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Abstract

Previous work on treebank parsing with
discontinuous constituents using Linear
Context-Free Rewriting systems (LCFRS)
has been limited to sentences of up to 30
words, for reasons of computational com-
plexity. There have been some results on
binarizing an LCFRS in a manner that min-
imizes parsing complexity, but the present
work shows that parsing long sentences with
such an optimally binarized grammar re-
mains infeasible. Instead, we introduce a
technique which removes this length restric-
tion, while maintaining a respectable accu-
racy. The resulting parser has been applied
to a discontinuous treebank with favorable
results.

1 Introduction

Discontinuity in constituent structures (cf. figure 1
& 2) is important for a variety of reasons. For
one, it allows a tight correspondence between
syntax and semantics by letting constituent struc-
ture express argument structure (Skut et al., 1997).
Other reasons are phenomena such as extraposi-
tion and word-order freedom, which arguably re-
quire discontinuous annotations to be treated sys-
tematically in phrase-structures (McCawley, 1982;
Levy, 2005). Empirical investigations demon-
strate that discontinuity is present in non-negligible
amounts: around 30% of sentences contain dis-
continuity in two German treebanks (Maier and
Søgaard, 2008; Maier and Lichte, 2009). Re-
cent work on treebank parsing with discontinuous
constituents (Kallmeyer and Maier, 2010; Maier,
2010; Evang and Kallmeyer, 2011; van Cranen-
burgh et al., 2011) shows that it is feasible to
directly parse discontinuous constituency anno-
tations, as given in the German Negra (Skut et al.,

SBARQ

SQ

VP

WHNP MD NP VB .

What should I do ?

Figure 1: A tree with WH-movement from the Penn
treebank, in which traces have been converted to dis-
continuity. Taken from Evang and Kallmeyer (2011).

1997) and Tiger (Brants et al., 2002) corpora, or
those that can be extracted from traces such as in
the Penn treebank (Marcus et al., 1993) annota-
tion. However, the computational complexity is
such that until now, the length of sentences needed
to be restricted. In the case of Kallmeyer and
Maier (2010) and Evang and Kallmeyer (2011) the
limit was 25 words. Maier (2010) and van Cranen-
burgh et al. (2011) manage to parse up to 30 words
with heuristics and optimizations, but no further.
Algorithms have been suggested to binarize the
grammars in such a way as to minimize parsing
complexity, but the current paper shows that these
techniques are not sufficient to parse longer sen-
tences. Instead, this work presents a novel form
of coarse-to-fine parsing which does alleviate this
limitation.

The rest of this paper is structured as follows.
First, we introduce linear context-free rewriting
systems (LCFRS). Next, we discuss and evalu-
ate binarization strategies for LCFRS. Third, we
present a technique for approximating an LCFRS

by a PCFG in a coarse-to-fine framework. Lastly,
we evaluate this technique on a large corpus with-
out the usual length restrictions.



ROOT

S

VP

PROAV VAFIN NN NN VVPP $.

Danach habe Kohlenstaub Feuer gefangen .

Afterwards had coal dust fire caught .

Figure 2: A discontinuous tree from the Negra corpus.
Translation: After that coal dust had caught fire.

2 Linear Context-Free Rewriting
Systems

Linear Context-Free Rewriting Systems (LCFRS;
Vijay-Shanker et al., 1987; Weir, 1988) subsume
a wide variety of mildly context-sensitive for-
malisms, such as Tree-Adjoining Grammar (TAG),
Combinatory Categorial Grammar (CCG), Min-
imalist Grammar, Multiple Context-Free Gram-
mar (MCFG) and synchronous CFG (Vijay-Shanker
and Weir, 1994; Kallmeyer, 2010). Furthermore,
they can be used to parse dependency struc-
tures (Kuhlmann and Satta, 2009). Since LCFRS

subsumes various synchronous grammars, they are
also important for machine translation. This makes
it possible to use LCFRS as a syntactic backbone
with which various formalisms can be parsed by
compiling grammars into an LCFRS, similar to the
TuLiPa system (Kallmeyer et al., 2008). As all
mildly context-sensitive formalisms, LCFRS are
parsable in polynomial time, where the degree
depends on the productions of the grammar. In-
tuitively, LCFRS can be seen as a generalization
of context-free grammars to rewriting other ob-
jects than just continuous strings: productions are
context-free, but instead of strings they can rewrite
tuples, trees or graphs.

