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Introduction

1.1 Driven far from equilibrium

All physical systems which are not subject to an external driving force tend

to reach a state called thermodynamic equilibrium. At thermodynamic equilib-

rium, most macroscopic physical observables, like pressure and density, remain

constant over time. Bodies adapt shape, exchange particles, give up energy and

change position to reach equilibrium. According to the second law of thermo-

dynamics, each of these processes only occurs if the free energy of the system

goes down or likewise increases the entropy of the system plus its environment.

Thermodynamic equilibrium corresponds to the state with minimum free energy

and maximum total entropy. The second law of thermodynamics and the ten-

dency to thermodynamic equilibrium are empirical findings which are thought

to be universal. While this concept of equilibrium presents one of the major

achievements of (thermal and statistical) physics, many systems in nature are,

however, far from equilibrium [1].

Systems can simply be so big, Fig. 1.1(a), that the equilibration process takes a

very long time. For other systems, equilibration times can be very long, because

they are stuck in a local free energy minimum, Fig. 1.1(b), and only slow relax-

ation allows them to eventually reach the global minimum. Glasses (Fig. 1.1(c))

1



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Chapter 1

Figure 1.1: (a) Image of the Andromeda galaxy. (b) An energy landscape
containing a local minimum. (c) A wine glass with the inset showing the disor-
dered molecular structure of glassy materials. (d) Hurricane Fran approaching

mainland United States.

are a well known example of a system trapped in a local free energy minimum.

Rapidly cooling certain fluids below the melting point will form amorphous solids

(glasses), instead of the crystalline ordered structures associated with the mini-

mal free energy configuration. Structurally a glass is similar to a fluid, but the

viscosity of a glass is many orders of magnitude larger than in the fluid phase

[2]. Relaxation times become very long upon glass formation due to the increase

of viscosity, trapping the liquid far from equilibrium, in a solid-like state.

The systems we discuss in this thesis are all subject to a driving force. The driv-

ing force constantly generates entropy and causes energy dissipation. Therefore,

the standard techniques from equilibrium physics, based on free energy minimiza-

tion and entropy maximization, are not applicable and new concepts are needed.

Driven systems are not relaxing to equilibrium, but often develop towards a

steady-state which is far from equilibrium by nature. Planet Earth is a beautiful

example of a driven system. Rays of light from the sun continuously strike the

Earth surface heating up the atmosphere, while an approximately equal amount

of energy is radiated outward to space. The solar energy flux through the atmo-

sphere gives rise to large scale transport of energy and matter, see Fig. 1.1(d).

2
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Figure 1.2: The driven systems studied in this thesis. (a) Highway traffic.
(b) Sheared colloidal glass. (c) Molecular motor walking along the cytoskele-

ton.

In this thesis, we investigate transport in complex driven many-particle systems.

The driven systems described in this thesis all develop towards a steady-state,

but are diverse, including traffic such as daily encountered on highways, sheared

colloidal glasses and molecular motor transport in biological cells, see Fig. 1.2. In

all these cases, the driving force gives rise to collective motion of the constituent

units, which we consider as transport through the system. Central questions

are which steady-state arises, and how these macroscopic states result from the

dynamic interactions of particles? Of particular interest are the density and cur-

rent distributions in steady-state, which can be homogeneous or heterogeneous.

We study how the steady-state, in which the probability distributions are time-

independent, depends on the driving force, density, etc. We find common features

of transport in these systems, and some indication of common underlying princi-

ples. Ultimately, this should contribute to a universal understanding of systems

driven far from equilibrium.

1.2 States of matter

The physics far from equilibrium is diverse, complex and far from understood. No

general framework exists to answer the above questions or how to find the steady-

state distributions. The general approach to driven many-particle systems in this

thesis is analogous to constructing a phase diagram for equilibrium systems.

Therefore, understanding the states of matter in equilibrium is useful to gain

insight and draw analogies to driven systems. In everyday life we encounter three

states of matter: solid, liquid and gas. The states of matter can be classified

3
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according to their qualitative distinct properties on the macroscopic scale. A

solid has an intrinsic shape. Liquids have no intrinsic shape, but do have a

fixed volume. Gases are compressible, they neither have an intrinsic shape nor

volume. Depending on the pressure and temperature a material is in a gas,

liquid or solid phase. A typical phase diagram of a material in thermodynamic

equilibrium is shown in Fig. 1.3. On the microscopic scale, molecules move past

each other in gases and liquids; these phases are ergodic. As a result, the time-

averaged structure of liquids and gases are both isotropic and homogeneous. The

similarity between gases and liquids is reflected by the critical point, above which

the distinction between gases and liquids can no longer be made. Molecules in a

solid in thermodynamic equilibrium are fixed in a crystal structure. Solids and

liquids remain distinct up to infinite pressure and temperature: no critical point

exists for the transition between a liquid and a solid.

This equilibrium behavior can inspire classification schemes for systems far from

equilibrium [3]. Traffic, which we will study in chapters 4 and 5, provides an

intuitive example. At low density all cars are free flowing. Cars can change

their speed and position freely in free flow. The freedom to change position and

velocity without constraining other cars, makes the free-flow state analogous to

liquids. Jams form at high densities due to velocity fluctuations and limited

available space. Cars in a jam are highly constrained in their movement by the

car in front.

Similarly to phase coexistence of equilibrium systems, jams and free flow can

coexist in traffic. However, in contrast to equilibrium systems, where phase coex-

istence is not possible in one dimension, traffic exhibits phase coexistence even in

one dimension [4, 5]. This highlights a striking difference with one-dimensional

equilibrium systems. We will find that driven systems can develop intriguing

non-equilibrium patterns, such as heterogeneous distributions of density and dy-

namics. The conditions for heterogeneous distributions of density or currents in

a system, and the transition from homogeneous states, are of central interest in

this thesis. In the next section we turn to the parameters that control the state

of traffic and of the other driven systems.

4
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Figure 1.3: Phase diagram of a material in thermodynamic equilibrium. The
critical point is denoted by a C.

1.3 Physical parameters of driven systems

In equilibrium systems the state is determined by external parameters. In Fig. 1.3,

the parameters controlling the states gas, liquid or solid are the temperature and

the pressure. These control parameters are of central importance in equilib-

rium systems. In driven systems, similarly there are parameters controlling the

steady-state. Typical examples of such control parameters are the driving force,

the particle density and particle interactions. While these parameters exist in

some form in all systems we consider, their realization can be different in each

system. Therefore, we briefly explain these parameters and their realization be-

low.

Driving force: Obviously the driving force is an important parameter for driven

systems - it is what makes them different from equilibrium systems. For sheared

colloidal glasses, the driving force is the shear-force applied on the boundaries

of the colloidal glass sample, see Fig. 1.2(b). In practice, we do not control

the shear-force, but the imposed shear-rate. For models of cars and molecular

motors, the intrinsic preference to go one way can be thought of as the driving

force. The directional movement is powered by combustion of gasoline in cars

and ATP hydrolization in molecular motors.

Interactions: The study of the driven systems discussed in this thesis include

experiments and simulations. In the models used for simulations, all interactions

between particles are approximated by hard-core interactions. That is, particles

cannot occupy the same region of space, but do not interact otherwise. Also in

5
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the experimental study of colloidal particles, which consist of hard plastic beads,

so they cannot penetrate or overlap in space, hard-core interaction is probably

a fair assumption. Similar restrictions exist in traffic, meaning that cars do not

collide. Therefore, we use simulation models for traffic with hard-core interac-

tions between cars. Molecular motors are complex nanometer-sized proteins, so

that assuming strict hard-core interactions is probably an oversimplification, but

nevertheless a useful first step in numerical studies of the collective behavior

of these motors. We investigate the actual nature of the interactions between

molecular motors experimentally in chapter 7.

Fluctuations: Colloidal particles are prone to thermal fluctuations. While the

particles in a colloidal glass are frustrated by the surrounding particles leading

to dynamic slow-down, thermal fluctuations still lead to relaxation and aging.

In our colloidal shear experiments, we probe these relaxations by applying shear

rates that compete with thermal relaxation times. In traffic, velocity fluctuations

can result from drive style, interactions with other cars and a new song on the

radio. A detailed description of all probabilistic processes is beyond the scope

of most traffic models. Velocity fluctuations are typically assumed to be ran-

dom, and can be described by a single stochastic parameter [6]. For molecular

motors, the complex stepping process is largely unknown. In the experimental

study on molecular motors described in chapter 7, we obtain insight into the

stepping process as a function of crowding. Finally, in the simple model we use

in chapter 8 to study the collective behavior of molecular motors, the only source

of stochasticity is the random sequential order at which the particle dynamics is

updated [7].

Density: Generally, the restricted space constrains the particles dynamically, and

makes particle dynamics occur collectively. The particle density is thus a central

parameter controlling particle dynamics and transport currents. In the colloidal

experiments, the particle volume fraction, i.e. the fraction of volume occupied

by particles with respect to the total volume, is of central importance. In the

models for traffic and the models and experiments on molecular motors, density

is a direct control parameter.

6
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1.4 Steady-state currents and densities

In contrast to thermodynamic equilibrium, there is a current of mass or energy

through driven systems; this steady-state current is an intrinsic property of driven

systems. The steady-state current can be uniform throughout a system, or it can

be heterogeneously distributed due to local structural or density differences. We

explore the relation between the steady-state current and the particle distribution

in this section, and use this relation between current and density to derive one

from the other. The realization of this relation can be different for each system

we study, we therefore discuss each system separately below.

Traffic: In traffic flow the formation and size of jams is of central interest [4, 8].

We analyze the conditions under which jams can be stable at long times in

the steady-state of one-dimensional transport models, such as traffic models.

The occurrence of stable jams in steady-state is rather detrimental: they can

grow without bound, resulting in phase coexistence of free flowing and arrested

traffic. By analyzing the steady-state inflow and outflow rates of jams we derive

an analytic criterion that is necessary and sufficient for such dynamic phase

coexistence to occur.

Sheared colloidal glasses: It is well-known that driven complex systems can ex-

hibit flow heterogeneities [9, 10]. At low driving rates the flow is typically uni-

formly distributed throughout the material, while at higher driving rates flow

heterogeneities can occur. We show that steady-state flow heterogeneities arise

when the applied shear rate becomes faster than the intrinsic (relaxation) flow

rate, which depends on particle density and structure. Such flow heterogeneities

can organize in space to form spatially separated bands, known as shear bands.

Molecular motor transport along networks: In models of molecular motors moving

along cytoskeletal networks, the steady-state current depends strongly on the

structure of the network and the particle density [11]. At low particle densities,

there is no jamming in the network, so each particle moves freely and contributes

equally to the transport current. In this low-density regime, the structure of the

network determines the distribution of particles among the network, and thus

the distribution of currents. With increasing density the crossings in the network

are the first to become jammed. For high global density, the current and density

7
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distributions amongst the segments of the network in steady-state can be derived

from the densities at the crossings [12].

1.5 Present thesis

This thesis presents a study of complex driven systems, consisting of many parti-

cles. The systems under study are simple models of highway traffic, experiments

on sheared colloidal glasses and experiments and simulations of molecular mo-

tors moving along the cytoskeleton. In all cases, collective effects in transport

arise, and we are interested in how the transport current and particle density

organize in space. The widely different systems of our study will take us across

dimensions: traffic is a 1D system, networks (quasi) 2D and colloidal glasses

3D. We will study particle dynamics in colloidal glasses and molecular motors

experimentally using different microscopy techniques. Using simple models that

specify the particle dynamics, we numerically study collective transport effects

in molecular motors moving along networks and traffic on highways. In addition,

we develop an analytical criterion for the occurrence of dynamic phase coexis-

tence in one-dimensional transport models. This thesis aims to obtain detailed

insight into the specific behavior of the mentioned systems, as well as find com-

mon principles of all these systems to contribute to a universal understanding of

driven, far from equilibrium systems.

Chapter 2: We introduce the experimental systems and observation techniques

in detail. As main technique we use optical microscopy, allowing us to follow the

motion of colloidal particles and molecular motors. We use fluorescent labels to

highlight the particles upon excitation with a laser. The molecular motors move

along networks of microtubules - we give a short introduction to both and provide

a detailed description of the setup and techniques used for this experiment. We

give an introduction to colloids and their phase behavior. Details on the sample

preparation of the colloidal glass, the shear cell used to apply the driving force

and the data acquisition and processing to extract particle dynamics are given.

Chapter 3: This chapter is dedicated to introducing the (simulation) models. We

introduce the models for simulating highway traffic and molecular motor motion

along the cytoskeleton. We start with the Totally Asymmetric Simple Exclusion

Process (TASEP), a paradigmatic model for driven transport in one-dimension.

8



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Introduction

The main results of TASEP are discussed. We introduce an extension to TASEP

for traffic flow, the Nagel-Schreckenberg (NS) model. Finally, we extend the one-

dimensional TASEP model to a network, to model the molecular motor motion

along the cytoskeleton.

Chapter 4: Here we investigate the collective arrest in a traffic model in the limit

of strong braking. We first establish an analogy between the arrest phenomena in

traffic models and models used to study the dynamic slow-down of glasses. The

glass models suggest a sharp transition in the limit where fluctuations disappear

and motion freezes. We investigate the analogous limit in the NS traffic model

- using tools developed to study the dynamics of glasses - and indeed observe

a sharp transition similar to that in models of glasses. The sharp transition

demarcates the onset of phase coexistence of moving and arrested traffic.

Chapter 5: Motivated by the sharp transition observed in chapter 4, we develop

an analytical method to study when phase coexistence occurs. The analytical

method is set up for one-dimensional transport models with a kinetic constraint

and is based on flow rates in and out of traffic jams. We apply this method to the

NS-model to analytically demonstrate that the sharp transition found in chapter

4 corresponds to the onset of phase coexistence. Moreover, we demonstrate that

the condition under which the NS-model was studied in chapter 4 is the unique

condition where phase coexistence occurs in this model.

Chapter 6: In this experimental chapter we study shear banding phenomena in

a sheared colloidal glass. At low applied shear rates the colloidal glass homo-

geneously flows to accommodate the applied shear. Shearing faster than the

intrinsic relaxation rate of the glass, splits the colloidal glass up in a slow and

a fast moving shear band. We show that even this shear banding phenomenon

can be understood as dynamic phase coexistence. Using a new dynamic order

parameter, we characterize the dynamics in each band.

Chapter 7: In this experimental chapter, we investigate molecular motion along

microtubules. We develop a new method to analyze the motion of molecular

motors. The method is based on correlations of intensities from fluorescence mi-

croscopy data, and is designed to give a fast and accurate estimate of the dynamic

parameters of molecular motors. Simultaneously, we measure the density of mo-

tors on a microtubule from the fluctuations in the spatially averaged intensities.
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Using this method we study the velocity and run length of the microtubule spe-

cific molecular motors Kinesin-1, Kinesin-II and OSM-3 as a function of motor

density. At high densities, the run length of all motors significantly decreases,

while the velocity seems to depend only weakly on motor density. Crowding

effects start to occur at surprisingly low densities for Kinesin-1, indicating long-

ranged repulsive interactions. Kinesin-II and OSM-3 seem to have much smaller

interaction lengths.

Chapter 8: In this chapter we numerically study the collective particle transport

on networks by an extension of the TASEP-model to networks. The network

structure in the simulations is inspired by our in vitro microscopy experiments of

crossing microtubules. Recent experiments have shown that at crossings, motors

tend to switch between microtubules. We include the preferred exit direction of a

motor leaving a crossing into our simulation model. The preferred exit direction

results in a density redistribution through the network. As a function of global

motor density on the network, various stages of homogeneous and heterogeneous

density distributions are identified.

10



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

2

Experimental systems and

techniques

In this thesis we use experimental and simulation techniques to investigate driven

systems. Our experimental systems include sheared colloidal suspensions and

molecular motors moving over microtubule networks. In both experimental sys-

tems, individual ”particles” are imaged using optical fluorescence microscopy.

Colloidal particles are tracked in three dimensions using confocal microscopy,

while the motion of microtubule bound molecular motors is imaged with total in-

ternal reflection fluorescence (TIRF) microscopy. Consumption of ATP is driv-

ing the dynamics of molecular motors. In contrast, we apply a surface force to

the colloidal suspensions by imposing an external shear rate on the system. We

provide details on the systems, microscopy techniques, materials and methods

used.

11
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2.1 Colloids

Colloids are nano- to micrometer sized particles that are dispersed in a contin-

uous phase. Colloids are ubiquitous in nature and wildly diverse in appearance.

The classification ”colloid” only refers to the size of the dispersed particles; the

particles themselves and the continuous phase can be in all states of matter.

Examples of colloidal materials include: mist and hair-sprays (liquid particles

dispersed in a gas), aerogel and styrofoam (gas in solid), blood and paint (solid

in liquid) and milk and mayonnaise (liquid in liquid). An illustration of the

colloidal domain on a logarithmic scale bar with some materials in this range is

shown in Fig. (2.1).

Due to their small size colloidal particles exhibit Brownian motion. As a result

particles explore phase space and exhibit states of matter similar to conventional

molecular materials.

Figure 2.1: The colloidal domain on a scale bar. Examples of some materials
that fall inside and outside the colloidal domain are shown. [13]

2.1.1 Hard-sphere colloids

The simplest system that mimics the behavior of atomic and molecular systems

is probably a hard sphere system consisting of spherical non-penetrable particles

12



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Experimental systems and techniques

Figure 2.2: Phase diagram of uniformly sized hard spheres. Different phases
of colloidal hard spheres are shown as a function of the volume fraction. There
is a liquid phase for φ < 0.494, a crystalline phase for φ > 0.545, and coexis-
tence between the two for 0.494 < φ < 0.545. If crystallization is avoided, for
0.545 < φ < 0.58, the system is a supercooled liquid, whereas for φ > 0.58,

the dynamics of the system becomes so slow that it is a glass. [15]

that interact only when they collide: they exhibit no interaction until they touch

and the interaction is infinitely repulsive upon contact. The phase behavior of

such hard sphere systems is uniquely governed by the volume fraction φ [14]

which is defined as the ratio of the particles volume to the total volume of the

system [15]. Hence, the presence of thermal fluctuations is sufficient to produce a

variety of phases such as fluid, crystalline and glassy states of matter, analogous

to the states observed in atomic and molecular physics. Yet, for colloids at

much larger length scales and longer time scales, making colloids useful model

systems for molecular and atomic systems, where the length- and time scales are

experimentally mostly inaccessible [14].

Experimentally, the phase behavior of colloidal hard sphere systems has been

studied by Pusey and van Megen using suspensions of sterically stabilized PMMA

particles [14]. Fig. 2.2 shows a schematic phase diagram of mono-disperse col-

loidal hard spheres [14]. At low densities, there is a homogeneous fluid phase

for volume fractions φ < 0.494. A crystalline phase can form at high densities

φ > 0.545. For intermediate volume fractions 0.494 < φ < 0.545, the system

shows coexistence between a fluid and a crystal phase. For volume fractions

φ > 0.58, depending on the preparation of the sample, polydispersity etc., either

a crystalline phase or a colloidal glass can be found. [15]
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2.1.2 Sheared colloidal glasses

The particle dynamics in a colloidal glass is constrained due to crowding. Individ-

ual particles can not move freely, but are trapped in a ”cage” by the neighboring

particles. As a result the relaxation time of particles increases and the glass is

rigid. We probe the flow properties of colloidal glasses in chapter 6, by applying

a shear to the glass and following the dynamics of individual particles by confocal

microscopy.

The flow properties of a colloidal glass in the absence of shear can be characterized

by the relaxation time of particles. The time required by a particle to move a

distance equal to its own radius a through the solvent at temperature T with

viscosity η0 defines the Brownian timescale τB:

τB =
πη0a

3

kBT
, (2.1)

where kB is Boltzmann’s constant. The above relation is valid for dilute sys-

tems. Interactions with other particles are not taken into account. In crowded

environments like glasses, the diffusion timescale strongly increases due to in-

teractions. One can describe the combination of solvent and particles with an

effective viscosity η, which is typically much larger than η0. By substituting η for

η0 in Eq. 2.2, the characteristic relaxation timescale of a dense colloidal system

τ becomes:

τ =
πηa3

kBT
. (2.2)

The timescale associated with an applied shear rate of γ̇a is simply 1/γ̇a. If

1/γ̇a << τ the colloidal suspension is dominated by thermal fluctuations. In the

strongly driven limit 1/γ̇a >> τ the applied shear dominates the system and

will liquefy an otherwise glassy, solid colloidal suspension. We will probe the

collective flow properties of a colloidal glass in chapter 6 around 1/γ̇a ∼ τ .
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2.2 Molecular motors moving along

microtubules

We study the motion of molecular motors along microtubules, which are a basic

component of the cytoskeleton of cells. The molecular motors, which move in

steps with typically constant step width, allow us to study transport in a biolog-

ically relevant context: motor proteins fulfill a key role in intracellular transport.

The motors carry cargo throughout the cell, for which diffusive processes are too

slow.

The constant step width of motors allows for relatively easy simulations with

lattice models of driven transport to study their collective behavior. We will

introduce these lattice models in chapter 3. In this section, we introduce the basic

properties of microtubules and the molecular motors we will study experimentally

in chapter 7. Details on the experimental techniques can be found at the end of

this chapter.

2.2.1 Microtubules

Microtubules are the most rigid component of the cytoskeleton giving shape to

eukaryotic cells. Microtubules also play a central role in the dynamic organiza-

tion and transport within cells. During cell division they bind to, and segregate,

chromosomes. In this thesis we study the transport that happens along micro-

tubules. Specific motor proteins bind to microtubules, exert force, bind cargo,

and walk along the microtubule network as if it were a highway.

