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A MULTIGRID METHOD FOR THE HELMHOLTZ EQUATION
WITH OPTIMIZED COARSE GRID CORRECTIONS*

CHRISTIAAN C. STOLK', MOSTAK AHMED#, AND SAMIR KUMAR BHOWMIK?

Abstract. We study the convergence of multigrid schemes for the Helmholtz equation, focusing
in particular on the choice of the coarse scale operators. Let G denote the number of points per
wavelength at the coarse level. If the coarse scale solutions are to approximate the true solutions,
then the oscillatory nature of the solutions implies the requirement G > 2. However, in examples the
requirement is more like G¢ 2 10, in a trade-off involving also the amount of damping present and the
number of multigrid iterations. We conjecture that this is caused by the difference in phase speeds
between the coarse and fine scale operators. Standard 5-point finite differences in two dimensions
are our first example. A new coarse scale 9-point operator is constructed to match the fine scale
phase speeds. We then compare phase speeds and multigrid performance of standard schemes with
a scheme using the new operator. The required G. is reduced from about 10 to about 3.5, with
less damping present so that waves propagate over > 100 wavelengths in the new scheme. Next, we
consider extensions of the method to more general cases. In three dimensions, comparable results
are obtained with standard 7-point differences and optimized 27-point coarse grid operators, leading
to an order of magnitude reduction in the number of unknowns for the coarsest scale linear system.
Finally, we show how to include perfectly matched layers at the boundary, using a regular grid finite
element method. Matching coarse scale operators can easily be constructed for other discretizations.
The method is therefore potentially useful for a large class of discretized high-frequency Helmholtz
equations.
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1. Introduction. Large scale Helmholtz problems are notoriously difficult to
solve. In particular, in the high-frequency limit, when both the grid size and the
frequency become large, extensive research is going on, as classical methods perform
poorly and more recent methods remain costly in the sense that they require many
iterations to converge or are memory-intensive. High-frequency Helmholtz problems
have applications in various simulation problems and in inverse problems, e.g., in
exploration seismology and acoustic scattering.

Multigrid methods for the Helmholtz equation have been investigated by a number
of authors; see, e.g., [6, 8, 11, 3, 9]. Restricting to finite difference problems, a key
parameter is the minimum number of grid points per wavelength in the coarsest grid,
denoted here by G.. If the coarse problem solutions are to approximate the solutions
of the original problem, the oscillatory nature of the solutions leads to the requirement
G, > 2. In this parameter regime, fast convergence is possible. However, the coarse
grid problem can remain large, especially since for existing methods the requirement is
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more like G 2 10. This regime is therefore mostly of interest when the discretization
has many points (= 20) per wavelength, due, e.g., to subwavelength detail in the
coefficient or the right-hand side. In the high-frequency case, smaller values of G, are
needed to make multigrid useful.

In a second parameter regime, more multigrid levels are added and the parameter
G is chosen < 1. In this regime, the cost per iteration can be small, but the number
of iterations is usually large. A popular method of this kind is the shifted Laplacian
method [8], in which a multigrid cycle for a modified Helmholtz equation is used as a
preconditioner for an iterative method like BiICGSTAB. See also [6].

Among other methods, an interesting class is formed by the double sweeping do-
main decomposition methods, like the moving perfectly matched layer (PML) method
of [7] or the double sweeping method of [17]. These methods appear to have the best,
near-linear scaling for the cost per solve but have the disadvantage of a large mem-
ory use; see also [15]. Other methods use, e.g., incomplete factorizations and matrix
compression techniques or a combination of techniques [2, 4, 21, 3]. In all cases, it is
important to distinguish the behavior in nonresonant cases versus resonant cases. In
variable coefficient media with resonances, the performance of the iterative methods
discussed above tends to deteriorate strongly.

In this paper we study multigrid methods in the first regime, aiming at fast con-
vergence, say, < 20 iterations for reduction of the residual by 1076, Our contribution
centers on the choice of the coarse scale operators. We describe a simple criterion for
the choice of the coarse scale operator. Using new, optimized coarse scale operators
and carefully selected smoother parameters, we will obtain a reduction of G, from
about 10 to about 3.5 and still have fast convergence. As examples we study the
standard 5-point and 7-point stencils (in two dimensions (2-D) and three dimensions
(3-D) resp.) for the fine scale operator, and a regular grid finite element method for
which we show how to include PML boundary layers.

The main consequence is that the two-grid method can now be used in high-
frequency Helmholtz problems. It becomes a general method to reduce the number
of degrees of freedom in a Helmholtz problem; see also the discussion in section 6. In
situations where the multigrid method was already useful, e.g., when subwavelength
detail is present, the number of degrees of freedom in the expensive coarse scale
problem can potentially be reduced by a factor of (10/3.5)3 ~ 23 in 3-D.

We now introduce the setup in more detail. The Helmholtz equation reads

(1) Lu™ —Au— ((1+ai)k(z))>u=f inQCR"

where A is the Laplacian and 2 is a rectangular block. We assume Dirichlet boundary
conditions at the boundary 092. PML layers will be present in some of the examples,
and they will be discussed in section 5.2. The parameter k£ in general depends on
x € . Here « is a parameter for the damping that will mostly be independent of x.!
The corresponding undamped operator will be denoted by

(2) H=-A—-Fk.

The imaginary contribution iak leads to exponentially decaying solutions. For exam-
ple, in one dimension for constant k there are solutions

(3) eikwfakw ]

LOther authors sometimes use —A — (1 +ia)k?, i.e., with the factor (1 +ia) outside the square.
The sign of i« is related to our choice of temporal Fourier transform f(t) = e~ f(w).
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This limits the propagation distance of the waves. This distance, measured by the
number of wavelengths for the amplitude to be reduced by a factor 10, is given by

0 D(e) = 200

Values of o will range from 1.25 - 1073 to 0.02, small enough for applications. In
the presence of PML layers, a will be set to zero. The experiments will show that
for the optimized coarse grid methods good convergence can already start around
a = 1.25-1073 or at D(a) ~ 290 wave lengths assuming around 3.5 points per
wavelength in the coarsest grid.

Multigrid methods consist of several components [19]. For example, a two-grid
method consists of the following steps: presmoothing using a relaxation method; re-
striction of the residual to the coarse grid; solving a coarse grid equation; prolongation
of the solution to the fine grid; and suppressing remaining errors using postsmoothing,
using again a relaxation method. Multigrid methods are used by themselves or as a
preconditioner for a Krylov subspace solver. The latter option will be adopted in this
paper.

Our study focusses on two parts of the multigrid method: the coarse grid operator
and the smoother. Concerning the coarse grid operator, our claim is that it should
have the same phase speed or numerical dispersion as the fine scale problem. Indeed,
over large distances the phase errors lead to large differences between the approximate,
coarse grid solution and the true solution. Alternatively, from Fourier analysis of
multigrid methods one can argue that the inverse of the symbols for the coarse scale
and original operators should match, which in turn implies that the zero-sets and hence
the phase speeds should match. Standard choices for the coarse scale operators are
the Galerkin approximation or to use the same discretization scheme as the fine scale
operator. They lead to sizeable phase speed differences. As shown in section 2, these
differences can be sharply reduced by using finite difference schemes with optimized
coefficients instead.

When designing the smoother, there are many choices to be made concerning the
method and the parameter values. In this work we consider the standard successive
over relaxation (SOR) and w-Jacobi methods. The parameters involved are then the
relaxation parameter, denoted by wg, and the number of pre- and postsmoothing
steps (v1,v2). The effect of the different choices is studied mainly using local Fourier
analysis (LFA) in section 4. The results show that with the optimized coarse grid
operators and standard smoothers, it is indeed possible to have a converging method
for small G. and «, provided that suitable parameters are chosen. For small G. and
a, the convergence depends quite sensitively on these parameters.

