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Abstract. We generalize the construction of lattice-valued models of set theory due to Takeuti,
Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a
paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel
set theory.

§1. Introduction. If B is any Boolean algebra and V a model of set theory, we can
construct by transfinite recursion the Boolean-valued model of set theory VB consisting of
names for sets, an extended language LB, and an interpretation function �·� : LB → B

assigning truth values in B to formulas of the extended language. Using the notion of
validity derived from �·�, all of the axioms of ZFC are valid in VB. Boolean-valued models
were introduced in the 1960s by Scott, Solovay, and Vopěnka; an excellent exposition of
the theory can be found in Bell (2005).

Replacing the Boolean algebra in the above construction by a Heyting algebra H, one
obtains a Heyting-valued model of set theory VH. The proofs of the Boolean case transfer
to the Heyting-valued case to yield that VH is a model of IZF, intuitionistic ZF, where
the logic of the Heyting algebra H determines the logic of the Heyting-valued model of
set theory (cf. Grayson, 1979; Bell, 2005, chap. 8). This idea was further generalized
by Takeuti & Titani (1992), Titani (1999), Titani & Kozawa (2003), Ozawa (2007), and
Ozawa (2009), replacing the Heyting algebra H by appropriate lattices that allow models
of quantum set theory (where the algebra is an algebra of truth-values in quantum logic) or
fuzzy set theory.

In this paper, we shall generalize this model construction further to work on algebras that
we shall call reasonable implication algebras (§2). These algebras do not have a negation
symbol, and hence we shall be focusing on the negation-free fragment of first-order logic:
the closure under the propositional connectives ∧, ∨, ⊥, and →. Classically, of course,
every formula is equivalent to one in the negation-free fragment (since ¬ϕ is equivalent to
ϕ → ⊥). In §3, we define the model construction and prove that assuming a number
of additional assumptions (among them a property we call the bounded quantification
property), we have constructed a model of the negation-free fragment of ZF− (which is
classically equivalent to ZF−).

In §4 and §5, we apply the results of §3 to a particular three-valued algebra where we
prove the bounded quantification property (§4) and the axiom scheme of Foundation (§5).
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GENERALIZED ALGEBRA-VALUED MODELS OF SET THEORY 193

Finally, in §6, we add a negation symbol to our language. With the appropriate negation,
our example from §4 and §5 becomes a model of a paraconsistent set theory that validates
all formulas from the negation-free fragment of ZF. We compare our paraconsistent set
theory to other paraconsistent set theories from the literature and observe that it is funda-
mentally different from them.

We should like to mention that Joel Hamkins independently investigated the construction
that is at the heart of this paper and proved a result equivalent to our Theorem 6.3 (presented
at the Workshop on Paraconsistent Set Theory in Storrs, CT in October 2013).

§2. Reasonable implication algebras.

Implication algebras and implication-negation algebras. In this paper, all structures
(A, ∧, ∨, 0, 1) will be complete distributive lattices with smallest element 0 and largest
element 1. As usual, we abbreviate x ∧ y = x as x ≤ y. An expansion of this structure by
an additional binary operation ⇒ is called an implication algebra and an expansion with
⇒ and another unary operation ∗ is called an implication-negation algebra. We emphasize
that no requirements are made for ⇒ and ∗ at this point.

Interpreting propositional logic in algebras. By LProp we denote the language of
propositional logic without negation (with connectives ∧, ∨, →, and ⊥ and countably
many variables Var); we write LProp,¬ for the expansion of this language to include the
negation symbol ¬. Let L be either LProp or LProp,¬, and let A be either an implication
algebra or an implication-negation algebra, respectively. Any map ι from Var to A (called
an assignment) allows us to interpret L-formulas ϕ as elements ι(ϕ) of the algebra. Par
abus de langage, for an L-formula ϕ and some X ⊆ A, we write ϕ ∈ X for “for all
assignments ι : Var → A, we have that ι(ϕ) ∈ X”. As usual, we call a set D ⊆ A a filter if
the following four conditions hold: (i) 1 ∈ D, (ii) 0 /∈ D, (iii) if x, y ∈ D, then x ∧ y ∈ D,
and (iv) if x ∈ D and x ≤ y, then y ∈ D; in this context, we call filters designated sets of
truth values, since the algebra A and a filter D together determine a logic �A,D by defining
for every set � of LProp-formulas and every LProp-formula ϕ

� �A,D ϕ : ⇐⇒ if for all ψ ∈ �, we have ψ ∈ D, then ϕ ∈ D.

We write PosA := {x ∈ A ; x �= 0} for the set of positive elements in A. In all of the
examples considered in this paper, this set will be a filter.