Microtubules are long hollow cylinders self-assembled from α/β-tubulin het-

erodimers, see Fig. 2.3. Tubilin polymerizes end-to-end with the β-subunit of

one tubulin connecting to the α-subunit of another. The polymerization results

in ’polarized’ linear filaments of tubulin: at the plus end tubilin binds to the

microtubule with the α-subunit and at the minus end tubulin binds with the

β-subunit. A microtubule consists of multiple aligned filaments, all polarized in

the same direction. In vivo a microtubule consists of 13 filaments. The outer

diameter of a microtubule is 24 nm, very small compared to its linear size which

can reach up to 50 µm. While microtubules elongate on both ends, the growth is
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Figure 2.3: Schematic drawing of a kinesin motor attached to a microtubule.

much faster at the plus end. The polarization of microtubules is of vital impor-

tance for motor proteins like Kinesin-1: The polarization determines the motor’s

direction of motion.

2.2.2 Molecular motors

The founding member of the Kinesin superfamily, Kinesin-1, was discovered in

the giant axon of squid, where it transports vesicles from the cell body to the

synapses [16]. It is particularly in these long cells that diffusion does not work

effectively and active transport is crucial. Diffusion is a random process, spread-

ing a collection of molecules equally in all directions. When large distances need

to be bridged in elongated cells, the directed motion of active transport is much

more efficient than diffusion. Moreover, large particles experience significant

drag in the viscous interior of the cell. The viscous drag slows down the dif-

fusion process for large molecules. Molecular motors from the Kinesin families

actively transport such large molecules and vesicles along microtubules with a

hand-over-hand mechanism [17]. A sketch of a kinesin molecule on a microtubule

segment is shown in Fig. 2.3. We study three types of Kinesin motors: conven-

tional Kinesin-1, and from the Kinesin-2 family OSM-3 and Kinesin-II. Below we

give a short description of the structure and functioning of kinesin motors, using

Kinesin-1 as an example.

Kinesin-1 is a heterotetramer with two heavy and two light chains. The light

chains are thought to regulate the binding to cargo. The heavy chains form the

motor domain. They intertwine to form a coil, each ending with a head which

binds to microtubules. The motor domain has a second binding site for ATP,

the basic energy unit of cells. Upon hydrolization of ATP to ADP a motor head

16



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Experimental systems and techniques

unbinds and is believed to make a biased random search for re-binding to the

microtubule in the direction of the plus end. Configurational changes during

the stepping process inhibit the other motor head to bind ATP, preventing the

dissociation of Kinesin-1 from the microtubule. Kinesin-1 makes up to 100 steps

of 8 nm before unbinding.

A method to accurately and fast determine the dynamic properties of molecular

motors from optical microscopy data is developed in chapter 7 of this thesis.

With this method we study active transport by Kinesin-1, Kinesin-II and OSM3

along microtubules under crowding conditions.

2.3 Optical microscopy

Optical microscopy uses a combination of lenses to magnify small objects. Visible

light emitted or reflected by a sample passes through lenses, making microscopic

objects visible to the naked eye simply by magnification. Although the funda-

mental theory behind microscopy was only fully understood as late as the 1960s

with the completion of Quantum Electrodynamics, optical microscopy has served

as a crucial tool in the development of physics and biology since the 17th century.

The first optical microscope has been attributed to the Dutch spectacle maker

Sacharias Jansen who lived in the early 17th century. Soon after, Antoni van

Leeuwenhoek in Delft explored the unknown living world at the micro scale. With

his microscopes (Fig. 2.4) Van Leeuwenhoek discovered, amongst other things,

red blood cells and spermatozoa. In the 19th century the Scottish botanist

Robert Brown discovered using microscopy that it is not only life that crawls

at the microscopic scale; small inorganic particles also move. This ”Brownian”

motion was explained decades later by Albert Einstein in one of his famous

1905 papers [18]. Einstein pioneered the idea that the movement of Brownian

particles is caused by random collisions with even smaller constituent particles

of the solvent. This was the first convincing evidence of the molecular nature of

liquids.
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Figure 2.4: Microscope used by Antoni van Leeuwenhoek (replica).

2.3.1 Resolution

Today, optical microscopy still plays a major role in advancing science and mi-

croscopy techniques are continuously developed and refined. In particular, im-

proving the resolution is of great interest, reflected by the 2014 Nobel prize in

chemistry for super-resolved fluorescence microscopy [19]. The optical resolution

of a microscope is the ability to distinguish particles as separate objects. High

resolution means that particles can be distinguished at small spatial separation.

The image of a point-like source is a finite diffraction-limited pattern. This

pattern is known as the point spread function (psf). The transverse cross section

of the psf on the image plane is an Airy disc, see Fig. 2.5(a), whose size depends

on the aperture of the objective lens as well as on the wavelength of the light

source. Generally, two closely spaced luminous points in the sample plane result

in overlapping discs leading to an intensity distribution with two peaks as shown

in Fig. 2.5(b). A minimum separation is required between the discs to create a

reasonable ’dip’ in between, for the peaks to be resolved -this sets the maximum

resolution of the microscope. Following the Rayleigh criterion, this separation is

the full width half maximum (FWHM) of the airy disc (when the first minimum

of an airy disc aligns with the central maximum of the second one) leading to a

dip of about 26%, see Fig. 2.5(c). In modern optical microscopy a resolution of

250 nm can be obtained. [20]
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Figure 2.5: Resolution of microscope. (a) The airy disc of a single particle.
(b) The overlapping airy discs of two closely spaced particles and (c) Rayleigh

limit for identifying two particles as different objects. [20]

It is important to note that the precision of determining the position of an imaged

object is different from the above discussed resolution. The position of an isolated

fluorescent point-like source corresponds to the ’center of mass’ of its spatially

extended airy disc image. If the disc is about N pixels wide and each pixel is

M micrometers across, the center of the disc can be estimated to roughly M/N

accuracy, which is higher than the optical resolution. [20]

2.3.2 Fluorescence microscopy

In the quest to resolve ever smaller structures in complex environments fluores-

cence microscopy has been developed. Objects smaller than the wavelength of

light can be observed using fluorescent labels. Fluorescence microscopy uses a

light source to excite fluorophores in the sample. The fluorophores emit light

upon relaxation to the ground state, typically with a longer wavelength than

the illuminating light. By separating the weak fluorescence signal from the much

stronger excitation light with spectral filters in the optical path, small fluorescent

objects become visible with a fluorescence microscope, see Fig. 2.6. Control of the

excitation light intensity over space and time in the sample makes fluorescence

microscopy a powerful imaging technique.
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Figure 2.6: Sketch of the fluorescence microscopy principle.

2.4 Confocal microscopy: particle tracking in

colloidal glasses

In regular, wide field microscopy the whole sample is illuminated at the same

time, creating one image from the complete bulk and surface which can not be

disentangled. In order to image in three dimensions, Marvin Minksky proposed a

two-fold adjustment to wide field microscopy - point by point illumination of the

sample as well as introduction of a pinhole aperture in the image plane eliminat-

ing all those rays emitted other than from the focal plane, Fig. 2.7(a). Light rays

passing through the pinhole are measured by a detector such as a photomultiplier

tube or avalanche photo-diode. Constructing the image of the whole specimen

in 2D or 3D requires scanning over a regular raster in the specimen. While the

first confocal microscopes used a translating stage, modern day confocal micro-

scopes use lasers as light sources and scan it across the sample to visualize each

point inside; this is called Laser Scanning Confocal Microscopy (LSCM) [21, 22].

Confocal microscopy of a transparent sample containing fluorophores allows for

true 3D imaging by highlighting the specimen point-by-point and using optical

filters to detect only at the fluorescent emission wavelength [20]. In the present

study we use a LSCM (Carl Zeiss, LSM5, Fig. 2.7(b)) with a high speed line

scanning technique to image solutions of fluorescently coated colloidal particles

in the glass phase.
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Figure 2.7: (a) Principal of confocal microscopy [20]. (b) The Carl Zeiss
LSM5 microscope used in the colloidal experiments. [15]

2.4.1 Materials and Methods

The experiments on colloidal glasses described in this section were carried out

by Vijayakumar Chikkadi during his PhD research in the group of Prof. Schall.

Much of the experimental description below describes his work and can be found

with more detail in [20].

Sample preparation

We prepare an amorphous suspension of PMMA particles that are 1.3 µm in

diameter. They are suspended in a mixture of Cis-Decaline and Cyclo-Heptyl

Bromide with a volume ratio of 1 : 3 in order to match closely the density and

index of refraction of the particles with the solvent. The density matching of the

particles and the solvent is needed to avoid sedimentation of the particles. The

refractive index match provides a nearly transparent sample making it suitable

to visualize the individual particles in the bulk of the suspension using an optical

microscope. We add the organic salt TBAB (tetrabutyl ammonium bromide)

to the suspension to further screen the possible residual charges. The quantity

of salt added is based on the 1 mM concentration that is to be achieved. The

buoyancy-matching is very sensitive to temperature changes; the thermal expan-

sion coefficient of the solvent exceeds that of PMMA by about a factor of ten
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Figure 2.8: (a) Schematic drawing of a cross section of the shear cell.
(b) 3D image of the colloids in the shear cell with the roughened glass plates

that are used as boundaries. [20]

and a decalin-CHB mixture of a given composition will therefore match the par-

ticle density only in a very narrow temperature range. We exploit this fact to

prepare suspensions of different volume fractions by centrifuging the suspension

at a speed of ∼ 5000 rpm, and at a temperature T > 35◦C, above the buoyancy

matching temperature, to create a sediment that has a volume fraction close

to random close packing (φrcp ∼ 0.64). A sample of desired volume fraction

is obtained by diluting the sediment at random close packing using the density

matched solvent. We typically prepare samples in the range φ = 0.58 − 0.60 to

study colloidal glasses. [20]

Shear cell

We probe the flow of glasses by imposing a constant shear rate, which is of the

order of the inverse relaxation time of the glass. We use a home-built shear cell

to apply small shear rates up to a total strain of 140 % to the colloidal glass.

The shear cell is designed to be mounted directly on the confocal microscope.

The shear cell has an external frame that is assembled using a set of screws and

springs; this arrangement provides a rigid frame for mounting the piezoelectric

translation stage, and for securing the cell. A schematic cross section of the cell

in Fig. 2.8(a) shows an arrangement of two parallel boundaries and a reservoir of

colloidal sample. The cell essentially has two components - a T-shaped top plate

and a bottom plate that has a hole drilled through it. The top plate of the cell

is fixed to the piezoelectric translation stage and the bottom plate is fixed to the

frame.
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A piece of cover glass, whose surface is made rough by sintering a layer of poly-

disperse PMMA particles onto it, shown in Fig. 2.8(b), is glued to the top and

the bottom plates. This prevents boundary induced crystallization, and ensures

a no-slip condition at the boundaries. The hole in the bottom plate holds a

reservoir of colloidal sample of approximately 400 µl. The top boundary, which

is at the free end of the cylindrical part of the top plate, is immersed in the col-

loidal suspension. A metallic bellow, see Fig. 2.8(a), is used to provide a flexible

coupling between the top and the bottom plates, while isolating the colloidal

suspension from the environment, thereby preventing evaporation. A voltage of

0 − 150 V is applied to the piezoelectric device using a digital oscilloscope, to

linearly displace the top plate by 0 − 100 µm; this differential motion of the

plates imposes a uniform shear rate on the colloidal sample confined between

them. By adjusting the distance h between the boundaries, using the set screws,

and ramping the voltage linearly from 0 V to 150 V , during a time interval t,

we achieve a shear rate of γ̇ ∼ 100/(ht). The coordinate axes of the system are

defined with respect to the direction of shear, as shown in Fig. 2.8(b); the x-axis

aligns with the direction of displacement of the top boundary, the y-axis aligns

with axis of shear, and the z-axis aligns with the shear gradient direction. [20]

Data acquisition

We image the colloidal particles using an objective that has a magnification of

63x and a numerical aperture of 1.4. The Zeiss LSM 5 microscope uses a line

scanner to illuminate a section of the sample line by line, at a maximum of

120 frames per second (fps). The depth of the focal plane, Z, is controlled by a

piezo−element mounted on the objective of the microscope [20]. For 3D imaging,

z−stacks of 2D images are acquired by rapidly varying the height of the objective

using the piezo and simultaneously taking 2D images at each z. We typically

image a 106× 106× 70µm3 volume by taking 350 images at a spacing of 0.20µm

in the z direction. At a scan speed of 8 fps, it takes ∼ 45sec to acquire a z−stack.

We typically acquire 1 − 2 stacks every minute to follow the individual particle

dynamics. [20]
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Figure 2.9: Image processing of confocal images. (a) Raw confocal image
(b) Filtered image (c) Tracked image. [25]

2.4.2 Data processing

Image processing

To follow the particle dynamics under applied shear, we use particle tracking

software [23]. The first step in the particle tracking algorithm is the identifica-

tion of particles and their position. We determine the particle positions in each

frame by using the most widely used algorithm in the colloidal community, de-

veloped by Crocker and Grier [23], with relevant software in the public domain

[24]. The algorithm identifies the particles based on the assumptions that they

appear as bright spherical spots against a dark background, and the intensity

maxima of the spots correspond to the center of the particle. Since we have used

PMMA particles that are labeled with fluorescent dye, they appear as bright

spots in the raw images (Fig. 2.9(a)) [20, 25]. The undesired noise in the images

is eliminated using a spatial band pass filter, which removes long wavelength

contrast gradients and also short wavelength pixel-to-pixel noise (Fig. 2.9(b)).

The particles are initially identified by locating the local intensity maxima in the

filtered images. The particle coordinates are then refined to get the positions of

the particle centers with sub−pixel resolution down to less than 1/10 of the pixel

size (Fig. 2.9(c)). [20]

Particle positions

From the obtained particle positions we can construct the pair correlation func-

tion g(r), that describes how the local density varies as a function of the distance

r from a reference particle, Fig. 2.10. The pair correlation function provides

information on the structure of a material. The structure measured with the
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microscope, however, might be distorted by calibration or misalignment errors.

To correct for distortion errors we find a coordinate transformation by study-

ing a quiescent colloidal glass, which is known to be isotropic and homogeneous.

Hence, we use the fact that the average distance between particles in an isotropic

and homogeneous material should be independent of direction and angle.

We measure the displacement vector rij for each particle i with all its nearest

neighbors j directly from the particle positions obtained with microscopy. Near-

est neighbors of reference particle i are all particles within a distance ‖rij‖ <
rcuttof. We take the cuttof distance to be rcuttof = 2.1µm, corresponding to the

minimum after the first peak in the pair correlation function.

We use the tensor product of all particle distances to correct for possible align-

ment errors. Taking the tensor product of rij with itself and averaging over all

nearest neighbors in the sample results in the following tensor:

G = 〈rij ⊗ rij〉ij with ‖rij‖ < rcutoff . (2.3)

For an isotropic material all off−diagonal elements of this matrix should be zero

and all diagonal elements should be equal. We find that in our experimental case

small deviations from this ideal behavior occur, indicating image distortions.

To correct for these distortions, reflected in the G tensor, we find a matrix S

to transform the coordinates into the ideal configuration where all off-diagonal

components vanish and all diagonal components are identical:

SGS−1 = λI , (2.4)

Figure 2.10: Pair correlation function for a colloidal glass. [15]
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where the scalar λ is determined implicitly by

‖Sw‖ = ‖w‖ with w =


1/
√

(3)

1/
√

(3)

1/
√

(3)

 , (2.5)

to preserve the absolute distance between particles under the coordinate trans-

formation. Rescaling all particle coordinates with the matrix S, r′ij = Srij, then

results in an isotropic set of coordinates. We apply the transformation matrix

S to the particle positions obtained from shear experiments to correct for mea-

surement related anisotropy.

Particle tracking

The hence corrected positions of the particles can now be linked to construct

trajectories that describe the particle motion. We use the algorithm devised by

Crocker and Grier [23] for linking the particle positions. The algorithm is based

on the minimization of the sum of the squared displacements of particles in two

successive frames. Repeating the minimization algorithm for successive frames

to link the particle positions constructs the particle trajectories.

At low shear rates, γ ∼ 10−5s−1, we typically acquire a z− stack every minute

for a total time duration of 25 minutes. At higher shear rates, we reduce the

time between subsequent z−stacks to 30 seconds. Above a certain shear rate,

acquiring 3D data is no longer feasible because the particles move over a distance

larger than their radius between successive stacks. This imposes a limit on the

maximum shear rate to acquire 3D images. [20]

2.5 TIRF microscopy: motion of molecular

motors on microtubules

Totally Internal Reflection Fluorescence (TIRF) microscopy is a technique to

observe fluorescent particles at the surface of a sample. The exciting laser is

totally internally reflected in the glass at the glass−sample(water) interface. No

light penetrates the sample, only evanescent waves of light can excite fluorophores
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immediately adjacent to the surface. The noise on the surface signal is low,

because there are no excited fluorophores in the bulk of the sample. This makes

TIRF microscopy a powerful tool for high−quality 2D imaging. We use a Nikon

Eclipse TI microscope, equipped with custom TIRF optics, to observe the motion

of molecular motors along the microtubule network.

2.5.1 Materials and Methods

In this section we describe the in vitro stepping assay experiments of molecular

motors moving along microtubules. In a stepping assay, the microtubules are

attached to a glass plate and the motors move along the microtubules. The

microtubules are dynamically stabalized to stop their growing and shrinking.

First, the microtubules are flown into a microfluidic channel and attach to the

glass slide after sedimenting. After the microtubules have sedimented, a motility

solution containing the molecular motors is flown into the microfluidic channel.

The motors attach to the microtubules and start to move by consuming the ATP

in the solution.

The experiments described in this section were all performed by Vandana Kush-

waha and Seyda Acar in the group of Prof. Peterman at the VU University in

Amsterdam. I acknowledge them for providing the detailed description of the

experimental procedures below.

If not specially mentioned otherwise, all chemicals were purchased from Sigma.

All concentrations given are final concentrations.

Microtubules Preparation

Tubulin was purified from bovine brain tubulin similar to as described previ-

ously [26]. Microtubules were polymerized from 5 µm of bovine brain tubulin

seeds (5 mg/ml) in PEM80 [80mM PIPES pH 6.9, 1 mM EGTA, 2mM MgCl2

(Fluka analytical 63072)] buffer supplemented with 4 mM MgCl2, 1 mM GM-

PCPP (non hydrolysable GTP analogue, Jena Bioscience NU405S,) and 5
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Motor proteins

The three motor proteins used in the experiments were Drosophila melanogaster

Kinesin-1 (conventional kinesin) and C. elegans homodimeric OSM-3 and C.

elegans heterodimeric Kinesin-II. These motors are processive motors and walk

towards the plus-end of MTs.

Cloning, Purification and Preparation of Proteins

Kinesin-1 – The DNA sequence coding for the first 432 amino acids of conven-

tional kinesin-1 from Drosophila melanogaster was amplified with the primers

by polymerase chain reaction and cloned into pETDuet-1 vector (Addgene) gen-

erating pETDuet1-MCS1-Kin432. As fluorescent tag, the gene of monomeric

super folded (sfGFP) and as purification tag, the Strep- tagII sequence was lig-

ated to the C-terminal end of the kinesin sequence, resulting in the pETDuet1-

MCS1-Kin432-sfGFP-StreptagII plasmid. This plasmid was transformed into

Rosetta-gamiTM 2(DE3) pLysS competent cells (Novagen R©). Protein expression

was induced by addition of 0.4 mM IPTG to a 1.6L culture in the Erlenmeyer

flasks. Expression was allowed to proceed for 6 hours at 22 ◦C, 250 rpm in a floor

incubator. Expressed proteins were purified from the lysate using the Strep-tag R©

- Strep-Tactin R© purification system (protocol adapted from QIAGEN website)

OSM-3 – Similarly, The DNA sequence coding for the first 444 amino acids of C.

elegans OSM-3 was amplified with the primers by polymerase chain reaction and

cloned into pETDuet-1 vector (Addgene) generating pETDuet1-MCS1-Osm-3.

This construct also contained the sequence coding for a C-terminal sfGFP tag

(pETDuet1-MCS1- Osm-3444-sfGFP) or mCherry tag (pETDuet1-MCS1- Osm-

3444-mCherry). For purification, the Strep tagII sequence was ligated to the

C-terminal end of the sfGFP, generating pETDuet1-MCS1- Osm-3444-sfGFP-

StreptagII. Both construct were expressed and purified using the Strep-tag R©-

Strep-Tactin R©purification system (protocol adapted from QIAGEN website) in

our lab. Purified motor protein solution in buffer containing 20 % (V/V) glycerol

was aliquoted and 10 µl aliquots were stored at -80 ◦C, after flash freezing in

liquid nitrogen. The kinesin concentration was 2.2 mg/ml, the sfGFP-OSM-3

concentration was 1.3 mg/ml and the mCherry-OSM-3 concentration was 1.2

mg/ml, as measured using Bradford assays with bovine serum albumin as stan-

dard. [26, 27]
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Kinesin-II – Kinesin-II construct has two different motor proteins, thus for this

protein we cloned KLP-11 (357aa) and KLP-20 (345aa) constructs either with

sfGFP (for fluorescently labeled) or with Snap tag (for unlabeled) and followed

exactly the same procedure for OSM-3. These constructs also contained Kinesin-

1 minimum part of stalk for dimerization. KLP-11 and KLP-20 constructs were

cloned into multiple cloning site-1 (MCS-1) and multiple cloning site-2 (MCS-

2) of the pETDuet-1 vector. For purification of the heterodimers we used two

different affinity purification tags, 6xHis tag and Strep tag, on KLP-11 and KLP-

20. The plasmids containing these double inserts were transformed, expressed

and purified as stated for the Kinesin-1 construct. The concentration of unlabeled

Kinesin-II and sfGFP-Kinesin-II were measured as 1 mg/ml and 0.29 mg/ml

respectively using Bradford assays with bovine serum albumin as standard. [26,

27]

In Vitro Motility Assays

Glass surface preparation Hydrophobic surfaces were used for single-molecule

motility assays in order to strongly adsorb antibodies against tubulin to the glass

surface and to allow efficient surface blocking using amphiphilic Pluronic F127.

Pluronic F127 is a polymer with a hydrophobic middle segment that that sticks

to the hydrophobic glass, and two hydrophilic tails that was form a ‘polymer

brush’, preventing unwanted protein (i.e. kinesin) adsorption to the surface.

