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pesa più un litro di paglia o un litro di piombo? 1

1Literally, “What is heavier: one liter of straw or one liter of lead?”, a re-elaboration of
the riddle “What is heavier: one kilo of straw or one kilo of lead?”. To mean that oftentimes
finding the right answer is just a matter of posing the right question.
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Introduction

Figure 1: Radiograph of a hand taken
by Wilhelm Röntgen during a public
lecture. The grayscale encodes beam
intensity: dark = low intensity, light
= high intensity.

Being able to traverse matter, X-rays
are a powerful tool to inspect the inte-
rior of objects without the need for an
invasive intervention. For this reason,
since their discovery at the beginning
of the 20th century, X-rays are used
in several fields of imaging, ranging
from medicine to industry. Despite
this long history of advancement, fur-
ther developments of X-ray applica-
tions are all but exhausted.

Until very recently, detectors for
X-ray radiography were only able to
measure one scalar quantity: beam
intensity2. This gives rise to the
grayscale radiographs we are all used
to, which in fact are just photon in-
tensity maps (see figure 1).

Although conceptually simple, this
approach has made it possible to de-
velop the sophisticated imaging tech-
niques employed today. Among these,
Computed Tomography (CT) pro-
vides three dimensional X-ray images
of objects, reconstructed from a set
of two dimensional images taken from

2Or the total energy released in the detector.
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Figure 2: An electromagnetic wave.

different directions. Is there a way or a need to improve these already quite so-
phisticated images?

X-rays are a form of electromagnetic radiation and, as such, an X-ray beam
is characterized in terms of not just intensity, but of the usual transverse wave
parameters (see figure 2): intensity, frequency, phase and transverse polariza-
tion.

When the beam passes through an object, each of these parameters is sus-
ceptible to change because of some characteristic interaction with the matter
encountered along the path. This means that, when measured, each parameter
provides information on the material traversed, thus conveying a complementary
piece of knowledge on the object under study.

Irradiating objects (or people!) with ionizing radiation to measure only a
fraction of the available information is highly inefficient. This is particularly
true in the medical field, where a source of inefficiency is already inherent to
the imaging technique itself: of all the X-rays emitted by the source, up to 90%

12



INTRODUCTION

are usually absorbed by the body of the patient3.

Leaving aside phase and polarization4, this thesis will focus on how we can
measure the energy of X-ray photons in imaging applications, what we can
do with this information and to what kind of improvements this could lead in
computed tomography.

Since the absorption properties of matter are strongly dependent on the
energy of the radiation, an X-ray spectrum passing through an object gets
distorted. In general, low energy photons are absorbed more strongly than
high energy photons, and the average energy of the spectrum shifts towards
higher values. This effect is thus called beam hardening.

If X-ray imaging systems would make use of monochromatic radiation sources,
this effect would not be present. However, up to now, the only sources capable
of emitting monochromatic X-ray beams are big and expensive synchrotrons.
On the contrary, the majority of imaging applications makes use of X-ray vac-
uum tubes, characterized by the emission of a continuum spectrum of energies.
Even though filtering techniques can be applied, tube spectra always remain
polychromatic. As a consequence, when radiographs are taken based only on
an intensity measurement, image artifacts appear. In computed tomography,
beam hardening effects in the two dimensional images propagate to the 3D re-
construction, giving rise to artifacts that can seriously impair the quality of the
image.

With the development of new detector systems, such as the Medipix readout
chip for semiconductor pixel sensors, spectral information can be recorded. This
information, combined with the high spatial resolution of these detectors, can be
exploited to reduce beam hardening effects and achieve material decomposition
in X-ray computed tomography. Since different colors can be associated to the
different materials which are recognized, spectral CT is often referred to as color
CT.

This thesis will present results on spectral computed tomography with semi-
conductor detectors read out by chips of the Medipix family.

Chapter 1 gives a general overview on computed tomography and it intro-
duces the main image reconstruction techniques used to build a three dimen-
sional representation of the sample from a set of two dimensional radiographs

3As a matter of fact, 3 cm of water already absorbs half of the radiation emitted from a
conventional X-ray tube used in clinical applications (operated at 120-140 kV).

4Each would require a separate thesis!
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taken at different angles.
In chapter 2 the principles of operation of the Medipix chips are explained,

and the main differences between the multiple versions of the chip, together
with a summary of the properties that characterize their performance.

Chapter 3 describes the technique adopted to calibrate silicon based Medipix
readout devices, necessary in order to define the energy scale of the detected
X-ray spectra and to ensure a uniform response of the pixel matrix.

The precise determination of the detector energy response function is ad-
dressed in chapters 4 and 5. This task involves the measurement of the charge
transport properties of the silicon sensor (chapter 4) and their use for the defini-
tion of a numerical model of the response function, whose parameters are tuned
by comparing the calculations with data from synchrotron radiation measure-
ments (chapter 5).

Chapter 6 combines all the previous results in the development of the spectral
CT reconstruction techniques employed to extract material information from the
spectroscopic Medipix data to produce color (i.e. material resolved) 3D X-ray
images, free of beam hardening artifacts.

Finally, chapter 7 shows possibilities for a valorisation of this work, namely
how the results obtained could lead to applications and how society could pos-
sibly benefit from them.

14



Chapter 1

Introduction to X-ray
computed tomography

X-ray Computed Tomography (CT) is a three dimensional imaging technique
for non invasive inspection of the interior of objects. Applications of X-ray CT
cover several fields, from medicine to industry.

In this chapter the basic aspects of X-ray CT are presented, with focus on
image reconstruction methods.

1.1 Computed tomography

Information on the three dimensional inner structure of an imaged sample can
be extracted from a collection of two dimensional transmission images taken
from different directions, using a dedicated reconstruction algorithm.

The word tomography stems from the ancient Greek tomos, “section”, and
graphein, “write”, and refers to the fact that the 3D image of the object is usually
built by reconstructing the data slice-by-slice and by stacking the sections on
top of each other.

The set of two-dimensional images (called the projections) can be built by
using penetrating radiation or waves that can be transmitted or emitted by the
sample, e.g. electromagnetic radiation or acoustic waves. Each technique is
suited for gaining contrast in images of specific structures and materials within
the object. This means that the type of radiation or wave that must be used
depends on the sample and the application.

15



1.2. RECONSTRUCTION OF X-RAY TRANSMISSION DATA

(a) (b)

Figure 1.1: Principle of X-ray computed tomography.

Alongside the most famous X-ray based tomography, widely employed in
medicine as well as in industry and research, the list of other techniques and
applications is long and varied [28]. One example is seismic tomography, that re-
lies on the measurement of pressure waves in geological structures to reconstruct
the composition of the Earth crust [48].

Despite such diversity, all the different types of computed tomography are
linked by the same fundamental problem: how to pass from the set of two
dimensional images to a full three dimensional reconstruction?

1.2 Reconstruction of X-ray transmission data

In this thesis, the focus will be on X-ray transmission tomography. The sim-
plest definition of the problem considers a wide parallel beam of monochromatic
radiation of intensity I0 passing through an object. This can be represented as
a scalar field µ(x, y, z) that gives the value of the photon absorption coefficient
µ at position (x, y, z) in space. Figure 1.1a shows a sketch of this situation.
The direction of the X-ray beam is chosen to be perpendicular to the z axis, so
that the problem is reduced to the treatment of single two dimensional sections
µ(x, y) of the object.

16



CHAPTER 1. INTRODUCTION TO X-RAY COMPUTED
TOMOGRAPHY

The set of projection data is acquired by imaging the object from different
angles θ, defined as the angle between the x axis and the detector plane, as
shown in figure 1.1b. Each image is represented by the values of the detected
intensity I as a function of the one-dimensional detector coordinate l. An X-ray
path is identified by the couple (l, θ) indicating the detector position l reached
by the ray and the angle θ at which the image is taken. The intensity I for
a given ray path (l, θ) depends on the attenuation of the source beam after
traveling through the sample along the coordinate s.

For a thickness t of a homogeneous medium, photon attenuation is described
by the exponential (Beer’s) law

I = I0e
−µt. (1.1)

The total absorption coefficient associated to a path (l, θ) is a summation
(integral) of all the contributions found along the s coordinate. The attenuation
law for a non-homogeneous object thus takes the form

Il,θ = I0e
−

∫
lθ
µ(s)ds, (1.2)

where µ(s) describes the absorption coefficient as a function of the position
along the path.

The line integral in formula 1.2 can be isolated by taking the logarithm:

R(l, θ)
def
= − log

(
Il,θ
I0

)
=

∫
l,θ

µ(s)ds. (1.3)

This formula shows that the logarithm of the flat-field corrected projections1,
being equal to an additive quantity, is an additive quantity itself. This prop-
erty is crucial for the applicability of many CT reconstruction algorithms, that
operate on the logarithm of the data rather than on the data themselves.

The function R(l, θ) = − log(Il,θ/I0) is called the Radon transform, or sino-
gram, of the section µ(x, y), after the name of Johann Radon who, in 1917,
first proved that equation 1.3 is a one-to-one relation. This means that µ(x, y)
is uniquely determined by giving all the values of R(l, θ) for all possible paths
(l, θ), and the problem of image reconstruction is a problem of inversion of equa-
tion 1.3. The solution can be approached in different ways, the most important
of which will be introduced throughout the rest of the chapter.

