consistent with fi ndings of others (Yu et al.  2009 ).  

   Tau Transgenics 

 Compared to the many studies on neurogenesis in relation to amyloid pathology, 
remarkably few studies have addressed a link with protein tau. This is striking since 
an extensive in vitro literature suggests a prominent role for tau during neuronal 
development, cytokinesis, neuronal maturation, and neuritic outgrowth (   Gonzalez- 
Billault et al.  2002 ). Furthermore, tau phosphorylation occurs not only in AD but also 
during mitosis (   Cross et al.  1996 ; Delobel et al.  2002 ). Moreover, many of the cell 
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cycle alterations seen in AD have been linked to tangle pathology (Arendt et al.  1996 ; 
Smith and Lippa  1995 ;    Kondratick and Vandré 1996; Busser et al.  1998 ; Herrup et al. 
 2004 ). In vivo, the tau mutation P301S was found to be associated with overexpres-
sion of the cell cycle-dependent kinase inhibitors p21/Cip1 and p27/Kip1 (Delobel 
et al.  2006 ). Using a knockout–knock-in approach, it was further shown that expres-
sion of four repeats (4R) of tau reduces cell proliferation and increases differentiation 
and neuronal maturation, confi rming an important role for tau in neuronal plasticity 
and differentiation (Sennvik et al.  2007 ). Moreover, the tau P301L mutation modu-
lates cyclins, inducing cell cycle arrest in the G2 and M phases. In young tau P301L 
mutant mice, however, no effects were found on neurogenesis despite signifi cant 
increases, in stead of possible decreases, in long-term potentiation and improved 
cognitive performance (Boekhoorn et al.  2006b ). These data suggest that in the 
absence of age-related accumulation of tau phosphorylation, this familial tau muta-
tion per se may not impair learning and memory, but rather improve cognition at 
young ages. Thus, tau protein may play an important benefi cial role in hippocampal 
memory. Conversely, it is most likely not the mutation in tau, but rather the ensuing 
hyperphosphorylation, that is responsible for the cognitive decline observed in tauop-
athies (   Sennvik et al.  2007 ; Fuster-Matanzo et al.  2009 ,  2012 ). 

 In a model utilizing human tau with two mutations, induction of hyperphosphory-
lation and NFTs was found in the hippocampus of in 3–6-month-old animals. Cell 
bodies of the DG are spared at this young age, but neurites in these areas were immu-
nopositive for the antibody AT8, indicating aberrant phosphorylation of tau, similar 
to what is found in AD. Compared to non-transgenic mice, transgenic tau mice had 
twofold higher DCX levels and signifi cantly higher expression of TUC-4 in the DG 
through 6 months. Mice overexpressing nonmutant human tau also show signs of 
proliferation; however, this proliferation was identifi ed outside the SGZ and SVZ. 

 Taken together, the abovementioned data suggest that overexpression of wild- 
type or mutated tau is unlikely to promote neurogenesis. However, reduced tau 
expression may be associated with increased neurogenesis, at least within a specifi c 
postnatal period (Sennvik et al.  2007 ), and consistent with an inhibitory role of tau 
during mitosis, as suggested by others (Delobel et al.  2002 ,  2006 ). The fact that tau 
can inhibit neurogenesis does not imply that neurogenesis is inhibited in AD, where 
overexpression and aberrant expression of mutated forms of tau occurs. In AD, a 
large proportion of tau is thought to be hyperphosphorylated, which may lead to 
reduced microtubule binding and could, therefore, result in reduced tau functioning, 
which in turn, could lead to increased neurogenesis. While altered APP processing 
is likely to decrease neurogenesis, increased tau phosphorylation may actually result 
in the opposite effect. To test these hypotheses, it would be interesting to study the 
effect of tau phosphorylation on mitosis and neurogenesis in vitro and in vivo.  

   Environmental Stimulation of Neurogenesis in AD Models 

 The relationship between Aβ and neurogenesis has also been studied in combina-
tion with interventional studies. Environmental enrichment or wheel running in AD 
mouse models was expected to stimulate neurogenesis, parallel to behavioral 
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improvements and possible reductions in Aβ plaque load. In some models, environ-
mental enrichment indeed increased newborn cell proliferation, survival, and neuro-
genesis. These changes corresponded to improved performance in a spatial memory 
task, but surprisingly, there was often no change in plaque load. Clearly, the neuro-
genic environment is preserved and permissible, which may allow options for func-
tional recovery. Curiously enough, however, this recovery dissociates structurally 
from the functional pathology introduced in AD mice (Lazarov and Marr  2010 ; 
Marlatt et al.  2013 ). 

 Under normal conditions, environmental enrichment generally increases hippocam-
pal neurogenesis; however, in one of the fi rst kind of such studies, i.e., in PS1 knockout 
mice, which produce less amyloid, hippocampal neurogenesis could not be stimulated 
(Feng et al.  2001 ). Interestingly, this was paralleled by neuronal atrophy, increased 
astrogliosis, and associated with a reduced clearance of hippocampal memory traces. 
Enriched environment in APP and PSEN1 transgenic mice not only improved memory 
function but also reduced Aβ deposition (Lazarov et al.  2005 ), rescued impaired neuro-
genesis, and signifi cantly enhanced hippocampal LTP in APPswe/PS1DE9 mice (Hu 
et al.  2010 ; Lazarov et al.  2005 ). However, this depends on the mouse models and ages 
used. The APP⁄PS1KI mouse model, e.g., failed to show signifi cant improvement after 
4 months of continuous enrichment (wheel running activity together with social enrich-
ment), possibly because the mice were not exposed to the enriched environment until 
after disease onset (Cotel et al.  2012 ). Physical exercise alone improved cognitive per-
formance in transgenic mouse models of AD (Nichol et al.  2007 ,  2008 ). 