We focus on the use of LCFRS for parsing with
discontinuous constituents. This follows up on
recent work on parsing the discontinuous anno-
tations in German corpora with LCFRS (Maier,
2010; van Cranenburgh et al., 2011) and work on
parsing the Wall Street journal corpus in which
traces have been converted to discontinuous con-
stituents (Evang and Kallmeyer, 2011). In the case
of parsing with discontinuous constituents a non-

ROOT(ab)→ S(a) $.(b)

S(abcd)→ VAFIN(b) NN(c) VP2(a, d)

VP2(a, bc)→ PROAV(a) NN(b) VVPP(c)

PROAV(Danach)→ ε

VAFIN(habe)→ ε

NN(Kohlenstaub)→ ε

NN(Feuer)→ ε

VVPP(gefangen)→ ε

$.(.)→ ε

Figure 3: The productions that can be read off from the
tree in figure 2. Note that lexical productions rewrite to
ε, because they do not rewrite to any non-terminals.

terminal may cover a tuple of discontinuous strings
instead of a single, contiguous sequence of termi-
nals. The number of components in such a tuple
is called the fan-out of a rule, which is equal to
the number of gaps plus one; the fan-out of the
grammar is the maximum fan-out of its production.
A context-free grammar is a LCFRS with a fan-out
of 1. For convenience we will will use the rule
notation of simple RCG (Boullier, 1998), which
is a syntactic variant of LCFRS, with an arguably
more transparent notation.

A LCFRS is a tuple G = 〈N,T, V, P, S〉. N
is a finite set of non-terminals; a function dim :
N → N specifies the unique fan-out for every non-
terminal symbol. T and V are disjoint finite sets
of terminals and variables. S is the distinguished
start symbol with dim(S) = 1. P is a finite set of
rewrite rules (productions) of the form:

A(α1, . . . αdim(A))→B1(X
1
1 , . . . , X

1
dim(B1)

)

. . . Bm(Xm
1 , . . . , X

m
dim(Bm))

for m ≥ 0, where A, B1, . . . , Bm ∈ N ,
each Xi

j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Aj)
and αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(Ai).

Productions must be linear: if a variable occurs
in a rule, it occurs exactly once on the left hand
side (LHS), and exactly once on the right hand side
(RHS). A rule is ordered if for any two variables
X1 andX2 occurring in a non-terminal on the RHS,
X1 precedes X2 on the LHS iff X1 precedes X2

on the RHS.
Every production has a fan-out determined by

the fan-out of the non-terminal symbol on the left-
hand side. Apart from the fan-out productions also



have a rank: the number of non-terminals on the
right-hand side. These two variables determine
the time complexity of parsing with a grammar. A
production can be instantiated when its variables
can be bound to non-overlapping spans such that
for each component αi of the LHS, the concatena-
tion of its terminals and bound variables forms a
contiguous span in the input, while the endpoints
of each span are non-contiguous.

As in the case of a PCFG, we can read off LCFRS

productions from a treebank (Maier and Søgaard,
2008), and the relative frequencies of productions
form a maximum likelihood estimate, for a prob-
abilistic LCFRS (PLCFRS), i.e., a (discontinuous)
treebank grammar. As an example, figure 3 shows
the productions extracted from the tree in figure 2.

3 Binarization

A probabilistic LCFRS can be parsed using a CKY-
like tabular parsing algorithm (cf. Kallmeyer and
Maier, 2010; van Cranenburgh et al., 2011), but
this requires a binarized grammar.1 Any LCFRS

can be binarized. Crescenzi et al. (2011) state
“while CFGs can always be reduced to rank two
(Chomsky Normal Form), this is not the case for
LCFRS with any fan-out greater than one.” How-
ever, this assertion is made under the assumption of
a fixed fan-out. If this assumption is relaxed then
it is easy to binarize either deterministically or, as
will be investigated in this work, optimally with
a dynamic programming approach. Binarizing an
LCFRS may increase its fan-out, which results in
an increase in asymptotic complexity. Consider
the following production:

X(pqrs)→ A(p, r) B(q) C(s) (1)

Henceforth, we assume that non-terminals on the
right-hand side are ordered by the order of their
first variable on the left-hand side. There are two
ways to binarize this production. The first is from
left to right:

X(ps)→XAB(p) C(s) (2)

XAB(pqr)→A(p, r) B(q) (3)

This binarization maintains the fan-out of 1. The
second way is from right to left:

X(pqrs)→A(p, r) XBC(q, s) (4)

XBC(q, s)→B(q) C(s) (5)
1Other algorithms exist which support n-ary productions,

but these are less suitable for statistical treebank parsing.