1The flat field corrected projections are the projections Il,θ normalized to the open beam
image I0.
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1.3. ANALYTICAL SOLUTIONS

1.3 Analytical solutions

The problem of tomographic reconstruction as stated in equation 1.3 has an
analytical solution. Among the different approaches (e.g. [17, 18]), Filtered
Backprojection (FBP) is the most successfull [58].

In this section, a brief review on backprojection theory and how the Filtered
Backprojection formula is derived, are given.

1.3.1 Elements of backprojection theory

(a) Image formation. The image
on the right already corresponds
to the − log (Il,θ/I0) term in for-
mula 1.3.

(b) Backprojected
image, obtained by
parallel transport-
ing the data in the
bi-dimensional plane.

(c) Superimposition of
2 backprojections.

(d) Superimposition of
8 backprojections.

(e) Superimposition of
16 backprojections.

Figure 1.2: Principle of backprojection for a two dimensional homogeneous
cylinder section imaged by a wide parallel beam.
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CHAPTER 1. INTRODUCTION TO X-RAY COMPUTED
TOMOGRAPHY

The idea behind backprojection is sketched in figure 1.2. The reconstruction
of a section slice relies on the principle of linear superimposition of the back-
projected data. The condition of linearity holds as long as the Radon transform
is properly defined, which ensures that the logarithm of the data is an additive
quantity. In section 1.8, it will be explained that this assumption is never true
for applications in which polychromatic X-ray sources are employed, which in
fact constitute the majority of the cases. Backprojection algorithms, as well as
any other algorithm relying on the additivity of the data, can still be applied
but only provide approximate solutions.

From figures 1.2c, 1.2d and 1.2e, one can see that the more projections are
used, the more the reconstruction resembles the true image. However, a number
of artifacts appear. In particular a star shaped pattern in figure 1.2d, due to the
finite number of projections used, and cupping artifacts, namely the appearance
of gradients in structures that should be homogeneous, as in the reconstructions
of the cylinder section in figures 1.2d and 1.2e). These effect can be removed
(in theory) or reduced (in practice) by pre-filtering each projection using special
functions. Hence the name filtered backprojection.

The Fourier slice theorem

The starting point of the filtered backprojection reconstruction method is the
Fourier slice theorem, stating that, for a given angle θ, if M(p) is the Fourier
transform of the field µ(x, y) along a line parallel to the detector direction and
passing from the rotation axis, and if R(p) is the Fourier transform of the
sinogram R(l, θ) with respect to the l coordinate, then

M(p) = R(p). (1.4)

The possibility to give the field µ(x, y) a Fourier representation is ensured by
the fact that a real object is always limited in space, and can thus be expanded
as

µ(x, y) =

+∞∑
n=−∞

+∞∑
m=−∞

M(m,n)ei(mx+ny), (1.5)

with

M(m,n) =
1

L2

∫ +L/2

−L/2

∫ +L/2

−L/2
e−i(mx+ny)µ(x, y)dxdy, (1.6)

where L is the size of the square box containing the object.
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Equality 1.4 says that, in the Fourier space, each projection is equal to the
corresponding parallel slice of the object. If projections are taken at different
angles of view, the full two dimensional Fourier representation M(p, θ) can be
calculated analytically, and the original object µ(x, y) can be reconstructed by
reverse-transforming M(p, θ).

It can be proven that the Fourier slice theorem provides the actual ana-
lytical solution M(p, θ) when the number of projection angles is infinite [35].
So, at least in principle, all the information needed to reconstruct the object is
condensed in formula 1.4.

However, in practice the number of Fourier components that can be mea-
sured is always finite. Equation 1.5 is thus changed into a Finite Fourier
Transform (FFT) expression

µ(x, y) =

+N/2∑
n=−N/2

+N/2∑
m=−N/2

M(m,n)ei(mx+ny), (1.7)

where N is the number of measured spatial frequencies.
The number of measured projections too is always finite. However, if a

sufficient number of projections at different angles are taken, the system is
diagonalizable (see also section 1.4).

Filtered backprojection

From the computational point of view, the Fourier slice theorem gives M(m,n)
through an interpolation process. This situation is illustrated in figure 1.3:
for each projection, the corresponding slice is computed according to 1.4, but
the collection of all slices builds up M(m,n) only on a corresponding number
of radial lines in the Fourier space, while all other values are determined by
averaging with the neighboring points.

The Filtered Backprojection (FBP) formula provides a computational im-
plementation that not only solves the interpolation problem, but that is also
faster and more efficient, and at the same time yields a cupping artifact free
solution.

FBP derives naturally from the Fourier slice theorem itself. Citing from [35]

The derivation of this algorithm is perhaps one of the most illus-
trative examples of how we can obtain a radically different computer
implementation by simply rewriting the fundamental expressions for
the underlying theory.
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Figure 1.3: Frequency domain representation of the application of the
Fourier slice theorem: the reconstruction is carried out on a set of points
along radial directions. All other values result from interpolation.

Indeed, by writing explicitly the Fourier transforms in equation 1.4, and by
rearranging the terms, one obtains

µ(x, y) =

∫ π

0

Qθ(x cos θ + y sin θ)dθ, (1.8)

with

Qθ(x cos θ + y sin θ) =

∫ +∞

−∞
e2πil(x cos θ+y sin θ)R(l, θ)|l|dl. (1.9)

Equation 1.8 shows that µ(x, y) is given by the superimposition (backpro-
jection) of functions Qθ(x cos θ + y sin θ), and these functions are computed by
weighting the projections R(l, θ) with the filter function |l|, as described by
equation 1.9.

The advantage of formula 1.9 is that the filter is completely factorized, and
can therefore be optimized separately. This feature is helpful when considering a
real-life version of the problem. In fact, the computation of Qθ(x cos θ+ y sin θ)
according to 1.9 is still ideal, since it requires an integration over all spatial
frequencies l. In real life, spatial frequencies are truncated at some maximum
value F that, according to the Nyquist-Shannon theorem, is related to the size
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Figure 1.4: Discretized model of computed tomography.

δ of the intervals at which the image is sampled (i.e. the pixel pitch) through

δ =
1

2F
(1.10)

Such an approximation gives rise to noise in the reconstruction, that can be min-
imized by modifying the ideal filter |l| as given in equation 1.9 with appropriate
expressions optimized according to the specific situation [35].

1.4 Algebraic formulation

Algebraic algorithms provide a completely different approach to the solution of
the tomographic reconstruction problem, where formula 1.3 is rewritten as a set
of linear equations [35]. Again, this condition stems from the assumption that
the Radon transform is properly defined, which makes it possible to handle the
logarithm of the data as an additive quantity.

The starting point is the discretized version of equation 1.3, as shown in
figure 1.4. The continuous object distribution µ(x, y) is substituted with a
discrete field µij , where the indices (i, j) assume values within a grid of Nv×Nv
square voxels of size d× d, and the coordinate l takes discrete values from 1 up
to the number of detector pixels Np.
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In this framework, a single projection at angle θ is given by

R(l) =
∑
i,j

dlijµij

{
i, j = 1, ..., Nv
l = 1, ..., Np

, (1.11)

where the coefficients dlij represent the fraction of the voxel volume that ray l
covers at position (i, j).

Equation 1.11 is a set of Np independent equations in the Nv unknowns µij .
Since all rays are parallel, the system is inconsistent. The dependence between
equations is introduced by merging multiple systems obtained at different values
of θ. If Nθ is the number of projections, then one has

R(l, θ) =
∑
i,j

dlθijµij

 i, j = 1, ..., Nv
l = 1, ..., Np
θ = θ1, ..., θNθ

(1.12)

The problem of tomographic reconstruction is now turned into a problem of
inversion of a system of equations, whose solution exists as long as the necessary
condition NpNθ ≥ N2

v holds. This condition sets the limit on the resolution that
can be achieved in the final reconstruction. If L is the linear size of the image,
then in the best case the voxel size will not be smaller than L/

√
NpNθ.

1.5 Iterative methods

In iterative methods, the reconstruction is performed by means of a recursive
algorithm in which the estimation of the final image is improved at each step
until a specific convergence criterion is reached.

Most of these algorithms rely on the expectation maximization technique,
where each iteration includes a phase in which the calculated data is compared
to the measurements in order to both update the estimation and assess the
status of the convergence [5].

1.5.1 Expectation maximization

The term “expectation maximization” refers to a general category of algorithms
developed within the theory of estimation of maximum likelihood functions, used
to solve problems of parameter estimation in case of hidden or missing data [19].
Computed tomography can be viewed as such a problem: find the best estimate
of µ(x, y) from the incomplete data set of its projections R(l, θ).
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General formulation

An incomplete set of data is a collection of observations ~x that only partially
reproduces the true sample ~y. Given a set of parameters ~η, the measured prob-
ability density Pmeas(~x|~η) is connected to the true probability density P (~y|~η)
via an integration of the form

Pmeas(~x|~η) =

∫
Y (~x)

P (~y|~η)d~y, (1.13)

where Y (~x) is the space of the possible values of ~y. The problem is then a
maximum likelihood one: find the value of ~η that maximizes Pmeas(~x|~η) given
the observation ~x.