The first example we take is the two-grid method with standard 5-point finite
differences in 2-D. We first compute the optimized coefficients and compare the phase
speeds associated with optimized and standard coarse grid operators. Then the two-
grid method is studied for different choices of the parameters in two ways: first the
convergence factors are computed, and finally the convergence in numerical experi-
ments is studied. The multigrid convergence is good or poor, precisely when the phase
speeds match well or poorly, respectively. The two-grid convergence factors show this
for constant k. For spatially varying k, this is verified using numerical experiments.

Next we consider more general settings than 5-point finite differences. For the
three-dimensional problem, we construct optimized coarse scale operators for the stan-
dard 7-point finite difference scheme. Numerical tests show similar results as for the
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two-dimensional case, with good convergence for G. 2 3.5. In practice, problems on
rectangular domains often occur in combination with absorbing boundary conditions
or absorbing boundary layers, such as PML layers [1, 5]. These then provide damping
in the equation, so that we set @« = 0. In numerical experiments, straightforward
insertion of a PML layer was observed to lead to very poor convergence or no con-
vergence at all in the situations we are interested in (G, = 3.5). To address this, we
consider an adapted coarsening strategy. In the PML layer, no coarsening takes place
in the direction normal to the boundary. This is the direction in which a fast varia-
tion of the coefficient o used in the PML takes place. Because this leads to (partly)
irregular grids, it is natural to consider this in the context of finite elements. Opti-
mized coarse grid operators for a first order rectangular finite element discretization
are computed, and we show in two-dimensional examples that this again results in
good convergence of the multigrid method for G 2 3.5 and propapagation distances
of up to 200 wavelengths.

The setup of the paper is as follows. The next section focusses on the phase speeds.
Here we construct the new, optimized finite difference operators for the various cases
and compare the phase speed errors in the standard and the new coarse grid operators.
Then in section 3 we describe the multigrid methods used in this study. In section 4
we present Fourier analysis of the two-grid methods. Section 5 describes the results
of numerical simulations: First the standard and the new methods are compared
for two-dimensional finite differences, and then the extension to multigrid, to three
dimensions and to problems with PML boundary layers is discussed. We end the
paper with a brief discussion section.

2. Phase speeds and optimized coarse scale operators. We first recall
the notions of dispersion relation and phase speed for constant coefficient linear time
dependent partial differential equations [18]. If P is such an operator and

(5) UP(&,LU) — e_if'f+th(Pei§~r—iwt)

denotes its symbol, then the dispersion relation is the set of ({,w) where op(§,w) = 0.
For the Helmholtz equation, the symbol is a function of the spatial wave number &,
with parameter w

(6) op(§w) = e T (He®T),
and the dispersion relation is understood to be the w-dependent set

(7) {¢ € Slou(&w) =0},

where for the continuous operator S = R", and it is assumed that a = 0. For £ such
that og (& w) = 0, the number HLE_H is called the phase speed vy, associated with a
plane wave solution. For the continuous operator vpy is constant equal to c.

For finite difference discretizations of the Helmholtz operator, the definitions (6)
and (7) remain valid except that S is given by the fundamental domain S = [—7/h,
m/h]™. In the typical case that o is increasing along half lines from the origin, the
phase speed is a function of angle. We will compute the dimensionless phase speed ”%h
as a function of another dimensionless quantity, the number of points per wavelength
G, or its inverse 1/G. (G is related to the dimensionless quantity kh by kh = 23.)
When multiple grid levels are involved, G, refers to the coarse level.

This discussion will mostly involve only two scales, a fine scale and a coarse scale
with double the grid parameter. In multigrid with more than two levels, the additional
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levels are assumed to be increasingly fine, because the coarsest level is restricted
by the wave length. In general we expect that the phase speed difference between
the two coarsest levels is the most important, since for finer grids these differences
automatically become smaller as the discretization becomes a better approximation
of the true operator.

Next, we first show the behavior of the phase speeds for some well known finite
difference schemes and then construct a finite difference method that is optimized so
that its dispersion relation matches that of the standard 5-point method. After this
we consider the 7-point operator in 3-D and the finite element method used with PML
layers in 2-D.

2.1. Phase speeds of some well known finite difference schemes. The
standard 5-point finite difference discretization (fd5) of the two-dimensional Helmholtz
operator is given by

(8) (HyPu)iy = h™2 (i — wim1,j — i1 — Uigo1 — Uij1) = Kuiy.
Its symbol is easily shown to be
(9) 0 2(€) = h™*(4 — 2cos(hér) — 2cos(ha)) — k7,

where & = (£1,&2) denotes the wave vector. The phase speed as a function of angle
is easily computed using a root finding algorithm and is shown in Figure 1(a). The
phase speeds as a function of |£] are given for four angles, 0°, 15°, 30°, and 45°.

When such a scheme is used in a multigrid method, say, a two-grid method for
the purpose of this argument, standard choices for the coarse scale operator are to use
the same discretization or to use a Galerkin discretization. The comparison between
the phase speeds of a coarse scale operator H{4® and a fine scale operator H,fld/% is
given in Figure 1(b). The Galerkin method, using “full weighting” restriction and
prolongation operators [19], is easily shown to have symbol

e = 9n7t - gkt (7% - ) (o) + costan)
(10)

+ <_%h—2 - %lﬂ) (cos((&1 + &2)h) + cos((&1 — &2)h)).

The phase speeds and the phase speed difference between a coarse scale Galerkin and
a fine scale fd5 method are shown in Figures 1(c) and (d). The phase speed differences
are on the order of 0.01 or 0.02 for G, = 8 and larger for G, smaller.

We contrast this with the optimized finite difference method of Jo, Shin, and
Suh [12], sometimes called the mixed grid operator. This operator, here called JSS
operator for brevity, is given by

(11)
(Hj )i
= ((2 + 2a)h72 — ckg)ui,j + (—ah72 — dk2)(ui+17j + Ui—1,5 + Ui 51+ um_l)
N (_1—ah2 ~ (1—c—4d)

2
5 1 k > (Wit1,j+1 + Uim1,j41 + Uit1,j—1 + Uim1,5-1),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(a) (b)

phase speeds for fd5 phase speed difference fd5(h)-fd5(h/2)
1 0
0.98 _0.02
0.96 =
s g -0.04 45
< 0.94 T 30
[ -0.06
> 30 =
0.92 S
<
S -0.08
0.9 > 15
15 0
0.88 e (o]
0
0.86 -0.12
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
1/G
1/G c
(c) (d)
phase speeds for gal phase speed difference gal(h)-fd5(h/2)
1.07 0.07
0
1.06 0.06 15
1.05 = 0.05
=
1.04 S 0.04 30
< 0 I 45
a 15 —_
> =
1.03 » & 003
<
Q
1.02 45 > 0.02
1.01 0.01
1 0
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
1/G 1/(3C
(e) (f)
phase speeds for jss x 10~3phase speed difference jss(h)-jss(h/2)
1.005 2
1.004
4
1.003
ey
= 0
1.002 £
£ i
[ 1.001 = -1 45
& 30
1 _§_ =
0.999 9
5 -3 15
0.998 30
45 0
-4
0'9970 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 02 0.25
1G G,

F1G. 1. Dimensionless phase speed curves and the difference between fine and coarse scale phase
speeds; (a), (c), and (e): phase speed for the fd5, Galerkin, and JSS method; (b), (d), and (f): phase

speed differences vflds — Ufld/%, vial — Ufld/%, and viSS — vﬁg with angles 0°, 15°, 30°, 45°.

where a = 0.5461, ¢ = 0.6248, and d = 0.9381 - 10~'. The symbol of this operator
hence equals

(12)

o} (&) = (h2(2 + 2a) — k*c) + 2(—h " 2a — k*d)(cos(&1h) + cos(&2h))

oy (_h21 —a  (1—c—4d) /ﬁ) (cos((£1 + E2)h) + cos((€1 — €2)h)).