Glass Cleaning Glass coverslips were loaded into teflon racks and microscope

slides were loaded into multiple glass slide racks and then, the racks were placed

in the plasma cleaner for 20 minutes. Afterwards, the holders with the coverslips

and glass slide racks with microscope slides were incubated for 15 min in 0.1 M

KOH. After another 1 min and 2 min wash sequence with nanopure water, the

coverslips were blown dry with Argon gas.

Silanization 100 µl DDS (diphenyldimethoxysilane) was carefully dissolved in

250 ml TCE (trichloroethylene) in a glass beaker. The Teflon holder with the

cleaned coverslips was incubated in this solution for 60 min at room temperature,

followed by two steps of sonication for 5 min and for 15 min, both in methanol at

room temperature. Finally, cleaned and hydrophobic slides and coverslips were

blown dry using Argon gas and transferred into clean holders and stored in a

closed glass box, sealed with parafilm.
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Flow cells preparation Assays were performed in hydrophobic flow cells made of

microscope slide (Menzel-Gläser, 76x26 mm, cut edges) attached to a coverslip

(High Precision, Deckgläser, 22x22 mm, thickness 170±5 µm) with double-sided

Scotch tape ( 70 µm inner height), resulting in flow channels with a volume of

5-8 µl.

Instrumentation Assays were performed at 21 ◦C using Total Internal Reflec-

tion Fluorescence (TIRF) microscopy. Microscope images were acquired using a

custom-built TIRF microscope operated by the Micro-Manager software interface

(µManager, Micro-Manager1.4, https://www.micro-manager.org/), built around

an inverted microscope body (Nikon, Eclipse Ti) fitted with a 100x oil-immersion

objective (Nikon, CFI Apo TIRF 100X, N.A.: 1.49). Excitation light, provided

by two diode-pumped solid-state lasers (Cobolt Calypso 50TM 491 nm DPSS;

and Cobolt Jive 50TM 561 nm DPSS), was first passed through an AOTF (AA

Opto-Electronics, AOTFnC-400.650-TN) for wavelength selection, next through

a quarter wave-plate (Thorlabs, mounted achromatic quarter-wave plate, 400

– 800 nm, AQWP05M-600) to obtain circularly polarized light, and a dichroic

mirror (Semrock, 405/488/561/635 nm lasers Brightline R© quad-edge laser-flat,

Di01-R405/488/561/635-25x36) was used. Power of 491 nm Cyan laser were es-

timated to be ∼1.3 mW in the image plane. Emission light was separated inside

the Optosplit III using a dichroic long pass filter. The pixel size was 80 nm.

Images were acquired continuously with 7 frames/sec, without delay in between

and saved as 16-bit tiff files.

Kinesin-1–MT crowding assays:

To immobilize microtubules, the sample chambers were first incubated with 2

µg/ml monoclonal anti-β-tubulin antibody in PEM 80 with 10 µM taxol. After

5-min incubation, excess antibodies were flushed out with PEM 80 with 10 µM

taxol, followed by 15 min incubation with 1 % (wt/vol) Pluronic F-127 in PEM

80 with 10 µM taxol. To flush out excess Pluronic F127, the chambers were

rinsed with PEM 80 with 10 µM taxol after 15 min incubation. Finally, sample

chambers were incubated with 0.1 mg/ml microtubules in PEM 80 with 10 µM

taxol and allowed them to attach to the surface via the antibodies for 10 min.

After attaching the microtubules, the sample chambers were flushed with PEM12

buffer (12 mM PIPES pH 6.9, 1 mM EGTA, 2 mM MgCl2). PEM12, a low-

salt buffer, was used for the experiments because in this buffer a 10 times lower

kinesin-1 concentration was sufficient to generate the same number of events as
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in PEM80. This significantly reduced the background caused by non-specific

binding of kinesin-1 to the surface. In the final step, the sample chambers were

flushed with motility solution supplemented with 10 µM Taxol, 2 mM additional

MgCl2, 2 mM ATP (adenosine 5’ triphosphate), 0.2 mg/ml casein in PEM12,

an oxygen scavenging cocktail containing 200 µg/ml glucose oxidase, 72 µg/ml

catalase, 22.5 mM glucose, and 10 mM of DTT (dithiothreitol) and an estimated

final concentration of kinesin-1 were varied from 0.175 nM to 3 nM . Finally,

the sample chambers were sealed with VALAP (1:1:1 vaseline, lanoline, paraffin)

and moving motors can be observed under the TIRF microscope setup. Another

set of crowding experiment was performed in higher ionic concentration, PEM

80, where sfGFP labeled to unlabeled Kinesin-1 motor proteins were kept 0.2:0,

1:0, 1:5, 1:10, 1:20, 1:40, 1:100 and 1:200 respectively where 1 was kept at 40

nM. The sfGFP-Kinesin-1 motors were illuminated by the 491 nm laser. Images

were acquired continuously using an exposure time of 100 ms without delay.

OSM-3–MT crowding assays - Two-color motility assays:

In these assays, subsequent to all the steps until the microtubule immobilization,

motility mix was added that contained a final concentration of 8 nM to 4040 nM

OSM-3, 10 µM Taxol, 2 mM MgCl2, 2 mM ATP (adenosine 5’ triphosphate), 0.2

mg/ml casein in PEM12, ATP regeneration system (Phosphocreatine 10 mM ,

Creatine phosphokinase 0.05 mg/ml), an oxygen scavenging cocktail containing

200 mug/ml glucose oxidase, 40 µg/ml catalase, 22.5 mM glucose, and 10 mM of

DTT (dithiothreitol)). OSM-3 motor protein motility was observed using TIRF

microscopy. The mCherry-OSM-3 motors were illuminated with a 561 nm laser.

Images were acquired continuously using an exposure time of 70 ms and 50 ms

without delay in between and saved as 16-bit tiff files. Another set of crowding

experiment was performed in lower ionic concentration, PEM 12, where the ratio

of sfGFP labeled to unlabeled OSM-3 was kept 0.2:0, 1:0, 1:10, 1:20, 1:40 and

1:100 respectively where 1 was kept at 40 nM . The sfGFP-OSM-3 motors were

excited with the 491 nm laser. Images were acquired continuously using an

exposure time of 70 ms and 50 ms without delay in between.

Kinesin-II–MT crowding assays

In these crowding experiments, the ratio of sfGFP-Kinesin-II to unlabeled Kinesin-

II was kept 0.2:0, 1:0, 1:10, 1:20, 1:40 and 1:100 respectively where 1 was kept at

40 nM . Experiments were performed in both PEM12 and PEM 80 buffers. The
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sfGFP-Kinesin-II motors were illuminated with the 491 nm laser. Images were

acquired continuously using an exposure time of 150 ms without delay.

2.5.2 Data processing

We develop an advanced analysis technique to extract quantitative motility pa-

rameters from the image sequences in an automated way. Correlation of the

fluorescence intensities allows efficient determination of parameters such as mo-

tor velocity, randomness and average run length. This new technique allows a

quicker analysis and requires less data than the commonly used single-particle

tracking approach. Moreover, correlating intensities allows analysis of data ob-

tained under conditions inaccessible for single-particle tracking, including those

performed at high motor densities, which provides insight into traffic-jam-like

interactions between motors. The correlation technique and its application to

motors in crowded environments is discussed in detail in chapter 7 of this thesis.
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Transport models

In this chapter we introduce the models we use later in this thesis to study traffic

on highways and collective motion of molecular motors in biological cells. The

totally asymmetric simple exclusion process (TASEP) model is a paradigmatic

model in far from equilibrium physics, used to study transport in one-dimensional

systems. We review the main results of TASEP along a one-dimensional chain for

open and closed boundary conditions. The one-dimensional TASEP-model can

be extended to networks to study transport in higher dimensional systems. We

use this extension to model transport of molecular motors along the cytoskeleton.

Further, we introduce the Nagel-Schreckenberg (NS) model for traffic flow. The

NS-model can be thought of as an extension to TASEP which allows cars to have

various velocities. We review the basic properties of the NS-model and discuss

how it relates to the TASEP-model.
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3.1 Introduction

Microscopic models of transport are typically build from a set of dynamical rules

defining motion at the particle scale. The increase of computational power over

recent years has allowed for an extensive study of these models, when analytic

solutions are not available. These microscopic models of far from equilibrium

systems have a fundamentally different approach than their equilibrium coun-

terparts. In models of equilibrium physics interaction energies between particles

are specified to form a Hamiltonian. The Hamiltonian can be used to derive the

particle dynamics. Interaction energies and the Hamiltonian are often unknown

in far from equilibrium transport. And instead, a set of dynamical rules at the

particle scale take their place in microscopic models of driven transport.

The totally asymmetric simple exclusion process (TASEP) model is a simple

stochastic microscopic model for driven systems in one dimension with hard-core

particle interactions [7]. Particles progress uni-directionally with steps of size one

along a segment of length L if the target site is empty and do not move otherwise.

Particles are updated according to the above rule in random sequential order:

each time step, a random particle is chosen and updated. The TASEP dynamics

is illustrated in Fig. 3.1, where α and β represent the inflow and outflow rate,

respectively, for a system with open boundaries.

Due to its simplicity and effectiveness, TASEP has become a paradigmatic model

in far from equilibrium transport, much like the Ising model in equilibrium

physics. TASEP was introduced to model the dynamics of RNA polymerization

by ribosomes [7, 28]. Soon after it received wide interest from a fundamental

point of view in statistical physics [29] and mathematics [30]. This resulted in a

Figure 3.1: Schematic description of particle motion along a one-dimensional
chain in the TASEP model.
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detailed understanding of the model and analytical solutions for both open [31]

and closed boundary conditions.

Applications of TASEP can be found in a wide range of physical and non-physical

systems. In cell biology, TASEP turned out to be extraordinarily useful [11, 32].

Besides the initial application to RNA polymerization, the model has been used

to describe the collective motion of molecular motors along the cytoskeleton

[33, 34] and transport of macromolecules through membrane channels [35].

Vehicular transport is perhaps the most well-known application of TASEP out-

side physics. Because of its inherent exclusion rule, it captures the basic ingre-

dient of vehicles avoiding collision. As a result, TASEP and many of its related

models [6, 36] show jamming phenomena when the density of particles becomes

high so that they interact significantly.

Other applications of exclusion processes include the movement of pedestrians

[37], in particular useful for designing evacuation schemes. In condensed matter

physics, TASEP models have been used to describe electron transport through

a chain of quantum dots [38]. Recently the relevance of TASEP for describing

transport of colloidal particles through microfluidic networks has been proposed

[39].

In the next section we describe the Nagel-Schreckenberg model, an extension of

TASEP to describe traffic flow we use in chapter 4 and 5 of this thesis. The main

results of TASEP on a single segment are discussed in section 3.3. We describe

how TASEP is generalized from a single segment to a network in section 3.4. We

use TASEP on a network in chapter 8 to describe transport of molecular motors

along the cytoskeleton.

3.2 Nagel-Schreckenberg model

The Nagel-Schreckenberg (NS) model was introduced in the early nineties to

describe traffic as observed on a freeway [6]. In the NS-model, vehicles tend

to accelerate to a maximum velocity vmax, under the condition that they have

enough free space. They become constrained when the distance to the next car di

is smaller than their velocity vi: di < vi. The constraint forces the cars to lower

their velocity such that a collision is avoided. Note that we can compare velocity
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and distance directly because time is measured in units of 1. The complete update

scheme of the NS-model consists of the following rules, applied in parallel to all

N cars:

1 Acceleration: vi → min(vi + 1, vmax).

2 Avoiding collisions : If di < vi then vi = di.

3 Randomization: Decrease vi obtained in the previous steps by 1, to a min-

imum of 0, with probability p.

4 Position update: xi → xi + vi, di → di − vi + vi+1.

The stochasticity parameter p reflects the drivers’ freedom to decelerate to a

velocity below vmax. Cars all move during each time interval, i.e. the algorithmic

update of vehicles occurs sequentially (in parallel).

Figure 3.2: NS-model with vmax = 5 several values of p. [40]

The NS-model can be solved analytically for vmax = 1. Higher values of vmax,

however, allow for a more realistic comparison with real traffic. As an example,

the NS-model has been studied with vmax = 5 for several values of p. The

resulting relation between current J and density ρ is shown in Fig. 3.2. The

choice of vmax = 5 can be understood from a rough estimate of length and time

scales: with a maximum velocity of 120 km/h on highways and a minimum

distance between cars of 7.5 meters (the size of a lattice site), the update step

corresponds to approximately 1 second [41], which is indeed the typical reaction
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Figure 3.3: (a) Diagram relating current and density for TASEP with peri-
odic boundary conditions. (b) Phase diagram for TASEP with open bound-

aries.

time of a driver, and is thus the smallest relevant timescale. Nevertheless, it is

commonly believed that all vmax > 1 are qualitatively similar [42, 43] and often

vmax = 2 is taken in simulations for simplicity.

3.3 Results for TASEP in one dimension

In this section we briefly review the main results of TASEP on a single segment.

Both for open and closed boundaries the model has been studied extensively.

The results are useful when we study TASEP on a network in the next section

and in chapter 8.

3.3.1 Periodic boundaries

For a closed system with periodic boundary conditions the relation between cur-

rent and density can be derived with mean field theory. The current is given

by:

J = ρ < v > , (3.1)

where < v > is the average particle velocity. Particles move with v = 1 if they

are not constraint by the occupation of the downstream lattice-site. At very low

densities the probability of a particle being constrained is approximately zero.

With increasing density, the number of constraint particles increases and < v >

decreases. In mean-field, the probability that a particle is constrained, i.e. the
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downstream lattice site is occupied, is simply ρ. Therefore, the probability that

a particle can move is 1− ρ, so < v >= 1− ρ and:

J = ρ(1− ρ) . (3.2)

The expression in Eq. (3.2) is exact for infinitely long segments. The correspond-

ing fundamental diagram is plotted in Fig. 3.3(a). The mean-field approach

resulting in Eq. (3.2) is valid for all homogeneous segments.

3.3.2 Open boundaries

For open systems, the results of TASEP are sensitive to the conditions at its

boundaries. The entry rate α and exit rate β control the state of the system.

The entry rate α defines the probability that a new particle enters the system

at the most upstream lattice site if this lattice site is unoccupied. The exit

rate β defines the probability that a particle leaves the system from the most

downstream lattice site if this lattice site is occupied. It should be noted that

α and β are not flow rates through the boundaries. Rather, one can think of

the lattice as being connected to two reservoirs: a reservoir with effective particle

density α at the upstream boundary and a reservoir with effective particle density

1 − β at the downstream boundary. Thinking of α and β in terms of reservoir

densities on the boundaries of a segment is useful when we describe TASEP on

networks as a collection of crossings and segments. In that case, the reservoir

densities correspond to the densities at the segment crossings at the beginning

and end of each segment.

For large segments the particle density for TASEP with open boundary conditions

is given by [31]:

ρ(α, β) =


α α ≤ β < 1/2 low-density

1− β β ≤ α < 1/2 high-density

1/2 α, β ≥ 1/2 maximum-current

(3.3)

One can see from Eq. (3.3) that the open boundaries result in three homogeneous

phases, see Fig. 3.3(b). A low-density phase if the entry rate is smaller than the

exit rate. If the exit rate is smaller than the entry rate, the limited outflow
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forces the density into a high-density phase. The third phase is known as the

maximum current phase. In contrast to the low- and high-density phases the

density in the maximum current phase is insensitive to changes in α and β. The

density ρ = 1/2 in the maximum current phase corresponds to the maximum

of the current for homogeneous segments, see Fig. 3.3(a). In all three phases

the density distribution in a segment is homogeneous. Therefore, Eq. 3.2 can be

applied to calculate the current through a segment within each phase. Only at

the phase boundaries the density distributions might not be homogeneous and

Eq. 3.2 cannot be directly applied.

The maximum-current phase is connected to the low-density and the high-density

phase, see Fig. 3.3(b). The density on both boundaries of the maximum-current

phase is ρ = 1/2 and changes continuously while crossing over into the low-

density or high-density phase. It follows from Eq. 3.3 that: the maximum density

ρ = 1/2 of the low-density phase is reached on the boundary with the maximum-

current phase, similarly the minimum density ρ = 1/2 of the high-density phase

is on the boundary between the high-density and the maximum current phase.

As the density in the maximum-current phase is also 1/2, we conclude that

the density changes continuously on the boundaries of the maximum-current

phase. The transition between the low-density and high-density phase, however,

is discontinuous. This transition is positioned at α = β, see Fig. 3.3, with ρ = α

in the low-density phase, and ρ = 1 − β in the high-density phase. The density

changes discontinuously from ρ = α to ρ = 1− β = 1− α at the transition.

3.3.3 Relation to NS-model

The NS-model can be thought of as an extension to TASEP. The models share

the key ingredients: uni-directional motion and an exclusion principle to avoid

collisions. In the NS-model, however, cars can have several velocities, not only 1

or 0. Moreover, cars on a road all move in parallel, so a parallel update scheme is

more appropriate for traffic modeling than the random-sequential update scheme

of TASEP.

With maximum velocity vmax = 1, the only difference between NS and TASEP

thus arises from the update order, which is parallel in the NS-model and random-

sequential for TASEP. The parallel update scheme of the NS-model, together
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with the kinetic constraint, creates order. Cars move simultaneously and cannot

occupy the same region of space during an update cycle. Therefore, the lattice

site a moving car is departing will be unoccupied at the end of a time step under

NS dynamics. In contrast, random-sequential update does not put restrictions on

the possible configurations and can be analyzed with a pure mean-field approach

[41].

3.4 TASEP on networks

We apply TASEP to study the transport of molecular motors along the cy-

toskeleton. Originally formulated for one-dimensional systems, TASEP has re-

cently been extended to networks [11]. For example, Neri et. al. used TASEP on

highly connected networks to model transport along cytoskeleton assemblies [12].

We model cytoskeleton assemblies with a two-dimensional network of intersect-

ing segments. The two-dimensional network topology allows for comparison with

in vitro experiments, where the cytoskeleton is typically grown by sedimenting

segments on a glass plate (Fig. 3.4(a)). A similar network topology in our sim-

ulations is created by projecting lines with random positions and directions on

a square, see Fig. 3.4(b). We create periodic boundary conditions by connect-

ing the beginning and end of every line at the boundaries of the square, thus

creating a closed network. The resulting network is characterized by the num-

ber of vertices Nv, number of segments Ns = 2Nv and total number of sites

Ms = (2L − 1)Nv, where L is the segment length. The network is subsequently

populated with motors at a global density ρ, defined as the ratio between the

total number of motors and the total number of sites Ms.

The dynamics of the motors is specified by TASEP. A crossing in the network

is simply a single site shared between two filaments. When a motor arrives at

a crossing, it continues along one segment with probability γ, and along the

other outgoing direction with probability 1 − γ (Fig. 3.4(c)). In chapter 8 we

investigate the density distribution and current through such a network as a

function of probability γ and particle density. We examine the case when the

choice of the outgoing segment does not depend on the incoming segment and

the probabilities γ are defined for every crossing upon network creation.
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Figure 3.4: (a) Experimentally obtained microtubule network. (b) Sim-
ulated network. (c) Sketch of crossing with probabilities for particle paths

corresponding to γ = 0.8.

On the closed networks we consider, the total number of particles is conserved.

The number of particles on each segment, however, is not conserved and changes

at the boundaries. Therefore, a description of the network using results from

TASEP with open boundaries for each segment of the network, with the ver-

tices working as the particle reservoirs controlling the inflow and outflow of the

segments is useful.
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Far from equilibrium: an analogy

between glasses and traffic

Dynamic arrest is a general phenomenon across a wide range of driven systems

including traffic flow and dynamics in cells, but the universality of dynamic arrest

phenomena remains unclear. We explore similarities in dynamic arrest far from

equilibrium by comparing traffic to glass forming liquids. The glass transition,

i.e. the sharp increase of viscosity in glass forming liquids, is a widely studied

example of dynamic arrest. Glasses are far from equilibrium systems with com-

plex structures and dynamics. In this chapter we connect the emergence of traffic

jams in a simple traffic flow model directly to the dynamic slow-down in kineti-

cally constrained models for glasses, to highlight the universal aspect of dynamic

arrest far from equilibrium. In kinetically constrained models, the formation of

glass becomes a (sharp) transition in the limit T → 0. Similarly, using the

Nagel-Schreckenberg model to simulate traffic flow, we show that the emergence

of jammed traffic acquires the signature of a sharp transition in the deterministic

limit p→ 1, corresponding to overcautious driving.
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4.1 Introduction

Dynamic arrest, the slow-down of driven systems with increasing density or in-

teraction potential, is a central phenomenon in complex driven systems across

biology, geology, material science, transport and traffic. The dynamic arrest is

important for material stability and memory, but it is rather detrimental in traf-

fic or transport, where congestion freezes motion. The underlying principle of

dynamic arrest in condensed materials and traffic, however, might be of similar

origin.

In this chapter, we start to explore the universality of dynamic arrest in far from

equilibrium systems by comparing traffic and the much studied glass transition -

the sharp increase of the viscosity of glass forming liquids. Important insight into

dynamic arrest of glasses comes from kinetically constrained models (KCMs), a

class of discrete models with stochastic dynamics that are used to describe the

glassy behavior and increasing relaxation time scales in supercooled liquids [44].

As the defining ingredient, KCMs have a kinetic constraint that allows local

activity only if a local condition is met.

A constraint that is directly analogous to those in KCMs exists in traffic flow:

cars can accelerate only if the distance to the car in front is sufficiently large.

A well-studied model that incorporates a number of basic dynamical properties

of real traffic is the Nagel-Schreckenberg (NS) model [6], a lattice-gas-like model

with discrete position, time, and velocity. The NS-model describes the formation

of traffic jams, and there has been much discussion about the physical nature of

the arrest phenomenon and the size of traffic jams [45–47]. There are a number

of other models that describe traffic flow more realistically, including some that

are extensions of the NS-model [48, 49]. Here, however, we focus on the most

basic version of the NS-model to draw a direct connection to the dynamics of

glasses.