The expectation maximization algorithm comes into action when the ana-
lytical approach to the solution of the problem is not feasible, for example when
the number of parameters is too high, which is the case in computed tomography.
Indeed, one may notice that equation 1.3 is a special case of expression 1.13.

In its most general formulation, the Expectation Maximization algorithm
runs as follows:

1. build an initial estimate ~η0 of the parameters2

2. define the probability density function P1(~y|~η) = P (~y|~η0)

3. expectation step: use P1(~y|~η) to calculate the expected Pmeas1 (~x|~η) ac-
cording to 1.13

4. maximization step: calculate the new set of parameters ~η1 that maximizes
Pmeas1 (~x|~η)

5. iteration: repeat from 2: use ~η1 to build P2(~y|~η) = P (~y|~η1)

6. iterate until a convergence criterion is met

Application to computed tomography

In the work presented in this thesis, tomographic reconstruction on data taken
with Medipix based detectors is often conducted using an Expectation Maxi-
mization type of algorithm derived from the Shepp and Vardi formulation for

2Typically a uniform distribution, even though Bayesian estimation for the prior knowledge
of ~η0 can be applied [59].
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the case of emission tomography [59], where the adaption to transmission to-
mography is done by applying the original algorithm to the logarithm of the
data (equation 1.3.).

The algorithm is the following:

1. build an initial estimate µ0, e.g. by backprojecting the data via superim-
position:

µ0
ij =

∑Np
l=1

∑θNθ
θ=θ1

dl,θij R(l, θ)∑Np
l=1

∑θNθ
θ=θ1

dl,θij

(1.14)

2. expectation step: use µ0 to calculate a set of projections R1(l, θ) by sum-
ming the CT numbers3 along each ray path:

R1(l, θ) =
∑
ij

dl,θij µ
0
ij (1.15)

3. maximization step: define a set of correction coefficients c1l,θ by dividing
the obtained projections with the measured ones:

c1l,θ =
R1(l, θ)

R(l, θ)
(1.16)

4. backproject the corrections via superimposition to define a new field of
corrections c1ij in the voxel space:

c1ij =

∑Np
l=1

∑θNθ
θ=θ1

dl,θij c
1
l,θ∑Np

l=1

∑θNθ
θ=θ1

dl,θij

(1.17)

5. use the backprojected corrections to multiply µ0 and update it to a new
estimation µ1

µ1
ij = c1ijµ

0
ij (1.18)

3The raw values of a reconstructed CT section are referred to as CT numbers. Even if a spe-
cific reconstruction algorithm is formulated to provide an explicit expression for the solution
µ(x, y), the units of the CT numbers are generally undefined. Although a grayscale visualiza-
tion of the images in the CT numbers space already provides an immediate representation of
the inner structure of the sample, quantitative information can only be extracted once the CT
numbers have been calibrated. Examples of calibrations are the conversion into Hounsfield
units typical of medical applications or, similarly, the signal-to-thickness calibration described
in appendix A.
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(a) Full range. (b) After suppressing low absorb-
ing components.

Figure 1.5: X-ray computed tomography reconstruction of a frozen fish
from data taken with a Timepix quad detector at Nikhef. The color scale
is only for visualization purposes.

6. iteration: repeat from 2: use µ1 to calculate the projections R2(l, θ)

7. iterate until convergence criterion is met

In this version of the algorithm, the initial estimation of the µ0 field is done
by a first backprojection of the data. In other variants, µ0 can be initialized in
different ways, for example as a uniform distribution. In general, independently
from the initialization choice, iteration n can be expressed in a compact form
as

µn+1
ij = µnij

∑Np
l=1

∑θNθ
θ=θ1

dl,θij

∑
ij d

l,θ
ij µ

n
ij

R(l,θ)∑Np
l=1

∑θNθ
θ=θ1

dl,θij

(1.19)

1.5.2 Ordered subsets

From the computational point of view, iterative algorithms are much more ex-
pensive if compared, for instance, to backprojection algorithms. This is the
reason why, although iterative algorithms usually give better results than back-
projection techniques, these latter are still employed when reconstruction time
is a main concern, as it is in medical applications.

To limit both the overall processing time and the convergence speed in
iterative reconstruction algorithms, several acceleration techniques have been
developed over the years. One of these is the Ordered Subsets Expectation
Maximization (OSEM) algorithm, as introduced by Hudson and Larkin [32] for
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the case of emission tomography, that can be applied to transmission tomog-
raphy on the logarithm of the data. In an OSEM algorithm the dataset of
projections at angles θ1, · · · , θN is grouped into M subsets S1, · · · , SM where
each subset Si contains the projections corresponding to the sub-group of an-
gles {θi1, · · · , θiMi

}. The Expectation and Maximization steps are performed
on the M subsets subsequently, with the advantage that the forward-projection
and the back-projection operators are only applied on a smaller amount of data
than the full dataset, at each step. This results in a reduced computation time,
but also in a faster convergence. It can be proven that the greater the number
of subsets, the faster the convergence [32].

Figure 1.5 shows the X-ray computed tomography of a frozen fish from data
taken with a Timepix detector at Nikhef and reconstructed using the Ordered
Subsets version of the Expectation Maximization algorithm described in the
previous section.

1.6 Statistical approach

All the aforementioned reconstruction techniques are based on the assumption of
monochromatic radiation source, which ensures that photon attenuation can be
written as 1.2, hence the validity of equation 1.3. Extension of these algorithms
to account not only for spectrum polychromaticity, but also for scattering and
fluorescence, is difficult, if not impossible. However, these processes play a rele-
vant role in many situations, and not accounting for them leads to a degradation
of the image quality. Implementing all this information in the reconstruction
phase is therefore a crucial aspect for the advancement of X-ray computed to-
mography. The work described in this thesis has been carried out with the aim
of demonstrating how the addition of spectral information is beneficial for the
quality of the reconstructions.

Algorithms based on models of the statistical nature of photon detection
offer a framework where more complex features can be implemented in an intu-
itive way if compared to other methods. This difference will be clear in chap-
ter 6 where it will be shown how the inclusion of spectral information in the
reconstruction process requires a complex machinery for the case of the OSEM
algorithm, while it is straightforward in a statistical algorithm.

In the statistical concept, a digital X-ray image of an object is considered
as the result of a stochastic process where the value in each pixel is distributed
according to a well defined probability density function. The overall image (or
set of images) is then interpreted as the most likely result of the full X-ray
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imaging chain of processes, and the problem of tomographic reconstruction is
to find the µ(x, y) field that is most likely to have generated the observed data.
That is to say, the problem of tomographic reconstruction is equivalent to a
likelihood maximization problem [21, 53]4.

1.6.1 Maximum likelihood formulation

The statistical nature of the photon transmission and detection processes can
be modeled starting from the discretized version of the attenuation law 1.2 (see
also figure 1.4), that now takes the form

Il,θ = I0e
−t

∑lθ
i,j µij . (1.20)

where
∑lθ
i,j means that the summation over the indices (i, j) has to be performed

only along the ray path (l, θ).
Il,θ is the beam intensity, namely the number of X-ray photons per unit

time, that are seen by pixel l after the source intensity I0 has been transmitted
through the sample object at angle θ. This number can be considered as the
most probable value of a stochastic process governed by Poisson statistics. In
this view, the actual photon counts from ray (l, θ) are random variables Cl,θ
distributed according to

P (Clθ|Ilθ) =
(Ilθ)

ClθeIlθ

Clθ!
, (1.21)

where Il,θ is the expected value.
In this simplified model, where no sources of correlations between different

paths are present5, the total probability density function for the whole dataset
is

P (~C|~I) =
∏
l,θ

(Ilθ)
ClθeIlθ

Clθ!
, (1.22)

with ~C and ~I being the vectors of all Cl,θ’s and Il,θ’s respectively.

4It should be noted that a likelihood-based technique is, in essence, an iterative algorithm,
because the minimization engine works in successive iteration steps. As a consequence, it will
never compete with backprojection in terms of speed.

5Such as scattering or fluorescence, that cause photons to deviate from the ray path and
being detected by a pixel l′ 6= l

28



CHAPTER 1. INTRODUCTION TO X-RAY COMPUTED
TOMOGRAPHY

Following the maximum likelihood principle, the unknowns µij , hidden in
the formulation of the expectation values Il,θ through equation 1.20, can be

determined as the field that maximizes P (~C|~I) or, equivalently, that minimizes
the negative log-likelihood function

L(~C|~I) = − log[P (~C|~I)] = −
∑
l,θ

[Clθ log(Ilθ) + Ilθ] . (1.23)

Notice that the term in Clθ! has been dropped, since it does not depend on the
µij ’s and thus it does not contribute to the gradient of L(~C|~I).

Due to the high number of free parameters, minimization of L(~C|~I) is a
challenging problem. Even more so if one considers that, in the most general
case, a computed tomography dataset is incomplete in the sense discussed in
section 1.5.1. Nonetheless, the statistical approach is of major interest because
it provides a framework where the physics of the various steps involved in the
process of image formation can be implemented in an direct way. One of these
features is the polychromaticity of the source spectrum and the energy depen-
dency of the variables that characterize the transmission and in the detection
phases, which opens the way towards a formulation of a reconstruction technique
suited for spectral tomography.