2 4
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The phase speed and relative phase speed difference between HJY and H}™ are given
in Figures 1(e) and (f). The phase speed difference between coarse and fine level
operators, both using the JSS method, is reduced to around 2.5-10~2 for G down to
4, i.e., a very substantial improvement both in G. and in the size of the phase speed
difference. ‘

The operators L5, L8 and LI with a # 0 are obtained simply by replacing
k2 by ((1+ia)k)?.

2.2. An optimized finite difference scheme. To obtain a finite difference
method with phase speed matching that of the standard 5-point method, we will now
consider certain finite difference discretizations with optimized coefficients depending
on h, k, and the fine grid parameters hs. The new operators match the phase speed
of the standard 5-point operator with very good accuracy, even down to G, = 2.5.

For each of the two terms in —A — k2, we describe the discretization. Like in [12],
the discretization of the mass term —k? involves a symmetric 9-point stencil. This
stencil depends on three coefficients, by, b2, and b3, as follows:

bs/4 ba/4 b3/4
(13) bo/d by bo/d
bs/4 ba/4 b3/4

The coefficients satisfy by + ba + b = 1 (this explains the normalization in (13)) and

are otherwise to be determined. The Laplacian is written as —A = —88—:2 — 88—;2. The
1 2

. . . 2 . . . .
discrete second derivative —% is given by the tensor product of a one-dimensional
1

.. . /2 .. . .
mass matrix with stencil [alzl} 2} and the standard second order derivative with stencil
as

[—h™22h"% — h™?]. The coefficients are assumed to be such that a1 + az = 1;
otherwise, they are again to be determined. The second derivative —88—;2 is discretized
2

using the 90 degree rotated stencil. The discrete Helmholtz operator then reads

(14)
H,‘zptu(xi,j) = (4a1h72 — k2b1)ui7j
+ ((—a1 + Clz)h_2 — k2b2/4)(ui—1,j F Uit1; + W1+ Ui 1)

+ (—agh™? = kb3 /4) (uim1 j—1 + wim1 jo1 + Wir1j-1 + Uig1j41)-

When the coefficients are constants, this is a new description of the class of operators
considered in [12]. However, to obtain a better approximation of the phase speed,
the coefficients aq, as, by, ba, b3 will be allowed to depend on k, h, and the fine-grid
parameter hs.

From dimensional considerations, the coefficients a;, b; in fact only depend on two
parameters, namely, % and hk or 1/G. = ’21—7]: In our application, % will be a power
of (1/2), depending on the number of multigrid levels considered. The optimized
coefficients will be computed separately for each value of % In this section, denote
p = 1/G.. We hence have to compute the coefficients a1(p), b1(p), and ba(p) for p
in an interval [0, P]. (We have applied this with P up to 0.4, i.e., G, down to 2.5
points per wavelength.) We describe these functions by interpolation from a small set
of data points. For this purpose we consider nc equidistant points on [0, P], given
by pr = nkcf_ll P, k=1,...,nc. The values a;(p) for p € [0, P] will be obtained
by linear interpolation from the nc values a(px). The functions by (p) and ba(p) are
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parameterized similarly. From the relations a; + as = 1 and by + bs + b3 = 1, the
remaining two coefficients are determined. We refer to the ai(py) and the b;(pg),
7 = 1,2 as the control values.

We next describe the computation of phase speeds. The symbol associated to
(14) is

(15)
P (&1, &) = (4dath™2 — k2b1) + ((—a1 + a2)h ™2 — k?by/4)2(cos(h&1) + cos(héa))
+ (—agh™? = kb3 /4)2(cos(h(&1 + &2)) + cos(h(&1 — &2))).

In order to compute the phase speed for a direction given by a unit vector
(cos(0),sin(0)), the equation
(16) oPt (€ cos(0), Esin(0)) = 0
opt

is solved for ¢; denote the result by &P"(6). The quotien w may be called the
phase slowness (one over the phase speed) of the discrete operator for the direction
given by # € S'. In numerical computations, the phase slownesses are obtained from
(16) using a numerical equation solver (fsolve of MATLAB using the default trust-
region-dogleg algorithm for when the gradient is present).

The objective function for the optimization of the coeflicients is chosen as follows.
A set of angles 0 and a set of p values are chosen. For each pair (,p) the phase

opt
slownesses for the optimized symbol and the fine scale symbol, denoted by % and
fd5

by Zf , are computed. The relative error is defined by

&74(6) - 6525(6)]

17 & 0)

The objective function for the optimization is the sum of the squares of the relative
errors. For the results given below we used 18 equidistant values for 0 to discretize
the interval [0,7/2)), and 8 times nc equidistant values for p. The results depended
little on the precise choice of values once they were sufficiently large.

The objective functional is minimized as a function of the control values a;(p),
b1(pr), and ba(py). For this purpose, a constrained minimization algorithm was used,
fmincon of MATLAB using the interior-point algorithm. The behavior of the opti-
mization algorithm depends on the parameters P and nc, and on the starting values
chosen. For small P (less than about 0.25), the algorithm is not very sensitive to the
starting values, and one can take, for example, the coefficient values from (11). By
gradually increasing the value of P, good starting values can be found for an interval
up to P = 0.4. The interior-point optimization algorithm then performs its job very
nicely. We will use in what follows the values found for P = 0.4, nc = 11. They are
given in Table 1. The resulting errors in the relative phase speed were computed as
a function of p, taking the maximum value as a function of . The result is given in
Figure 2. As can be seen from these figures, the phase speed differences are reduced
to less than 2 - 10~* for G, down to 4 and less than 1- 1072 for G¢ down to 3.

2.3. Optimized regular grid finite elements. It is straightforward to derive
the matrix for two-dimensional regular grid finite elements using first order rectangular
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TABLE 1
Coefficient values describing the optimized finite difference operators for the fd5 fine scale
operator.

A2827

Pk

a1 (pr)

be = 1/8
b1 (pr)

ba ()

a1 (pr)

b =174
b1 (px)

b2 (pr)

a1 (pr)

be = 1/2
b1 (px)

ba ()

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

0.76738
0.83462
0.82739
0.81649
0.80142
0.78410
0.76246
0.73555
0.70230
0.66179
0.61221

0.60579
0.61172
0.60701
0.60264
0.59934
0.59769
0.59063
0.57859
0.56192
0.54059
0.51377

0.42216
0.44778
0.45371
0.45711
0.45584
0.44867
0.44922
0.45631
0.46838
0.48470
0.50533

0.77051
0.84224
0.83470
0.82285
0.80744
0.78861
0.76533
0.73659
0.70107
0.65752
0.60360

0.61120
0.61607
0.61024
0.60580
0.60510
0.60230
0.59494
0.58273
0.56562
0.54327
0.51457

0.42389
0.45470
0.46291
0.46643
0.45995
0.45500
0.45598
0.46306
0.47540
0.49266
0.51511

0.77363
0.87242
0.86400
0.84984
0.83017
0.80852
0.78215
0.74857
0.70553
0.65062
0.57676

0.61953
0.63691
0.62988
0.62610
0.62289
0.62596
0.62213
0.61036
0.59107
0.56369
0.52412

0.45295
0.47535
0.48633
0.48880
0.48759
0.47106
0.46478
0.47016
0.48468
0.50746
0.54163

Fia. 2.

relative phase error

Relative phase error as a function of 1/GC

e

1/2

41/4
1/8
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p=1/Gec for hg/h =1/2,1/4, and 1/8.