This binarization introduces a production with
a fan-out of 2, which could have been avoided.
After binarization, an LCFRS can be parsed in
O(|G| · |w|p) time, where |G| is the size of the
grammar, |w| is the length of the sentence. The de-
gree p of the polynomial is the maximum parsing
complexity of a rule, defined as:

parsing complexity := ϕ+ ϕ1 + ϕ2 (6)

where ϕ is the fan-out of the left-hand side and
ϕ1 and ϕ2 are the fan-outs of the right-hand side
of the rule in question (Gildea, 2010). As Gildea
(2010) shows, there is no one to one correspon-
dence between fan-out and parsing complexity: it
is possible that parsing complexity can be reduced
by increasing the fan-out of a production. In other
words, there can be a production which can be bi-
narized with a parsing complexity that is minimal
while its fan-out is sub-optimal. Therefore we fo-
cus on parsing complexity rather than fan-out in
this work, since parsing complexity determines the
actual time complexity of parsing with a grammar.
There has been some work investigating whether
the increase in complexity can be minimized ef-
fectively (Gómez-Rodrı́guez et al., 2009; Gildea,
2010; Crescenzi et al., 2011).

More radically, it has been suggested that the
power of LCFRS should be limited to well-nested
structures, which gives an asymptotic improve-
ment in parsing time (Gómez-Rodrı́guez et al.,
2010). However, there is linguistic evidence that
not all language use can be described in well-
nested structures (Chen-Main and Joshi, 2010).
Therefore we will use the full power of LCFRS in
this work—parsing complexity is determined by
the treebank, not by a priori constraints.

3.1 Further binarization strategies

Apart from optimizing for parsing complexity, for
linguistic reasons it can also be useful to parse
the head of a constituent first, yielding so-called
head-driven binarizations (Collins, 1999). Addi-
tionally, such a head-driven binarization can be
‘Markovized’–i.e., the resulting production can be
constrained to apply to a limited amount of hori-
zontal context as opposed to the full context in the
original constituent (Klein and Manning, 2003),
which can have a beneficial effect on accuracy. In
the notation of Klein and Manning (2003) there are
two Markovization parameters: h and v. The first
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Figure 4: The four binarization strategies. C is the head node. Underneath each tree is the maximum parsing
complexity and fan-out among its productions.

parameter describes the amount of horizontal con-
text for the artificial labels of a binarized produc-
tion. In a normal form binarization, this parameter
equals infinity, because the binarized production
should only apply in the exact same context as the
context in which it originally belongs, as other-
wise the set of strings accepted by the grammar
would be affected. An artificial label will have the
form XA,B,C for a binarized production of a con-
stituent X that has covered children A, B, and C
of X . The other extreme, h = 1, enables general-
izations by stringing parts of binarized constituents
together, as long as they share one non-terminal.
In the previous example, the label would become
just XA, i.e., the presence of B and C would no
longer be required, which enables switching to
any binarized production that has covered A as
the last node. Limiting the amount of horizontal
context on which a production is conditioned is im-
portant when the treebank contains many unique
constituents which can only be parsed by stringing
together different binarized productions; in other
words, it is a way of dealing with the data sparse-
ness about n-ary productions in the treebank.

The second parameter describes parent annota-
tion, which will not be investigated in this work;
the default value is v = 1 which implies only in-
cluding the immediate parent of the constituent
that is being binarized; including grandparents is a
way of weakening independence assumptions.

Crescenzi et al. (2011) also remark that
an optimal head-driven binarization allows for
Markovization. However, it is questionable
whether such a binarization is worthy of the name
Markovization, as the non-terminals are not intro-
duced deterministically from left to right, but in
an arbitrary fashion dictated by concerns of pars-
ing complexity; as such there is not a Markov
process based on a meaningful (e.g., temporal) or-

dering and there is no probabilistic interpretation
of Markovization in such a setting.

To summarize, we have at least four binarization
strategies (cf. figure 4 for an illustration):

1. right branching: A right-to-left binarization.
No regard for optimality or statistical tweaks.