1.7 Artifacts

The algorithms introduced so far constitute the basis for most of the recon-
struction techniques employed in computed tomography. Although all of them
are widely used in many applications, CT reconstructions suffer from a series of
artifacts that degrade the quality of the images [49].

While some artifacts depend on faults during data taking (such as motion
of the object or defects of the detector), other are generated by the reconstruc-
tion algorithm. Figure 1.6 shows some examples for the case of medical X-ray
computed tomography. Among the most common, one finds

� streak artifacts (image A), usually caused by faults in the sampling of the
object, such as under-sampling or data corruption, or to the motion of the
sample during the data taking (image B);

� ring artifacts (images D and E), caused by noisy detector elements;

� beam hardening artifacts (images C and F), arising from the fact that
spectral information is not measured and/or not accounted for in the re-
construction phase.
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Figure 1.6: Typical artifacts in medical computed tomography. Image
credit [49].

1.7.1 Beam hardening artifacts

The X-ray tube sources employed in the majority of imaging applications emit
a polychromatic spectrum. Due to the energy dependence of the attenuation
coefficient, attenuation through the sample material results in strong spectral
distortions, as shown in figure 1.7. Since, in general, the attenuation coefficient
is monotonically decreasing as a function of energy6, the mean value of the
transmitted spectrum is shifted towards higher energies, namely the spectrum
becomes “harder”.

In imaging applications, beam hardening causes an unequal illumination of
the sample, thus giving rise to artifacts in the X-ray images. The effect is
particularly evident when the material composition of the object is very hetero-
geneous. Typical examples of beam hardening artifacts in medical computed
tomography were shown in figure 1.6. In image C, a dark band appears in
the center of the skull, caused by the strong beam hardening undergone by the
source spectrum in the hard tissue of the bones, compared to the soft brain
tissue. The effect is even more evident in image F, where streak artifacts are
caused by the presence of metal dental implants in the patient’s jaw.

6Monotonicity is broken by characteristic absorption edges, as the ones in figure 1.7a.
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Figure 1.7: Beam hardening.

1.8 Energy sensitivity

In the reconstruction techniques so far described, it was always assumed that
photon attenuation follows formula 1.2. This assumption is crucial to ensure
that the Radon transform of the projections is an additive quantity, and hence to
derive the Filtered Backprojection formula 1.9 (analytical solution), the linear
system of equations 1.12 (algebraic solution) and the expectation maximization
algorithm 1.19 (iterative solution).

However, formula 1.2 only holds in the very special case of monochromatic
radiation. To account for the energy dependence of photon attenuation, for-
mula 1.2 has to be replaced by

Sl,θ(E) = S0(E)e−
∫
lθ
µ(s,E)ds. (1.24)

Here S0(E) represents a generic X-ray source spectrum and Sl,θ(E) is the corre-
sponding transmitted spectrum. The energy dependence of the attenuation pro-
cess is explicit in the energy dependence of the attenuation coefficient µ(s, E).
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The detected intensity is given by the integral of the transmitted spectrum7

Ithl,θ =

∫ ∞
Ethl

S0(E)e−
∫
lθ
µ(s,E)dsdE, (1.25)

where the superscript th is the threshold index for the detector element at
position l. The corresponding open beam intensity is

Ith0 =

∫ ∞
Eth

S0(E)dE. (1.26)

From formulas 1.25 and 1.26 it follows that equation 1.3 is no longer valid,
namely the Radon transform is not properly defined:

R(l, θ) 6=
∫
l,θ

µ(s)ds. (1.27)

As a consequence, algorithms relying on the additivity of the data only provide
an approximate solution, where beam hardening artifacts can strongly affect
image quality.

Accounting for the polychromatic nature of the source spectrum is a non
trivial problem. Many techniques developed for reducing beam hardening effects
consist of pre- and/or post-processing methods [63, 45]. An example is the
signal-to-thickness calibration described in appendix A, which will be employed
to get some of the results presented in this thesis.

However, these techniques only aim at correcting the artifacts, while the
most appropriate solution to prevent them is the implementation of spectral
information in the reconstruction algorithms themselves, i.e. spectral CT, which
is possible when using energy resolving imaging detectors, such as Medipix based
devices.

7In the most general case one would write

Itl,θ =

∫ ∞
Et
l

S0(E)w(E)e−
∫
lθ µ(s,E)dsdE,

where w(E) is an energy weighting factor. For an energy integrating detector, it would be
w(E) = E, while one has w(E) = 1, i.e. formula 1.25, in the case of a photon counting
detector (see section 2.2.1). Different expressions for w(E) can be chosen in order to enhance
contrast in X-ray images [26].
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Chapter 2

The Medipix chip

In conventional X-ray detection systems, the measurement of the energy of
single photons is possible only at the expense of spatial resolution. Today, deep
sub-micron technologies for integrated circuit design enable complex electronic
readout schemes and processing of signals for individual small (< 100 µm) pixels.

An example of these devices are the Medipix and Timepix chips, that can be
used to readout semiconductor pixel sensors to realize energy sensitive detectors
for X-ray imaging applications.

2.1 X-ray detectors

The principle of X-ray detection is the same as for any other type of radiation:
choose a sensor material in which particles deposit energy, and convert this
energy into a measurable signal.

In the energy range of X-rays1, the most probable process of energy loss
in matter is the photoelectric effect, where the energy of a single photon is
converted at once. This implies that a measurement of the signal produced by
a single quantum is also a direct measurement of its original energy.

The first devices ever used to detect X-rays were photographic films, em-
ployed since the discovery of X-rays by Röntgen in 1895 [62]. As in all the fields
of imaging, the invention of the Charge Coupled Device (CCD) [12] can be
regarded as the start of the transition from the analog to the digital era. Nowa-

1Roughly, from 100 eV to 100 keV
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days, the most frequently employed X-ray detector is the flat-panel detector,
based on Active Matrix Liquid Crystal Display (AMLCD) technology [8, 50].

All these detectors are energy integrating systems, where the signal is a
direct measure of the total energy released by all the X-ray quanta that are
converted during the exposure. The transition from energy integrating to photon
counting has been possible only with the emergence of active pixel devices,
i.e. chips where each pixel incorporates an active electronic circuitry, able to
perform all the functions that are required to process raw signals, including
energy discrimination.

2.2 Medipix based detectors

Medipix chips are integrated circuits for spectroscopic readout of pixellated
sensors. These devices are designed by an international collaboration based at
the European Center for Nuclear Research (CERN). Since the establishment
of the collaboration in the late 90’s, different versions of the chip have been
developed.

The prototype chip was the Medipix1 [13], a 64× 64 matrix of 170× 170 µm2

size pixels, designed in 1 µm SACMOS technology. Detectors were built by
connecting the Medipix1 to semiconductor sensors and tested in different appli-
cations, such as X-ray imaging [1], particle detection [7] and synchrotron light
detection [71]. Medipix1 proved the benefits of a high dynamic range, provided
by the 15-bit digital counter implemented in each pixel, in X-ray imaging ap-
plications, where materials with very different absorption capability could be
imaged in a single exposure.

The success of the Medipix1 chip triggered the design of the Medipix2 [43],
that would address the limitations encountered in the prototype run [72], among
which the large pixel size. By employing 0.25 µm CMOS technology, the pixel
area was reduced to 55 × 55 µm2.

In the course of the years, spectroscopic X-ray detectors based on the Medipix2
readout have been employed in a wealth of applications2. Further chip designs
followed afterwards, among which Timepix, Medipix3 and Timepix3. Before
going into details on the chip design and functionality, few general features of
Medipix based detectors are outlined.

2Some of the publications on results obtained with Medipix are listed in the website of the
collaboration [16].
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Figure 2.1: Principle of operation of a hybrid semiconductor pixel detector.

2.2.1 General features

Medipix chips are designed for electronic-noise free direct detection in single-
photon counting mode with spectral capability at small pixel sizes. Each of
these features represents a potential improvement with respect to conventional
detector technologies.

Hybridization and direct detection

Medipix and Timepix based detectors are hybrid devices. Hybrid means that
the detector itself (the sensor) and the readout (the electronic chip) are manu-
factured separately before being connected to each other. As a consequence, the
two can be optimized individually, and moreover the readout chip alone remains
available for a wealth of other possible applications.

As a matter of fact, detectors based on Medipix and Timepix readout chips
have found applications in several fields outside X-ray imaging as well, where
sensor materials other than semiconductors have been applied. A few exam-
ples are the family of Gridpix gaseous time projection chambers [14] for 3D
tracking of high energy particles, or the micro channel plate based detectors for
applications in mass spectrometry [34].

Integration of a semiconductor sensor is achieved with bump-bonding of each
pixel from the sensor to the readout. The principle of operation of such a device
is shown in figure 2.1.
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An advantage of using semiconductors as X-ray detectors is that the sensor
is used as a direct detector. This means that the photon is converted in the
sensor itself, without the need of a preliminary conversion into visible light, as
in indirect detectors, where this is a major cause of degradation of the spatial
resolution.

Photon counting

Electronic noise free operation in Medipix and Timepix devices is ensured by
the presence of a discrimination logic in each pixel (see section 2.3.1). Thanks
to it, only signals that are higher than a certain threshold are selected, while
lower ones are disregarded. If the threshold is sufficiently high, the noise is com-
pletely suppressed. As a consequence, potentially less dose is required to achieve
the same signal-to-noise ratio with respect to a conventional flat panel detec-
tor. This feature represents a considerable potential improvement for medical
applications.