0.2
1/G

[

0.25

0.3

0.35

(square) elements and constant k?; see section 5.2 below. One finds

Relative phase speed errors as defined in (17), mazimum over 6 as a function of

(18)
pE (8 Agope) (L LN .
(Hp ") = 3 gh k) w; + 3 9h k2 ) (Wi, + wim1,j + Ui i1 + Ui j—1)
1 1 5.9
+ T3 %h E2 ) (Wi 1 F Wim1 jg1 + Wig1,j—1 + Wim1,5-1)-

This equals (14) with a1 = 2/3,a2 = 1/3,b1 = 4/9,b2 = 4/9, and b3 = 1/9 and an
overal multiplicative factor h? due to the use of the finite element method instead of
finite differences. It is straightforward to find optimized coarse scale finite difference
operators in the form
(19)
Hzpt’FEu(fIJi’j) = (4&1 — hzkzbl)um

+ ((—a1 + az) — h?K?ba /4) (wi—1,5 + Wit1,j + Wij1 + Uijt1)

+ (—az — h2k2b3/4)(ui—1,j—1 U1 1 Wi 11 F Uit 1)
The same optimization scheme as above is used. The values of the coefficients are

given in Table 2, and the relative phase speed differences as a function of 1/G. are
given in Figure 3.
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Coefficient values describing the optimized finite difference operators for the finite element fine

scale operator.
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TABLE 2

Pk

a1 (pr)

be = 1/8
b1 (pr)

ba ()

a1 (pr)

b =174
b1 (px)

b2 (pr)

a1 (pr)

be = 1/2
b1 (px)

ba ()

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36

0.76647
0.82947
0.82251
0.81202
0.79758
0.78078
0.75974
0.73368
0.70164
0.66281

0.40

0.61563

0.60220
0.60801
0.60347
0.59934
0.59608
0.59376
0.58635
0.57436
0.55808
0.53747
0.51184

0.42163
0.44478
0.45037
0.45331
0.45200
0.44622
0.44763
0.45485
0.46659
0.48218
0.50162

0.76485
0.82174
0.81512
0.80514
0.79216
0.77726
0.75885
0.73543
0.70647
0.67130
0.62872

0.59678
0.60243
0.59641
0.59341
0.59235
0.59178
0.58563
0.57397
0.55817
0.53836
0.51411

0.42071
0.44031
0.44891
0.44959
0.44396
0.43482
0.43396
0.44094
0.45237
0.46744
0.48582

0.75687
0.79073
0.78598
0.77849
0.76950
0.75789
0.74319
0.72495
0.70275
0.67663
0.64587

0.57482
0.57900
0.57656
0.57352
0.57382
0.56950
0.56157
0.55058
0.53691
0.52099
0.50233

0.41653
0.42466
0.42640
0.42749
0.41975
0.41903
0.42314
0.43081
0.44096
0.45245
0.46570

relative phase error

Relative phase error as a function of 1/Gc

0.5

D

1/8
1/4

1/2

0.05

0.1

0.15

0.2
1/G
C

0.25

0.3

0.35

0.4

Fic. 3. Relative phase speed errors for the optimized scheme associated with (18), mazimum
over 0 as a function of p=1/Gc for hg/h =1/2,1/4, and 1/8.

2.4. Optimized finite difference scheme in 3-D. In 3-D, a class of operators
like (14) can be constructed similarly. It depends on coefficients a1, as, asg satisfying
a1 + az + as = 1 and on coefficeints by, bo, b3, by satisfying by + by + b3 + by = 1, and
it is given by

(20)

HyPu(wi k)

= (6a1h_2 — kal)Ui,j,k
+ ((—a1 + az2)h ™% — kb2 /6) (wi—1,jk + Uit1,jk

Ui -1,k Wi g1k Ui k1 Ui kt1)

+ ((—2&2 + a3/2)h_2 — k2b3/12)(ui_17j_1,k + Ui—1, 541,k T Uit1,j—1.k

Wit 1,41k + WUim1gk—1 + Wie1 5 k+1

F Uit 1 i1, k+1 T Wit1,j+1,k+1)-

+ Wit1,5,k—1 F Wit1,5k+1 T Ui j—1,k—1

F Ui o1 kb1 Wi k1 Wit 1, kt1)
-2 2

+ (=3az/4h™* — kb /8)(Ui—1,j—1,k—1 + Wim1,j+1,k—1 + Wit1 j—1,k—1

Wit 1,541,k—1 T Uia1,5—1,k+1 + Ui—1 j+1,k+1

There are now five coefficients that need to be determined by optimization. Again,
these are a function of h¢/h and of p = 1/G.. The procedure is done similarly as
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TABLE 3
Coefficient values describing the three-dimensional optimized finite difference operators for the
Fd7 fine scale operator.

be =178

pe | a1(pe)  as(pr)  bi(pr)  ba(pk)  b3(pw)
0.00 | 0.75517 0.16259  0.54098  0.34422 0.19711
0.04 | 0.75549 0.15831 0.54028 0.34418 0.19734
0.08 | 0.74355 0.17283  0.54382  0.33897  0.19206
0.12 | 0.70967  0.22754  0.54297 0.33616  0.19223
0.16 | 0.69268 0.24313 0.54196 0.32594  0.20400
0.20 | 0.67765 0.24848  0.53589  0.32075  0.21686
0.24 | 0.65980 0.25228  0.52300 0.32683  0.22317
0.28 | 0.63470 0.26238 0.50163  0.34886  0.21766
0.32 | 0.60630 0.26831 0.48133 0.35550  0.23347
0.36 | 0.58183 0.26501 0.46889 0.33974  0.26288
0.40 | 0.55400 0.25602  0.45013 0.32489  0.29949
b =1/4
0.00 | 0.75957  0.16479  0.54568  0.34705  0.19853
0.04 | 0.76194 0.16118 0.54572  0.34714  0.19860
0.08 | 0.75567 0.16304 0.54554  0.34545  0.19740
0.12 | 0.71958 0.22112 0.54645 0.33962  0.19835
0.16 | 0.70279  0.23466  0.54490 0.33257  0.20536
0.20 | 0.68712 0.23951 0.53872  0.33008  0.21307
0.24 | 0.66708 0.24579  0.52468 0.34092  0.21302
0.28 | 0.64032 0.25652  0.50408 0.36041  0.20978
0.32 | 0.60968 0.26327 0.48374 0.36555  0.22774
0.36 | 0.58186 0.26184  0.47007  0.35072  0.25739
0.40 | 0.55039 0.25231 0.45013 0.33345  0.29951
be =12
0.00 | 0.77998  0.17505 0.56428  0.35970  0.20490
0.04 | 0.78635 0.17442 0.56571 0.36071  0.20541
0.08 | 0.78273 0.16881  0.56298 0.36150  0.20719
0.12 | 0.76438 0.18678 0.56540 0.35620  0.20287
0.16 | 0.74684 0.19603 0.56370 0.35299  0.20299
0.20 | 0.72755 0.20131 0.55813  0.35277  0.20452
0.24 | 0.70298 0.20847 0.54673 0.35830  0.20693
0.28 | 0.66863  0.22424  0.52423 0.38368 0.19633
0.32 | 0.62734 0.23845 0.49946 0.39740 0.20725
0.36 | 0.58198  0.25329  0.47567 0.40216 0.22132
0.40 | 0.53417 0.23589 0.45011 0.36784  0.29962

above. The vector (cos(6),sin(6)) is replaced by a unit vector on the sphere using
spherical coordinates (0, ¢), given by (cos() cos(¢), cos(8) sin(¢), sin(f)), and the ob-
jective functional is weighted by sin(6).