The key in the correspondence between these far from equilibrium systems is the

kinetic constraint, both present in KCM’s of glasses and in all models of traffic

in which collisions are avoided. We use tools from glasses to study dynamic

heterogeneity in the traffic model, to explore possible divergences of traffic jams;

by doing so we establish an analogy between glasses and traffic.
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4.2 NS-model

As explained in chapter 3, the NS-model simulates traffic flow in discrete space

and time. Cars accelerate towards, and maintain, a maximum velocity vmax,

if they are not constrained by another car. Furthermore, cars spontaneously

reduce their velocity by 1 with probability p. This probability is the central

fluctuation parameter of the model. Jams start to emerge when the car density

ρ increases and car interactions become dominant. In the simulations described

in this chapter, we have propagated 214 = 16384 cars under periodic boundary

conditions. A steady-state was produced by propagating the system for 5× 107

time steps. Averages were calculated over a further 5× 108 time steps.

 0  0.2  0.4  0.6  0.8  1
ρ

 0

 0.2

 0.4

 0.6

 0.8

 1

p

 0

 0.5

 1

 1.5

 2

〈v〉

fre
e 

flo
w

in
g

jams

jammed

ja
m

m
ed

Figure 4.1: Phase diagram of the Nagel-Schreckenberg model showing 〈v〉
for the case of vmax = 2 (see gray scale on the right). The dashed line marks
the transition between freely flowing traffic and traffic with jams shown in

Eq. 4.1.

We explore the dynamic arrest in the NS-model in Fig. 4.1, where we show the

average velocity 〈v〉 as a function of ρ and p for vmax = 2. Traffic exhibits

free flow at low density. Here, the average velocity is the velocity of free flow.

With increasing density, cars interact and decelerate according to the kinetic

constraint, leading to the formation of jams that coexist with free flow, and a

concomitant decrease of 〈v〉.

The transition density ρtra between free flow and traffic with jams can be esti-

mated from the balance of the outflow and inflow rates of a jam, as required for its
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stability [50]: The outflow rate of a continuous sequence of jammed cars is 1− p,
corresponding to the probability of acceleration of the car at the head of the jam.

Because cars approach the rear of a jam with average velocity vf = vmax− p, and

the rear of the jam itself travels backwards at a speed equal to the inflow/outflow

rate, this yields the transition density [50]

ρtra =
1− p

vmax + 1− 2p
. (4.1)

The transition density shifts to smaller densities for larger values of p and reduces

to ρtra ∝ 1−p for small 1−p; the stochasticity parameter p determines the onset

of jammed traffic.

We relate the stochasticity parameter p to the temperature T of KCMs to ex-

plore interesting regimes in the dynamic arrest in traffic flow. For glasses and

KCMs [51–53], it has been shown that the dynamic arrest becomes singular at

T = 0, where the dynamics become deterministic. The case T = 0, where the

dynamics of glasses freezes entirely, corresponds to the case p = 1, where cars

always decelerate, and traffic flow arrests. In the limit of T → 0 and p→ 1, the

systems become deterministic. Although the NS-model has been studied exten-

sively in the deterministic limit p → 0 and for 0 < p < 1, so far no complete

study of the limit where cars always decelerate p → 1 exists. This is what we

provide in this chapter. We introduce some mathematical tools to study dynamic

heterogeneities developed for glasses, and then apply them to the NS-model in

the deterministic limit p→ 1 of the traffic model.

4.3 Dynamic susceptibility

A characteristic property of the glass is its dynamic heterogeneity. Dynamically

active regions separate from dynamically less active regions in space and time,

leading to increasing dynamic heterogeneity of the system. This dynamic hetero-

geneity is quantified by the dynamic susceptibility [54–56]. In analogy, we define

the dynamic correlation function of traffic flow using

G4(i, t) = 〈c(i; t)c(0; t)〉 − 〈c(0; t)〉2 , (4.2)
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where we take the mobility of car i as c(i; t) = (1/(t+ 1))
∑t

t′=0 vi(t
′), its average

velocity during the time interval [0, t]. We find that near p = 1, dynamic cor-

relations become indeed increasingly long-ranged when the density approaches

ρtra. To investigate this increase in the correlation length, we define the dynamic

susceptibility

χ4(t) =
1

〈v2〉 − 〈v〉2
N−1∑
i=0

G4(i; t) (4.3)

that measures the number of cars that move cooperatively on the time scale t.

The dynamic susceptibility χ4 indicates the size of regions of correlated mobility,

and has been much used to measure dynamic heterogeneity in glasses and gran-

ular materials [57–60]. While in glasses maximum cooperative motion arises at

intermediate time scales, at which the particles escape their dynamic confining

cages, in traffic, the maximum dynamic susceptibility arises at the shortest time

interval, see inset of Fig. 4.2(a).

4.4 Criticality at p→ 1

To explore the growth of correlations, we focus on t = 0, and show χ4(t = 0)

as a function of density in Fig. 4.2(a). Indeed, increasing maxima develop at

ρ ∼ ρtra as p approaches unity, indicating increasing dynamic correlations. The

divergence of the dynamic susceptibility is clearly seen in Fig. 4.2(b), where we

plot the maximum value of χ4 as a function of 1 − p. The figure shows data

for various vmax; in all cases, the maximum of χ4, χ4,max ∝ (1− p)−ν , indicating

that the number of cars that move cooperatively diverges. In the NS-model,

the exponent appears to increase weakly with vmax changing from ν = 0.53 to

ν > 0.70. This divergence indicates that traffic flow becomes truly critical in

the limit p → 1. The divergence is analogous to the one observed in KCMs

at T → 0, and indicates that the deterministic limits p → 1 and T → 0, are

dynamical critical points of the systems. The divergence occurs at the onset of

the jammed regime; to show this, in Fig. 4.2(c), we compare the location of the

maximum of χ4 (symbols) with the limiting (p → 1) behavior of ρtra according

to Eq. 4.1 (dashed lines).
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Figure 4.2: Dynamic susceptibility of traffic flow in the NS-model. (a) The
value of χ4(0) as a function of rescaled density for a range of probabilities p at
vmax = 2. The peak sharpens markedly as p → 1. Inset: χ4(t) as a function
of time shows that the largest value occurs at t = 0. (b) Maximum value of
χ4(t = 0) as a function of the rescaled density, plotted vs. 1 − p, for a set of
vmax (symbols explained in (c)). Power-law behavior (dashed lines) indicates
the divergence of the dynamic susceptibility on approach of the critical point
p = 1. (c) Density of maximum dynamic susceptibility as a function of 1 − p
for various values of vmax. The position of the maximum is well described by
the limiting behavior of (4.1), ρtra = (1−p)/(vmax−1) indicated by the dashed

lines.

48



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Far from equilibrium: an analogy between glasses and traffic

 0.0001

 0.01

 1

 100

 10000

106

 0.2  0.5  2 1

ϑ4(0)

ρ /(1-p)

p=0.80
p=0.98

p=0.998
p=0.9998

10-2
 1

102
104

10-4 10-3 10-2 10-1 1

m
ax

[ϑ
4(

0)
]

1-p

(1-p)-1.5

Figure 4.3: Residence time of cars in jams as a function of reduced density
for various values of p at vmax = 2. As p → 1, the correlation time becomes
more sharply peaked. Inset: Maximum residence time as a function of 1 − p

shows power-law divergence of the correlation time for p→ 1.

Further evidence of critical behavior comes from measurement of the correlation

time scale. To estimate the typical persistence time scale, we make use of a

quantity similar to χ4, where we interchange time and car index in the definition

of c(i; t) and in the sum appearing in Eq. 4.3, to obtain ϑ4(i). The temporal

susceptibility ϑ4 indicates the correlation time scale of the system, and measures

the typical residence time of a car in a jam. We plot this correlation time as a

function of reduced density in Fig. 4.3. A strong increase of the maximum of

ϑ4 suggests that in addition to the divergence of the correlation length, there

is also a divergence of the correlation time scale. This is confirmed by plotting

the maximum values of ϑ4 as a function of (1 − p) in the inset. Similar to the

spatial correlations, the correlation time scale diverges as a power law ϑ4,max =

(1 − p)−µ as p → 1, confirming that the system behaves critically along the

time dimension. We determine the exponent to be µ ∼ 1.5. For real traffic,

such diverging correlation time can have unpleasant consequences, as it indicates

diverging persistence times of traffic jams.
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4.5 Phase coexistence

We thus find a dynamical critical point characterized by diverging length and

time scales. This critical point separates free flowing traffic from coexisting free

flowing traffic and jams. This situation appears similar to equilibrium phase

transitions, where the coexistence of phases is terminated by a critical point.

To explore this analogy, we monitor the length of jams as a function of time,

and find that indeed in the limit p → 1, jams always coalesce in time to form

a single jammed phase, coexisting with a single free flowing phase, analogous to

the coarsening of equilibrium phases.

We explore this analogy further by defining the dynamical order parameter [61]

M =
vf − 〈v〉
vf

, (4.4)

the normalized deviation of the average velocity from that of free flow. We show

M as a function of the rescaled density in Fig. 4.4 for vmax = 2. It exhibits an in-

creasingly sharp kink as p→ 1, but remains continuous at the transition ρ = ρtra,

indicating a singular point in the limit p → 1. If we assume simple coexistence

in the two-phase regime, we can predict the function M(ρ) = (ρ− ρtra)/ρ, which

we indicate as a dashed line in Fig. 4.4. Indeed as p→ 1, there is strong evidence

that the data converge to this simple function, supporting our picture of jam and

free flowing traffic as coexisting phases. The functional dependence of this order

parameter has an exponent β = 1, corresponding to a Bose condensate, and to

condensates found in typical zero-range models [62]. We explore this condensate

transition in general one-dimensional traffic and transport models further in the

next chapter.

4.6 Conclusions

We established an analogy in the dynamic arrest of glasses and traffic, by iden-

tifying similar kinetic constraints in models of both systems. Inspired by this

analogy between far from equilibrium systems, we demonstrated that the simple

one-dimensional Nagel-Schreckenberg model for traffic flow exhibits hallmarks of

a dynamic phase transition analogous to that of kinetically constrained models
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Figure 4.4: Order parameter M as a function of reduced density for various
values of p at vmax = 2. As p→ 1, the transition at ρ = 1−p becomes singular.

The dashed line shows the theoretical prediction M = (ρ− ρtra)/ρ.

for glasses. We identified a dynamical critical point in the deterministic limit

p → 1 and ρ → 0 of the traffic model, marking the onset of coexisting jammed

and free flowing traffic. The hallmark of this transition is the divergence of both

correlation length and time scales. The direct analogy to KCMs of glasses points

out the universality of dynamic arrest phenomena in systems far from equilib-

rium.
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A criterion for dynamic phase co-

existence in one-dimensional traf-

fic and transport models

In the previous chapter we have demonstrated an analogy in the dynamic arrest

of glasses and traffic. We found critical behavior at the onset of coexistence of

jammed and free flowing traffic, where all jammed traffic condensates into a single

region. Condensation is observed in various models of driven systems, but only

understood in certain exactly solvable models. In this chapter we study this con-

densation in one-dimensional transport models, such as the Nagel-Schreckenberg

model discussed in the previous chapter. We develop an analytic criterion for its

occurrence. The kinetic constraint central to these models results in clustering of

immobile vehicles; these clusters can grow to macroscopic condensates, indicating

the onset of dynamic phase coexistence of free flowing and arrested traffic. We

investigate analytically the conditions under which this occurs, and derive a nec-

essary and sufficient criterion for phase coexistence. By applying this criterion to

the Nagel-Schreckenberg model of traffic flow, we find that true phase coexistence

only occurs when acceleration out of jammed traffic happens in a single time step,

in the limit of strong over-braking. This provides deeper insight into the critical

behavior of the NS-model we found in chapter 4.
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5.1 Introduction

Dynamic arrest in driven systems can result in strong dynamic heterogeneities,

where mobile and immobile particles separate in space: immobile particles tend

to cluster and form high density regions. An intriguing question in this context

is how big a cluster of immobile particles can be. In the previous chapter, we

measured the cluster size of correlated mobility in a traffic model by calculating

the dynamic susceptibility. The size of clusters was found to diverge in the

limit of overcautious driving. In this chapter we set out to understand why the

cluster size diverges for overcautious driving. We do this by describing the cluster

growth, creation and shrinkage in one-dimensional driven transport models from

the microscopic particle interactions and dynamics. These rate equations allow

us to conclude whether clusters of slow particles can become infinitely large,

that is: condensation occurs. These condensates in real space do typically not

occupy all of space, but coexist with free moving particles, therefore the criterion

for condensation derived in this chapter is equivalently a criterion for phase

coexistence.

Whether and how dynamic condensation occurs remains a largely open ques-

tion. So far, it can only be addressed analytically in certain exactly solvable

models [62–65]. In these models, the dynamics of particles is typically specified

per lattice site: particles can accumulate on a given site while hopping from

one site to the next. It has been shown analytically that these systems exhibit

condensation and symmetry breaking, even in one dimension. In traffic mod-

els the situation is, however, different since vehicles must follow each other and

cannot accumulate on any site. In these models, the vehicle dynamics are set

by a kinetic constraint between neighboring particles that guarantees vehicles

do not collide. The question is how condensation occurs in these models, and

how it can be analytically predicted based on the microscopic interactions of the

vehicles or particles. Although some attempts have been made to connect traf-

fic models with exactly solvable models [66, 67], a general analytic treatment of

condensation in one-dimensional transport models is lacking.

In this chapter, we present an analytic criterion of condensate formation in traffic

models, applicable both to traffic and more general driven systems. We establish
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a criterion for the occurrence of extensively large jams as a function of the micro-

scopic interactions of the traffic model. Because of the generality of the equations

used, the criterion is generally applicable to traffic and transport models. We

gain insight into the dynamics of jam creation, lifetime and size. We apply this

criterion to the Nagel-Schreckenberg (NS) [6] model and related models of traffic

flow to investigate analytically if and how condensation occurs, hence answer-

ing the longstanding question of dynamic condensates in these models [68]. We

indeed confirm analytically that condensates form in the limit of high braking

probability, as studied by simulations in the previous chapter. In all other cases,

arrested clusters either dissolve or split up. We illustrate the growth dynamics of

these arrested clusters using long simulation runs, and demonstrate the similarity

to the dynamics of a diffusion process.

5.2 Criterion

5.2.1 Class of Models

Like in the previous chapter, we consider kinetically constrained one-dimensional

transport models that are defined by mass-conserving local dynamical rules. Here

we consider in general models with the following defining dynamics: particles

move unidirectionally over a discrete lattice in discrete time. A particle can

move freely when it is out of the interaction range of other particles, but be-

comes kinetically constrained when it closely approaches particles. The kinetic

constraint can, for example, be a hard-core repulsion between neighboring par-

ticles, like in the glass and traffic models discussed in the previous chapter, but

“softer” constraints with longer range are also possible, as long as the order of

the particles is conserved. Once the kinetic constraint is released, particles accel-

erate with a certain probability to become free flowing. We call the free flowing

particles “active”, and the kinetically constrained or dynamically arrested parti-

cles “inactive”. To derive the criterion for condensation, we consider the bulk of

an infinitely extended lattice.
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Figure 5.1: Schematic of particle clustering and flow rates in mass trans-
port models. The dynamic particle interactions lead to clustering of immobile
(inactive) particles. These inactive clusters coexist with clusters of mobile
(active) particles. A few coexisting clusters are shown, as well as the inflow
and outflow rate rin and rout of particles at the upstream and downstream
boundary of an inactive cluster. The average distance between particles in
active clusters must be larger than the interaction distance, while the distance
between inactive particles is typically smaller than the interaction distance.

5.2.2 Derivation of Criterion

Inactive particles form clusters due to their dynamic interaction. Here, we define

a cluster as a sequence of particles in the same state (active or inactive). A typical

particle configuration consists of several coexisting active and inactive clusters as

shown in Fig. 5.1. These clusters can grow and eventually reach macroscopic size.

We call an inactive cluster a condensate, if in the limit of infinite system size,

the cluster contains an infinite number of particles. Here, we allow short-lived

interruptions in the sequence of inactive particles that exist on a timescale much

shorter than the typical timescale of growth or shrinkage of the cluster. We call

such small and short-lived interruptions bubbles, in analogy to fluctuations in an

equilibrium liquid phase.

We investigate the conditions under which condensation occurs in the stationary

state in an infinitely extended system, by analyzing the growth dynamics of

inactive clusters. The control parameters are the global particle density ρ and

the fluctuation parameter(s). We deduce the dynamics of clusters of particles

from the microscopic dynamics of the particles.

There are several competing processes that lead to growth or shrinkage of clusters.

Clusters can grow one by one by particles leaving or entering at the boundaries

(see cluster 3 in Fig. 5.1). Clusters can also split up into two by particles changing

their state inside a cluster. Finally, two clusters can merge when the cluster that

separates them shrinks to zero.
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Below we will analyze these cluster processes in detail to find the condition for

condensation. The idea is as follows: 1. Inactive clusters must be unable to split

up to become infinitely large. 2. Inactive clusters must grow, i.e. their growth

rate must be at least as large as their shrink rate. The growth of existing clusters

is, however, reduced by any new inactive cluster that forms upstream; such a new

inactive cluster takes up particles and reduces the inflow to existing downstream

inactive clusters.

These two conditions have to be met independently: because the split-up rate of

clusters scales with the cluster size, while the growth rate of clusters does not (it

is always limited to maximum 1 particle per time-step), the two processes cannot

balance, and both conditions must be fulfilled simultaneously.

Splitting up of inactive clusters

We first investigate the split-up of inactive clusters. Split-up occurs when the

distance between inactive particles increases spontaneously releasing the kinetic

constraint. Such split-up is detrimental for condensation. Below, we identify two

alternative conditions that prevent split-up. One of these must be satisfied to

guarantee split-up does not occur.

First, if the density inside active clusters is maximum, ρina = ρmax, so that

density fluctuations inside the cluster do not occur, then split-up cannot occur.

For hard-core repulsion, we have ρmax = 1 1.

Second, if ρina is lower than ρmax, density fluctuations do exist, but condensation

will still occur if these density fluctuations are short-lived, i.e. no stable active

cluster can form within an inactive cluster. This is the case when the density of

inactive clusters is much larger than that of active ones, i.e. when ρact/ρina → 0.

In this case, any active “bubble” requires an infinite amount of space; that much

space is not available inside inactive clusters; as a result inactive clusters do not

split up.

We thus obtain the following condition for condensation:

ρina = ρmax OR
ρact

ρina

→ 0 , (5.1)

1It is possible to construct systems that have a range of densities that make fluctuations
impossible. In this case, by ρmax we mean any density in this range.
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where the limit here and in all equations below is taken with respect to the

fluctuation parameter for a given particle density ρ. We note that this condition

also implies that inactive clusters cannot merge.

Growth versus creation of inactive clusters

We now consider the processes that grow and shrink the inactive cluster due to

in- and outflow of single particles. An inactive cluster grows due to particles

entering at the upstream boundary at rate rin, while it shrinks due to particles

leaving the cluster at the downstream boundary with rate rout, see cluster 3 in

Fig. 5.1. These two processes grow and shrink the inactive cluster, respectively,

with rates r+ and r−. Because by definition ∆t = 1, rates equal probabilities,

and we can write:

r+ = rin(1− rout) , (5.2)

r− = (1− rin)rout . (5.3)

In steady-state, r+ > r− is not possible due to particle conservation. A steady-

state with cluster rates r+ < r− is possible, but implies that all inactive clusters

have a finite size and lifetime. This leaves us with r+ = r− as the only possible

condition with a condensate in the steady-state. This means, for condensation

to occur, the difference ∆r = r−− r+ must vanish relative to the absolute value

of r+ or r− that sets the typical time scale of the system. Hence

r− − r+

r−
=

∆r

r−
→ 0 . (5.4)

The task is now to find an expression for ∆r in terms of basic dynamical quanti-

ties. We rewrite ∆r using Eqs. (5.2) and (5.3) to relate it to the in- and outflow

rate of particles,

∆r = (1− rin)rout − rin(1− rout) = rout − rin. (5.5)

Here, the inflow rate rin of the inactive cluster (cluster 3 in fig. 5.1) is given by the

average flow rate through the upstream active cluster (cluster 2 in Fig. 5.1), i.e.

the average velocity ṽ of particles in the active cluster times their average density

ρ̃. Because the boundary between both clusters moves itself with (negative)
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velocity vc, this increases the relative velocity of inflowing particles to (ṽ − vc),

and the inflow rate becomes

rin = ρ̃(ṽ − vc). (5.6)

The average density ρ̃ itself depends on the outflow rate of the next upstream

inactive cluster (cluster 1 in Fig. 5.1): the outflow rate, rout, of cluster 1 equals

the velocity, vact of active particles, times the density, ρ̃ 2. This allows us to find

a corresponding relation for the boundary between cluster 1 and cluster 2, which

we rewrite to obtain for the density ρ̃ in cluster 2:

ρ̃ =
rout

vact − vc

. (5.7)

Due to fluctuations, new inactive clusters may form inside the active cluster

(technically splitting up the active cluster). This reduces the velocity of particles

in this region. To obtain an expression for the resulting average velocity ṽ in

this region, which now consists of active and inactive clusters, we introduce the

fraction f̃ of inactive particles. We can then write

ṽ = f̃vina + (1− f̃)vact . (5.8)

By inserting Eqs. (5.6) - (5.8) in Eq. 5.5, we find that

∆r = rout −
rout

vact − vc

[f̃(vina − vc) + (1− f̃)(vact − vc)] , (5.9)

= routf̃
vact − vina

vact − vc

, (5.10)

which relates ∆r to the particle velocities and outflow rates. Finally, we express

the fraction f̃ of inactive particles in terms of the creation rate u per particle

of inactive clusters, their average lifetime, T , and their average length, n. In

steady-state this fraction is

f̃ = uTn . (5.11)

2Here we have used that in steady-state, the outflow rates of inactive clusters 1 and 3 are
the same.
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Using Eqs. (5.10) and (5.11), our criterion for the growth rate of clusters (Eq. 5.4)

then becomes

∆r

r−
=
routuTn(vact − vina)

r−(vact − vc)
→ 0 , (5.12)

which simplifies to

routuTn

r−
→ 0 , (5.13)

because vact > vina and vc < 0, and all velocities are finite. Eq. 5.13 provides

the second criterion for condensation. It ensures that the growth rate of inactive

clusters is at least as large as their shrink rate, so that inactive clusters can be

stable 3.