The discrimination logic also allows for operation in photon counting mode
(see section 2.3.1). In a photon counting device each detected quantum is equally
weighted. This is not true for energy integrating detectors, where each photon
is weighted proportionally to its energy, with the effect that low energy quanta,
that contribute more to the image contrast, are weighted less than high energy
quanta. It has been shown that contrast can be maximized by determining the
optimal energy dependence of the weights [26]. This is possible thanks to spec-
troscopic detectors, where the detection of each quantum is also accompanied
by a measurement of its energy.

2.3 Medipix2

Most of the results presented in this thesis have been achieved using a Medipix2 [43]
chip for the readout of silicon based pixel sensors.

Medipix2 is designed in 0.25 µm commercial IBM CMOS technology. The
55 µm square pixel area hosts about 500 transistors. The full ASIC is a matrix of
256× 256 pixels, with a total active area of 1.982 cm2, which represents 87.35%
of the area of the full chip. The remaining 12.65% is formed by the peripheral
circuitry (see figure 2.2).

The small pixel size makes the Medipix2 chip competitive in terms of spatial
resolution with a common film screen radiographic system, where the typical
pixel pitch is in the order of fractions of a millimeter. The minimization of
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Figure 2.2: On the left, a bare Medipix2 chip, where the periphery extend-
ing at the bottom of the pixel matrix is visible. On the right, a typical
assembly with a conventional 300 µm silicon sensor. Notice that the sur-
face of the sensor exceeds the borders of the readout chip. Image credit
Jan Koopstra, Nikhef.

the dead area at the edges of the sensor remains the only obstacle towards a
fully tilable system in view of a large area Medipix based detector (see, for
example, [44]).

2.3.1 Chip layout

The chip is organized in two main parts: the matrix of pixel cells and the
periphery.

Pixel cell

Figure 2.3 shows the scheme of the Medipix2 pixel electronics, a detailed de-
scription of which is given in appendix B. The main features of the pixel cell
are the presence of a double discrimination logic and of a 14-bit digital counter.
In Medipix2 each pixel is provided with two simultaneous discriminators, where
the incoming signal is compared to two different thresholds. In order to correct
for inter-pixel mismatches in the threshold position, a 3-bit current adjustment
circuitry is implemented for each discriminator.

The chip can be operated in two modes: single threshold or double threshold
(energy window). In single threshold mode, the digital counter is incremented
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Figure 2.3: Schematics of the Medipix2 pixel logic. For details, see ap-
pendix B.

by one unit each time a signal exceeds the threshold during the period in which
the shutter is open. The same happens in energy window mode, but only if at
the same time the signal does not cross the second (higher) threshold. Thanks
to this strategy, Medipix2 achieves single photon counting capability and full
suppression of the electronic noise, which is filtered out by the discrimination
logic.

Periphery

This part of the chip contains the supplies of the analog biases and the generators
of the digital control signals, as well as the input/output (I/O) circuitry and
the pads for the wire bonds. The analog part of the periphery comprises the
13 8-bit Digital-To-Analog-Converter (DAC) that the user can set in order to
operate the chip in the preferred mode, among which the two threshold DACs.

The periphery is situated on one side of the pixel matrix with a width of
about 2 mm. Since the other sides are free, the chip is buttable on three sides.
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Figure 2.4: Schematics of the Timepix pixel logic.

2.4 Timepix

The Timepix chip [42] was originally conceived after successes with application
of gas as a sensor to Medipix2 chips. The goal of the Timepix chip was then to
provide time of arrival information to allow for 3D tracking of ionizing particles
in a small volume time projection chamber [69].

Even though this thesis focuses on the application of detectors of the Medipix
type, Timepix has been used in auxiliary experiments.

Being derived from Medipix2, the Timepix chip shares many of its features.
Again, 55 µm square pixels are organized in a 256×256 matrix plus a periphery
at one of the sides, ensuring three side buttability. The main differences arise
in the pixel logic.

2.4.1 Pixel logic

The diagram of the Timepix pixel logic is shown in figure 2.4. Differently from
Medipix2, the analog circuitry hosts only one discriminator with a 4-bit local
threshold adjustment scheme.

Timepix can be operated in three possible modes (see figure 2.5): Medipix
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(a) Medipix mode (b) ToA mode

(c) ToT mode

Figure 2.5: Timepix operation modes.

(single threshold photon counting, same as Medipix2, shown in figure 2.5a),
Time-of-Arrival (ToA) and Time-over-Threshold (ToT). The operation mode
can be set via the two configuration bits P0 and P1 in the Timepix Synchro-
nization Logic (TSL). ToA and ToT both make use of an external reference
clock (Ref Clk) distributed globally when the shutter signal is enabled.

In ToA mode, the 14-bit Shift Register starts counting upon the arrival of
the first signal above threshold, using Ref Clk as a clock, and stops at the end
of the shutter. This principle is illustrated in figure 2.5b.

In ToT mode (figure 2.5c), the counter is activated the moment the signal
goes above threshold, and it stops when the signal falls back below threshold.
If multiple successive signals exceed threshold during the same shutter time,
their counts are summed. Since the time over threshold is proportional to the
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input charge, ToT provides a direct estimation of the integrated energy detected
during the shutter time.

2.5 Medipix3

Medipix3 [3, 51] was designed to overcome the two main limiations of Medipix2:

1. sensitivity to different energies can be achieved only by repeating the
measurement while varying the threshold(s);

2. when connected to a semiconductor X-ray sensor, the detected spectrum
is strongly distorted by charge sharing effects.

Charge sharing is a typical phenomenon occurring in finely segmented de-
tectors, where the cloud of charge carriers generated in a given detector element
is shared with the neighbouring elements, as a consequence of the fact that the
thickness of the sensor is significantly larger than the size of the electrodes (see
section 3.1.3).

This effect is particularly strong in Medipix based detectors, due to the small
pixel size compared to the typical size of the lateral diffusion of the charge cloud.
For a 300 µm silicon sensor operated at 100 V bias voltage, the typical size of
the charge cloud after diffusion through the full sensor depth is in the order of
20 µm FWHM. More details on the diffusion process and its influence on chare
sharing effects will be given in section 4.1.

The impact of charge sharing for Medipix and Timepix detectors stands out
when considering that spectral sensitivity in both pixel logics derives from the
measurement of the amount of charge that is collected by the pixel. For these
detectors, charge sharing is the major source of spectral distortion.

The availability of the 0.13 µm CMOS circuit integration technology allowed
the implementation, in Medipix3, of more functions within the same area, with
respect to Medipix2 and Timepix, in particular two independent 12-bit digi-
tal counters. Moreover, thanks to the presence of an inter-pixel comunication
logic, the chip can be operated in two main modes: spectroscopic and charge
summing.

2.5.1 Spectroscopic operation mode

When the Medipix3 chip is standardly bump-bonded to a semiconductor sensor,
it operates in the so called Fine Pitch mode and in fact it works like a Medipix2

41



2.6. PERFORMANCE OF MEDIPIX AND TIMEPIX

chip with 55 µm pixel size. Alternatively, by connecting only one of four pixels
in a 2×2 cluster, the detector operates in Spectroscopic Mode.

Effectively, the detector is now a matrix of 110 µm pitch square super-pixels.
Since each pixel incorporates two discriminators and two independent counters,
the super-pixel is an individual detector element with eight simultaneous thresh-
olds. This implies that multiple images in different energy windows can be ac-
quired within a single exposure. Although this is achieved at the expense of
spatial resolution, 110 µm pixel pitch is still a very competitive size for medical
imaging in most applications.

2.5.2 Charge summing operation mode

Charge Summing mode is made possible by the inter-pixel comunication logic,
and can be enabled in both Fine Pitch and Spectroscopic mode. In Charge
Summing configuration, the charge in a 2×2 cluster of pixels (or super-pixels in
the case of spectroscopic operation) is summed and assigned to the pixel (super-
pixel) where most of the charge was deposited. This is done asynchronously on
an event-by-event basis.

Preliminary measurements have already shown the benefits of the charge
summing logic on the spectral performance of Medipix3 based X-ray detectors[27],
demonstrating that charge sharing effects are practically eliminated.

2.6 Performance of Medipix and Timepix

The performance of Medipix and Timepix chips is limited by the characteristic
properties of the pixel electronics components and by space constraints in the
implementation of functions in the small pixel area.

2.6.1 Frame rate and flux capability

One of the main performance parameters of an imaging detector is the frame
rate, depending on the readout time. The possibility to read out the detector
at high frequency implies that less time is required to perform the measurement
(provided that a sufficiently intense radiation source is available). In many
applications this feature is of crucial importance. For example, the opportunity
to perform a full CT scan in the least achievable time would minimize motion
artifacts in the reconstructed images, like those caused by the heart beating of
the patient.
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In Medipix and Timepix chips the frame rate is constrained by the matrix
readout time. The effective frame rate then also depends on the speed of the
full readout chain. In Medipix2 and Timepix, the fastest scheme is realized
when the pixel matrix is read out in eight parallel blocks and frame rates over
1000 fps are achieved.