The negation-free fragment. If L is any first-order language including the connectives
∧, ∨, ⊥ and → and � any class of L-formulas, we denote closure of � under ∧, ∨, ⊥,
∃, ∀, and → by Cl(�) and call it the negation-free closure of �. A class � of formulas
is negation-free closed if Cl(�) = �. By NFF we denote the negation-free closure of the
atomic formulas; its elements are called the negation-free formulas.1

Obviously, if L does not contain any connectives beyond ∧, ∨, ⊥, and →, then NFF =
L. Similarly, if the logic we are working in allows to define negation in terms of the other
connectives (as is the case, e.g., in classical logic), then every formula is equivalent to one
in NFF.

1 In some contexts, our negation-free fragment is called the positive fragment; in other contexts,
the positive closure is the closure under ∧, ∨, ⊥, ∃, and ∀ (not including →). In order to avoid
confusion with the latter contexts, we use the phrase “negation-free” rather than “positive”.
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194 BENEDIKT LÖWE AND SOURAV TARAFDER

Reasonable implication algebras. We call an implication algebra A = (A, ∧, ∨, 0,
1, ⇒) reasonable if the operation ⇒ satisfies the following axioms:

P1 (x ∧ y) ≤ z implies x ≤ (y ⇒ z),
P2 y ≤ z implies (x ⇒ y) ≤ (x ⇒ z), and
P3 y ≤ z implies (z ⇒ x) ≤ (y ⇒ x).

We say that a reasonable implication algebra is deductive if

((x ∧ y) ⇒ z) = (x ⇒ (y ⇒ z)).

It is easy to see that any reasonable implication algebra satisfies that x ≤ y implies x ⇒
y = 1. Similarly, it is easy to see that in reasonable and deductive implication algebras, we
have (x ⇒ y) = (x ⇒ (x ∧ y)). These facts are being used in the calculations later in
the paper. It is easy to check that all Boolean algebras and Heyting algebras are reasonable
and deductive implication algebras.

Recurring examples. The following two examples will be crucial during the rest of
the paper: The three-valued Łukasiewicz algebra Ł3 = ({0, 1/2, 1}, ∧, ∨, ⇒, 0, 1) with
operations defined as in Figure 1 is a reasonable, but non-deductive implication algebra.
The three-valued algebra PS3 = ({0, 1/2, 1}, ∧, ∨, ⇒, 0, 1) with operations defined as in
Figure 2 is a reasonable and deductive implication algebra which is not a Heyting algebra.
Let us emphasize that, contrary to usage in other papers, we consider Ł3 and PS3 as
implication algebras without negation (cf. §6 for adding negations to PS3).

§3. The model construction.

3.1. Definitions and basic properties. Our construction follows very closely the
Boolean-valued construction as it can be found in Bell (2005). We fix a model of set theory
V and an implication algebra A = (A, ∧, ∨, 0, 1, ⇒) and construct a universe of names
by transfinite recursion:

VAα = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ VAξ )} and

VA = {x ; ∃α(x ∈ VAα )}.
We note that this definition does not depend on the algebraic operations in A, but only on
the set A, so any expansion of A to a richer language will give the same class of names
VA. By L∈, we denote the first-order language of set theory using only the propositional
connectives ∧, ∨, ⊥, and →. We can now expand this language by adding all of the

Fig. 1. Connectives for the algebra Ł3.

Fig. 2. Connectives for PS3.
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GENERALIZED ALGEBRA-VALUED MODELS OF SET THEORY 195

elements of VA as constants; the expanded (class-sized) language will be called LA. As in
the Boolean case (Bell, 2005, Induction Principle 1.7), the (meta-)induction principle for
VA can be proved by a simple induction on the rank function: for every property 	 of
names, if for all x ∈ VA, we have

∀y ∈ dom(x)(	(y)) implies 	(x),

then all names x ∈ VA have the property 	.
As in the Boolean case, we can now define a map �·� assigning to each negation-free

formula in LA a truth value in A as follows. If u, v in VA and ϕ,ψ ∈ NFF, we define

�⊥� = 0,

�u ∈ v� =
∨

x∈dom(v)

(v(x) ∧ �x = u�),

�u = v� =
∧

x∈dom(u)

(u(x) ⇒ �x ∈ v�) ∧
∧

y∈dom(v)

(v(y) ⇒ �y ∈ u�),

�ϕ ∧ ψ� = �ϕ� ∧ �ψ�,

�ϕ ∨ ψ� = �ϕ� ∨ �ψ�,

�ϕ → ψ� = �ϕ� ⇒ �ψ�,

�∀xϕ(x)� =
∧

u∈VA

�ϕ(u)�, and

�∃xϕ(x)� =
∨

u∈VA

�ϕ(u)�.