We thus arrive at a twofold criterion for condensate formation, consisting of

Eqs. (5.1) and (5.13). The first equation guarantees that inactive clusters do

not split up; the second equation assures that the growth of inactive clusters

is not hindered by the formation of new inactive clusters. Together, these two

equations provide a necessary and sufficient condition for condensation.

5.3 Application to traffic model

We now apply the criterion, Eqs. (5.1) and (5.13), to specific traffic models to

demonstrate the occurrence or absence of dynamic condensates. In particular,

we continue our study of the Nagel-Schreckenberg model [6].

5.3.1 Nagel-Schreckenberg model

A detailed description of the NS-model can be found in chapters 3 and 4. Cars

in the NS-model tend to accelerate and maintain a maximum velocity vmax.

Collisions are avoided by a hard-core kinetic constraint. Depending on the values

of the fluctuation parameter p and the car density ρ the dynamics results in

phases consisting of free flowing traffic or free flow coexisting with jams. Here,

3We note that in order to derive Eq. 5.13, we assumed high density. For ρ < rout

vact−vc
, it

follows from Eqs. (5.7) and (5.8) that rin < rout, so no condensation can occur.
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Figure 5.2: Space-time diagram of vehicles in the two deterministic limits
of the NS-model, for p = 0.9998 (a) and p = 0.0002 (b). Inactive vehicles
are indicated in black. The horizontal axis represents the car index. The
simulations are performed at densities 20 % above the transition density ρtra.

we analytically address the spatial organization of traffic jams with the criterion

introduced above: for which values of p and ρ does condensation occur?

From simulations the idea has emerged that no sharp transition between free

flow and jammed traffic occurs for finite stochasticity 0 < p < 1. [45–47]. This

implies that there is no condensate. Condensates might, however, form in the

deterministic limits p → 1 and p → 0 of the model. Numerically, no such

condensation has been found in the limit p → 0. Our results in chapter 4 do

suggest that condensation occurs in the limit p → 1, at least for vmax = 2 [69].

To appreciate the strikingly different behavior in the two deterministic limits, we

show space-time diagrams constructed from simulations for vmax = 2 in Fig. 5.2.

In the limit p → 1, a condensate forms as illustrated by the thick black line

in Fig. 5.2(a). A jam nucleates and grows into a condensate that contains all

excess particles above the critical density. In contrast, in the limit p→ 0, there

are many small jams (Fig. 5.2(b)) that do not coalesce, and no macroscopic

condensate forms. Some jams disappear and new jams are created. Below we

investigate analytically the formation of condensates for all different cases of p,

starting with vmax = 2.
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5.3.2 Nagel-Schreckenberg with 0 < p < 1

(vmax = 2)

Simulations suggest that for finite stochasticity, 0 < p < 1, there is no condensate.

Indeed we will show that in this case, the second condition (Eq. 5.13) is not

fulfilled. To see this, we first note that for finite p, vehicles slow down randomly,

and the average velocity is smaller than vmax. Hence, the inflow rate of jams, rin,

is smaller than 1. Since we can rewrite rout/r− = 1/(1 − rin) using Eq. 5.3, we

conclude that the first factor in Eq. 5.13, rout/r− > 0.

Furthermore, also u > 0: due to velocity fluctuations at finite p, the distances

between cars varies and cars can come within the interaction range with finite

probability. Hence, new jams are formed even at arbitrarily low density and

u > 0.

Because the remaining factors in Eq. 5.13, T and n, are always larger than zero

(a jam always exists for at least one time step and consists of at least one car),

we conclude that Eq. 5.13 is not fulfilled and thus there is no condensate. This

is in agreement with the consensus in the literature about the absence of a sharp

transition between free flowing and jammed traffic for 0 < p < 1 [45–47].

5.3.3 Nagel-Schreckenberg in the limit p→ 1 (vmax = 2)

In the limit p→ 1, cars almost always over-brake. To determine whether conden-

sation occurs in this limit, we analyze the scaling of all quantities in Eqs. (5.1)

and (5.13) as a function of the vanishing distance to the deterministic point:

∆p = 1− p→ 0.

With vmax = 2 and p→ 1, free flowing traffic has average velocity vmax − p = 1,

and jammed traffic has velocity 0. Hence, cars accelerate in a single step out of

the inactive cluster, and the outflow rate equals the probability of acceleration,

rout = ∆p. According to Eq. 5.7, it then follows that the density in active

clusters scales as ρact ∼ ∆p. Meanwhile, the density of a jam, ρina, is bounded

from below due to the finite interaction range, and must be higher than 1/vmax.

Consequently, the second part of Eq. 5.1 is fulfilled, meaning that inactive clusters

do not split up.
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Figure 5.3: Creation rate per car of new jams as a function of the distance
∆p to the deterministic point p → 0 (red points, ∆p = p) and p → 1 (blue
points, ∆p = 1−p). The dashed lines have slope 1 (red data points) and slope

2.3 (blue data points).

To check the second part, Eq. 5.13, we note that because rin → 0 in the limit

p→ 1, we can approximate r− = (1− rin)rout ≈ rout. We thus find that

routuTn

r−
→ uTn . (5.14)

reducing the criterion to the scaling of u, T and n.

The scaling of u can be estimated as follows: The distance between cars behaves

as a diffusion process. Hence, we can estimate the creation rate u of new jams

from the time τ it takes for the root mean square of the change ∆d of the distance

d between subsequent cars to grow to the average distance itself: ∆d ≈ 〈d〉. For

a random walker, the number of changes necessary to accumulate a change of 〈d〉
is 〈d〉2, while for ballistic motion, the number of changes is 〈d〉. We will allow

for a general power 〈d〉β. Because the time to change the distance between two

cars by one is of order (∆p)−1, we obtain

τ ∼ ∆p−1−β. (5.15)

Because u ≈ 1/τ , we obtain u ≈ ∆pβ+1. With simulations we find u ∼ ∆p2.3±0.1

(Fig. 5.3), and hence β = 1.3, an exponent between random walk and ballistic

motion. The quantity u thus vanishes on approach of the deterministic point.

We now consider the scaling of n. A divergence of n by definition means that

condensation occurs, since n indicates the number of cars in a jam. Therefore,
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the maximum scaling of n that does not a priori indicate condensation, is that

n is constant. We will take this maximum scaling, and will show below that,

nevertheless, condensation occurs.

The scaling of T , the average lifetime of jams, can be estimated from the average

time it takes for a car to accelerate out of a jam; this time diverges as 1/rout =

1/∆p. Hence, the average jam lifetime scales as T ∼ O(∆p−1) if n is constant;

any faster decrease would imply that the number of cars in a jam grows and thus

again that a condensate forms.

With the scaling obtained for u, n and T , Eq. 5.14 becomes

uTn ∼ ∆pβ . (5.16)

This quantity goes to zero in the limit ∆p → 0, thus meeting the requirement

for condensation. We therefore expect condensation to occur in the limit p→ 1,

in agreement with the simulation results shown in Fig. 5.2 and in the previous

chapter.

It is interesting to investigate the time dependence of the condensation process.

In Fig. 5.4, we plot the number of jams and the growth of the largest jam as a

function of time. For p close to 1, the number of cars in the largest jam increases

with a power of 1/2, while the number of jams decreases accordingly. This power-

law scaling is reminiscent of the diffusive dynamics of the random-walk process, in

which the probability of attachment of a car equals that of detachment. Indeed,

we have shown above that a necessary criterion for condensation is r+ = r−,

i.e. inactive clusters increase or decrease with equal probability. This analogy

between the size of jams and the position of a random walker was pointed out

before by Nagel and Paczuski for the cruise control limit of the NS-model [49],

and our analytical model predicts it as a necessary condition. We thus find that

our criterion concludes correctly on the existence of dynamic condensates, and

predicts the dynamics of their growth through a random-walk process.

64



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

A criterion for dynamic phase coexistence in one-dimensional traffic and
transport models

(a) (b)

Figure 5.4: Time evolution of jams for p approaching 1. (a) Number of cars
in the largest jam versus time. The dashed line has slope −1/2. (b) Number
of jams versus time. The dashed line has slope 1/2. The jam size diverges and

the number of jams decreases over time indicating condensate formation.

5.3.4 Nagel-Schreckenberg in the limit p→ 0

(vmax = 2)

Simulations suggest that in this limit, no condensate forms [40, 61]. We will

address this issue with the criterion starting with Eq. 5.13. For p → 0, the

braking probability p is vanishingly small. As a result, the outflow rate of jams

rout = 1−p. Using rin = rout−∆r, we can hence approximate r− = rout(1−rin) ≈
p + ∆r. A priori we do not know which term dominates the scaling of r− when

p vanishes: p or ∆r. If ∆r determines the scaling, we immediately see that the

left-hand side of Eq. 5.12: ∆r/r− = ∆r/∆r 6= 0 and there is no condensation.

If p determines the scaling, we can simplify Eq. 5.13 as follows: Because the

outflow rate is close to unity, the density of free flow is high and any random slow

down of a car immediately causes the upstream neighbor to become kinetically

constrained. Because this happens with probability p, the jam creation rate per

car is u ∼ p, as is also shown by the simulation results in Fig. 5.3. With u ∼ p,

r− ∼ p and rout ≈ 1, Eq. 5.13 becomes:

routuTn

r−
∼ Tn . (5.17)

Since both T > 0 and n > 0, we conclude that there is no condensation in the

limit p→ 0, in agreement with the simulation results [40, 61].
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5.3.5 Nagel-Schreckenberg with vmax > 2

It is frequently assumed that the NS-model behaves qualitatively similar when

changing vmax [42, 43]. Here, we will investigate this analytically and find that

in the limit p → 1 there is a qualitative difference. Surprisingly, for vmax > 2,

there is no condensation in this limit, in contrast to vmax = 2.

To see this, we note that for vmax = 2 acceleration from jam to free flow occurs in

a single step. Therefore, an accelerating car immediately leaves the jam, keeping

the density of the jam finite. In contrast, for vmax > 2, the acceleration needs

multiple steps in the limit p → 1. A car leaving the jam is still part of the

jam until it reaches the maximum velocity. This lowers the density of jams, and

leaves Eq. 5.1 unfulfilled. In the spaces created inside the jam, new free flow can

emerge that splits up the jam. This mechanism prevents the formation of an

infinitely large jam.

We demonstrate the split up of jams in the space-time diagram obtained in

simulations, see Fig. 5.5. The simulation starts from random initial car positions;

after a jam has nucleated, it grows, but shortly after that, the first free flow

starts to appear inside the jam. This becomes most obvious in Fig. 5.5(b), where

we show a magnified section at early times. All free flow ‘bubbles’ inside the

jam clearly emerge at the downstream boundary of the jam. This free flow is

persistent and covers larger regions at later times. These pictures demonstrate

that there is no single macroscopic condensate for vmax > 2.

We confirm the absence of condensation for vmax = 3 numerically by studying

the number of cars in the largest jams in simulations, see Fig. 5.6. In contrast

to vmax = 2 (Fig. 5.4(b)), the number of cars no longer diverges as p approaches

1, i.e. the data is not any more approaching the asymptotic line. The curves

for all p overlap, demonstrating the absence of condensation, and the qualitative

difference to vmax = 2.

To complete the analytical discussion of the NS-model we shortly comment on

the limits 0 < p < 1 and p → 0 for vmax > 2. In both cases, the argument

is similar to that of vmax = 2. For 0 < p < 1, fluctuations in velocity create

fluctuations in distances between free flowing cars. As a result, the creation rate

of jams u > 0. In the limit p→ 0 the creation rate of jams vanishes with p, u ∼ p,

but the growth rate of jams vanishes just as quickly, so there is no condensation.
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Figure 5.5: Space-time diagram of vehicles in the NS-model with p = 0.9998
and vmax = 3. (a) Entire simulation run and (b) enlarged section at early
times. Inactive cars are shown in black. Horizontal axis represents car index;
to follow the evolution of jams, we plot the space-time diagram in a frame co-
moving with the speed of jams. Time is measured in Monte Carlo (M.C.) steps.
The emerging white regions inside the jam indicate a split up of the original
jam that becomes more pronounced at later times. The enlarged section in
(b) shows that this split-up emerges at the downstream boundary of the jam.

In summary, the surprising conclusion of our analytical treatment of the NS-

model is that only in the case vmax = 2 (limit p→ 1) there is a true condensate

transition.

5.3.6 Application to Velocity Dependent Randomization

model

An extension of the Nagel-Schreckenberg model is the Velocity Dependent Ran-

domization (VDR) model, in which there are two fluctuation parameters instead

of one: pf controls the fluctuations in free flow, while pj controls the fluctua-

tions of jammed traffic. This model takes account of the fact that drivers may

behave differently depending on the traffic context, free flowing or jammed. We

will show that in this model, where we have two control parameters, one for the

creation rate and one for the growth rate of clusters, there is a condensate even

in the limit pf , pj → 0.

To do so, we use simulations to determine the size of the largest jam as a function

of pj and pf . To incorporate both pf and pj, we modify the NS-model update
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Figure 5.6: Time evolution of the number of cars in the largest jam for
vmax = 3, for values of p approaching 1. The dashed line has slope 1/2. The

jam size does not diverge; the data for all p approaching 1 overlap.

scheme by adding an extra step before the randomization step 3. If car i is

jammed (vi < vmax after step 2) then p = pj, and if car i is free flowing (vi =

vmax) then p = pf . Further, the update scheme is identical to the NS update

scheme. We plot the number of jams in a two-dimensional contour plot in Fig. 5.7.

This plot shows to which extent jams cluster and that all jammed cars form a

condensate if

pf
pj
→ 0 . (5.18)

This numerical finding is indeed in line with the qualitative argument that the

creation rate of new jams, controlled by pf , must vanish faster than the growth

rate of jams, controlled by pj. This finding thus again demonstrates the principle

of the criterion for condensation.

5.4 Conclusions

We have derived a criterion for condensation in one-dimensional transport models

with a kinetic constraint that causes clustering of dynamically arrested particles.

Whether this clustering leads to macroscopic phase coexistence depends on two
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Figure 5.7: Diagram illustrating the number jams (see color bar) as a func-
tion of pf and pj in the velocity-dependent randomization model. Simulations
were performed with 1000 cars at density ρ = 0.4. The diagram is plotted in
the region close to pf → 0 and pj → 0. Whether a condensate forms depends
on how the limit to zero is taken. The decreasing number of jams in the limit

pf/pj → 0 shows that a condensate forms in this limit.

factors: Firstly, density fluctuations in inactive clusters must be small enough

to prevent the split-up of inactive clusters. Secondly, the growth rate of inactive

clusters must dominate the formation rate of new inactive clusters since those

reduce the inflow of existing clusters downstream.

The latter condition means that condensation is only possible if the growth rate of

inactive clusters equals their shrink rate. This establishes a generic analogy of the

size of inactive clusters to the position of a random walker, that was previously

found by Nagel and Paczuski [49] and Barlovic et al. [70] for specific models.

With this analogy we can explain the growth dynamics of condensates as well as

the distribution of lifetimes and sizes of inactive clusters upon condensation.

We have applied the criterion to the well-known Nagel-Schreckenberg traffic

model and confirmed that a condensation transition occurs in the limit p → 1

with vmax = 2, as suggested by the numerical study of this limit in the previous

chapter. In all other cases traffic jams are finite. We note that nevertheless,

there can be a discontinuity in the mean velocity of cars [61] or its derivative,

reflecting a sudden onset of jams.

A wider applicability of the criterion is demonstrated by analyzing condensation
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in the Velocity Dependent Randomization model, in which the creation rate of

new traffic jams is controlled by two stochastic parameters, one for the fluc-

tuations of free flowing traffic (pf ), and one for those of jammed traffic (pj).

Exploring both parameters, we demonstrated a new condensate transition in the

limit pf , pj → 0 if pf vanishes faster than pj, in agreement with the idea behind

our criterion for condensation.
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Shear banding of colloidal glasses

- Observation of dynamic phase

coexistence

In this chapter we study shear banding in a colloidal glass driven by a shear force.

Particles with different flow rates spatially separate into two dynamic bands. In

the preceding chapter we found analytical conditions for phase coexistence of slow

and fast particles in one-dimensional driven systems, based on the intrinsic flow

rates of a system. In this chapter, we show three dimensional microscopy observa-

tions of phase coexistence in a colloidal glass. By following the particle dynamics

as a function of the driving field, we identify a critical shear rate at which the

transition from homogeneous to heterogeneous flow occurs. We relate the critical

shear rate for the driven glass to the intrinsic flow rates of the system, to ra-

tionalize when phase coexistence occurs. Using a new dynamic order parameter,

we characterize the dynamics in each band. We demonstrate that although the

transition is mostly of dynamic origin, small structural changes occur.
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6.1 Introduction

Application of stress on an amorphous material results in rich flow behavior,

which is extensively studied in the field of rheology. While stress-strain relations

have been studied extensively due to the large application potential of glasses,

only recently is the microscopic mechanism of flow being slowly uncovered. A

particularly intriguing but well-known phenomenon is that of shear banding [10,

71–75], where the shear localizes in bands that flow at much increased rate. This

phenomenon has long been recognized in metallic glasses [71], for which intriguing

liquid vein patterns have been observed along the shear bands [72]. Despite its

importance to a wide range of amorphous materials including metallic and soft

glasses, a fundamental understanding of shear banding is lacking.

Phenomenologically, shear banding is associated with non-monotonous flow curves [9,

10]: the stress to maintain a steady-state flow of the material varies non-monotonically

with applied strain rate. This leads to two (or more) flow rates that coexist at

the same applied stress, analogous to the Van der Waals description of coexisting

gas and liquid. While such non-monotonous flow curves have been recently mea-

sured in colloidal glasses [76], the microscopic origin of shear banding remains

unclear; in particular it is unclear whether and how shear banding is related

to structural and dynamic properties of the glassy state. Structural differences

between different glassy states are small, often below the resolution limit, and

direct observation of the atomic dynamics in molecular glasses is prohibitively

difficult.

Colloidal glasses allow direct observation of single particle dynamics, offering

particle trajectories to be followed at long time and large length scales [77, 78].

The constituent particles exhibit dynamic arrest due to crowding at volume frac-

tions larger than φg ∼ 0.58, the colloidal glass transition [14, 79]. These systems

exhibit glass-like properties such as non-ergodicity and aging [80]. Recent work

has shown that when sheared slowly, (colloidal) glasses show long-range corre-

lations in their dynamics [81], demonstrating the high dynamic susceptibility of

the sheared material, much like the flowing, dense traffic close to the onset of

jamming discussed in the previous chapters. Moreover, recent combined rheol-

ogy and structure measurements [76] have revealed non-monotonous flow curves

and steady-state shear banding in these systems. The onset of shear banding
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occurred at shear rates of around the inverse structural relaxation time of the

glass. The connection between the rate imposed by the driving force and the

intrinsic dynamic properties is analogous to that in one-dimensional driven sys-

tems identified in the previous chapter. This suggests a deep connection between

the intrinsic and external rates of driven systems.

In this chapter, we use direct observation of single particle dynamics in a col-

loidal glass to investigate this intriguing dynamic transition. We demonstrate the

existence of a critical shear rate, at which the glass separates into two dynamic

bands characterized by distinct diffusion time scales. We measure a new dynamic

order parameter [82] to demonstrate the coexistence of two dynamic phases. We

show that this dynamic transition is accompanied by a weak, but characteristic

structural modification of the glass.

6.2 Experiments

The colloidal glass consists of PMMA particles with a diameter of σ = 1.3µm,

and a polydisperity of 7%, suspended in a density and refractive index matched

solution. A dense suspension with particle volume fraction φ ∼ 0.60 well inside

the glassy state is prepared by diluting suspensions centrifuged to a sediment.

The suspension is loaded in a cell of which the top plate can move to apply shear

at constant rates between γ̇ = 1.5×10−5 and 2.2×10−4s−1. Confocal microscopy

is used to image the individual particles, and determine their positions in three

dimensions. All measurements presented here are recorded in the steady-state

regime, after the sample has been sheared to γ ∼ 1. We use the structural

relaxation time τ = 2×104s [81] of the quiescent glass to define the dimensionless

shear rate γ̇∗ = γ̇τ ; the applied shear rates then correspond to γ̇∗ between 0.3

and 4.5, smaller and larger than one. While this is a natural choice in the context

of this thesis, we note that this normalized shear rate is significantly lower than

in previous studies of colloidal flows [74, 83]. Some more experimental details of

image acquisition and particle tracking are discussed in chapter 2.

The shear-rate dependent flow behavior is summarized in Fig. 6.1. At shear rates

γ̇∗ < 1, the glass flows homogeneously as shown by the particle displacements as

a function of height in Fig. 6.1(a). At γ̇∗ > 1, the glass separates spontaneously

into bands that flow at different rates as shown for γ̇∗ = 2 in Fig. 6.1(b). Linear
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(a) (b)

Figure 6.1: Deformation map of colloidal glasses at volume fraction φ = 0.60.
The flow is homogeneous at low shear rates (a), and inhomogeneous beyond
the critical shear rate γ̇c ∼ 6×10−5s−1 (b). The figures show height-dependent
particle displacements at shear rates γ̇ = 3×10−5s−1 (a) and γ̇ = 1×10−4s−1

(b). Each cross represents a particle. The Dashed horizontal lines (b) delineate
the shear bands.

fits to the displacement profiles yield flow rates of γ̇high = 2.2 × 10−4s−1 and

γ̇low = 4 × 10−5s−1 that differ by a factor of 5. We specifically checked for

steady-state in our measurements as reaching steady-state may require some

larger amount of strain, especially for the shear banded case. To do so, we first

confirm that, after an initial transient, the slopes in Fig. 6.1(b) remain unchanged

over the entire observation time. We thus observe the spontaneous transition

from steady-state homogeneous to steady-state inhomogeneous flow at γ̇∗ ∼ 1.