The same optimization scheme is used as above. The values of the coefficients are
given in Table 3, and the relative phase speed differences as a function of 1/G. are
given in Figure 4.

3. The multigrid methods. The operator described above is used in two-grid
and multigrid methods, which we will now describe. For background on multigrid
methods we refer to [19]. The multigrid method will be used as a preconditioner for
a Krylov subspace method (GMRES [16]).

We next discuss the choice of a smoother. Smoothers apply one or more steps of
an iterative method to the equation

(21) Lhuh = fh'
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107 Relative phase error as a function of 1/Gc
X
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Fic. 4. Relative phase speed errors for the three-dimensional optimized scheme associated with
the fd7 method, mazimum over (0,®) as a function of p=1/G¢ for hy/h =1/2,1/4, and 1/8.

This involves a choice of the iterative method and of the number of smoothing steps
(presmoothing and postsmoothing). The result of a single iteration of the smoother
will be denoted by SMOOTH(up, fr). The w-Jacobi method and SOR will be con-
sidered as smoothers. The latter is of course equal to Gauss—Seidel (GS) when the
relaxation factor is 1.

The choices of grid refinement and of the restriction and prolongation operators
are standard. We start with a square grid with grid size h and apply standard coars-
ening to square grids with grid size 2h, 4h, etc. For the restriction operator, we always
use full weighting, i.e., it is the tensor product of one-dimensional full weighting oper-
ators of the form, in stencil notation i [1 2 1]. In 2-D it reads, in stencil notation,

L2
(22) Ry=1:12 4 2|,
12 1

or, if 4, j are coordinates in the coarse grid,

1
(Rpu);; = 6 (41&21',23' + 2(u2i—1,2j + U2it1,25 + U2i2j—1 + U2i2541)
(23)

+ u2i—1,25—1 + U2i41,25—1 + U2i—1,2j4+1 + U2z‘+1,2j+1) .

The prolongation operator is given by
(24) Py, = 4(Ry)' .

For the two-grid method, the coarse grid correction operator is denoted by
(25) CGCORR(un, fn) = un + Pn(Lean) ' Ru(fn — Lnun).

Here Lj and L. denote discretizations of —A — k2 that are still to be specified.
We focus particularly on the choice of coarse grid operator L op,. For the two-grid
method in 2-D, the following pairs of fine and coarse grid operators will be considered:
1. both using standard 5-point finite differences (fd5-fd5),
2. using standard 5-point finite differences at the fine level and a Galerkin ap-
proximation of this matrix at the coarse level (fd5-gal),
3. using standard 5-point finite differences at the fine level and the new opti-
mized operator at the coarse level (fd5-opt),
4. using the operator from [12] at the fine and coarse levels (jss-jss).
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The result of the two-grid cycle is obtained by first applying the smoother v
times, then the coarse grid correction, and then the smoother vo times. Denoting by
Un,j, j =1,...,v1 + 12 the intermediate results, we define the map TGCYC(up,o, fr)
by

(26) TGCYC(uh70, fh) = uh,,,1+,,2+1,
where

(27) Uh,j+1 = SMOOTH(Uh’j,fh) for j=0,...,v1 —Liv1 +1,...v1 + 12,
(28)  unui+1 = CGCORR(up vy, fn)-

When used as a preconditioner it is applied with u,o = 0.

For multigrid with more than two coarsening levels, we consider only the opti-
mized method where at each scale the optimized operator is chosen to approximate
the fine level finite difference operator. This is done using the parameter h¢/h that was
introduced in section 2. In this case, the algorithm is based on the V-cycle. In further
developments, most of the emphasis will be on the two-grid problem. Some experi-
ments are done using multiple levels to study whether the good two-grid performance
extends to the multigrid method.

4. Fourier analysis of multigrid methods. In this section, we compute and
analyze two-grid convergence factors by using local Fourier analysis; cf. [19, Chapters
3 and 4]. We first describe their computation and then give their values for a number of
parameter choices. We identify choices of the smoother parameters that lead to small
convergence factors. Implications of the divergence of the smoother for Helmholtz
problems are briefly discussed.

As usual, the convergence of the following iteration is studied:

(29) u" = Taeyew!™, ).

Let up,true = L,:lfh. The smoother acts linearly on the error uj — up trye, i-e., there
is an operator S such that

(30) Uh,true — SMOOTH(Uh, fh) = Sh (uh7true - uh)-
Similarly, there is an operator K2" such that CGCORR (up, f1,) satisfies
(31) Up, true — CGCORR(Uh, fh) = K}%h(uh,true - Uh).

For the TGCYC, it follows that

(32) Uh,true — TGCYC(Uh, fh) = M}%h (uh,true - Uh)
with
(33) M = S Khsy.

In local Fourier analysis, the spectral radius p(M?") is estimated. If p(M2") < 1, the
method is asymptotically convergent.

Next, we discuss the computation of the spectral radius. This is done in the
dimensionless Fourier domain, i.e., the wave vector is written as h=10 = h=1(0y, 02),
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so that the dimensionless wave numbers 6 are in [—7,7)? (in 2-D). Sets of “high” and
“low” wave numbers are defined by

2
Tlow _ |:_z Z)
272/
Thigh _ [—7T,7T)2\T10W.

(34)

For § = (61,605) € T"%, we also define

000 = (0,,65), oY = (0y,6s),
(35) (61,02) (61,062)

where

(36) 9%‘:{91._77 if 6; > 0.

In local Fourier analysis, for each § € T'°% we define the four-dimensional space of
harmonics by

(37) E? = span ({7 /" a € {(0,0), (1,1),(0,1),(1,0)} }).

The operator M, ,fh maps this space into itself and hence can be reduced to a 4 x 4
matrix for each # € T'%, which will be denoted by M2"(8) and follows from (33).

We next turn to the analysis of the smoothing operator. By Sj,(6), we denote the
4 x 4 matrix that describes the action of S, on the space of harmonics. This matrix
is diagonal; we write

(38) Sy (0) = diag(Sy (0%, S, (61, S, (81, S, (H9)).

In the w-Jacobi smoother, the operator Lj, is written as the sum of its diagonal part
Lgiag,n and offdiagonal part Logdiag,n- The action of the w-Jacobi smoother is

(39) SMOOTH (up, fr) = (1 — ws)upn + ws(Laiag.h) " (f — Lofidiag, nUn)-
Using that f, = Lpup true, it follows that S (0) satisfies

(40) G (0) = 1 — g — WS Lottding 1 (0)
Laiag,n(0)

For the fd5 discretization, we have ﬂdiag,h =4h=2 — k2, .Z/Oﬂ‘diag’h = —2h~2(cos(61) +
(62)), and L, = h=2(4 — 2cos(6;) — 2 cos(fs)) — k2.
The SOR smoother is given by

(41) SMOOTH (up, frn) = (1 — ws)up, + OJs(LJﬁh)*l(f — L,7huh),

where L_ j;, denotes the upperdiagonal part of L_ , and Ly j = Ly — L_ . Similarly,
as above we obtain

~ o.)s.i,7h(9)

(42) Sh(a) =1- ws — zuﬁh(@) .
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The explicit expressions for L_ ; and L, j are straightforward to derive. This con-
cludes the Fourier domain analysis of the smoothers.