As usual, we abbreviate ∃x(x ∈ u ∧ ϕ(x)) by ∃x ∈ u ϕ(x) and ∀x(x ∈ u → ϕ(x)) by
∀x ∈ u ϕ(x) and call these bounded quantifiers. Bounded quantifiers will play a crucial
role in this paper.

If D is a filter on A and σ is a sentence of LA, we say that σ is D-valid in VA if �σ � ∈ D
and write VA |�D σ .

In the Boolean-valued case, the names behave nicely with respect to their interpretations
as names for sets. For instance, if two names denote the same object, then the properties
of the object do not depend on the name you are using. In our generalized setting, we have
to be very careful since many of these reasonable rules do not hold in general: cf. §4 for
details.

PROPOSITION 3.1. If A is a reasonable implication algebra and u ∈ VA, we have that
�u = u� = 1 and u(x) ≤ �x ∈ u� (for each x ∈ dom(u)).

Proof. This is an easy induction, using the fact that we have that in all reasonable
implication algebras, x ≤ y implies x ⇒ y = 1. �

However, things break down rather quickly if you go beyond Proposition 3.1. The in-
equality �u = v�∧ �v = w� ≤ �u = w� representing transitivity of equality of names does
not hold in general in the model constructed over Ł3: consider the functions

p0 = {〈∅, 0〉},
p1/2 = {〈∅, 1/2〉}, and

p1 = {〈∅, 1〉}.
Then it can be easily checked that �p0 = p1/2� = 1/2 = �p1/2 = p1� > �p0 = p1� = 0.
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196 BENEDIKT LÖWE AND SOURAV TARAFDER

PROPOSITION 3.2. If A is a reasonable implication algebra, ϕ(x) an LA-formula with
one free variable x, and u ∈ VA, then

�∃x ∈ u ϕ(x)� ≥
∨

x∈dom(u)

(u(x) ∧ �ϕ(x)�).

Proof. Easy calculation using Proposition 3.1. �
In the Boolean case, the inequality proved in Proposition 3.2 is an equality (Bell, 2005,

p. 23):

�∃x ∈ u ϕ(x)� =
∨

x∈dom(u)

(
u(x) ∧ �ϕ(x)�

)
and

�∀x ∈ u ϕ(x)� =
∧

x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

)
.

This once more breaks down for general reasonable implication algebras: in VŁ3 , we use
the three names p0, p1/2, and p1 defined above and consider the formula ϕ(x) := (x = p0)
as well as the name u = {〈p1/2, 1/2〉}. We can calculate

1/2 = �∀x ∈ u ϕ(x)� <
∧

x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

) = 1.

This means that in the setting of reasonable implication algebras, the following equality

�∀x ∈ u ϕ(x)� =
∧

x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

)
. (BQϕ)

becomes a new axiom, one whose validity depends on the choice of the formula ϕ and
on A (and conceivably on the model of set theory V). If � is any class of formulas of
the extended language, we say that the pair (V,A) satisfies the �-bounded quantification
property, if BQϕ holds for every ϕ ∈ �.

3.2. Set theory. The axiom system ZF− consists of the axioms Extensionality, Pair-
ing, Infinity, Union, and Power Set and the axiom schemes of Separation and Replace-
ment. If add the axiom scheme of Foundation, we obtain ZF of Zermelo-Fraenkel set
theory. For reference, we list the forms of the axioms and axiom schemes that we use in our
proofs (in the schemes, ϕ is a formula with n + 2 free variables); the concrete formulations
follows Bell (2005) very closely:

∀x∀y[∀z(z ∈ x ↔ z ∈ y) → x = y] (Extensionality)

∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)) (Pairing)

∃x[∃y(∀z(z ∈ y → ⊥) ∧ y ∈ x) ∧ ∀w ∈ x∃u ∈ x(w ∈ u)] (Infinity)

∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ x)) (Union)

∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x)) (Power Set)

∀p0 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, p0, . . . , pn)) (Separationϕ)

∀p0 · · · ∀pn−1∀x[∀y ∈ x∃zϕ(y, z, p0, . . . , pn−1)

→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn−1)] (Replacementϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x ϕ(y, p0, . . . , pn)

→ ϕ(x, p0, . . . , pn)] → ∀zϕ(z, p0, . . . , pn) (Foundationϕ)
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We observe that all axioms and axiom schemes have natural forms that do not include
any negation symbols,2 so unless we instantiate one of the schemes with a formula contain-
ing a negation symbol, we will always have formulas in NFF. We write NFF-Separation
and NFF-Replacement for the axiom schemes where we only allow the instantiation by
negation-free formulas, and we write NFF-ZF− and NFF-ZF for negation-free set theory
using these schemes. We emphasize once more that in settings where negation can be
defined in terms of negation-free formulas (such as classical logic), this coincides (up to
provable equivalence) with standard Zermelo-Fraenkel set theory.