 When both wheel running and enriched environmental housing were com-
bined, the number of newborn granule cells in the DG of APP23 mice was 
increased and their water maze performance improved (Mirochnic et al.  2009 ; 
Wolf et al.  2006 ). However, environmental enrichment does not enhance neuro-
genesis in transgenic mice harboring FAD-linked PS1 variants or in forebrain-
specifi c PS1 knockout mice, and it even suppresses neurogenesis in apolipoprotein 
E (ApoE) epsilon 4 transgenic mice. Taken together, these studies indicate that the 
effects of exercise and environmental enrichment on adult neurogenesis vary 
between the mouse models of AD (Lazarov et al.  2010 ; Lazarov and Marr  2010 ; 
Marlatt and Lucassen  2010 ). 

 In conclusion, different mouse models of different aspects of AD pathology have 
shown robust and transient increases in adult cytogenesis or neurogenesis, often 
parallel to the onset of pathology. The effect on neurogenesis of increased or mutated 
Aβ production appears to depend on two factors: the developmental stage of the 
animal and the presence or absence of pathology. Obviously, these two parameters 
are not independent of each other, since most APP or PS1 mutant mice show 
increased pathology with age. Altered APP or PS1 expression can increase neuro-
genesis in younger animals when Aβ pathology is still absent; however, it decreases 
neurogenesis in later stages when Aβ pathology is present. 

 Most increases in cytogenesis in AD mice are nonspecifi c and likely involved in 
gliogenesis and will at least not result in acute functional neuronal recovery, possibly 
because the microenvironment at the age when AD pathology becomes apparent is no 
longer permissive enough to support stem cell proliferation or neuronal differentiation 
(Doorn et al.  2014 ;  Marlatt et al.  2014 ). 
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 Utilizing neurogenesis for healthy aging would require its occurrence and 
stimulation over longer durations. Hence, it may perhaps be most benefi cial if 
activity is established and maintained from midlife (or earlier) onwards to preserve 
adult  neurogenesis prior to the onset of AD neuropathology or clinical presentation 
with dementia or AD. As neurons born in aged mammals are just as functional as 
the ones generated during developmental neurogenesis in young mammals, mainte-
nance of stem cell proliferation and of the local microenvironment that enables a 
proper migration and connection is necessary to fully understand the dynamics of 
the neurogenic niche during aging and AD. 

 If we were to translate the data from animal models to the human familial AD 
situation, one would expect neurogenesis to be decreased rather than increased, 
with APP and/or PS1 as risk factors. Clearly, this contrasts from recent literature 
where plasticity markers were reported to be either increased or unaffected in a 
sporadic, senile cohort (Jin et al.  2004b ) or in a presenile cohort (Boekhoorn et al. 
 2006a ) respectively, possibly depending on the stage and severity of AD (Gomez-
Nicola et al.  2014 ; Brain 2014; Enikomou et al. 2014; Biol Psych 2014). Aside from 
different methodologies, one obvious explanation could be that human AD pathol-
ogy is more complex than altered APP expression alone, and, e.g., also other patho-
logical changes such as in tau and, e.g., a longer disease duration and differences in 
metabolism between human and rodent brain are implicated. Moreover, although 
APP pathology may not directly stimulate neurogenesis, the resulting neuronal dys-
function, damage, and cell loss could later increase cell birth in an indirect manner, 
similar to brain injuries like ischemia.  

   Preventive Strategies for AD 

 Although there is currently no cure for AD, signifi cant progress has been made in 
defi ning lifestyle conditions that promote healthy brain aging and, to some extent, 
delay the onset of AD. In clinical studies, poor social interaction, lack of physical 
exercise, malnutrition, and lack of cognitive stimulation have been singled out as 
risk factors of AD onset and progression (Laurin et al.  2001 ; Bennett et al.  2006 ; 
Scarmeas et al.  2006 ; Sitzer et al.  2006 ). In parallel, experimental studies found 
positive effects of enriched environment, physical exercise, and caloric restriction 
on accumulation of plaques in transgenic AD models (Adlard et al.  2005 ; Lazarov 
et al.  2005 ; Patel et al.  2005 ; Wolf et al.  2006 ). Although the functional link to neu-
rogenesis and other forms of structural plasticity is not fully established, it is intrigu-
ing to note that most all of these lifestyle factors are prominent stimulators of adult 
hippocampal neurogenesis (Kempermann et al.  1997 ,  1998 ; van Praag et al.  1999 ; 
Lee et al.  2000 ) as well as other forms of plasticity (Rosenzweig  1966 ; Cotman and 
Berchtold  2002 ; Chen and Blurton-Jones  2012 , Mattson et al.  2001 ,  2003 ). It is, 
therefore, crucial that patients are made aware of the benefi cial effects of these life-
style parameters on neuroplasticity and disease onset, even if a defi nitive proof of a 
role for neurogenesis in AD has not yet been provided.     
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