The Fourier transformed version of K ,%h is obtained in the standard way from the
Fourier transformed versions of the operators that make up K ,%h, ie.,

(43) K2M(0) = I, — Pu(0)(Le,2n(20)) "  Ri(8) L (0).

Here, I, is the 4 x 4 identity matrix. The operator ﬁc72h(29) is a scalar given by the
value of the symbol (99 /h). The operator Ly, is a diagonal 4 x 4 matrix given by

(44) Lp(0) = diag(Ly, (09, Ly (0D, Ly (0001, L, (1)),

in which Lj(6) is the scalar value of the symbol o(¢/h). The Fourier transformed
restriction and prolongation operators P, and R are 4 x 1 and 1 x 4 matrices, re-
spectively, given by

1(1+ cos)(1 + cosbs)
R L1 4+ coshy)(1 + cos .
(45) B, — 411( 71)( 2)
7(1+cos01)(1 + cosby)
2(1+ cosfy1)(1 + cosbb)
and
(46) Ry, = PF.

The matrix M2"(#) now follows from Sy, (6) and K?"(8) using (33). The spectral
radius proc(M32") is given by

(47) Ploc(ME") = sup {ploc(M,fh(o)) |6 € Tlow}

and that pioc(M2"(0)) is the spectral radius of the 4 x 4 matrix M2" ().

4.1. Divergence of the smoother. The fact that the smoother is divergent is
easily shown using the smoothing factors. For example, with standard 5-point finite
differences for the Helmholtz operator and w-Jacobi these are given by

(48) Sp(0) =1—ws + cos B + cosbs).

2ws
4 — k2h? (
For 61,605 near zero, this factor becomes > 1, leading to the instability. For SOR,
something similar happens. This means that the coarse grid correction has to make
up for the error introduced and that performance in general is degraded. It also
implies that one must be careful when increasing the number of smoothing steps.

4.2. Computation of two-grid convergence factors. The two-grid conver-
gence factors are computed using the expression (47), taking the supremum for ¢ on
a grid in polar coordinates. The grid was taken large enough to accurately compute
the maximum in (47). We have computed the convergence factor for the four schemes
listed in section 3, i.e., the optimized schemes fd5-opt, jss-jss and the nonoptimized
schemes fd5-fd5 and fd5-gal. We first vary the smoother parameters to find a good
smoother. Then we present the convergence factors as a function of damping and G..
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TABLE 4
Two-grid convergence factors Ploc(M;%h)y G. = 3.5, fd5-opt.

« 0.0025
(V17V2) (17 1) (272) (373) (47 4) (575) (67 6)
0.6J >1 >1 >1 0.557 0.304 0.214
0.7 >1 >1 0.685 0.307 0.206 0.214
0.8J >1 >1 0.362 0.209 0.214 0.246
0.9J >1 >1 >1 >1 >1 >1
J >1 > 1 >1 >1 >1 >1
SORO0.8 >1 >1 0.426  0.393  0.729 >1
SORO0.9 >1 0.809 0.324 0.508 >1 >1
GS >1 0.527  0.321  0.657 >1 >1
SOR1.1 >1 0.476  0.381  0.846 >1 >1
SOR1.2 > 1 0.452  0.453 > 1 > 1 > 1

TABLE 5
Two-grid convergence factors ploc(Msh), G = 10, fd5-fd5.

« 0.01 0.02
L LD 22 G5 LD (22 63
0.6J >1 >1 >1 0.763 0.635 0.619
0.7 >1 >1 >1 0.697 0.622 0.617
0.8] >1 >1 >1 0.659 0.618 0.616
0.9J >1 >1 >1 0.677 0.617 0.616
J >1 >1 >1 >1 >1 >1
SORO0.8 >1 >1 >1 0.621 0.615 0.615
SORO0.9 >1 >1 >1 0.604 0.616 0.615
GS >1 >1 >1 0.611 0.616 0.615
SORI1.1 >1 >1 >1 0.630 0.616 0.615
SOR1.2 >1 >1 >1 0.659 0.617 0.614

In Table 4 we present pio.(M2") for the fd5-opt method for two choices of smoother,
w-Jacobi with wg € {0.6,0.7,0.8,0.9,1.0} and SOR with wg € {0.8,0.9,1.0,1.1,1.2},
and six choices of the number of pre- and postsmoothing steps (v1, v2), ranging from
(1,1) to (6,6). The parameter o was fixed at 0.0025, while G. was chosen constant
equal to 3.5. The numbers show that the performance of the scheme depends strongly
on the parameters of the iterative method. Best performance for the optimized scheme
occurs roughly for w-Jacobi with wg = 0.8 and (v1,v2) = (4,4). For the jss-jss method,
a similar computation was made for G. = 4, and it was determined that w-Jacobi
with (v1,12) = (2,2) and wg = 0.8 was either optimal or very close to optimal. Ta-
ble 5 contains the results of a similar computation for the fd5-fd5 scheme. Now three
choices of (v1,19) were used, a equaled 0.01 or 0.02 and G, was chosen equal to 10,
because for lower values convergence was poor or absent. For the fd5-fd5 scheme, the
radius of convergence is less sensitive to the choice of smoother parameters once «
and G, are such that reasonable convergence can be obtained. We concentrate on the
method with (v1,12) = (2,2) and ws = 0.8. Similarly, for fd5-gal the method is less
sensitive to the detailed choice of parameters and we adopt the same choice.

In Table 6 we compute the convergence radius as a function of o and G, including
results for the fd5-gal and jss-jss methods. We clearly observe that the fd5-opt method
gives the best results, somewhat better than the jss-jss method and much better than
fd5-fd5 and fd5-gal. It allows for the coarsest grids with the least amount of damping.

5. Numerical results. In this section we compare the convergence of multigrid
methods with different choices of the coarse scale operators. We start with several ex-
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TABLE 6
Two-grid convergence factors as a function of o, G for fd5-opt, jss-jss, fd5-fd5, and fd5-gal.

G fd5-opt jss-jss
¢ | a=1.25¢-3 0.005 0.02 a=1.25e-3 0.005  0.02
3 0.634 0.439  0.438 >1 > 1 >1
3.5 0.228 0.204 0.202 >1 > 1 0.502
4 0.170 0.156  0.154 >1 0.639  0.231
5 0.113 0.100  0.099 >1 0.293 0.122
6 0.079 0.079  0.079 >1 0.358  0.121
7 0.071 0.071  0.071 >1 0.359  0.110
8 0.067 0.067  0.067 > 1 0.324  0.095
a fd5-fd5 fd5-gal
¢ | a=1.25¢-3 0.005  0.02 a=1.25e-3  0.005  0.02
6 >1 >1 > 1 >1 > 1 >1
7 >1 >1 >1 >1 > 1 >1
8 >1 >1 0.963 >1 > 1 0.896
10 >1 >1 0.618 >1 > 1 0.588
12 > 1 > 1 0.430 > 1 >1 0.415

periments for the two-grid method in 2-D. Then we investigate the multigrid method,
the three-dimensional case, and the case with PML boundary layers in order to es-
tablish that the behavior observed in the two-dimensional, two-grid experiments also
occurs more generally. For a full comparision, we study the trade-off between damping
present in the equation, the number of grid points per wave length at the coarse level
G, and the number of iterations required to reduce the residual by a factor of 1076.
In 2-D it is relatively easy to perform this kind of experiment. In 3-D the size of the
coarse scale problem quickly becomes large for a modern desktop machine. (A machine
with 8GB memory was used for these experiments using a MATLAB implementation.)