Theorems 3.3 and 3.4 are the core of this paper, establishing validity of NFF-ZF− in our
A-valued model.

THEOREM 3.3. Let A be a reasonable implication algebra such that (V,A) satisfies the
NFF-bounded quantification property, and let D be any filter on A. Then Extensionality,
Pairing, Infinity, Union and NFF-Replacement are D-valid in VA; in fact, they all get
the value 1.

THEOREM 3.4. Let A be a reasonable and deductive implication algebra such that (V,A)
satisfies the NFF-bounded quantification property, and let D be any filter on A. Then
Power Set and NFF-Separation are D-valid in VA; in fact, they get the value 1.

Proof of Theorem 3.3. The proofs follow closely the proofs of the Boolean cases and
only use the axioms of complete distributive lattices and the additional axioms P1, P2 and
P3 of reasonable and deductive implication algebras (and their simple consequences such
as “if x ≤ y, then x ⇒ y = 1”, as mentioned above) and Proposition 3.1. Note that all
of the calculations involve arguments with bounded quantifiers, relying on some equali-
ties BQϕ . Inspection of the proofs shows that the formulas in the scope of the bounded
quantifiers are negation-free. All of the axioms get value 1 in VA. �

Proof of Theorem 3.4. As in the proof of Theorem 3.3, we inspect the details of
the proofs in the Boolean case and observe that they only use the axioms of reasonable
implication algebras, their simple consequences and BQϕ for ϕ ∈ NFF. The proof of
Power Set uses x ⇒ y = x ⇒ (x ∧ y), as mentioned above. Again, all of the axioms get
value 1 in VA. �

§4. Application, Part 1: The bounded quantification property in VPS3 . The origi-
nal intuition of Boolean-valued models was that the names represent objects and that the
equivalence classes of names under the equivalence relation defined by u ∼ v if and only
if �u = v� ∈ D can serve as the ontology of the new model. In particular, this means
that if two names represent the same object, they should instantiate the same properties.
This is known as “indiscernibility of identicals”, one of the directions of Leibniz’s Law.
In our setting, we can represent this by a statement of the type

�u = v� ∧ �ϕ(u)� ≤ �ϕ(v)�. (†)
Unfortunately, it will turn out that these statements are not in general true in reasonable
implication algebras and thus we have to be considerably more careful.

2 Note that this is only the case because we formulated the occurrence of the empty set in
Infinity appropriately and because we used the axiom scheme of ∈-induction instead of the usual
formulation of Foundation; the latter is not negation-free.
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In this section (Theorem 4.5), we are going to prove the bounded quantification property
for (V,PS3). We start by making some algebraic observations about PS3: Since the truth
table for the connective ⇒ does not contain the value 1/2, we immediately know that for
any u, v ∈ VPS3 , the value of �u = v� will be either 0 or 1. Similarly, any formula with
→ as the outermost connective will be assigned value either 0 or 1. Furthermore, since
all of the axioms of set theory except for Infinity are of the logical form Q� where Q is
a block of quantifiers and � is a conjunction of implications, axioms of set theory can
only get the values 0 and 1 as well. Also, we use that by the truth table for ∧, we have that
any conjunction that gets the value 0 must have one conjunct that gets value 0; similarly,
every disjunction that gets value 1 must have a disjunct that gets value 1.

PROPOSITION 4.1. For any three elements u, v, w ∈ V(PS3), we have

1. �u = v� ∧ �v = w� ≤ �u = w� and

2. �u = v� ∧ �u ∈ w� ≤ �v ∈ w�.

Proof. (1) We will prove �u = v� ∧ �v = w� ≤ �u = w� by induction on w: assume
that for all z ∈ dom(w), we have

�u = v� ∧ �v = x� ≤ �u = z�.

By the above remark, we know that all of the values are 0 or 1. If �u = w� = 1, then we
have nothing to prove. Therefore, suppose

�u = w� =
∧

x∈dom(u)

(
u(x) ⇒ �x ∈ w�

) ∧
∧

z∈dom(w)

(
w(z) ⇒ �z ∈ u�

) = 0.

Case 1. Suppose
∧

x∈dom(u)

(
u(x) ⇒ �x ∈ w�

) = 0. So, there exists x0 ∈ dom(u) such
that

0 = [
u(x0) ⇒ �x0 ∈ w�

]

=
⎡
⎣u(x0) ⇒

∨
z∈dom(w)

(
w(z) ∧ �x0 = z�

)⎤⎦ .

This can only be the case if

u(x0) �= 0 and
∨

z∈dom(w)

(
w(z) ∧ �x0 = z�

) = 0. (‡)

CLAIM 4.2. For any y0 ∈ dom(v) with v(y0) �= 0, we have either �y0 ∈ w� = 0 or
�x0 = y0� = 0.