Medipix3 presents one mode of operation with virtually zero dead time,
called Continuous Read Write. In this case one of the two pixel counters is read
out while the other is working in counting mode. The time it takes to read
out each counter depends on the counter depth, which can be set by the user.
This value sets the maximum frame rate (or, equivalently, the minimum shutter
time) that can be achieved with zero dead time.

Higher frame rates also imply that in order to obtain the same signal-to-noise
ratio, the radiation flux has to increase accordingly. However, a detector has a
limited flux capability. In Medipix and Timepix chips this is given by the dead
time of the pixel preamplifier, which, for Medipix2 and Timepix is less than 1 µs
for an injected charge below 20 ke−, corresponding to maximum fluxes above
1 MHz/pixel (> 30 GHz/cm2) for photons below ∼70 keV. The flux capability
could be increased in future designs by reducing the size of the pixels, which,
however, will make charge sharing effects more relevant.

2.6.2 Energy resolution

A crucial property of a spectroscopic detector is the energy resolution, which is
substantially driven by the sensor material. To the intrinsic resolution of the
sensor, one has to add the noise from the threshold fluctuation and, in the case
of Timepix, the clock frequency in the Time-over-Threshold measurement.

Values of the energy resolution for a typical 300 µm thick silicon read out
by Medipix or Timepix are in the order of 1.5 keV FWHM for energies below
40 keV. In Timepix, the energy resolution of the ToT mode of operation is be-
tween 10% and 15% in the energy range from 5 to 30 keV (see also section 3.5.1).

2.6.3 Time resolution in Timepix

For Timepix, an important performance parameter is the time resolution, which
affects the uncertainty on the energy measurements in ToT mode and on the
time of arrival measurement in ToA mode. This latter directly influences the
error on the z coordinate determined in a time projection chamber [14] or on
the mass-to-charge ratio in a time-of-flight mass spectrometer [34].
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The time resolution is defined by the frequency of the Timepix clock and by
the effect of time walk. The maximum clock speed of 100 MHz corresponds to
a 10 ns resolution. The challenge of bringing the time resolution down to 1.6 ns
has been addressed in the design of Timepix3 [29]. Furthermore, in Timepix3
Time-of-Arrival and Time-over-Threshold information can be measured simul-
taneously, giving the possibility to correct for time walk.

2.6.4 Noise floor

The position of the noise floor determines the minimum energy value at which
the threshold can be set. For Medipix2, this value is at around 3.9 keV, with a
threshold variation throughout the matrix of 430 eV. For Timepix, the minimum
threshold is at 2.7 keV, with a threshold variation of 126 eV.

For X-ray imaging applications, having a low noise floor is especially ad-
vantageous when the sample contains X-ray soft material, for which contrast is
obtained via the low energy part of the source spectrum.

2.6.5 Dynamic range

In many applications, the radiation flux reaching the detector is strongly de-
pendent on the position. Given the same exposure time, the number of quanta
detected by different pixels may vary over several orders of magnitude. In X-ray
imaging applications, this happens when the sample presents a very heteroge-
neous material composition and distribution, causing substantial differences in
the absorption of the incoming spectrum depending on which part of the object
is traversed by the radiation.

The dynamic range of a detector is a measure of how it is capable to handle
this situation. If the dynamic range is low, the most exposed pixels will saturate
before the less exposed ones could have reached a sufficient statistics.

The dynamic range of Medipix and Timepix is defined by the depth of the
pixel counters. In Medipix2, up to 11810 single quanta can be counted during
a single exposure. This property represents one of the strongest improvements
with respect to conventional X-ray technologies. In the future, the possibility
to increase the density of the electronic components in the pixel area could be
exploited to extend the counter depth even further.
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Chapter 3

Spectral sensitivity

Spectroscopic X-ray imaging detectors that will be used in this thesis consist of
a semiconductor pixel sensor readout by a Medipix or Timepix chip.

In order to explain how signals are formed in the sensor, this chapter begins
with an overview on the principles of charge formation and transport. Suc-
cessively, the benefits of spectral capability in X-ray imaging applications are
presented. The focus then moves to technical aspects of threshold calibration
of Medipix based semiconductor detectors and of the Time-over-Threshold cal-
ibration in Timepix, using fluorescence X-ray emission from metal targets.

3.1 Semiconductor detectors

3.1.1 Principle of operation

When energy is released in a semiconductor by the interaction of an ionizing
particle, electrons-hole pairs can be created. In contrast to gaseous detectors,
where charge multiplication is needed in order to produce a detectable signal,
in semiconductors the amount of charge that is generated can be detected by an
appropriate front-end amplifier. In silicon, the average energy needed to create
a pair is 3.6 eV, which means that one thousand charge carriers are created on
average already by X-rays of 3.6 keV of energy.

However, if nothing is done to prevent the charges to recombine, no signal
is formed. This can be avoided by applying an external electric field, which
separates the two carrier types by drifting them in opposite directions. The
overall motion of charges induces an electric signal on the electrodes, which

45



3.1. SEMICONDUCTOR DETECTORS

can be measured and processed by the readout electronics. To suppress dark
currents created by the thermal generation of electron-hole pairs, a pn junction
structure can be produced in the crystal volume by doping the material with
donor and acceptor impurities. By reverse biasing the junction, the depletion
layer can be extended to enlarge the sensitive area of the detector. When all
the sensor volume is depleted, increasing further the bias voltage results in an
increase of the electric field, thus in a decrease of the drift time, which makes
the detector faster.

3.1.2 Charge carriers transport

The shape of the signal seen by the front-end electronics is determined by the
physics governing the motion of the charge carriers created in the sensor ma-
terial. This motion is described in the framework of the theory of transport in
terms of a few fundamental phenomena.

Thermal motion

The physics at thermal equilibrium gives an idea of the order of magnitude of
the quantities involved in the description of the carrier motion.

At equilibrium, charge carriers in the sensor medium can be approximately
considered as free moving, and can be treated as a non-interacting Boltzmann
gas of particles with effective mass m∗, randomly scattering with the lattice
sites. Electron and holes are described in terms of two separate mass values,
m∗n and m∗p respectively.

At temperature T , the absolute velocity v of the particles is distributed
according to the Maxwell-Boltzmann probability density function

fMB(v) =

√
2

π

(
m∗

kBT

)3/2

e
−m∗v22kBT v2, (3.1)

where kB is the Boltzmann constant. This yields an average thermal velocity

vth =

√
3kBT

m∗
. (3.2)

This formula means that the kinetic energy 1/2m∗v2th equals the thermal
energy 3/2kBT . On average, the net distance traveled by an ensemble of many
carriers is zero.
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In case of silicon, vth for both electrons and holes is of the order of 105 m/s at
room temperature. Since the mean free path between two consecutive collisions
is around 100 nm, this corresponds to a relaxation time (i.e., mean time between
two consecutive collisions) in the order of 1 ps [56].

The transport equation

Deviations from equilibrium can be caused by the presence of electric fields and
concentration gradients. These conditions are described by five equations [57]:

� the Poisson equation

∇2φ(~x) = −Q(~x)

ε
(3.3)

relates the electric potential φ(~x) to the free charge density Q(~x) through
the dielectric constant ε and describes the effect of the space charge elec-
trostatics;

� the expressions of the electrons and holes current densities as a function
of the diffusion constants D and the drift mobilities µ:

~Jn(~x) = eDn
~∇n(~x) + eµnn(~x)~E (3.4)

~Jp(~x) = −eDp
~∇p(~x) + eµpp(~x)~E (3.5)

in an electric field ~E , where n(~x) and p(~x) are the electron and hole con-
centrations and e is the elementary electric charge;

� the continuity equations, stating that the divergence of the current densi-
ties must be balanced by the volume recombination and generation rates
r(~x) and g(~x):

~∇ · ~Jn(~x) = e [rn(~x)− gn(~x)] (3.6)

~∇ · ~Jp(~x) = −e [rp(~x)− gp(~x)] . (3.7)

The transport equations for electrons and holes are obtained by applying
the continuity conditions 3.6 and 3.7 to equations 3.4 and 3.5 respectively:

Dn∇2n(~x) + µn~E(~x) · ~∇n(~x) + n(~x)µn~∇ · ~E(~x)− [rn(~x)− gn(~x)] = 0 (3.8)

Dp∇2p(~x)− µp~E(~x) · ~∇p(~x)− p(~x)µp~∇ · ~E(~x)− [rp(~x)− gp(~x)] = 0 (3.9)
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The full solution of the problem of transport is found by solving equations 3.8
and 3.9 together with the Poisson equation 3.3. However, this cannot be done
analytically. In the following paragraphs each term of the transport equations
will be treated separately, and each process will be described individually.

Carriers generation and recombination

The right hand sides of equations 3.6 and 3.7 describe the change in time of
the concentrations of electrons and holes respectively, due to the interplay of
the generation and recombination processes. With a simple model, it can be
shown that, at equilibrium, the recombination process for each carrier type is
described by two separate equations [61, 56]:

d(δn)

dt
= −δn

τn
(3.10)

and

d(δp)

dt
= −δp

τp
, (3.11)

where the two characteristic times τn and τp are defined through the recombi-
nation rate r as

τn =
1

rp
(3.12)

and

τp =
1

rn
. (3.13)

This result shows that as soon as the generation process ends, the thermal
equilibrium is reached again as the consequence of a transient state in which
recombination causes the exponential decrease of the concentration of carriers.
If no driving force is present that separates the electrons from the holes, these
would recombine within a time interval of the order of τn and τp respectively,
that, according to relations 3.12 and 3.13, depend on the intrinsic carriers con-
centration. In a depleted pn junction, the charge carriers are driven away from
the depletion region, and recombination is suppressed.