5.1. The two-grid method in 2-D. In the two-dimensional, two-grid exam-
ples, we compare four methods. The regular five-point operator at the fine scale is
combined at the coarse scale with three choices of coarse scale operator, namely, the
regular five-point operator, the Galerkin operator, and our optimized method. These
combinations are denoted fd5-fd5, fd5-gal, and fd5-opt. We also study the JSS opera-
tor, used both at the fine and at the coarse scale, and referred to as jss-jss. As shown
below, sharp differences are present between the optimized coarse scale methods on
the one hand and the fd5 and Galerkin coarse scale methods on the other hand.

The first series of experiments concerned a constant coefficient medium, i.e., k is
constant equal to &7, where Gc is the number of grid points per wavelength at the
coarse scale. Experiments were performed with the w-Jacobi smoother with wg = 0.8
and v; = o = 4 for the fd5-opt method, and ws = 0.8 and v; = v = 2 for the other
methods. The results are given in Table 7. The following can be clearly observed:

e For the fd5-fd5 and fd5-gal method, good convergence starts at (o, G.) =
(0.01,10) or (0.02,8). Relatively large G and « are required.
e The jss-jss method performs well with G, as low as 3.5 and o = 0.0025 or
a = 0.005 or larger.
e In this example, the fd5-opt method even performs well with G. = 3 and
a = 0.00125.
Here, Niter < 20 is used as the (somewhat subjective) criterion for good convergence.
Clearly, the optimized methods (jss and opt) perform much better than the conven-
tional choices fd5 or gal at the coarse level, with our fd5-opt method having the best
performance.
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TABLE 7
Convergence results for the two-grid method in a constant medium using different combinations
of fine and coarse scale operators. The fine grid size is indicated.

a Niter for fd5-fd5, 1023 x 1023 Niter for fd5-gal, 1023 x 1023

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 a=1.25e-3  2.5e-3  0.005 0.01 0.02
6 >100 >100  >100 95 33 >100 >100  >100 74 27
7 >100 >100 >100 55 22 >100 >100 >100 47 20
8 >100 >100  >100 37 17 >100 >100 95 33 15
10 >100 >100 51 21 11 >100 >100 47 20 11
12 >100 80 30 14 9 >100 75 28 14 9
a Niter for fd5-opt, 1023 x 1023 Niter for jss-jss, 1023 x 1023

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 a=1.25e-3  2.5e-3  0.005 0.01 0.02
3 15 11 8 7 7 >100 >100  >100 51 22
3.5 7 6 6 5 5 >100 94 33 16 10
4 6 5 5 5 5 49 21 12 8 7
5 4 4 4 4 4 26 13 8 7 6
6 4 4 4 4 4 37 15 9 7 6
7 4 4 4 4 4 35 15 9 7 5
8 4 4 4 4 4 26 13 8 6 5

Next, we test this in two variable coefficient media. The first is a random medium,
for which results are given in Table 8, and the second is the Marmousi model; see
Table 9. The Marmousi model has size 9200 x 3000 meters and wave speeds between
1500 and 5500 ms~!; see the plot. The value of G. is the minimum value present
in the model. The coefficients for a row of the matrix were obtained by freezing the
value of k locally. The performance of the opt-fd5 method for the Marmousi exam-
ple is comparable to that in the constant medium case, the other methods perform
somewhat better, probably because in most of the domain the actual value of G, is
larger than the minimum value. In these examples, Dirichlet boundary conditions
were used.

5.2. Further experiments: Multigrid, 3-D, and PML layers. Further
numerical experiments are done to establish whether these results extend to multigrid
experiments, to 3-D, and to examples with PML layers. Our method to include PML
layers is new and is described in this section.

Results for two-dimensional multigrid with 2, 3, and 4 levels, using a constant
coefficient medium, are given in Table 10. In each case, the same coarse level grid is
used. For most examples where the two-grid method converges reasonably fast, the
multigrid method converges in about the same number of iterations. For the random
medium in Table 8, similar behavior is observed.

In 3-D, the cost and memory use of the sparse factorizations scales worse than in
2-D. In this paper we study only a relatively small example of size 80% that can be done
on a regular machine with 8 GB memory using MATLAB. This was approximately
the largest example that could be done in this setup. For these experiments, we first
had to determine suitable choices of the parameter wg for w-Jacobi and for vy = vs.
This was done by test runs with G, = 3.5 and « = 0.0025. The best choices for
(ws,v1) were wg = 0.8 or 0.9 and v; = 7 or 8; we opted for (wg,v1) = (0.9,8), which
gave the fastest convergence. The results for the optimized method on the unit cube
with constant wave speed are given in Table 11. Generalizations of the method of [12]
to 3-D exist [14, 4] but were not tested. In 3-D, the observed convergence behavior
as a function of v and G, does not differ much from the behavior observed in 2-D.
Convergence is good for G, > 3.5.
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TABLE 8
Convergence results for different methods for a random medium. The fine grid size is indicated.

(a) velocity (b) solution with nx = 511, G¢c = 4, a = 2.5e-3

wavefield

02 04 06 08
X

a Niter for fd5-fd5, 1023 x 1023 Niger for fd5-gal, 1023 x 1023

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 || a=1.25e-3 2.5e-3 0.005 0.01 0.02
6 >100 >100 63 26 14 >100 >100 56 24 13
7 >100 >100 39 18 11 >100 >100 36 17 10
8 >100 69 27 14 9 >100 66 26 14 9
10 >100 36 17 10 7 97 34 16 10 7
12 56 22 12 8 7 54 22 12 8 6
G Niter for fd5-opt, 1023 x 1023 Niter for jss-jss, 1023 x 1023

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 || a=1.25e-3 2.5e-3 0.005 0.01 0.02
3 5 5 5 5 5 25 15 11 8 7
3.5 5 4 4 4 5 12 9 7 6 6
4 4 4 4 4 4 12 9 7 6 6
5 4 4 4 4 4 11 9 7 6 5
6 4 4 4 4 4 10 8 6 5 5
7 4 4 4 4 4 9 7 6 5 4
8 4 4 4 4 4 8 6 5 5 4

We next consider the 2-D problem with PML boundary layers. This is important
in practice—rectangular domains are often encountered in combination with PML
boundary layers, for example, in the seismic problem [14]. As mentioned, we consider
a finite element discretization for this problem.

As explained in [13], in the PML method for the boundary z; = constant the

derivative 8%1 is replaced by 1 ey L -2 Here, o1 is chosen to be 0 on the internal

T+iw—To1(z1) dz1
domain (no damping) and increases( q)uadratically from the onset of the damping
layer to boundary of the computational domain. We introduce PML layers on all
four boundaries. It is convenient to multiply the equation by (1 + iw = oy (21))(1 +
iw oo (22)); this leads to a symmetric operator easily discretized by finite elements.