Proof of Claim 4.2. If �y0 ∈ w� �= 0, i.e.,
∨

z∈dom(w)(w(z) ∧ �y0 = z�) �= 0, then there
exists z0 ∈ dom(w), such that w(z0) �= 0 and �y0 = z0� �= 0. Since w(z0) �= 0, equation
(‡) yields �x0 = z0� = 0. Now by induction hypothesis, �x0 = y0� ∧ �y0 = z0� ≤ �x0 =
z0�. Hence we get �x0 = y0� = 0. �

Using Claim 4.2, we either have that there is some y0 ∈ dom(v) with v(y0) �= 0 and
�y0 ∈ w� = 0 or for all such y0, we have �x0 = y0� = 0. In the first case, we immediately
calculate that �v = w� = 0. In the second case

�x0 ∈ v� =
∨

y∈dom(v)

(
v(y) ∧ �x0 = y�

) = 0,

and therefore �u = v� = 0.
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Case 2. Suppose
∧

z∈dom(w)

(
w(z) ⇒ �z ∈ u�

) = 0. This case is proved analogously.
Claim (2) in the statement of the proposition follows easily from (1):

�u = v� ∧ �u ∈ w� = �u = v� ∧
∨

z∈dom(w)

(
w(z) ∧ �u = z�

)

=
∨

z∈dom(w)

[
w(z) ∧ (

�u = z� ∧ �u = v�
)]

≤
∨

z∈dom(w)

(
w(z) ∧ �v = z�

)

= �v ∈ w�. �
Proposition 4.1 proves the instances of (†) where ϕ(x) is x = w or x ∈ w for some fixed

w, respectively. However, the case where ϕ(x) is w ∈ x is not valid in VPS3 in general: let
w ∈ VPS3 be arbitrary and u and v with dom(u) = dom(v) = {w} defined by u(w) = 1
and v(w) = 1/2. Then �u = v� = 1 = �w ∈ u�, but �w ∈ v� = 1/2.

PROPOSITION 4.3. For any three elements u, v, w ∈ V(PS3), we have the following:

1. �u = v� ⇒ �u = w� = �u = v� ⇒ �v = w�.

2. �u = v� ⇒ �u ∈ w� = �u = v� ⇒ �v ∈ w�.

3. �u = v� ⇒ �w ∈ u� = �u = v� ⇒ �w ∈ v�.

Proof. Claims (1) and (2) are easy calculations using Proposition 4.1 and the axioms for
reasonable implication algebras. Claim (3) is different, since we do not have the analogue
of Proposition 4.1 for the formula w ∈ x (as seen above). As observed above, �x = y� will
always take either the value 0 or the value 1. If �u = v� = 0, then both sides of the equation
are 1, so we have nothing to prove. Thus, we can assume that �u = v� = 1. Checking the
truth table for ⇒, we realize that (without loss of generality) we only need to exclude the
case that �w ∈ u� = 0 and �w ∈ v� �= 0.

So, let us assume that

�w ∈ u� =
∨

x∈dom(u)

(
u(x) ∧ �w = x�

) = 0. (#)

We also assumed

�u = v� =
∧

x∈dom(u)

(
u(x) ⇒ �x ∈ v�

) ∧
∧

y∈dom(v)

(
v(y) ⇒ �y ∈ u�

) = 1. (§)

If for all y ∈ dom(v), we have v(y) = 0, then �w ∈ v� = 0 and we are done, so we can
assume that there is some y0 such that v(y0) �= 0. Therefore, (§) implies that

�y0 ∈ u� =
∨

x∈dom(u)

(
u(x) ∧ �y0 = x�

) �= 0,

so there exists x0 ∈ dom(u) such that u(x0) �= 0 �= �y0 = x0�, from which we get
�w = x0� = 0 via (#). Proposition 4.1 gives �w = y0� ∧ �y0 = x0� ≤ �w = x0�, thus
�w = y0� = 0. This, together with v(y0) �= 0, gives �w ∈ v� = 0, and we are done. �

THEOREM 4.4. If ϕ ∈ NFF, then for all u, v ∈ VPS3 , we have

�u = v� ⇒ �ϕ(u)� = �u = v� ⇒ �ϕ(v)�,
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Proof. This is proved by induction on the formula complexity. Proposition 4.3 provides
the atomic cases. As before, we know that �u = v� is either 0 or 1. If it is 0, then the claim
is obvious, so we can assume that �u = v� = 1. All cases are simple calculations using
this assumption and the truth tables of the algebra PS3. �

Theorem 4.4 is enough to establish the appropriate amount of the bounded quantification
property that we need:

THEOREM 4.5. The pair (V,PS3) has the NFF-bounded quantification property.