Although this simple model is useful for forming an idea on the basics of the
generation and recombination processes, the real case is much more complicated.

48



CHAPTER 3. SPECTRAL SENSITIVITY

For example, other processes involving intermediate states in the band energy
gap (due to imperfections and impurities) play a role, acting as generation-
recombination centers, and in indirect semiconductors (such as silicon) the shift
between the conduction and the valence band in the reciprocal lattice has to be
taken into account.

Diffusion

Once created, the charge carriers are affected by the presence of a concentration
gradient, and tend to move towards the region in which the concentration is
lower. Diffusion takes place in the low concentration regime1 according to Fick’s
law:

~Jdiff = −D~∇C. (3.14)

This equation corresponds to the intuitive representation of the phenomenon
that the diffusion current ~Jdiff ∝ ~v describes a flow of particles at velocity
~v in the direction opposite to the gradient of the concentration C = C(~x, t),
where C(~x, t) is the concentration at a given position ~x at time t. The diffusion
constant D specifies the strength of the effect of the gradient on the current.

Although this model strictly concerns the situation of particles suspended
in a fluid, it can also be applied in the case of charge carriers within a crystal
lattice in the approximation of an isotropic and homogeneous medium.

The most general solution of equation 3.14 can be worked out by requiring
mass conservation, i.e. by applying the continuity equations 3.6 and 3.7. The
evolution of the carrier concentration in space and time, starting from an initial
distribution C0(~x), then takes the form2

C(~x, t) =
1

8 (πDt)
3/2

∫
C0(~x′)e−

(~x−~x′)2

4Dt d3x′. (3.15)

A special case is given when the initial size of the charge cloud is so small that
the concentration at time t = 0 can be approximated by a Dirac distribution
around the generation point ~x0:

C0(~x0) = δ(~x− ~x0). (3.16)

1If concentrations are high, the problem is that of the dynamics of two fluids [40].
2See, for example, [40] for the derivation of 3.15 from 3.14.
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Then 3.15 reduces to

C(~x− ~x0, t) =
1

8 (πDt)
3/2

e−
(~x−~x0)

2

4Dt , (3.17)

showing that, in absence of any external force, the particles diffuse isotropically
according to a Gaussian distribution whose spread√

〈x2〉 =
√

2Dt (3.18)

increases with the square root of time.
An order of magnitude evaluation of the effect can be carried out by setting
t = τ ,

√
〈x2〉 = λ and vth = λ/τ , where τ and λ represent the relaxation time

and the mean free path respectively. For the diffusion constant this gives

D =
1

2
vthλ, (3.19)

which, through equation 3.2, shows the dependence of D on the temperature.

Typical values of the diffusion constant D in semiconductors at room tem-
perature are in the order of few tens of cm2/s, thus yielding a standard deviation√
〈x2〉 in the order of few micrometers [56].

Drift

The presence of a force field is another means of altering the thermal equilibrium.
This situation is typical in particle detection systems, where the application of
an external electric field in the sensitive volume is necessary in order to drive
the charges to the collection electrode.

The effect of the external force is to accelerate each carrier along the field
lines between two consecutive collisions. After an average distance λ the particle
will scatter with the lattice and in this process it will release almost all the energy
acquired during the acceleration. Overall, the particle will appear as moving at
a constant drift velocity ~vdrift.

A simple way to treat the drift mechanism is to model it as a uniform
acceleration with a friction term [9, 39], in which case the Langevin equation
holds

m∗
d~v

dt
= ±e~E −K~v, (3.20)
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with ~E being the electric field vector, ~v the instantaneous velocity of the particle
and K the friction constant. The sign ±must be chosen according to the electric
charge of the carrier: + for the holes, - for electrons.

Equation 3.20 defines a characteristic time scale through the ratio τd =
m∗/K that can be interpreted as the average time between two successive col-
lisions. In the t� τd limit the velocity saturates at

~vdrift = ±eτd
m∗

~E . (3.21)

This relation states that the observed drift velocity ~vdrift is proportional to the
electric field

~vdrift = ±µ~E , (3.22)

with

µ =
eτd
m∗

. (3.23)

The µ parameter is called the scalar mobility of the carriers, and in the low field
regime it is constant. Definition 3.23 shows that the mobility is a function of τd
and m∗, so depending on the temperature and on the properties of the medium.

For a rough idea of the orders of magnitude, for pure silicon at 300 K the
mobility is µn = (1415 ± 46) cm2/(Vs) for the electrons and µp = (480 ±
17) cm2/(Vs) for the holes [56].

This model is a good approximation as long as low intensity fields are con-
sidered, in which case only classical elastic scattering between the carriers and
the lattice occur and equation 3.20 is valid. As the electric field is increased,
a quantum mechanical treatment is required, where the interaction with the
crystal lattice is described in terms of scattering with phonons. As a result, the
mobility is not constant [56].

Coulomb interactions

Charge carriers interact among each other through electrostatic forces. The
cloud of electrons (or holes) that is drifting towards the collection electrode
thus expands more rapidly than if just diffusion alone is considered.

To incorporate Coulomb interactions, the transport equations must be solved
simultaneously with the Poisson equation. This corresponds to the inclusion of
an additional term

∂Q

∂t
= − µQ

4πεr2
∂Q

∂r
(3.24)
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to the transport equation [25]. Here Q(r, t) is the charge density in radial coor-
dinates, µ is the carrier mobility and ε is the dielectric constant of the medium.
The charge density is related to the concentration through the elementary charge
of the carrier: Q(r, t) = qC(r, t).

If Np is the total number of carriers, the solution of equation 3.24 is

C(r, t) =

{
ε
qµt , if r < r0

0, if r > r0
, (3.25)

with

r0 =
3

√
3µqNpt

4πε
. (3.26)

Formula 3.25 shows that at any time during expansion the charge density
always has a constant value inside a sphere of radius r0. The net effect of
electrostatic repulsion is to increase the spread of the charge carriers distribution
with respect to that expected from pure diffusion. In several papers it was
proven that this effect cannot be neglected in a number of circumstances (see
for example [25] and [22]).

Energy resolution and the Fano statistics

The number of charge carriers created by the interaction of an ionizing parti-
cle is of statistical nature and is therefore subject to fluctuations. Since the
amount of charge created is ultimately a measurement of the released energy,
these fluctuations determine the intrinsic limit on the spectral resolution of the
detector.

It turns out that, if calculated on the basis of a purely statistical approach,
the energy resolution of a detector is worse than the one that can be measured
experimentally. The reason for this was first explained by U. Fano as due to
correlations of different mechanisms through which the energy of the particle
can be transferred to the medium [23].

Intuitively, this corresponds to the fact that if an amount of carriers N−δN ,
different from the expected value N , are created in a certain position in the
sensor, then the exceeding part δN has to be statistically averaged out in the
next collisions. The effect is strong for the case of photoelectric conversion of
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photons, where the number of carriers created has to fulfill the constraint that
all the initial energy has to be used3.

This results in the definition of the Fano factor

F =
σ2
p

Np
. (3.27)

In this formula Np is the number of pairs created and σ2
p is the associated vari-

ance. The Fano factor is an indication of how much the width of the distribution
deviates from the ideal Poisson limit σ2

p = Np, corresponding to F = 1. Typical
values for semiconductors are in the order of F = 0.1 [56].

3.1.3 Signal formation

The instantaneous current induced on the electrode can be calculated with the
weighting field method according to the Shockley-Ramo theorem [60, 52, 30].
The Shockley-Ramo theorem demonstrates that the instantaneous charge in-
duced on the electrodes only depends on the location of the space charge and
on the geometry of the electrodes, but neither on the geometrical distribution
of the carriers, nor on the voltage applied to the electrodes4. When applied
to semiconductors, the theorem also shows that the total signal created from
the motion of electron and holes in opposite directions is the sum of the signals
associated with either carrier types.

Measurement of energy

The principle of energy sensitivity in spectroscopic pixel readouts for semicon-
ductor detectors, such as Medipix and Timepix, relies on the assumption that
the amount of charge induced on the readout electrode corresponds to the en-
ergy released by the ionizing particle in the sensor. This assumption is correct
only if all the charge that is initially created contributes to the formation of the
signal.

This condition does not hold anymore if part of the charge is lost during
the drift process. Recombination and trapping centers can be present in the
detection volume for example due to imperfections of the crystal lattice that
are caused by the non-optimal processing of the sensor material or to damages

3Not all the initial energy, though, is converted into electron-hole pairs. The difference
between the excitation energy (3.6 eV per pair, on average, in silicon) and the band-gap
energy (1.1 eV in silicon) is converted into heat.

4As a matter of fact, some detectors can be operated without an applied sensor bias.
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induced by radiation effects. If these centers are not localized, but they are
present in all the drift volume, the amount of charge that is lost depends on
the length of the drift path: the longer the carriers have to travel in the sen-
sor, the more likely the chance is that they will recombine or get trapped. As
a consequence, a detector relying on the estimation of charge to infer the en-
ergy released in the sensor measures a different energy according to where the
interaction takes place [56].