This is in agreement with recent rheology and x-ray scattering measurements [76],

revealing shear banding starting at γ̇ ∼ τ−1.

6.3 Particle diffusion

We use the full trajectories of the particles to investigate their dynamic evolution

as a function of the applied shear. For each particle i with trajectory ∆ri(t), we

subtract the mean flow to compute displacement fluctuations ∆r′i(t) = ∆ri(t)−
〈∆r(t)〉z, where 〈∆r(t)〉z is the average particle displacement at height z. Typical

examples of the resulting mean-square displacements 〈∆r′2(t)〉 in the high and

low shear band are shown in Fig. 6.2 (inset). The low shear band (filled circles)

reveals reminiscence of a plateau, while the high shear band (open circles) exhibits

a closely linear increase of 〈∆r′2(t)〉 similar to the mean-square displacement of

particles in a liquid. This interpretation is supported by the strain correlations:
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Figure 6.2: Mean square displacements of the particles. Upper left inset:
mean square displacement in the upper (circles) and lower shear band (dots)
at γ̇∗ = 2. Main panel: mean-square displacements as a function of rescaled
time for the applied shear rates γ̇∗ = 0.3 (blue), 0.6 (cyan), 1.2 (green), 2
(magenta) and 5.6 (red). Lower right inset: strain correlations of low shear

band for t = 70 s (left) and 350 s (right).

strain correlations computed separately for the two bands reveal coexistence of an

isotropic liquid-like and an anisotropic solid-like response [81]; similar behavior

is observed for all other applied shear rates with γ̇∗ > 1. Interestingly, we

can collapse all mean-square displacements by re-scaling the time axis by γ̇ as

shown in Fig. 6.2, main panel. The figure compiles measurements both in the

homogeneous and shear banding regime. This collapse suggests that the diffusion

time scale couples directly to the local shear rate and that different dynamics

of the bands is solely due to different underlying diffusion time scales. This is

supported by the strain correlation function that indicates disappearance of the

solid-like quadrupolar symmetry when correlations are computed on the rescaled

time scale (longer by a factor of γ̇high/γ̇low), as illustrated in Fig. 6.2 (lower right

insets). We thus conclude that the change of diffusion time scale causes the

symmetry change of correlations.

6.4 Dynamic order parameter

To characterize the dynamics of the bands further, we search for an order param-

eter that is a good measure of the dynamic evolution. An appropriate measure
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(a)

(b)

(c)

Figure 6.3: Dynamic order parameter and phase diagram. (a) Dynamic
order parameter as a function of observation time. K is a linear measure
of the system’s dynamic evolution. (b) Histogram of order parameter values
for increasing observation times. The emerging bimodal distribution indicates
dynamic phase coexistence. (c) Corresponding dynamic phase diagram: Mean
order parameter as a function of applied strain rate. The dashed lines serve as
a guide to the eye. Inset shows the dynamic order parameter at continuously
increasing applied shear rate, for particles in the upper (red squares) and
lower region (blue dots). The arrow demarcates a sudden change of the order

parameter.

of the underlying dynamic evolution is [82]

K = ∆t
N∑
i=1

tobs∑
t=0

|∆r′i(t+ ∆t)−∆r′i(t)|2, (6.1)

the time-integrated mean-square displacement, where ∆t is a short microscopic

time scale. This parameter increases linearly with observation time tobs (Fig. 6.3(a));

hence, K/tobs measures the rate of the system’s dynamic evolution, and we choose

this as the dynamic order parameter. To address the transition, we determine

values of K/tobs in 2 µm thick horizontal subsections, and plot probability dis-

tributions for three different observation times in Fig. 6.3(b). With increasing

observation time, two peaks appear and sharpen, demonstrating the coexistence

of two dynamic states. The positions of the peaks demarcate the order parameter

values of the coexisting shear bands. We can now construct the corresponding

dynamic phase diagram from the peak positions of K for all steady-state shear

rates, as shown in Fig. 6.3(c). At γ̇∗ < 1, only one single peak of K exists,

indicating the homogeneous regime. At γ̇∗ > 1, two values coexist, indicating

the coexisting shear bands. Similar dynamic phase coexistence is observed in
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(a) (b)

Figure 6.4: Glass structure and density. (a) Pair correlation function of
particles in the low (blue dots) and high shear band (red squares). Inset: Angle
resolved g(r) along the shear-shear gradient plane, extension (π/4, diamonds)
and compression direction (3π/4, circles), for the low (blue) and high shear
band (red). Arrows indicate decrease of g(r) in the extension direction. (b)
Dilation parameter, αmin, versus shear rate determined from the minimum of
the mean-square difference of g(r) (inset). Dashed lines are guides to the eye.

traffic and transport models, as described in the previous two chapters. In par-

ticular, the diagram of the order parameter for driven glasses, discussed here,

has a topology reminiscent of the order parameter M diagram for the traffic flow

model shown in Fig. 4.4. In the traffic flow model, cars are ”driven” naturally

by the protocol to acquire maximum speed.

To elucidate the sharpness as a function of the increasing shear field, we contin-

uously ramped the shear rate γ̇∗ from below to above 1, crossing the transition

with a continuously increasing shear rate. The resulting values of K as a func-

tion of strain rate (Fig. 6.3(c), inset) suggest that indeed, the transition occurs

rapidly, in agreement with recent x-ray measurements [84]. Because of the lim-

ited system size both spatially and along the time dimension, there are significant

fluctuations; nevertheless, the data indicates a sudden jump of the order param-

eter at γ̇∗ ∼ 1. The position of this jump is consistent with the steady-state

measurements (main panel).

6.5 Structure of the shear bands

While the transition occurs in the dynamics, it is interesting to elucidate changes

in the glass structure. Constitutive models of the flow of complex materials
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suggest a coupling between flow and structure, often related to small density

changes [71, 74, 85]; we therefore investigated structural differences in the two

bands. We show radial distribution functions in Fig. 6.4(a). No obvious struc-

tural difference between the low and high shear band is observed, in agreement

with earlier observations [74]. However, when we resolve g(r) along the compres-

sion and dilation directions, a clear structural difference shows up (Fig. 6.4(a), in-

set). The high shear band (red symbols and line) exhibits pronounced anisotropy,

while the low shear band (blue symbols and line) is more isotropic. These re-

sults reveal the structural origin of the different mechanical behavior of the two

bands. This structural distortion should play an important role in the coupling of

structure and dynamics in the shear banding transition. Indeed, we can measure

the resulting net dilation in the shear band from the mean-square difference ∆2

between the two angle-averaged g(r) curves, as a function of a linear stretching α

that transforms r to r′ = r×α. We show ∆2 as a function of α in Fig. 6.4(b), in-

set; the minima of ∆2 at α > 1 indicate a small amount of dilation. We evaluate

the minima αmin for all shear rates and plot αmin as a function of shear rate in the

main panel. These values indicate a dilation of ∼ 0.4% in the high-shear band

after shear banding. While the detected changes are small and affected by large

uncertainty, they demonstrate a characteristic structural change accompanying

the shear banding transition.

6.6 Conclusions

The direct observation of particle dynamics during shear banding of a colloidal

glass reveals the coexistence of two dynamic steady-states, analogous to the co-

existence of fast and slow particles in transport models, discussed in the previous

chapters. The applied shear plays the role of a driving force: sufficiently high

values of the applied shear rate cause coexistence of two dynamic states with

different time scales for diffusion. The critical shear rate at which two dynamic

bands start to coexist is the inverse relaxation time of glass. The dynamic phases

differ slightly in their structure, as revealed by a careful comparison of the time

averaged pair-correlation function. We believe that the presented dynamic tran-

sition should be a general feature of dynamically driven systems, as the similarity

with the driven transport systems discussed in the previous two chapters sug-

gests.
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From collective transport behav-

ior to the stepping dynamics of in-

dividual molecular motors

In this chapter, we study crowding effects in the motion of molecular motors

along biopolymer networks. We focus on experimental observation and analy-

sis of the motion of three motor proteins, Kinesin-1, Kinesin-II and OSM-3,

along microtubule networks. We develop a new technique, based on correlations

of intensities, to efficiently and accurately extract the motile properties from mi-

croscopy data. This technique has the advantage over single particle tracking that

it is much faster and can achieve accurate measurements of dynamic properties,

even at high densities. With the new method we find that crowding effects start

to occur at low densities for Kinesin-1, while OSM-3 and Kinesin-II can func-

tion at much higher densities. The most important crowding effect seems to be a

reduction of the run length, while the velocity changes only slightly with density.
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7.1 Introduction

Efficient transport of nutrition and waste is of vital importance to all living

organisms. For large molecules and vesicles, this task is carried out by molecular

motors that move along the cytoskeleton and carry cargo. The diffusive motion

of such large particles would be too slow for efficient transport, particularly in

the crowded cell environment. Cells are crowded with proteins, lipids and other

sorts of macromolecules [86]. Hence, molecular motors are needed to guarantee

efficient transport, but even for them, crowding effects may strongly affect their

motion and transport efficiency.

These molecular motors transport cargo along a network of line-like pathways,

similar to the macroscopic transport by vehicular traffic, studied in chapter 4

and 5. However, while real traffic is reasonably well described by hard-core

interactions, not much is known about the interactions of molecular motors.

Nevertheless, models like TASEP, based on hard-core interactions, are commonly

used to study the collective transport properties of molecular motors [11, 87]. We

will follow this approach in the next chapter, where we use TASEP to study the

collective dynamics of molecular motors on a network. In this chapter, we focus

on the experimental observation of molecular motor motion. We study their

crowding and interactions using TIRF microscopy to image their motion on a

biopolymer network in vitro.

A general problem in cell biology is that in vitro experiments typically study

idealized, uncrowded situations, while the crowded environments of cells might

have a major effect on the functional properties of macromolecules [86]. The

study of molecular motors moving along the cytoskeleton is not much different

in that respect. The cytoskeleton is crowded with multiple types of molecular

motors and other specific proteins. However, in vitro experiments typically study

motile properties of motors at low particle densities [86]. The low densities allow

for control of single particles with optical tweezers [88] or particle tracking in

microscopy data [89]. Crowding effects may, however, have a major effect on

transport in the real cell environment. These effects seem hence central in the

understanding of transport in living cells.
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In this chapter we present a new approach, based on correlations of intensities, to

analyze microscopy data of molecular motors at high densities. By analyzing in-

tensity fluctuations over space and time, the average velocity and run length are

determined at once for all motors moving over a microtubule. Simultaneously, we

calculate the average motor density on the microtubule using fluorescence corre-

lation spectroscopy. We apply these techniques to the motor proteins Kinesin-1,

Kinesin-II and OSM-3. We find that crowding effects start to occur at strikingly

different densities for these motors. Already at low densities, when the motors

are well separated, the run length of Kinesin-1 seems to decrease. Kinesin-II

and OSM-3 on the other hand are able to function at much higher densities.

These findings indicate a long interaction length between Kinesin-1 motors and

relatively short interaction lengths between OSM-3 motors or Kinesin-II motors.

The response of these motor proteins to crowding conditions seems to be detach-

ment from the microtubule network, resulting in a reduced run length at high

densities, while the velocity is only weakly dependent on density.

7.2 Experiments

A detailed description of the experimental techniques is given in chapter 2. Here,

we briefly discuss the most important features of the experiments on molecular

motors. We construct a stepping-assay of dynamically stabilized microtubules

attached to a glass plate in a microfluidic channel. After the preparation, a

solution containing molecular motors and ATP is flowed into the microfluidic

channel. The motors bind to the microtubules and perform stepwise movement

along the microtubules by consuming ATP [16].

We use Totally Internal Reflection Fluorescence (TIRF) microscopy to detect

the motion of the molecular motors along the microtubules. The motors are

labeled with a fluorophore that emits visible light after excitation with a laser.

The TIRF laser excites only motors with fluorescent labels which are close to the

glass/solution interface. TIRF microscopy hence creates high-quality 2D images

of molecular motors that move along the microctubules attached to the glass,

with minor background noise from the motors in the bulk of the solution. A

reconstruction of the micrtotubule network from the time averaged fluorescent

signal of molecular motors is shown in the left panel of Fig. 7.1.
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To work with very high motor densities, we fluorescently label only a fraction

of the motors [90, 91]. The unlabeled motors have identical properties, but are

invisible. This prevents a saturated homogeneous fluorescent intensity on the

microtubule from nearby motors, and thus makes it possible to study the motion

of molecular motors even at high densities.

7.3 Correlation of intensities

Traditionally, molecular motor motion from TIRF microscopy data has been an-

alyzed by single particle tracking [89]. Particle tracking is time consuming and

requires spatially well separated fluorescent signals in order to distinguish indi-

vidual particles clearly. Instead of pursuing this route, we analyze the complete

fluorescent intensity signal using correlation techniques on the image intensi-

ties. By calculating intensity correlations in space and time, we obtain averaged

dynamic motor properties, such as motor velocity and run length along micro-

tubules.

The first step of this technique is to divide a microtubule into small slices, see

the enlarged section in Fig. 7.1. Due to the motion of molecular motors, the

intensity varies spatially and temporally. This is shown in Fig. 7.2, where we

plot the intensity as a function of both space and time. The left panel shows

low, and the right panel high motor density.

In the former, only a few particles move along the microtubule segment during the

observation time. This is the typical density at which particle tracking is done;

Figure 7.1: The 2D microtubule network measured with TIRF microscopy.
The image is obtained by time-averaging the fluorescent signal from motors.
Their averaged trajectories highlight the microtubule network. The enlarged

section shows the division into slices of one microtubule.
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Figure 7.2: Space time diagrams of the fluorescent intensity along the micro-
tubule. The color indicates the intensity level, with blue low intensity and red
high intensity. Left panel: Experiment with low motor density. Right panel:
Experiment with high motor density. The average velocity and run length
can be determined by correlating intensity fluctuations between these extreme
values of the density. Optimal performance is expected at intermediate values

of the density.

particles are relatively well distinguishable. In particle tracking the information

contained in Fig. 7.2(a) is basically binarized: an intensity spot at each time

corresponds to a particle or not.

With the technique of intensity correlations introduced here, the full intensity

profile is used. If a particle is at position x at time t, the intensity I(x, t) is

higher than the average intensity 〈I(x, t)〉. Some time later the particle has

moved away and the intensity at x will be lower. Now the intensity at the new

location of the motor will be higher. We can learn about the particle dynamics by

correlating intensity fluctuations over time and space. We compute correlations

of fluctuations as a function of spatial separation dx and temporal separation dt:

Correlation(dx, dt) =

〈(
I(x, t)− 〈I(x, t)〉

)(
I(x+ dx, t+ dt)− 〈I(x+ dx, t+ dt)〉

)〉
σ
(
I(x, t)

)
σ
(
I(x+ dx, t+ dt)

) ,

(7.1)

with,

σ
(
I(x, t)

)
=

√〈(
I(x, t)− 〈I(x, t)〉

)2
〉
, (7.2)

being the standard deviation of the intensity distribution, used to normalize

the intensity fluctuations. The averages in Eq. 7.1, denoted by the triangular

brackets, are taken over both space and time.
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Figure 7.3: Correlation of intensities along a microtubule as a function of
temporal separation and spatial separation. The color indicates the amount of
correlation, with at the extremes red for strong positive correlation and blue
for no correlation. The inset shows the cross section along the dashed line.

The correlation of intensities of an ensemble of Kinesin-1 motors moving along

a microtubule is shown in Fig. 7.3. The line of positive correlation running

through the origin dominates the correlation signal. This signal results from

the autocorrelation of particles. The autocorrelation is large at the origin and

decreases with time. Nevertheless, the autocorrelation dominates the signal also

at large times, see the inset of Fig. 7.3. We will evaluate the temporal evolution

of the autocorrelation in the next section to calculate the average velocity and

run length of motors. This technique works well over a wide range of densities:

from the low density of the left panel of Fig. 7.2 up to the high density of the right

panel of Fig. 7.2. Optimal performance, however, is at intermediate densities,

where the intensity fluctuations are the largest.

7.4 Motor dynamics from autocorrelation

To extract the average motor velocity and run length from the intensity corre-

lation, we fit the autocorrelation peak with a Gaussian function for each value

of dx, see Fig. 7.4(a). The autocorrelation of continuous moving point-like par-

ticles would be a delta-peaked function of positive correlation centered at the

exact passage time of the particle dt. The point-like fluorescently labeled mo-

tors, however, emit a diffraction limited pattern, of which the inner ring can be

approximated by a Gaussian. This gives rise to the shape of the autocorrelation

peak with finite width.
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Figure 7.4: (a) Correlation of intensities as a function of the time separation.
The blue lines and dots correspond to experimental data from different spatial
separation dx. The dashed red line is a Gaussian fit to the autocorrelation
peak of one of the curves. (b) Spatial separation dx versus the average dt value
of the autocorrelation peak. The dt values are extracted from the Gaussian
fits. The slope of the linear fit gives the average motor velocity. (c) Area under
the Gaussian fit versus the average dt value of the Gaussian. The exponent of
the exponential fit is the average time a motor is attached to the microtubule.

We find the average time interval dt required for particles to travel a distance dx

from the mean position of the Gaussian fit. In Fig. 7.4(b) we plot the obtained

time interval dt for all spatial separations dx.1 The ratio of traveled distance

and corresponding time interval gives the average velocity v = dx/dt; hence we

obtain v from the slope of a linear fit through the data, as shown in Fig. 7.4(b).

Motors that detach from the microtubule no longer contribute to the autocor-

relation signal. The area under the autocorrelation curve is proportional to the

fraction of motors still attached. Its time evolution hence provides information

on the fraction of particles that remain attached to the microtubule. The area

under the autocorrelation peak is determined from the Gaussian fit. If all par-

ticles remained attached indefinitely, they would all travel a distance dx after

some time interval. In this case, the total area A under the autocorrelation peak

would be independent of dt and dx. We observe the detachment of particles as

a decay of the autocorrelation signal as plotted in Fig. 7.4(c). If we a assume a

constant probability of detachment for each step, the decay of the total autocor-

relation is exponential with a characteristic time τ . The red line in Fig. 7.4(c)

corresponds to a fit with the exponential function: A = A0exp(−τdt). From

1 In fact, we use only the data for which the Gaussian function can be fitted with reasonable
small errors. We include data from increasing spatial separations into our analysis, until the 95
% confidence interval of the mean dt value exceeds half the time interval between two images.
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this fit, we determine the characteristic time τ a motor remains attached to the

microtubule. The average run length of motors along the microtubule follows

immediately from τ and v:

Run length = τv . (7.3)

In addition, information about the distribution of motor velocities, or the ran-

domness in the stepping process, could be extracted from the change in the width

of the autocorrelation peak. The width of the peak is, however, dominated by the

width of the diffraction limited intensity pattern of each motor. Hence, we do not

use the evolution of the peak width to learn about the randomness, but instead

study the average velocity and run length dependence on density to elucidate the

randomness in the stepping process.

7.5 Fluorescence correlation spectroscopy

To interpret the measured velocities and run lengths with regard to crowding

effects, it is important to have a good measure of the motor density on the

microtubule. However, this density is not a direct control parameter; it is the

motor concentration in the surrounding solution that is controlled experimen-

tally. Increasing this concentration enhances the number of motors attached

to microtubules. Although there is some evidence [90], it is a priori not clear

whether the relation between concentration and density is proportional. We use

fluorescence correlation spectroscopy to directly determine the motor density on

a microtubule.

In fluorescence correlation spectroscopy [92] the number of fluorescent particles in

a certain volume is derived from the fluctuations of the total, volume integrated,

intensity. The general idea is that a high number of motors in the volume results

in small intensity fluctuation relative to the average intensity. In the present

case the ”volume” corresponds to the area of the microtubule. Care must be

taken to subtract the background intensity, as the total intensity results from

motors on the microtubule and background noise. The background signal can

be measured easily in regions of the sample with no microtubules, see Fig. 7.1.

For each pixel on the microtubule we subtract the average background intensity,
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such that the total fluorescent intensity IT of the microtubule originates from

fluorescently labeled motors attached to the microtubule only.

The total intensity varies over time, because motors attach and detach from

the microtubule. We assume that the attachment of motors to the microtubule

is a random process.2 In that case, the number of attached motors is Poisson

distributed, and the normalized variance:

σ2(IT )

〈IT 〉2
=
σ2(N)

〈N〉2
=

1

〈N〉
, (7.4)

where in the first step we used IT ∝ N and in the second step σ(N) ∝
√
N for

Poisson distributed N . From the average number of motors on the microtubule

we can calculate the density ρ = N/L, where L is the length of the microtubule.

The idea to use fluctuations in the study of molecular motors is not new. How-

ever, so far observations of high density fluorescent motors was not possible, and

studies were focused on fluctuations in the dynamics of single particles [93, 94].

7.6 Results

7.6.1 Density

We study the onset of crowding effects, by measuring the density ρ of motors on

a microtubule as a function of motor concentration c in the solution. The density

of fluorescently labeled motors on a microtubule is measured with fluorescence

correlation spectroscopy, as explained in the previous paragraph. We are able

to reach high densities by fluorescently labeling only a fraction of motors. The

motors only differ in the fluorescent labels, otherwise they have identical prop-

erties. In these experiments the number of labeled motors is kept constant. To

reach high densities, we add increasing amounts of unlabeled motors, raising the

dilution factor of labeled motors. In Fig. 7.5 we show the results for OSM-3 with

a constant concentration of 40 nM labeled motors. Our fluorescence correlation

measurements show that the average density of labeled OSM-3 motors on the mi-

crotubules remains constant at about 1.5 per micrometer up to a dilution factor

2Further, we assume that the fluorophore has identical properties that do not change with
time.
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Figure 7.5: Density of fluorescently labeled motors on the microtubule versus
motor concentration in the solution. The density is obtained with fluorescence

correlation spectroscopy analysis of the intensity on the microtuble.

of 40. At this dilution, the total OSM-3 concentration in the solution is 40x40

nM = 1600 nM and the total density of OSM-3 on the microtubule is 40x1.5= 60

motors per micrometer. However, at the highest dilution, the observed density

of labeled motors is significantly lower: 0.6 motors per micrometer, as shown in

Fig. 7.5.