Proof. We have to prove BQϕ for any negation-free formula ϕ, i.e., for any u ∈ VPS3 ,
we need to show

�∀x(x ∈ u → ϕ(x))� =
∧

x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

)
.

First of all, an easy calculation using the properties of reasonable implication algebras and
Theorem 4.4 shows that

�∀x(x ∈ u → ϕ(x))� =
∧

y∈VPS3

∧
x∈dom(u)

[(
u(x) ∧ �y = x�

) ⇒ �ϕ(x)�
]
.

Furthermore,∧
x∈dom(u)

(u(x) ⇒ �ϕ(x)�) =
∧

y∈VPS3

∧
x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

)

≤
∧

y∈VPS3

∧
x∈dom(u)

[(
u(x) ∧ �y = x�

) ⇒ �ϕ(x)�
]
.

For the other direction, take any x ∈ dom(u) and obtain∧
y∈VPS3

[(
u(x) ∧ �y = x�

) ⇒ �ϕ(x)�
] ≤ (

u(x) ∧ �x = x�
) ⇒ �ϕ(x)�

= u(x) ⇒ �ϕ(x)� (by Proposition 4.1),

and hence,

∧
x∈dom(u)

∧
y∈VPS3

[(
u(x) ∧ �y = x�

) ⇒ �ϕ(x)�
] ≤

∧
x∈dom(u)

(
u(x) ⇒ �ϕ(x)�

)
. �

§5. Application, Part 2: Foundation in VPS3 . In this section, we discuss the axiom
scheme of Foundation (for which we do not have a general theorem along the lines of
Theorems 3.3 and 3.4) and some related formulas such as ∃x(x ∈ x).

THEOREM 5.1. For any filter D, the axiom scheme of NFF-Foundation is D-valid in VPS3 .

Proof. We show Foundation in the form of ∈-induction: for every negation-free ϕ, we
have that

�∀x[∀y ∈ x ϕ(y) → ϕ(x)] → ∀xϕ(x)� = 1.

Case 1. Suppose �ϕ(x)� �= 0 for every x ∈ VPS3 . Hence in this case �∀xϕ(x)� ∈ {1/2, 1}
and therefore by definition of ⇒,

�∀x[∀y ∈ x ϕ(y) → ϕ(x)] → ∀xϕ(x)� = 1.
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Case 2. Now let x ∈ VPS3 with �ϕ(x)� = 0. Take a minimal u ∈ VPS3 satisfying this,
i.e., �ϕ(u)� = 0 but for any y ∈ dom(u); �ϕ(y)� �= 0. Since there exist x ∈ VPS3 for
which �ϕ(x)� = 0, clearly �∀xϕ(x)� = 0. Once more, the definition of ⇒ gives us:

�∀x[(∀y ∈ x ϕ(y)) → ϕ(x)]� ≤ �(∀y ∈ u ϕ(y)) → ϕ(u)�

=
∧

y∈dom(u)

(u(y) ⇒ �ϕ(y)�) ⇒ �ϕ(u)�

= 0

Hence we get

�∀x[∀y ∈ x ϕ(y) → ϕ(x)] → ∀xϕ(x)� = 1 �

COROLLARY 5.2. For any filter D, all axioms of NFF-ZF are D-valid in VPS3 .

Proof. The claim follows from Theorems 3.3, 3.4, 4.5, and 5.1. �

THEOREM 5.3. For all u ∈ VPS3 , �u ∈ u� = 0. So, in particular, �∃x(x ∈ x)� = 0.

Proof. By meta-induction, if there is a counterexample to the claim, there is a minimal
counterexample, i.e., a name u with �u ∈ u� �= 0, but for every x ∈ dom(u), we have that
�x ∈ x� = 0. The first claim means that there is some x0 ∈ dom(u) with u(x0) �= 0 and
�u = x0� �= 0. Since �u = x0� is defined in terms of a conjunction in which all expressions
of the form u(x) ⇒ �x ∈ x0� for x ∈ dom(u) occur, each of these must be non-zero.
Take one of these and let x = x0 in this expression; we obtain u(x0) ⇒ �x0 ∈ x0�. But we
assumed that u(x0) �= 0 and �x0 ∈ x0� = 0. Contradiction! �

§6. Adding negation: A model of paraconsistent set theory.

The model construction. As mentioned in §3, the construction of the A-names does
not depend on the algebraic structure at all, so if A is an implication algebra and A′ is an
implication-negation algebra expanding it, they define the same class of names VA = VA

′
.

The language LA′ is then the closure of LA under negation, and we can now easily extend
the map �·� to include all formulas in LA′ by adding the condition �¬ϕ� := �ϕ�∗.