2. optimal: A binarization which minimizes pars-
ing complexity, introduced in Gildea (2010).
Binarizing with this strategy is exponential in
the resulting optimal fan-out (Gildea, 2010).

3. head-driven: Head-outward binarization with
horizontal Markovization. No regard for opti-
mality.

4. optimal head-driven: Head-outward binariza-
tion with horizontal Markovization. Min-
imizes parsing complexity. Introduced in
and proven to be NP-hard by Crescenzi et al.
(2011).

3.2 Finding optimal binarizations

An issue with the minimal binarizations is that
the algorithm for finding them has a high compu-
tational complexity, and has not been evaluated
empirically on treebank data.2 Empirical inves-
tigation is interesting for two reasons. First of
all, the high computational complexity may not
be relevant with constant factors of constituents,
which can reasonably be expected to be relatively
small. Second, it is important to establish whether
an asymptotic improvement is actually obtained
through optimal binarizations, and whether this
translates to an improvement in practice.

Gildea (2010) presents a general algorithm to
binarize an LCFRS while minimizing a given scor-
ing function. We will use this algorithm with two
different scoring functions.

2Gildea (2010) evaluates on a dependency bank, but does
not report whether any improvement is obtained over a naive
binarization.
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Figure 5: The distribution of parsing complexity
among productions in binarized grammars read off from
NEGRA-25. The y-axis has a logarithmic scale.

The first directly optimizes parsing complexity.
Given a (partially) binarized constituent c, the func-
tion returns a tuple of scores, for which a linear
order is defined by comparing elements starting
from the most significant (left-most) element. The
tuples contain the parsing complexity p, and the
fan-out ϕ to break ties in parsing complexity; if
there are still ties after considering the fan-out, the
sum of the parsing complexities of the subtrees of
c is considered, which will give preference to a bi-
narization where the worst case complexity occurs
once instead of twice. The formula is then:

opt(c) = 〈p, ϕ, s〉

The second function is the similar except that
only head-driven strategies are accepted. A head-
driven strategy is a binarization in which the head
is introduced first, after which the rest of the chil-
dren are introduced one at a time.

opt-hd(c) =
{
〈p, ϕ, s〉 if c is head-driven
〈∞,∞,∞〉 otherwise

Given a (partial) binarization c, the score should
reflect the maximum complexity and fan-out in
that binarization, to optimize for the worst case, as
well as the sum, to optimize the average case. This
aspect appears to be glossed over by Gildea (2010).
Considering only the score of the last production in
a binarization produces suboptimal binarizations.

3.3 Experiments
As data we use version 2 of the Negra (Skut et al.,
1997) treebank, with the common training, devel-
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Figure 6: The distribution of parsing complexity among
productions in Markovized, head-driven grammars read
off from NEGRA-25. The y-axis has a logarithmic scale.

opment and test splits (Dubey and Keller, 2003).
Following common practice, punctuation, which
is left out of the phrase-structure in Negra, is re-
attached to the nearest constituent.

In the course of experiments it was discovered
that the heuristic method for punctuation attach-
ment used in previous work (e.g., Maier, 2010;
van Cranenburgh et al., 2011), as implemented in
rparse,3 introduces additional discontinuity. We
applied a slightly different heuristic: punctuation
is attached to the highest constituent that contains a
neighbor to its right. The result is that punctuation
can be introduced into the phrase-structure with-
out any additional discontinuity, and thus without
artificially inflating the fan-out and complexity of
grammars read off from the treebank. This new
heuristic provides a significant improvement: in-
stead of a fan-out of 9 and a parsing complexity of
19, we obtain values of 4 and 9 respectively.

The parser is presented with the gold part-of-
speech tags from the corpus. For reasons of effi-
ciency we restrict sentences to 25 words (includ-
ing punctuation) in this experiment: NEGRA-25.
A grammar was read off from the training part
of NEGRA-25, and sentences of up to 25 words
in the development set were parsed using the re-
sulting PLCFRS, using the different binarization
schemes. First with a right-branching, right-to-left
binarization, and second with the minimal bina-
rization according to parsing complexity and fan-

3Available from http://www.wolfgang-maier.net/
rparse/downloads. Retrieved March 25th, 2011



right optimal
branching optimal head-driven head-driven

Markovization v=1, h=∞ v=1, h=∞ v=1, h=2 v=1, h=2
fan-out 4 4 4 4
complexity 8 8 9 8
labels 12861 12388 4576 3187
clauses 62072 62097 53050 52966
time to binarize 1.83 s 46.37 s 2.74 s 28.9 s
time to parse 246.34 s 193.94 s 2860.26 s 716.58 s
coverage 96.08 % 96.08 % 98.99 % 98.73 %
F1 score 66.83 % 66.75 % 72.37 % 71.79 %