We interpret this result with crowding induced detachment of, or lack of space for,

molecular motors. The idea is that when the microtubule fills up with motors, the

available space for new motors to bind reduces (lower attachment rate) and/or

the interactions between motors increase resulting in shorter run times (higher

detachment rate). These crowding effects result in a density decrease of labeled

motors on the microtubule, observed for the highest dilution with unlabeled

motors in Fig. 7.5.

Interestingly, crowding effects occur at a density of 60 OSM-3 motors per mi-

crometer. OSM-3 motors take steps of 8 nm and need twice this space to progress

in their head-over-head stepping process. For 60 motors per micrometer all space

is taken up since 60x2x8 nm ≈ 1µm, thus the microtubule consists of one se-

quence of motors. In other words, around a density of 60 motors per micrometer

the available space for moving motors saturates.

We note that depending on the microtubule, the measured motor density can

vary strongly for a given dilution. This could arise from different attachment

and detachment properties of the microtubule, fluctuations in the local concen-

tration caused by the nearby presence of other microtubules or from a drift in the

intensity due to experimental issues, resulting in an underestimate of the density.

88



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

From collective transport behavior to the stepping dynamics of individual
molecular motors

7.6.2 Kinesin-1

Here we report the velocity and run length of the microtubule specific motor

Kinesin-1 as a function of density for two buffers with a different salt concentra-

tion, PEM12 and PEM80. Density, velocity and run length are measured from

correlations of the fluorescent intensities, as described above. In Fig. 7.6 we plot

the run length and the velocity versus density for the two buffers.

We first focus on the measurements with low salt concentration (PEM12 buffer).

Blue crosses indicate a measurement from a single microtubule in low salt concen-

tration, and red dots are corresponding averages over a number of microtubules.

The error-bars are given by the standard deviation. Over the observed density

range in Fig. 7.6(a), the velocity is largely constant, around 0.8 µm/s. We ob-

serve a small decrease of velocity with increasing particle density. At the same

time, the data shown in Fig. 7.6(b) suggests that the run length is about 1.2 µm

and does not change over this density range.

We repeated these experiments with a high salt concentration (PEM80 buffer)

and indicate the resulting velocity and run length with green symbols and error

bars in Fig. 7.6(a) and (b). Clearly, velocities similar to the measurements in

low salt concentration are observed. On the other hand, the run length is much

reduced: the data in Fig. 7.6(b) shows that the run length is 0.7 µm for mea-

surements with PEM80; much smaller than the run length of 1.2 µm observed

for measurements with the low salt concentration buffer PEM12. In a PEM80

buffer, the run length of Kinesin-1 decreases with density. We conclude that the

run length decreases due to crowding effects. The data in Fig. 7.6(b) suggests

that crowding starts to occur at remarkably low densities: around 3 motors per

micrometer. At this density the average distance between motors is about 300

nm, much larger than the step size of a motor 8 nm. Long-range interactions

between Kinesin-1 motors have been reported before, but seemed to suggest an

attractive interaction [95], in contrast to the repulsive interaction observed here.

The interaction range between Kinesin-1 motors is apparently long-ranged, while

its origin remains elusive. By comparing the Kinesin-1 data using different

buffers, we can elucidate the effect of salt in the surrounding solution on the

motor dynamics. We observe similar velocities for both buffers, suggesting that

the salt concentration does not influence the binding of ATP; a lower binding rate
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Figure 7.6: Dynamical properties of Kinesin-1 as a function of motor density.
Each blue cross correspond to a measurement of one microtubule in a PEM12
buffer. The red dots are corresponding averages over a density range of linear
size. The error-bars are given by the standard deviation. The green dots and
error-bars show the averaged data over multiple microtubules in a PEM80
buffer. (a) The average motor velocity. (b) The average run length of motors

along the microtubule before detaching.

of ATP would result in a lower velocity. The run length is significantly increased

when a low salt concentration (PEM12 buffer) is used compared to the high salt

concentration in the PEM80 buffer. This could be because salt makes each head

of the motor less tightly bound to the microtubule or because salt screens the

microtubule from a motor-head while stepping. Both scenarios make the motor

more prone to random collisions with the surrounding fluid molecules, resulting

in a higher detachment rate and shorter run lengths.

7.6.3 OSM-3

We also studied the dynamic properties of OSM-3 as function of density. The

experiments on OSM-3 are all performed in a relatively high salt concentration

with buffer PEM80. We reached very high densities in TIRF microscopy by

labeling a fraction of the motors only. We have argued above that increasing the

motor concentration in the solution results in a proportional increase of the motor

density on a microtubule, up to a total density of 60 motors per micrometer. At

this density the available space on the microtubule becomes limited. Here we

discuss the dependence of velocity and run length on density and finally arrive

at a model to describe the stepping process of OSM-3.

90



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

From collective transport behavior to the stepping dynamics of individual
molecular motors

10−2 100 1020.8

1

1.2

1.4

1.6

1.8

2

Density (particles/µm)

V
el

oc
ity

 (µ
m

/s
)

10−2 100 1020

0.5

1

1.5

Density (particles/µm)

R
un

 le
ng

th
 (µ

m
)

(a) (b)

Figure 7.7: Dynamical properties of OSM-3 as a function of motor density.
Each blue cross corresponds to a measurement of one microtubule. The red
dots are averages over a density range of logarithmic size. The error-bars are
given by the standard deviation. (a) The average motor velocity. (b) The

average run length of motors along the microtubule before detaching.

The velocity of OSM-3 as a function of motor density is shown in Fig. 7.7(a). The

velocity barely changes over several decades of motor density. Only at the highest

density, where the microtubule becomes saturated with motors, the velocity drops

by about 20 percent. The run length, on the other hand, decreases significantly

with increasing motor density. At low densities the run length is about 0.7 µm,

while it decreases gradually down to 0.3 µm with 100 motors per micrometer,

see Fig. 7.7(b).

Based on the observations of constant velocity and decreasing run length up

to saturating motor density, we propose the following model to describe the

stepping process of OSM-3. The presence of another close-by motor does not

prevent OSM-3 from stepping. If an OSM-3 motor runs into another OSM-3

motor, it detaches from the microtubule. This explains the reduced run length

at high densities. OSM-3 does not pause the stepping process due to interactions

with another motor; pausing would reduce the average velocity, while we observe

a fairly constant velocity, but decreasing run length.

Careful inspection of Fig. 7.7(a) shows that the average velocity first slightly

goes up before a minor decrease at the highest densities. Although both effects

are subtle and perhaps not significant, we speculate on their origin as follows.

The slight reduction of the average velocity at high densities might result from

a change in the distribution of velocities. Motors that move faster run into

slower motors and unbind from the microtubule due to the interaction. This
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biases the average velocity towards lower velocities. The small increase in the

average velocity, before its decline, could arise from reinforced stepping rates of

motors due to local coupling between motors. The possible coupling could be

of hydrodynamic nature [96], mediated through the surrounding solution, or of

electrostatic nature, mediated through the microtubule.

7.6.4 Kinesin-II

In addition to the motors Kinesin-1 and OSM-3, we studied the run length and

velocity of the motor Kinesin-II as a function of density. To reach high densities

in the experiments we label only a fraction of the Kinesin-II motors with a

fluorophore. We use the low salt concentration buffer PEM12.

In Fig. 7.8(a) we show the velocity of Kinesin-II as a function of density. The

Kinesin-II velocity of around 0.3 µm/s is considerably lower than the velocity

1.2 µm/s of OSM-3, but the qualitative behavior with increasing density is re-

markably similar. For both motors the velocity reaches a maximum around a

density of 10 motors per micrometer. At this point the average distance between

motors is about 100 nm. Increasing the density beyond this maximum results in

a decrease of the velocity for both motor types.

The run length of Kinesin-II, shown in Fig. 7.8(b), seems to have a maximum

at the intermediate density of around 10 motors per micrometer, just like the

velocity. At low density the run length is around 1.5 µm, it reaches values

above 2 µm at intermediate densities and decreases gradually to around 0.4 µm

at the highest measured density of around 300 motors per micrometer. Note

that this crowding density of Kinesin-II is slightly higher than that of OSM-3,

but significantly higher than that of Kinesin-1. The maximum in run length

at intermediate densities seems to be unique for Kinesin-II; it is not observed

for the other motors studied and should be confirmed by additional experiments.

Moreover, we expect much lower run length when a high salt concentration buffer

is used in the experiments.

Besides the observed maximum in run length, the behavior of Kinesin-II is very

similar to that of OSM-3. Therefore, we assume that the interactions between

motors and the stepping behavior of Kinesin-II is similar to that described for

OSM-3 in the previous section. Interestingly, Kinesin-II and OSM-3 are known
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Figure 7.8: Dynamical properties of Kinesin-II as a function of motor density.
Each blue cross corresponds to a measurement of one microtubule. The red
dots are averages over a density range of logarithmic size. The error-bars are
given by the standard deviation. (a) The average motor velocity. (b) The

average run length of motors along the microtubule before detaching.

to work together in intracellular transport of cilia [97]. Therefore, the compatible

stepping mechanisms and interactions of the motors, observed here through the

velocity and run length, could be beneficial for efficient transport.

7.7 Conclusions

In this chapter we reported measurements of the velocity, run length and den-

sity of molecular motors on microtubules, based on a new correlation method of

fluorescent intensities. With this method, we analyzed microscopy data per mi-

crotubule, instead of tracking individual motors. This provides faster and more

accurate results on the average velocity and run length, as well as information

on the particle density on the microtubule.

We apply the new technique to study the velocity and run length of Kinesin-

1, Kinesin-II and OSM-3, and demonstrate that crowding occurs at strikingly

different densities for these motors. Under crowding conditions it is mostly the

run length of the motors that significantly reduces; the velocity is less affected

by density changes.

Crowding effects start to occur at remarkably low densities for Kinesin-1: already

when the average distance between motors is around 300 nanometers, motors

start to interact, resulting in a lower run length. To the best of our knowledge,
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such long range interactions with a repulsive character have not been reported

before; the nature of the interaction is therefore unclear.

For Kinesin-II and OSM-3 crowding effects occur when there are around 100

motors per micrometer: much higher motor densities than for Kinesin-1. These

findings indicate the range at which the different types of motors can efficiently

work and transport cargo in the presence of other motors: a Kinesin-1 motor

needs much more free space to operate than OSM-3 and Kinesin-2, which keep

moving along the microtubule in close-by presence of other motors. This behavior

is in agreement with the way the different motor types are known to transport

cargo in the cell: Kinesin-1 operates more or less alone while carrying cargo,

while both Kinesin-II and OSM-3 work collectively in groups of tens of motors

during cargo transportation. Interestingly, we observe an optimal density for the

collectively operating motors Kinesin-II and OSM-3 at which each motor moves

at maximum velocity. Kinesin-II and OSM-3 might not only tolerate the presence

of other motors in their close surrounding, but perhaps even benefit from their

presence.

The main response to crowding conditions of the molecular motors studied in this

chapter seems to be a decrease of run length, not a reduction of their velocities.

The response of particles in colloidal glasses and traffic systems to crowding,

studied in the previous chapters, is actually opposite: cars tend to slow down

and form traffic jams on crowded roads, while the diffusion time of colloidal

particles strongly increases at high densities. This different response to crowding

might be explained by the particle confinement in the two latter systems, which

is not present for motors walking along microtubule networks. Motors can simply

detach from the microtubules, diffuse through the cytoplasm and find another,

perhaps less crowded place on the microtubule network. In contrast, cars on a

crowded road cannot simply hop off, and are confined by the absence of off-ramps

that could provide faster alternative roads to continue their path. If present,

most drivers would probably not spent much time driving slowly in traffic jams,

but continue along the fastest available road to their destination. Expanding on

this analogy between traffic and molecular motor transport, we could speculate

that molecular motors might hop off and find another microtubule to increase

the efficiency of transport; such an interpretation would make sense from an

evolutionary perspective.
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Simulations of transport in ran-

dom networks

Using the totally asymmetric simple exclusion process (TASEP) and mean-field

transport theory, we investigate the transport in closed random networks with

simple crossing topology - two incoming, two outgoing segments, as a model for

molecular motor motion along biopolymer networks. Inspired by in vitro obser-

vations of molecular motor motion, similar to those described in the previous

chapter, we model the motor behavior at the intersections by introducing dif-

ferent exit rates for the two outgoing segments. Our simulations of this simple

network reveal surprisingly rich behavior of the transport current with respect

to the global density and exit rate ratio. For asymmetric exit rates, we find a

broad current plateau at intermediate motor densities resulting from the compe-

tition of two subnetwork populations. This current plateau leads to stabilization

of transport currents within such networks.
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8.1 Introduction

In the last chapter, we have studied the motion of molecular motors along

biopolymers using microscopy. We focused on high densities to investigate effects

of crowding. A popular model to describe the collective behavior of molecular

motors is the Totally Asymmetric Simple Exclusion Process (TASEP) [5, 7, 28].

Due to the discrete nature of individual motors this lattice model is particularly

appropriate to study molecular motor motion.

In this chapter, we use TASEP to simulate the collective motion of molecular

motors on networks similar to the ones studied experimentally in the previous

chapter. Recently, TASEP has been applied to transport along cytoskeleton as-

semblies [12, 98]. Originally formulated for one-dimensional systems, TASEP was

extended to networks by defining the dynamics at crossings. Recent experimen-

tal observation of molecular motor motion along the cytoskeleton highlights the

non-trivial dynamics of molecular motors at crossings: specific types of motors

were found to switch between segments with specific probabilities [90, 99–101].

This preference at crossings might crucially determine the transport properties

of the network. Indeed, a recent simulation of a single-crossing system highlights

the heterogeneous motor density among the crossing filaments resulting from a

preference in outflow directions [102, 103]. To particularly study these density

heterogeneities and other crowding effects, we have assumed that the motors do

not detach and stay on the network for infinite times.

Because of the characteristics of real motors to change paths at intersections in

a preferred direction, we study the role of crossings with asymmetric exit rates

on the transport behavior of large networks using the TASEP model. We study

network structures inspired by our in vitro experiments (see Fig. 3.4(a)), in which

typically arrays of cytoskeleton filaments are created by attachment to a surface,

forming a network topology of intersecting lines in a two-dimensional plane. We

show that for large networks the ratio of exit rates at crossings together with the

global motor density determines the transport capacity of the network. We iden-

tify four regimes of current-density behavior: A low-density regime controlled

by the relative exit probabilities and network topology, a jamming regime with

heterogeneous density and resulting complex interplay of subnetwork currents,

96



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Simulations of transport in random networks

a saturation regime and a high-density regime with local dynamics and homo-

geneous density. The extend of each regime and the actual value of the current

is found to strongly depend on the relative exit rates at crossings. The general

character of TASEP makes the simulations of driven motion on networks pre-

sented in this chapter relevant to a wider context of transport phenomena, e.g.

to vehicular transport through a network of highways.

8.2 Model description

We model cytoskeleton assemblies with a two-dimensional network of intersecting

segments. Inspired by in vitro experiments we create a network topology by

projecting lines in random positions and directions on a square (Fig. 3.4(b)). We

introduce periodic boundary conditions by connecting the beginning and end of

every line at the boundaries of the square, thus creating a closed network. The

resulting network is characterized by the number of crossings Nv, the number of

segments Ns = 2Nv and the density of motors ρ.

Molecular motor motion is modeled with the Totally Asymmetric Simple Ex-

clusion Process (TASEP), in which particles perform uni-directional random se-

quential hops constrained by the fact that they may not overlap with each other.

During a single update, a motor advances one site forward if the target site is

unoccupied, otherwise no progression occurs. A detailed description of TASEP

and its most important results can be found in chapter 3.

When a motor arrives at the crossing, it continues with probability γ along one

outgoing segment and with probability 1− γ along the other, independent of the

incoming segment. The probability γ thus defined for every crossing is a fixed

property of the network. In this study, for simplicity we define equal γ for all

crossings. We also neglect the possible unbinding of motors that is observed for

real molecular motors [91, 99] and studied by simulations by Neri et al. [98]; this

allows us to focus on the physical effects of jamming and flow. and obtain a

simple physical picture in terms of γ. The control parameters of our simulations

are thus the exit probability γ, which due to symmetry we choose as 0.5 ≤ γ ≤ 1,

and the global motor density 0 < ρ < 1. We consider relatively large networks

with Ns ∼ 500 and uniform segment length L = 500. All data have been averaged
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Figure 8.1: Transport current J dependence on global density ρ for different
exit probabilities γ obtained from the TASEP simulations. For comparison,
we show the current through a single segment by the dashed black line. Data is
averaged over 10 000 cycles after waiting for 3000 cycles to reach steady-state.

over 10 000 cycles in steady-state, after discarding the transient (initial ∼ 3 000

cycles).

8.3 Results

The effect of exit probability γ on the network current is shown in Fig. 8.1, where

we plot the total current versus density ρ for various values of γ (blue curves).

For comparison, we also show the mean-field current through a single segment

Js = ρ(1 − ρ) (black dashed line) [31] that exhibits a maximum at ρ = 0.5 due

to competition of growing density increasing the current, and density-induced

jamming reducing it. The network current behaves similar to that of a single

segment for symmetric exit rates (γ = 0.5, upper blue curve in Fig. 8.1): it is

symmetric around ρ ∼ 0.5, and deviates from that of the single segment only at

densities around 0.5. The situation changes for asymmetric exit probability (γ 6=
0.5), where the network current becomes asymmetric and progressively reduces

and flattens with increasing γ, until at γ ∼ 0.9, it becomes largely independent

of density. Thus, the asymmetric exit probability reduces the network current

and stabilizes it at the same time.

How does this emerging current plateau arise from the interplay of currents in the

network? To answer this question we investigate the distribution of individual
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Figure 8.2: Local density distribution (shown by color) in segments (hori-
zontal axis), depending on average global density ρ (vertical axis). (a) γ = 0.5,

homogeneous distribution. (b) γ = 0.8, heterogeneous distribution.

segment densities ρs. We compare density distributions for symmetric and asym-

metric exit probability in Fig. 8.2. For γ = 0.5, the density is homogeneous across

the entire network: local and global densities largely coincide with only minor

variation across segments (Fig. 8.2(a)). For γ = 0.8, in contrast, we find strong

inhomogeneity at intermediate global density (Fig. 8.2(b)): the asymmetric exit

probability leads to redistribution of paths and resulting redistribution of seg-

ment densities. Indeed, the asymmetric exit probability redistributes the motors

into two subsystems: associated with the vertex exit probabilities, the network

can be considered as consisting of two interconnected subnetworks, one consist-

ing of segments with entry probability γ, and the other consisting of segments

with probability 1 − γ. The subnetwork with higher entry probability should

populate faster, leading to the heterogeneous distribution of densities shown in

Fig. 8.2(b). This is indeed confirmed in the subnetwork density distributions as

shown in Fig. 8.3: at intermediate ρ, the density of the high-preferability sub-

network has grown much more, as reflected in the shift of the distribution to

higher density. Due to interplay of the individual segments, the density within

each subnetwork is heterogeneously distributed.

To link this density evolution to the total current, we plot average densities of the

two subnetworks together with the total current in Fig. 8.4(a) and (b). Clearly,

the high-preferability subnetwork takes up particles at a faster rate as shown in

Fig. 8.4(b); this is a direct result of the higher entry probability. The initial

slopes of the growing densities in high and low preferability subnetworks are 2γ

and 2(1−γ), reflecting the two entry probabilities. When roughly half of the net-

work sites are occupied (ρ ∼ 0.5), high-preferability segments become saturated,

and particles are increasingly taken up by the low-preferability segments. This
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Figure 8.3: Histograms of density distributions for high-preferability seg-
ments (red line) and low-preferability segments (blue line) for γ = 0.8. The
three panels show different global densities ρ. Large difference in the distribu-

tion occurs for the intermediate density.

interplay of the two subnetworks leads to stabilization of the total network cur-

rent: as we will see below, jamming effects in the high-preferability subnetwork

lead to an emerging state in the low-preferability subnetwork with rapidly chang-

ing density but constant current which ultimately leads to the current plateau as

demonstrated in Fig. 8.4(a). This change of contributions is most clearly reflected

in the derivatives of the densities as shown in Fig. 8.4(c). While the current is

reduced, it becomes largely independent of density. At even higher density, the

network becomes homogeneous and the difference between subnetworks vanishes,

see Fig. 8.4(b). Hence, our approach to reduce the network into two interfering

subnetworks allows us to understand the network behavior qualitatively.

We can model the network transport properties quantitatively, using basic rela-

tions for single segments, as described in chapter 3 and by Derrida et al. [31].

The average current through a network is given by J = 1
Ns

∑
Js, with Js the

single-segment current which for a homogeneous segment with density ρs is

Js = ρs(1 − ρs). Provided segments are sufficiently long (L >> 1) to neglect

boundary effects, the segment density ρs, and hence the segment current Js, is de-

termined solely by the incoming rate, 0 ≥ α ≥ 1, and outflow rate, 0 ≥ β ≥ 1 [31],

which are themselves determined by the densities at the vertices ρv. For the in-

flow rate, α = ρvγ or α = ρv(1−γ), while the outflow rate β = 1−ρv is controlled

solely by the availability of an empty exit vertex.