Negation and paraconsistency. Let A′ = (A, ∧, ∨, 0, 1, ⇒,∗ ) be an implication-
negation algebra and D a filter on A. We call the pair (A′, D) paraconsistent if there are
formulas ϕ and ψ such that

{ϕ, ¬ϕ} ��A′,D ψ.

In the Boolean and Heyting cases, as well as in the algebras considered by Takeuti &
Titani (1992), Titani (1999), Titani & Kozawa (2003), and Ozawa (2007, 2009), negation
is defined in terms of implication via a∗ := a ⇒ 0. This definition, together with minimal
requirements, makes it impossible to have paraconsistency. E.g., Titani (1999) requires that
negation is defined in terms of negation by a∗ := a ⇒ 0 and, furthermore, (x ⇒ y) = 1
iff x ≤ y and that x ∧ (x ⇒ y) ≤ y. These three conditions together immediately imply
that any such lattice with any filter D of designated truth values will not be paraconsistent
in the above sense.

Adding a negation to PS3. If we expand PS3 with a negation � defined by 1� = 1/2� =
0, and 0� = 1, then the results from §4 extend to give the bounded quantification property
for all formulas (including negations) and Theorems 3.3, 5.1 and 3.4 extend to give full ZF
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in the resulting model. However, for none of the two possible filters D on PS′
3 is the pair

(PS′
3, D) paraconsistent, and the resulting logic �(PS3,�),PosPS3

will just be classical logic.
If, however, we supplement PS3 with the negation ∗ defined by 1∗ = 0, 1/2∗ = 1/2, and

0∗ = 1, then (PS3,
∗, PosPS3) is paraconsistent, since 1/2∗ = 1/2 ∈ D.3

The positive results of §4 cannot be extended to (PS3,
∗): consider the analogue of

Theorem 4.4 for the formula ϕ(x) := ¬(w ∈ x). Again, we let w ∈ VPS3 be an arbitrary
name and u and v with dom(u) = dom(v) = {w} defined by u(w) = 1 and v(w) = 1/2.
We calculate �u = v� = 1, �ϕ(u)� = 0, and �ϕ(v)� = 1/2. Therefore,

�u = v� ⇒ �ϕ(u)� = 0 �= 1 = �u = v� ⇒ �ϕ(v)�,

so the ϕ-instance of Theorem 4.4 is not valid in VPS3 . This gives us the following result
immediately:

THEOREM 6.1. There is a formula ϕ ∈ L(PS3,∗) such that V(PS3,
∗) does not have the

property BQϕ .

Proof. We use u, v, w ∈ VPS3 and ϕ(x) := ¬(w ∈ x) as in the above example. Define
a name z := {(v, 1)}. We readily calculate �∀x(x ∈ z → ϕ(x))� = 0. But, on the other
hand, ∧

x∈dom(z)

(z(x) ⇒ �ϕ(x)�) = z(v) ⇒ �ϕ(v)� = 1 ⇒ 1/2 = 1. �

Paraconsistency in V(PS3,∗) and ontology of V(PS3,∗). Exactly this phenomenon can
now be used to show that the resulting set theory is paraconsistent:

THEOREM 6.2. There is a sentence σ ∈ L∈ such that both σ and ¬σ are PosPS3 -valid in
V(PS3,

∗).

Proof. We use the three names u, v , and w from above: w ∈ VPS3 is arbitrary and u and
v with dom(u) = dom(v) = {w} defined by u(w) = 1 and v(w) = 1/2. These three names
witness that the sentence

σ := ∃u, v, w(u = v ∧ w ∈ u ∧ w /∈ v)

has value 1/2, and thus both σ and ¬σ are PosPS3 -valid. �

Corollary 5.2 and Theorem 6.2 together show that V(PS3,
∗) is a model of set theory

with paraconsistent phenomena, in short, a model of paraconsistent set theory. As in the
Boolean-valued case, the algebra-valued construction does not produce a model of a set
theory in the standard sense of ordinary model theory. As discussed in §4, the natural
approach here would be consider the ∼-equivalence classes of names as objects where
u ∼ v if and only if �u = v� ∈ D.4 Due to the proof of Theorem 6.1, we cannot expect
that (the scheme of) Leibniz’s Law

∀x∀y(x = y ∧ ϕ(x) → ϕ(y))

3 This implication-negation algebra was introduced by Marcos (2000) as one of the 8,192 maximal
paraconsistent three-valued logics mentioned in the title of the paper; it was further studied in
Carnielli & Marcos (2002, § 3.11), Marcos (2005), and Coniglio & da Cruz Silvestrini (2014).
It was recently independently rediscovered by Chakraborty and the second author.