Table 1: The effect of binarization strategies on parsing efficiency, with sentences from the development section of
NEGRA-25.

out. The last two binarizations are head-driven
and Markovized—the first straightforwardly from
left-to-right, the latter optimized for minimal pars-
ing complexity. With Markovization we are forced
to add a level of parent annotation to tame the
increase in productivity caused by h = 1.

The distribution of parsing complexity (mea-
sured with eq. 6) in the grammars with different
binarization strategies is shown in figure 5 and
6. Although the optimal binarizations do seem
to have some effect on the distribution of parsing
complexities, it remains to be seen whether this
can be cashed out as a performance improvement
in practice. To this end, we also parse using the
binarized grammars.

In this work we binarize and parse with
disco-dop introduced in van Cranenburgh et al.
(2011).4 In this experiment we report scores of the
(exact) Viterbi derivations of a treebank PLCFRS;
cf. table 1 for the results. Times represent CPU

time (single core); accuracy is given with a gener-
alization of PARSEVAL to discontinuous structures,
described in Maier (2010).

Instead of using Maier’s implementation of dis-
continuous F1 scores in rparse, we employ a
variant that ignores (a) punctuation, and (b) the
root node of each tree. This makes our evalua-
tion incomparable to previous results on discon-
tinuous parsing, but brings it in line with com-
mon practice on the Wall street journal benchmark
(i.e., COLLINS.prm as part of EVALB). Note that
this change yields scores about 2 or 3 percentage
points lower than those of rparse.

4All code is available from: http://github.com/
andreasvc/disco-dop.

Despite the fact that obtaining optimal bina-
rizations is exponential (Gildea, 2010) and NP-
hard (Crescenzi et al., 2011), they can be computed
relatively quickly on this data set.5 Importantly, in
the first case there is no improvement on fan-out
or parsing complexity, while in the head-driven
case there is a minimal improvement because of a
single production with parsing complexity 9 with-
out optimal binarization. On the other hand, the
optimal binarizations might still have a significant
effect on the average case complexity, rather than
the worst-case complexities. Indeed, in both cases
parsing with the optimal grammar is faster; in the
first case, however, when the time for binariza-
tion is considered as well, this advantage mostly
disappears.

The difference in F1 scores might relate to the
efficacy of Markovization in the binarizations. It
should be noted that it makes little theoretical
sense to ‘Markovize’ a binarization when it is not
a left-to-right or right-to-left binarization, because
with an optimal binarization the non-terminals of
a constituent are introduced in an arbitrary order.

More importantly, in our experiments, these
techniques of optimal binarizations did not scale
to longer sentences. While it is possible to obtain
an optimal binarization of the unrestricted Negra
corpus, parsing long sentences with the resulting
grammar remains infeasible. Therefore we need to
look at other techniques for parsing longer sen-

5The implementation exploits two important optimiza-
tions. The first is the use of bit vectors to keep track of which
non-terminals are covered by a partial binarization. The sec-
ond is to skip constituents without discontinuity, which are
equivalent to CFG productions.



tences. We will stick with the straightforward
head-driven, head-outward binarization strategy,
despite this being a computationally sub-optimal
binarization.

One technique for efficient parsing of LCFRS is
the use of context-summary estimates (Kallmeyer
and Maier, 2010), as part of a best-first parsing
algorithm. This allowed Maier (2010) to parse
sentences of up to 30 words. However, the calcu-
lation of these estimates is not feasible for longer
sentences and large grammars (van Cranenburgh
et al., 2011).

Another strategy is to perform an online approx-
imation of the sentence to be parsed, after which
parsing with the LCFRS can be pruned effectively.
This is the strategy that will be explored in the
current work.