Straightforward inclusion of PML layers in the finite difference multigrid method
was observed to lead to very poor convergence, or no convergence at all. Therefore,
we consider a coarsening strategy where inside the PML layer no coarsening takes
place in the direction normal to the boundary. This leads to elongated basis functions
in the boundary layers. The resulting grids are given (schematically) in Figure 5. We
consider first order rectangular elements on these grids, denoted by ¢;;. The matrix
elements are given by
(49)

1 0¢i; Obrr | 1 Oij 09 o
Mg = / [alaQ ! 8:1:1] o, +a; Loy (‘9:62] %2] — k(ac)2a1 1a2 1¢kl($)¢kl dz,
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TABLE 9
Convergence results for different methods for the Marmousi example. The fine grid size is
indicated.
(a) medium

c(x,y)

n m———,
1000 2000 3000 4000 5000 6000 7000 8000 9000

X
(b) solution for nx = 1149, o = 2.5e-3,Gc = 4

wavefield

500
1000

> 1500
2000
2500

1000 2000 3000 4000 5000 6000 7000 8000 9000
X

G Niger for fd5-fd5, 2299 x 749 Niger for fd5-gal, 2299 x 749

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 || a=1.25e-3 2.5e-3 0.005 0.01 0.02
6 >100 >100 >100 51 23 >100 >100 >100 44 20
7 >100 >100 70 30 16 >100 >100 63 27 15
8 >100 >100 44 21 12 >100 >100 41 20 12
10 >100 52 24 14 9 >100 50 23 13 9
12 66 28 16 10 7 67 28 15 10 7
G Niter for fd5-opt, 2299 x 749 Niter for jss-jss, 2299 x 749

¢ | a=1.25e-3 2.5e-3 0.005 0.01 0.02 || a=1.25e-3 2.5e-3 0.005 0.01 0.02
3 17 13 9 7 6 >100 >100 75 29 16
3.5 13 10 8 6 5 7 34 18 11 8
4 11 9 7 5 5 19 12 9 7 7
5 9 8 7 6 4 18 11 8 7 6
6 8 7 6 5 4 16 10 8 6 5
7 7 6 5 5 4 12 9 7 6 5
8 7 6 5 5 4 11 8 7 5 5

where the function «;(z;) =
the PML layer.

In the finite element context, the prolongation operator P follows straightfor-
wardly from specifying the grids, while the restriction operator R is given by P’.
Based on experiments with constant coefficients, we choose as a smoother two itera-
tions of the w-Jacobi method with relaxation factor wg = 0.6.

For the coarse grid operators, the optimized stencils where computed in section 2.
These are used in the internal, square grid part of the domain, in such a way that the
corresponding rows of the matrix contain the optimized stencil coefficients. For the
other rows, the regular finite element matrix elements are used. We expect that the
fact that no optimized coefficients are used inside the PML layer is of little importance,
because the accuracy of the phase speeds is most relevant for long distance wave
propagation, and there is no such propagation in the PML layer due to the damping.

1++ contains the modifications for inclusion of
w—loj(x;)
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TABLE 10
Multigrid convergence for the constant medium with 2,3, and 4 levels and different values of
Gc and a.

Niter for fd5-opt, coarse size 255 x 255
a =1.25e-3 a =0.005 a =0.02
Gc | nlevels=2 3 4 nlevels=2 3 4 nlevels=2 3 4
3 15 8 8 8 7 8 7 7 8
3.5 7 6 6 6 5 6 5 6 6
4 6 5 5 5 5 5 5 5 5
5 4 4 4 4 4 4 4 4 4
6 4 4 4 4 4 4 4 4 4
7 4 4 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4 4 4
Niter for jss-jss, coarse size 255 X 255
a =1.25e-3 a =0.005 a =0.02
Ge | nlevels=2 3 4 nlevels=2 3 4 nlevels=2 3 4
3 >100 >100  >100 >100 >100 >100 22 22 22
3.5 >100 >100 >100 33 28 25 11 10 10
4 46 25 28 11 9 10 7 8 8
5 25 67 90 8 12 13 6 7 7
6 33 61 74 9 12 12 6 6 6
7 27 44 50 9 11 11 5 6 6
8 18 24 26 8 9 10 5 6 6

TABLE 11
Two-grid convergence for a constant coefficient medium in 3-D using the optimized coarse scale
operator.

G Niter for fd7-opt
a=1.25e-3  2.5e-3  0.005 0.01 0.02

3 27 26 22 18 16

3.5 6 5 5 5 6
4 5 5 5 5 5
5 4 4 4 4 4
6 3 4 4 4 4
7 3 3 3 4 4
8 3 3 3 3 4

Fic. 5. Coarsening strategy to handle PML layers. Inside the PML layers (in grey) there is no
coarsening in the direction normal to the boundary.

With this method, a number of numerical experiments were carried out. Two

choices of medium were considered: the constant and the random medium, both on
the unit square with PML layers added outside it. A point source at (0.3,0.3) was
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TABLE 12
Iteration numbers for the numerical experiments with PML layer.

constant medium random medium

Ge=3 35 4 6 | Gc=3 35 4 6
nlevels=2, nxc=200 23 14 11 6 11 8 7 5
nlevels=3, nxc=200 24 14 11 6 10 8 7 5
nlevels=4, nxc=200 100 17 12 8 25 8 7 6
nlevels=2, nxc=200 23 14 11 6 11 9 7 5
nlevels=2, nxc=400 27 16 11 6 12 9 7 5
nlevels=2, nxc=800 35 17 12 6 13 9 7 5

used as right hand side. We experimented with different multigrid levels from 2 to 4,
using nx X ny= 200 x 200 grid points at the coarse level, and with different sizes for
the two-grid method, using nx = ny = 200, 400 and 800 at the coarse level. In each
case, values of G, from 3 to 6 were used. The results are displayed in Table 12. We
see that the number of iterations is low for all cases with G, > 3.5.

Hence, the new coarse grid operators can be used with PML boundary layers as
well, providing similar reduction of G. as for the examples without PML.

6. Conclusions and discussion. In this paper we have shown that the good
or poor performance of the multigrid schemes for the Helmholtz equation is closely
correlated with the phase speed differences between the fine and coarse scale operators.
The results justify the conclusion that G, can be reduced from about 10 to about 3.5,
while at the same time reducing the amount of damping present, by using our new
optimized finite differences as coarse scale operators.

The two-grid method now yields a general method to reduce the number of de-
grees of freedom in a high-frequency Helmholtz problem, at the cost of a few iterations.
In high-frequency Helmholtz problems, often one makes use of optimized finite dif-
ferences, or higher order methods at quite coarse grids, down to 10 or even fewer
points per wavelength. With such coarse grids it is not obvious that multigrid can be
applied. The new two-grid method makes it possible to reduce the grid by a factor 2
in all directions once at least 7 points per wavelength are used. One should also note
that there is an obstruction against the direct use of the optimized discretizations at
3.5 points per wavelength or other schemes at this resolution, at least when reflections
are present. The reason is that, according to linearized scattering theory, reflections
are associated with Fourier components of the medium coefficient with wavevectors
of length up to 2%, i.e., twice that of the wave field. The Nyquist criterion implies
then that more than 4 points per wavelength are needed in the discretization of the
medium coefficients in the fine scale operator. Our method is not restricted to the
examples given. Optimized operators for other fine scale operators (or for the exact
operator) can easily be constructed.

We have not compared the method with higher order (spectral) finite elements.
Such a comparison should take into account the different requirements that meth-
ods may have concerning coefficient regularity, the sparsity patterns of the resulting
matrices, and the cost to invert them. This falls outside the scope of this paper.

We have deliberately opted for standard smoothers. This ensures that the ob-
served good behavior is indeed due to the improved coarse scale operators. Other
modifications, like polynomial smoothers for the PML method [20, 3], were not needed
here.

In 3-D the cost of the direct solver is O(N?) for the sparse factorization and
O(N3/2) for the memory use [10]. Our method can hence reduce the cost of the factor-
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ization by a factor (10/3.5)% ~ 500 and the memory use by a factor (10/3.5)%/2 ~ 100.
However, this scaling also means that the coarse scale problem in general stays large.
Further research should make clear whether the method can be used in combination
with more efficient solvers, like the ones mentioned in the introduction.
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