100



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Simulations of transport in random networks

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

Global density ρ

C
ur

re
nt

, J

II

ρ
2
∗

III

ρ
3
∗

IV

I ρ
1
∗

0 0.25 0.5 0.75 1
0

0.4

0.8

1.2

1.6

2

dρ
l /d

ρ,
  d

ρh /d
ρ

Global density ρ
 

 

IVIIIII

ρ
2
∗ ρ

3
∗

I

ρ
1
∗

(a)

(b)

(c)

Figure 8.4: (a) Transport current J for γ = 0.8 calculated using TASEP
model (blue curve) and iteration method (brown curve). The mean-field single
segment current Js = ρs(1− ρs) is shown by the dashed black curve. Dashed
green lines show approximate solutions obtained using the two subnetwork
approach. (b) Dependence of mean densities in low- 〈ρl〉 (blue) and high-
preferability 〈ρh〉 (red) subnetworks on the global density ρ. Shaded blue
and red areas show the density distributions within the subnetworks. Dashed
black curve shows the mean density of crossings 〈ρv〉. (c) Derivatives ∂〈ρh〉/∂ρ
(red) and ∂〈ρl〉/∂ρ (blue) showing mean growth rates in the high- and low-
preferability subnetworks. In all figures ρ∗1, ρ∗2 and ρ∗3 indicate the transitions

between different regimes.
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Using these local relations for segment densities and currents, we can now com-

pute the average steady-state current of the network. We do this by using an it-

erative method to converge density and current following the approach described

in Neri et al. [12]. Segment currents Js are controlled by the density at vertices

ρv, while vice versa ρv depends on the currents Js that flow through the crossings.

The steady-state current and density distributions are found by iteratively com-

puting ρv and Js until the total flow into and out of each crossing is equal [12].

The resulting steady-state current (brown solid line in Fig. 8.4(a)) reproduces

all features of the TASEP simulations. This close correspondence lends credence

to the model, in which we apply mean-field one-dimensional TASEP theory to

complex networks. We will show in the following that a further simplification to

two interconnected subnetworks allows for a surprisingly good description of the

network behavior. We represent the two subnetworks by their average density

〈ρh〉 and 〈ρl〉, and the corresponding subnetwork currents by Jh and J l. This

allows physical insight into the transport behavior of the network and its depen-

dence on γ. We distinguish four regimes as a function of increasing density as

discussed below.

8.3.1 Linear regime

At low density, currents in the two subnetworks are determined solely by the entry

rates γ and 1 − γ. The average subnetwork densities grow as 〈ρh〉 = 2γρ and

〈ρl〉 = 2(1 − γ)ρ, from which we can directly compute the subnetwork currents

Jh and J l using Js = ρs(1 − ρs). The resulting total current is J = 1/2(Jh +

J l) = ρ(1 − ρ) − ρ2(1 − 2γ)2 (dashed green line in Fig. 8.4(a)), where the first

term indicates the current for homogeneous density distribution, and the second

term reflects the current reduction due to density redistribution between the two

subnetworks. This term vanishes for γ = 0.5, for which the density distribution

becomes homogeneous. Note that the real reduction is slightly lower than given

by the term ρ2(1− 2γ)2 due to density heterogeneities within the subnetworks.

This low-density linear regime holds up to some critical density ρ∗1, at which the

most populated high-preferability segment becomes jammed (α ≥ β) and the

density 〈ρh〉 grows faster than linear as shown by the derivatives in Fig. 8.4(c).

We can calculate ρ∗1 and the density distribution amongst segments in the low-

density regime from the structure of the network with the help of the transition
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Figure 8.5: Comparison of segment densities obtained by TASEP simulations
(horizontal axis) and transition matrix ε solution (vertical axis) for γ = 0.8
and ρ = 0.05. Every point represents the local segment density. The black
identity line ’y = x’ signifies excellent agreement between TASEP simulations
and transition matrix theory. Blue dots correspond to the low-preferability

segments, red ones to the high-preferability.

matrix εij, whose elements εij denote the transition probabilities from vertex

i to j. We define element εij = 0 when vertex j is not connected directly

to vertex i through one segment, εij = γ when j is connected to i through a

high-preferability segment, and εij = 1 − γ when j is connected to i through a

low-preferability segment. This matrix specifies the transitions between vertices,

giving the probability a particle continues from one vertex to the next; the eigen-

vector corresponding to eigenvalue 1 of matrix ε holds the relative distribution

of densities ρv amongst vertices in steady-state.

Knowing the densities of all vertices we can calculate the densities of every seg-

ment ρs through incoming rate α = γρ′v or α = (1 − γ)ρ′v and outgoing rate

β = 1 − ρ′′v. At low global density ρ ≤ ρ∗1, the computed values of ρs from

the transition matrix are in excellent agreement with the TASEP simulation

results, as shown in Fig. 8.5. The low density regime ends when the first (high-

preferability) segment becomes jammed α > β. For γ = 0.5 we can find a simple

analytical solution, since in this isotropic case all segments and vertices are iden-

tical. By solving α > β ⇔ γρv > 1− ρv we get ρv > 2/3, and find the maximum

global density where the linear regime is still valid ρ∗1 = ρv/2 = 1/3. For γ 6= 0.5

the network is anisotropic and the distribution of vertex densities has a finite

width, so a simple analytical solution with all ρv equal is no longer possible. For

every segment within a particular network, however, we can solve the condition

α > β using matrix ε to find the global density ρ∗1 where jamming first occurs.
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8.3.2 Jamming regime

Above ρ∗1, jamming will spread to neighboring high-preferability segments in

the direction opposite to the local currents, similar to jam propagation opposite

to vehicle motion in traffic [50], as can be seen in Fig. 5.2(a). Since for the

single segment, the transition from the unjammed (ρs = α ) to the jammed state

(ρs = 1−β) is quite abrupt for α ≈ β < 0.5, the jam propagation is accompanied

by a nonlinear growth of 〈ρh〉, which is compensated by a slightly stagnating

growth in the low-preferability subnetwork 〈ρl〉, as shown by the derivatives in

Fig. 8.4(c).

With the gradual propagation of jams, the density in the high-preferability sub-

network becomes increasingly heterogeneous as demonstrated by the red shaded

area in Fig. 8.4(b). This heterogeneity reaches a maximum in the middle of the

jamming regime and diminishes again as large fractions of high-preferability seg-

ments become jammed around one saturating density. Eventually, at the end of

the jamming regime defined by ρ = ρ∗2, all high-preferability segments become

saturated and their density does not grow any further (see Fig. 8.4(b) and 8.4(c)).

Towards the end of the jamming regime (ρ→ ρ∗2) all high-preferability segments

and connected vertices are saturated with equal particle density, ρhs = ρv = 1−β.

At the same time, the low preferability segments are still unjammed. Hence, at

ρ∗2, the density difference between the two subnetworks is maximal.

8.3.3 Saturation regime

Above ρ∗2, the density in the high-preferability subnetwork no longer increases,

and further increase of ρ takes place in the low-preferability subnetwork, where

consequently jams start to form. Since high- and low-preferability segments are

connected by the same vertices, vertices with saturated uniform density ρv control

the inflow (α = ρv(1−γ)) and outflow (β = 1−ρv) of low-preferability segments.

The only regime where the segment density ρls can rapidly change while inflow

and outflow rates remain constant is during the shock phase [31], when jammed

and free flow coexist within one segment and α = β. Using this equality for the

low-preferability segments, we obtain ρv = 1/(2− γ). This allows us to calculate

the saturating current of high-preferability segments: using Jh = β(1− β) with
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β = 1 − ρv, we obtain Jh = (1 − γ)/(2 − γ)2. Since in the low-preferability

segments, jam and free flow coexist, 〈ρl〉 changes from α = (1 − γ)/(2 − γ) to

1 − β = 1/(2 − γ) with increasing ρ, corresponding to 1/6 and 5/6 for γ =

0.8, again in agreement with the simulations. During this rapid density change

the low-preferability subnetwork current remains constant J l = β(1 − β). The

resulting total current is thus J = 1/2(Jh +J l) = (1− γ)/(2− γ)2 (dashed green

line in Fig. 8.4(b)), independent of ρ, manifesting the current plateau.

Indeed, the TASEP simulations show plateau-like behavior with current values

only slightly higher than the value (1 − γ)/(2 − γ)2 (for γ = 0.8 in Fig. 8.4(a)

the TASEP simulations plateau value is ∼ 0.141 while (1− γ)/(2− γ)2 = 0.139).

Again this small discrepancy results from the spread in densities within the sub-

networks opposed to the fixed average densities 〈ρl〉 and 〈ρh〉 assumed here.

The transition density ρ∗2 at the start of the saturation regime can be estimated

from the requirement that for ρ ≥ ρ∗2, all high-preferability segments are jammed,

i.e. 〈ρh〉 = 1 − β = ρv = 1/(2 − γ). At the same point all low-preferability

segments are still unjammed 〈ρl〉 = α = (1 − γ)ρv = (1 − γ)/(2 − γ), this leads

to the mean density ρ∗2 = (〈ρls〉+ 〈ρhs 〉)/2 = 0.5 which is independent of γ.

By the end of the saturation regime at ρ = ρ∗3, 〈ρl〉 has increased due to jam-

ming until 〈ρl〉 = 〈ρh〉 = 1/(2 − γ) and the density is homogeneous throughout

the whole network. This immediately gives the upper density of the saturation

regime: ρ∗3 = 1/(2− γ).

Interestingly, 〈ρl〉 remains much more homogeneous while rapidly increasing than

〈ρh〉 in the jamming regime (see blue and red shades in Fig. 8.2(b)). This differ-

ence is a direct result of the vertex densities controlling the segment densities (see

black curve in Fig. 8.4(b)). During the jamming regime the crossing densities ρv

evolve rapidly, while in saturation regime the crossing densities are saturated and

fixed at ρv = 1/(2 − γ), thus creating density heterogeneities within segments

rather than between them.

8.3.4 High density regime

For ρ > ρ∗3 the density in both high- and low-preferability segments is given by

the outflow rate (β = 1− ρv) and becomes independent of the exit probability γ.
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As a result, all segments behave identically ρhs = ρls = ρv = ρ, as shown by the

perfect overlap and the linear increase with slope 1 of the red and blue curves in

Fig. 8.4(b). The current is then simply J = ρ(1− ρ), fitting perfectly with both

TASEP simulation and iteration method (see dashed green line in Fig. 8.4(a)).

8.4 Conclusions

Using TASEP simulations and mean-field theory on complex networks, we have

studied the transport properties of large networks with asymmetric exit rates. We

find that the transport current depends strongly on the relative exit probabilities

and the global density: together they determine the transport properties and

density distribution of the network. Asymmetric exit rates lead to a strong

decrease of the transport current, but at the same time to the emergence of a

current plateau that stabilizes the current: this plateau makes the current largely

independent of variations in particle density.

The main mechanism underlying this complex network behavior is the splitting

of the network into two subnetworks according to the exit probabilities γ and

1− γ. This splitting into two subnetworks together with the (random) topology

of the network sets the transport pathways, which, at intermediate densities,

lead to heterogeneous crowding of the network. The resulting four transport

regimes - linear, jamming, saturation, and high-density - are characterized by

the relative densities of the two subnetworks, and the density distribution within

each subnetwork. Former is determined by γ, latter by the network topology.

The topology and asymmetric exit probabilities used here mimic that of typical

in vitro experiments in which molecular motors that walk along biopolymer net-

works exhibit certain preference to proceed along or switch direction at filament

crossings. The work presented in this chapter hence provides insight into how

local motor dynamics can result in collective transport properties of a biopolymer

network. However, as seen in the experiments on molecular motors in the previ-

ous chapter, additional effects arise from the hopping-off of real motors reflected

by their finite run lengths, see e.g. Fig. 7.7(b). Such detachment of motors can

weaken the correlations and jamming effects we observe in the simulations, and

it is currently unclear how relevant the particular network crowding effects are in
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real molecular motor motion in cells. Another additional crowding effect arises

from the cell background: as the cytoskeleton and the cytoplasma are crowded

with different species, it remains unclear how such a diverse crowded background

slows down or facilitates transport. The exclusion processes applied for modeling

here, however, seems to be widely applicable in general modeling of transport and

arrest phenomena; besides the molecular motors studied in the previous chapter,

it also models traffic (chapter 5) and even glasses (chapter 4). Therefore, the re-

sults of this chapter may provide generic insights into traffic jams and transport

capacities of highway networks and other systems with similar network based

transport such as the Internet and power-grids.
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Summary

In this thesis we study collective effects in many-particle systems driven by some

external force. The driving force results in large scale transport, while crowding

due to frustration of the constituent particles leads to dynamic slow-down and

arrest. It is this competition between driving force and crowding in the transport

properties that we study for a few systems in this thesis. The driven systems

under study, however, are of very different nature; we study traffic on highways,

sheared colloidal glasses and molecular motors moving along the cytokeleton.

The transport properties of complex driven systems is not yet understood at this

point, and new methods and techniques are needed. We contribute to the un-

derstanding of driven systems by connecting fundamental interactions between

particles in the different systems and developing techniques to analyze the trans-

port properties.

We make a connection between the dynamics in traffic and glasses by compar-

ing the fundamental interactions between particles. In both cases activity of

one particle is only possible if it is not constrained by other particles nearby.

This simple interaction principle lies at the origin of both the sharp increase

of viscosity in glass forming liquids upon cooling and the emergence of traffic

jams on crowded roads. Taking advantage of the established analogy, we apply

mathematical tools developed in the glass community to traffic flow models, and

numerically identify a critical point in a deterministic limit of the well-known

Nagel-Schreckenberg model. Lattice models for glassy dynamics predict a simi-

lar critical point, strengthening the analogy between driven systems further. The

critical point in traffic demarcates the onset of phase coexistence of free flowing

and jammed traffic. Interestingly, our experimental study of colloidal glasses

reveals similar phase coexistence when a critical shear force is applied. At low

applied shear rates the colloidal glass flows homogeneously, while above a critical
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shear rate two bands with different dynamical properties emerge. With confocal

microscopy we observe the trajectories of individual particles in the colloidal glass

under applied shear. Particles in the spatially separated flow bands have differ-

ent translational velocities as well as different diffusion time scales. Motivated by

these observations of phase coexistence in driven systems we develop an analyti-

cal criterion for the occurrence of phase coexistence in one-dimensional transport

models. We analyze the size of clusters of arrested particles by quantifying the

growth rates at their boundaries. In these one-dimensional models we can hence

find the conditions under which a cluster can grow indefinitely and true phase

coexistence occurs. We apply this criterion to the Nagel-Schreckenberg model,

to analytically confirm phase coexistence in the deterministic limit.

In the last part of this thesis we study the transport properties of molecular mo-

tors moving along the cytoskeletal network. We develop a new method to extract

and analyze the motion of molecular motors from microscopy experiments. The

method is based on correlations of intensities from fluorescence microscopy data,

and is designed to give a fast and accurate estimate of the dynamic parameters

of molecular motors. Simultaneously, we measure the density of motors on a

microtubule from the fluctuations in the spatially averaged intensities. Using

this method we study the velocity and run length of the microtubule specific

molecular motors Kinesin-1, Kinesin-II and OSM-3 as a function of motor den-

sity. At high densities, the run length of all motors significantly decreases, while

the velocity seems to depend only weakly on motor density. These crowding

effects start to occur at surprisingly low densities for “the lone walker” Kinesin-

1, indicating a long-ranged repulsive interaction for this motor, which is known

to carry cargo more or less alone. The collectively operating motors Kinesin-II

and OSM-3, on the other hand, seem to have much smaller interaction lengths.

Our results on all motors thus nicely fit their cellular transport function. In

the final chapter we simulate the transport properties of many particles moving

along complex networks and find an intriguing relation between particle density,

network structure and transport current. The network structure in simulations,

consisting of crossing lines in a plane, is inspired by our in vitro microscopy

experiments where microtubules are randomly attached to a glass plate. Our

approach to take simple hard-core interactions between particles, however, gives

the simulations general relevance to driven systems, for example to model vehicu-

lar transport through networks of highways. While moving through the network,
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particles need to choose a direction in which to continue their motion at each

crossing. We find that anisotropy in the network, resulting from a preferred exit

direction at crossings, leads to a density redistribution through the network. As

a function of global motor density on the network, various stages of homoge-

neous and heterogeneous density distributions are identified. The properties and

boundaries of each stage can be understood by analyzing the local flow rates.

The diversity of driven systems we encountered in this thesis is enormous, and

only represents a small fraction of systems that are driven far from equilibrium.

Nevertheless, one goal of studying the physics far from equilibrium is to find

common underlying principles of flow and dynamic arrest that can be used to

describe all those different systems. This search for universal principles is inspired

by the physics of systems in equilibrium, which is understood on a general level

by the theories of thermodynamics and statistical physics. The work described

in this thesis gives a few insights on commonalities of driven systems, which

can be used towards a general understanding. The fundamental interactions

between particles already create an analogy between different systems, which

can be used to transfer techniques between systems and ultimately demonstrate

common behavior, such as the analogous critical point in models of glasses and

traffic. We have focused on the competition between driving force and crowding

effects in determining transport properties. It turns out that this competition can

be understood reasonably well by comparing local flow rates. As a final remark,

we note that the dimensionality of a system is important in determining how

much the transport current is reduced by crowding: on a highway, cars have no

escape paths upon encountering traffic jams and crowding thus does immediately

reduce the transport current. Molecular motors, on the other hand, can avoid

crowding by detaching from the cytoskeleton and moving through the cytoplasm.

While similarly, particles in the three dimensional colloidal glasses have frustrated

dynamics, but can still relax to a certain extend by collective rearrangements of

particles. This rich behavior once again indicates the complexity of transport in

driven systems.

119



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema



209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema209852-L-bw-Miedema

Samenvatting

In dit proefschrift onderzoeken we de transport eigenschappen van verkeer op

snelwegen, van gedreven collöıdale glazen en van moleculaire motoren die over

het cytoskelet in biologische cellen bewegen. Deze ogenschijnlijk totaal verschil-

lende systemen hebben gemeen dat het transport door veel “deeltjes” tegelijk

wordt uitgevoerd en dat er een externe kracht of energiebron nodig is om de

deeltjes gericht te verplaatsen. Door de drijvende kracht zijn zulke systemen niet

in evenwicht, en daardoor nog maar slecht begrepen. De drijvende kracht doet

de deeltjes in een systeem bewegen, terwijl afstotende interacties tussen de vele

deeltjes de doorstroming juist verlagen. De afstotende krachten worden belan-

grijker naarmate de dichtheid van deeltjes hoger wordt: meer deeltjes betekent

simpelweg meer interactie. Het is deze competitie tussen de drijvende kracht

en de ophoping van afstotende deeltjes die de transport eigenschappen van een

systeem bepalen en die wij nader bestuderen in dit werk om tot een beter begrip

van gedreven systemen te komen. Hieronder volgt een korte samenvatting van

onze bevindingen in ieder van de bestudeerde systemen.

Collöıdale glazen zijn dichte verzamelingen van deeltjes met micron grootte die

eigenschappen van een vaste stof hebben, maar de structuur van een vloeistof.

Het vaste karakter van glazen komt voort uit de afstotende krachten tussen de

dicht op elkaar gepakte deeltjes. Deze afstotende krachten tussen deeltjes geven

het materiaal als geheel rigiditeit. De collöıdale deeltjes bewegen echter nog wel

een beetje in glazen. Door een schuifkracht op een collöıdaal glas te zetten gaan

de deeltjes nog meer bewegen. Met een microscoop kunnen we de dynamica

van deeltjes in 3D volgen en bepalen wanneer de externe kracht de transport

eigenschappen van het collöıdale glas gaat domineren. Een sterke schuifkracht

resulteert in een heterogene verdeling van stroomsnelheden: deeltjes dichtbij de

plek waar de kracht wordt aangebracht bewegen snel, terwijl de deeltjes verder
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weg langzaam bewegen. Men zou kunnen zeggen dat het collöıdale glas breekt

boven een bepaalde schuifkracht.

Bestuurders van auto’s proberen botsingen te voorkomen; dit kan men opvat-

ten als een afstotende kracht tussen de “auto-deeltjes”. De afstotende kracht op

korte afstanden tussen deeltjes is analoog aan die in collöıdale glazen. Deze fun-

damentele interactie geeft glazen hun vaste karakter en zorgt voor de vorming van

files op snelwegen. Wanneer er veel auto’s op een drukke weg zijn ontstaan files

die de doorstroming aanzienlijk verlagen. Wij analyseren, door verkeersmodellen

analytisch en numeriek te bestuderen, wanneer files stabiel zijn en hoe groot ze

kunnen worden. Alleen onder bijzondere condities, als alle fluctuaties in het ri-

jgedrag verdwijnen en bestuurders extreem voorzichtig zijn, kan een file oneindig

groot worden. Dankzij de analoge afstotende krachten in modellen voor verkeer

en glazen zijn we deze bijzondere limiet op het spoor gekomen. Dit illustreert

het belang van een algemene aanpak van gedreven systemen.

Tenslotte bestuderen we moleculaire motoren die vracht transporteren in biolo-

gische cellen. Deze motoren binden aan het cytoskelet, een netwerk van biopoly-

meren dat cellen structuur geeft. Door consumptie van ATP wandelen molec-

ulaire motoren langs het cytoskelet en verplaatsen zo vracht van de ene naar

de andere kant van de cel. Wij bestuderen het transport van moleculaire mo-

toren zowel experimenteel als met simulaties. De simulaties leren ons hoe de

netwerk structuur en de motor dichtheid de doorstroming bepalen. We nemen

simpele (wederom) afstotende interacties tussen motoren aan, waardoor we grote

netwerken met veel deeltjes kunnen simuleren. We vinden interessante stro-

mingspatronen met heterogene of homogene verdelingen van motoren en stroom-

snelheden, afhankelijk van de netwerk structuur en de totale motor dichtheid.

Experimenteel bestuderen we de daadwerkelijke interacties tussen motoren door

te observeren hoe de transport eigenschappen veranderen bij hoge motor dichthe-

den. Hiertoe ontwikkelen we eerst een techniek die microscopische beelden van

bewegende moleculaire motoren tot hoge dichtheden kan analyseren, en boven-

dien snel en accuraat is. Voor het eerst meten we met deze techniek de interactie

lengte tussen motoren en vinden resultaten die uitstekend in overeenstemming

zijn met de specifieke rol van ieder type motor in de cel: interacties tussen

coöperatief werkende moleculaire motoren blijken de nabijheid van andere mo-

toren te tolereren, terwijl individueel werkende motoren andere motoren sterk

afstoten.
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