4 Context-free grammar approximation
for coarse-to-fine parsing

Coarse-to-fine parsing (Charniak et al., 2006) is
a technique to speed up parsing by exploiting the
information that can be gained from parsing with
simpler, coarser grammars—e.g., a grammar with
a smaller set of labels on which the original gram-
mar can be projected. Constituents that do not
contribute to a full parse tree with a coarse gram-
mar can be ruled out for finer grammars as well,
which greatly reduces the number of edges that
need to be explored. However, by changing just
the labels only the grammar constant is affected.
With discontinuous treebank parsing the asymp-
totic complexity of the grammar also plays a major
role. Therefore we suggest to parse not just with
a coarser grammar, but with a coarser grammar
formalism, following a suggestion in van Cranen-
burgh et al. (2011).

This idea is inspired by the work of Barthélemy
et al. (2001), who apply it in a non-probabilistic
setting where the coarse grammar acts as a guide to
the non-deterministic choices of the fine grammar.
Within the coarse-to-fine approach the technique
becomes a matter of pruning with some probabilis-
tic threshold. Instead of using the coarse gram-
mar only as a guide to solve non-deterministic
choices, we apply it as a pruning step which also
discards the most suboptimal parses. The basic
idea is to extract a grammar that defines a superset
of the language we want to parse, but with a fan-
out of 1. More concretely, a context-free grammar
can be read off from discontinuous trees that have

been transformed to context-free trees by the pro-
cedure introduced in Boyd (2007). Each discontin-
uous node is split into a set of new nodes, one for
each component; for example a node NP2 will be
split into two nodes labeled NP*1 and NP*2 (like
Barthélemy et al., we mark components with an
index to reduce overgeneration). Because Boyd’s
transformation is reversible, chart items from this
grammar can be converted back to discontinuous
chart items, and can guide parsing of an LCFRS.
This guiding takes the form of a white list. Af-
ter parsing with the coarse grammar, the resulting
chart is pruned by removing all items that fail to
meet a certain criterion. In our case this is whether
a chart item is part of one of the k-best derivations.
This has similar effects as removing items below
a threshold of marginalized posterior probability;
however, the latter strategy requires computation
of outside probabilities from a parse forest, which
is more involved with an LCFRS than with a PCFG.
When parsing with the fine grammar, whenever
a new item is derived, the white list is consulted
to see whether this item is allowed to be used in
further derivations; otherwise it is immediately
discarded. This coarse-to-fine approach will be re-
ferred to as CFG-CTF, and the transformed, coarse
grammar will be referred to as a split-PCFG.

Splitting discontinuous nodes for the coarse
grammar introduces new nodes, so obviously we
need to binarize after this transformation. On the
other hand, the coarse-to-fine approach requires a
mapping between the grammars, so after reversing
the transformation of splitting nodes, the resulting
discontinuous trees must be binarized (and option-
ally Markovized) in the same manner as those on
which the fine grammar is based.

To resolve this tension we elect to binarize twice.
The first time is before splitting discontinuous
nodes, and this is where we introduce Markoviza-
tion. This same binarization will be used for the
fine grammar as well, which ensures the models
make the same kind of generalizations. The sec-
ond binarization is after splitting nodes, this time
with a binary normal form (2NF; all productions
are either unary, binary, or lexical).

Parsing with this grammar proceeds as fol-
lows. After obtaining an exhaustive chart from
the coarse stage, the chart is pruned so as to only
contain items occurring in the k-best derivations.
When parsing in the fine stage, each new item is
looked up in this pruned coarse chart, with multi-
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Figure 7: Transformations for a context-free coarse grammar. From left to right: the original constituent,
Markovized with v = 1, h = 1, discontinuities resolved, normal form (second binarization).

model train dev test rules labels fan-out complexity

Split-PCFG 17988 975 968 57969 2026 1 3
PLCFRS 17988 975 968 55778 947 4 9
Disco-DOP 17988 975 968 2657799 702246 4 9

Table 2: Some statistics on the coarse and fine grammars read off from NEGRA-40.

ple lookups if the item is discontinuous (one for
each component).

To summarize, the transformation happens in
four steps (cf. figure 7 for an illustration):

1. Treebank tree: Original (discontinuous) tree
2. Binarization: Binarize discontinuous tree, op-

tionally with Markovization
3. Resolve discontinuity: Split discontinuous

nodes into components, marked with indices
4. 2NF: A binary normal form is applied; all pro-

ductions are either unary, binary, or lexical.

5 Evaluation

We evaluate on Negra with the same setup as in
section 3.3. We report discontinuous F1 scores as
well as exact match scores. For previous results on
discontinuous parsing with Negra, see table 3. For
results with the CFG-CTF method see table 4.