4 Note that by Proposition 4.1, the relation ∼ is an equivalence relation on V(PS3,
∗).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S175502031400046X
Downloaded from https:/www.cambridge.org/core. UVA Universiteitsbibliotheek, on 09 Mar 2017 at 14:43:11, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S175502031400046X
https:/www.cambridge.org/core


GENERALIZED ALGEBRA-VALUED MODELS OF SET THEORY 203

holds for arbitrary formulas (even though we proved the negation-free fragment of Leibniz’s
Law in Theorem 4.4).

Not all formulas defining a unique object in ordinary set theory do so in our model: e.g.,
the formula N (x) := ∀z(z /∈ x) usually uniquely defines the empty set, but in V(PS3,

∗), the
formula N (x) is valid if and only if x is a name such that ran(x) ⊆ {0, 1/2}. Now let u be
such a name with ran(u) ⊆ {0} and v be such a name with 1/2 ∈ ran(u). Then

�N (u) ∧ N (v) ∧ u �= v� = 1/2.

In particular, the class of names x such that N (x) does not form a ∼-equivalence class.5

We can modify the formula N to Ñ (x) := ∀y∀z(x = y → z /∈ y) which is classically
equivalent to N (x). Then it is easy to see that for a name x , the formula Ñ (x) is valid if
and only if ran(x) ⊆ {0}, and this class forms a ∼-equivalence class: the class is thus is a
good candidate for the ontology of the empty set in V(PS3,

∗).
And yet, the failure of Leibniz’s Law affects these concrete mathematical objects as

well, as can be seen by applying the proof of Theorem 6.2: Define E(x) := ∃e(Ñ (e) ∧
∀z(z ∈ x ↔ z = e)); this is the canonical formula defining the von Neumann ordinal one.
We observe that the class of names x such that E(x) is valid forms a ∼-equivalence class,
and thus is a good candidate for the ontology of the von Neumann ordinal one. However,
this equivalence class contains names of different nature: let w be any name such that Ñ (w)
is valid, and let u = {(w, 1)} and v = {(w, 1/2)}. Then �E(u)� = 1 and �E(v)� = 1/2, so
both u and v are names for the von Neumann ordinal one. However,

�∃x(Ñ (x) ∧ E(u) ∧ x ∈ u ∧ x /∈ u)� = 0 and

�∃x(Ñ (x) ∧ E(v) ∧ x ∈ v ∧ x /∈ v)� = 1/2,

so the truth value of the statement “zero is both an element of one and not an element of
one” depends on which name for one is chosen. A first discussion of the behaviour of von
Neumann ordinals in V(PS3,

∗) can be found in Tarafder (2015).

Comparison to other paraconsistent set theories. Paraconsistent set theories have been
studied by many authors (Brady, 1971; Brady & Routley, 1989; Restall, 1992; Libert, 2005;
Weber, 2010a,b, 2013); all of these accounts start from the observation that ZF was created
to avoid the contradiction that can be obtained from the axiom scheme of Comprehension

∃x∀y(y ∈ x ↔ ϕ(y))

via Russell’s paradox. Arguing that contradictions are not necessarily devastating in a
paraconsistent setting, these authors reinstate the axiom scheme of Comprehension as
acceptable, allow the formation of the Russell set R, and conclude that both R ∈ R and
R /∈ R are true.

Our paraconsistent set theory behaves very differently from the considerations of para-
consistent set theory in the mentioned papers, as we can show that the axiom scheme of
Comprehension is not valid in our model:

THEOREM 6.3. If (PS3, PosPS3), we have �∃x∀y(y ∈ x)� = 0. Since this formula is an
instance of Comprehension, the axiom scheme of Comprehension is not PosPS3 -valid
in V(PS3,

∗).

5 This is not in conflict with the fact that Extensionality is valid in V(PS3,
∗): in order to apply

Extensionality, we need ∀z(z ∈ u ↔ z ∈ v), but N (u) ∧ N (v) is not strong enough in our logic
to conclude this.
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Proof. This follows immediately from Theorem 5.3: if �∃x∀y(y ∈ x)� �= 0 and u is
a name witnessing this (i.e., �∀y(y ∈ u)� �= 0), then �u ∈ u� �= 0 in contradiction to
Theorem 5.3. �

THEOREM 6.4. In (PS3,
∗, PosPS3), we have �∃x∀y(y ∈ x ↔ y /∈ y)� = 0. This means

that there is no Russell set.

Proof. Again, assume towards a contradiction that u satisfies �∀y(y ∈ u ↔ y /∈ y)� �=
0. By Theorem 5.3, �y /∈ y� = �y ∈ y�∗ = 0∗ = 1 for all y and �u ∈ u� = 0. But then
�u /∈ u → u ∈ u� = 0. Contradiction! �
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