We first establish the viability of the CFG-CTF

method on NEGRA-25, with a head-driven v = 1,
h = 2 binarization, and reporting again the scores
of the exact Viterbi derivations from a treebank
PLCFRS versus a PCFG using our transformations.
We use k = 10, 000 when pruning with the split-
PCFG. Figure 8 compares the parsing times of
LCFRS with and without the new CFG-CTF method.
The graph shows a steep incline for parsing with
LCFRS directly, which makes it infeasible to parse
longer sentences, while the CFG-CTF method is
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Figure 8: Efficiency of parsing PLCFRS with and with-
out coarse-to-fine. The latter includes time for both
coarse & fine grammar. Datapoints represent the aver-
age time to parse sentences of that length; each length
is made up of 20–40 sentences.

faster for sentences of length > 22, despite its
overhead of parsing twice.

The second experiment demonstrates the CFG-
CTF technique on longer sentences. We restrict the
length of sentences in the training, development
and test corpora to 40 words: NEGRA-40. As a first
step we apply the CFG-CTF technique to parse with
a PLCFRS as the fine grammar, pruning away all
items not occurring in the 10,000 best derivations



words PARSEVAL Exact
(F1) match

DPSG: Plaehn (2004) ≤ 15 73.16 39.0
PLCFRS: Maier (2010) ≤ 30 71.52 31.65
Disco-DOP: van Cranenburgh et al. (2011) ≤ 30 73.98 34.80
Disco-DOP: this work, CFG-CTF, dev + test ≤ 30 77.97 35.82

Table 3: Previous work on discontinuous parsing of Negra.

words PARSEVAL Exact
(F1) match

PLCFRS, dev set ≤ 25 72.37 36.58
Split-PCFG, dev set ≤ 25 70.74 33.80
CFG-CTF, PLCFRS, dev set ≤ 25 71.23 34.18
Split-PCFG, dev set ≤ 40 66.81 27.59
CFG-CTF, PLCFRS, dev set ≤ 40 67.26 27.90
CFG-CTF, Disco-DOP, dev set ≤ 40 74.27 34.26
CFG-CTF, Disco-DOP, test set ≤ 40 72.33 33.16
CFG-CTF, Disco-DOP, dev set ∞ 73.32 33.40
CFG-CTF, Disco-DOP, test set ∞ 71.08 32.10

Table 4: Results on NEGRA-25 and NEGRA-40 with the CFG-CTF method. NB: these F1 scores are incomparable
to the results in table 3, because they ignore punctuation & the root node (cf. sec. 3.3).

from the PCFG chart. The result shows that the
PLCFRS gives a slight improvement over the split--
pcfg, which accords with the observation that the
latter makes stronger independence assumptions
in the case of discontinuity.

In the next experiments we turn to an all-
fragments grammar encoded in a PLCFRS using
Goodman’s (2003) reduction, to realize a (dis-
continuous) Data-Oriented Parsing (DOP; Scha,
1990) model—which goes by the name of Disco-
DOP (van Cranenburgh et al., 2011). This provides
an effective yet conceptually simple method to
weaken the independence assumptions of treebank
grammars. Table 2 gives statistics on the gram-
mars, including the parsing complexities. The fine
grammar has a parsing complexity of 9, which
means that parsing with this grammar has com-
plexity O(|w|9). We use the same parameters as
van Cranenburgh et al. (2011), except that unlike
van Cranenburgh et al., we can use v = 1, h = 1
Markovization, in order to obtain a higher cover-
age. The DOP grammar is added as a third stage
in the coarse-to-fine pipeline. This gave slightly
better results than substituting the DOP grammar
for the PLCFRS stage. Parsing with NEGRA-40

took about 11 hours and 4 GB of memory. The
same model from NEGRA-40 can also be used to
parse the full development set, without length re-
strictions, establishing that the CFG-CTF method
effectively eliminates any limitation of length for
parsing with LCFRS.

6 Conclusion

Our results show that optimal binarizations are
clearly not the answer to parsing LCFRS efficiently,
as they do not significantly reduce parsing com-
plexity in our experiments. While they provide
some efficiency gains, they do not help with the
main problem of longer sentences.

We have presented a new technique for large-
scale parsing with LCFRS, which makes it possible
to parse sentences of any length, with favorable
accuracies. The availability of this technique may
lead to a wider acceptance of LCFRS as a syntactic
backbone in computational linguistics.
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