If one excludes radiation damage, the occurrence of imperfections in silicon
sensors is very low, thanks to the fact that the production of silicon crystals is a
very well established process, and very high quality wafers can be grown. Among
the results that will be presented in chapter 4, it will be shown (figure 4.13)
that charge loss is not an issue for the 300 µm thick silicon sensors employed to
build Medipix based spectroscopic X-ray detectors. This means that with these
devices energy measurement can be performed reliably.

Signal induced on segmented electrodes

If the size of the electrode is much larger than the sensor thickness, then one
talks of a pad detector. The resulting weighting potential grows linearly as
a function of depth, which eventually implies that the charge induced on the
electrodes is the same independently from the position of the carriers along
the drift path. At the same time, the instantaneous induced current changes
according to the variation of the drift velocity as a function of the value of the
electric field.

The situation is different for the case of finely segmented electrodes, as in
pixel detectors5, where the size of the collection electrode is comparable or
smaller than the sensor thickness. In this case the weighting potential is close
to 1 only in a region in the vicinity of the segmented electrode, while it rapidly
approaches zero in the rest of the sensor volume. The high weighting potential
region is smaller as the aspect ratio of the electrode (i.e. the pixel size compared
to the sensor thickness) becomes smaller.

This situation gives rise to the so called small pixel effect, characterized
by two features: 1) the major contribution to the induced signal arises from
the last part of the drift process, namely when the charge is located close to
the collection electrode, and 2) the contribution to the signal from the charge
carriers of the other type, i.e. those drifting towards the other electrode(s), is
negligible.

5The following considerations also apply to strip detectors
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Small pixel effects are particularly relevant in the case of energy sensitive
detectors, where a significant amount of charge can be lost before the carriers
approach the collection electrode, i.e. the region where the largest fraction of
the signal is induced [56].

Charge sharing

Another consequence of segmentation is that, as long as the charge carriers are
still located far from the pixel electrode, they induce a measurable signal also
on neighboring electrodes. This signal changes in sign as soon as the charge
enters the vicinity of the collection electrode. As a consequence, only the pixel
where the charge was created measures a net charge, while the neighbors see a
null signal integral.

If the front-end electronics is provided with a charge sensitive preamplifier
(as in Medipix and Timepix), charge sharing from induced signals has no effect,
as long as the integration time is sufficient to cover the full signal development6.
However, if the pixel size is small, namely if it is comparable with the transverse
size assumed by the distribution of the charge carriers due to diffusion, charge
sharing can be caused by the actual migration of charge from one pixel to its
neighbors.

The effect is important for spectroscopic pixel detectors. Charge sharing, in
fact, may cause less charge to be detected in a given pixel, which results in a
lower value of the estimated energy. At the same time, the rest of the charge,
which has leaked into the neighboring pixels, might be lost if it is not enough to
exceed the detection threshold. This means that even re-summing the charge in
a pixel cluster might not be enough to recover the original value of the deposited
energy.

In the case of Medipix based semiconductor detectors for X-ray imaging,
charge sharing produces serious distortions of the incoming spectra. The ori-
gin of these distortions can be understood by studying the charge transport
properties of the sensor, which will be done in chapter 4.

3.1.4 X-ray detection vs photon detection with a hybrid
pixel device

Figure 3.1 shows the principle of operation of a hybrid pixel semiconductor
detector, in the case of the collection of holes. This type of detectors is the
default device used for the measurements presented later.

6Collection times for a typical silicon detector are in the order of few nanoseconds [56].
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Figure 3.1: Sketch of the detection principle for photons (left) and relativis-
tic charged particles (right) in a hybrid semiconductor detector.

The sensor carries a uniform back-metalization structure that serves as the
anode, while the cathode is segmented in order to match the pixels of the readout
chip. Connection between sensor and readout is done via bump bonding.

The two images show the difference between the detection of an X-ray photon
and the detection of a relativistic charged particle. In the former case, when
photoelectric effect takes place, all of the initial energy of the photon is used to
excite an electron to the continuum, which then induces the creation of electron-
hole pairs by ionizing the medium. Since the range of the photoelectron is
usually in the order of a few microns, the initial cloud of charge carriers can be
usually considered as point-like.

In the case of relativistic charged particles the energy loss is governed by
the Bethe-Bloch ionization mechanism. The particle releases part of its total
energy at each interaction with the sensing medium, resulting in the creation
of a trail of electron-hole pairs along the full path. Minimum ionizing particles
create an average of 70 pairs per micron in silicon.
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If the spatial resolution of the detector is sufficient, the original trajectory
of the particle in the sensor can be reconstructed from the data. This strategy
is at the basis of the analysis that will be presented in chapter 4.

3.2 Spectral X-ray imaging with Medipix

The principle of the spectral sensitivity of chips of the Medipix and Timepix
family is the possibility to preset a threshold on the signal induced by the
detection of a single particle or photon. The height of the signal is proportional
to the amount of charge reaching the pixel electronics, and corresponds to the
energy released by the ionizing particle in the sensor.

In the case of low energy X-ray quanta, where the most probable type of
interaction is the photoelectric effect, the detected signal is proportional to the
energy of the photon7. As a result, the Medipix programmable threshold pro-
vides a selection on the photon energy. This feature makes spectroscopic readout
chips, like Medipix and Timepix, unique. X-ray images can be taken at differ-
ent energy thresholds (or in different energy bins in the case of energy window
operation), thus enhancing contrast for different materials in the sample as a
consequence of the different energy dependence of the respective photon atten-
uation. This result cannot be achieved with conventional energy integrating
detectors, where spectral information is lost.

An example of the multiple threshold imaging concept is shown in figure 3.2
for three X-ray images of an operational amplifier, taken with a 300 µm sili-
con sensor bump bonded to a Timepix chip. The detector threshold was tuned
at 5, 10 and 27 keV, respectively. As a consequence, in each image the rela-
tive contrast between the different materials (plastic, metal and air) changes,
thus enhancing material separation. Despite its simplicity, this example already
shows the underlying idea of spectral, material-resolved, X-ray imaging. The
multiple threshold imaging approach will be the basis of the spectral CT method
that will be developed in chapter 6.

With Medipix2 and Timepix, the multiple images are acquired by repeating
the measurement at different thresholds. This means that the total measure-
ment time, as well as the dose delivered to the sample, increases. This problem
is solved in Medipix3, where the spectroscopic mode of operation provides eight
simultaneous thresholds at 110 µm pixel pitch, which means that eight mea-
surements with eight different threshold settings are performed within a single
exposure.

7At least when no charge sharing effects are considered.
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(a) Threshold at 5 keV.
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(b) Threshold at 10 keV.
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(c) Threshold at 27 keV.
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(d) Threshold at 27 keV, zoom on the
wire bonds region.

Figure 3.2: X-ray images, in units of −log (I/I0), of an operational amplifier
taken at multiple thresholds.
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3.3 Threshold calibration

To determine the relation between the threshold setting and the real energy,
a calibration procedure is required. Threshold calibration can be performed
by exposing the detector to radiation sources of known energy. Among all the
possibilities, one could employ natural gamma emitters, synchrotron radiation
or fluorescence emission from pure metals excited by an external field.

This latter represents the most convenient method for multiple reasons.
First, a fluorescence setup can be easily built by equipping a conventional table-
top X-ray imaging system with little additional mechanics. Moreover, since
fluorescence yields are relatively high (see appendix C [36, 41, 4]), radiation
fluxes at the detector can be high enough to allow for calibration of individual
pixels in a reasonable time8.

Other advantages of using fluorescences is that many monochromatic pho-
topeaks can be detected over a wide range of X-ray energies, from below 1 keV
up to above 100 keV, depending on the target material.

3.3.1 Experimental setup

A sketch of a typical fluorescence calibration setup is shown in figure 3.3. The
primary beam from a vacuum X-ray tube is directed onto a target material,
that re-emits part of the absorbed radiation as X-rays at characteristic energy
values. The fluorescence photons are emitted isotropically. To maximize the
flux of fluorescence radiation reaching the detector over the flux of the primary
radiation, the detector is positioned outside the primary beam, as shown.

The set of targets used for calibration is listed in table C.1 in appendix C,
along with some relevant properties. All of them are high purity metal foils,
mostly of 0.001 inch thickness.

3.3.2 Model of fluorescence spectra

The photons reaching the detector build up a spectrum S(E) characterized by
the presence of fluorescence photopeaks on a background formed by the radiation
scattered inside the setup and the radiation backscattered from the target. An
analytical model of the fluorescence spectrum is developed to fit the data in
order to determine the calibration points.

8This depends on the power of the X-ray tube
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Figure 3.3: A sketch of the fluorescence calibration setup.

Figure 3.4 shows an intuitive sketch of the model. An originally monochro-
matic photopeak (figure 3.4a) at energy Ep is broadened by the detector reso-
lution according to a Gaussian profile (figure 3.4b), i.e.

Sp(E) =
dNp
dE

(E) =
Np√
2πσp

e
(E−Ep)2

2σ2p . (3.28)

Here Np denotes the number of photons that are detected during the measure-
ment time and σp is the width of the distribution.

Due to charge sharing, a fraction fcs of the incoming photons is detected
at lower energies. This effect produces a continuous tail in the spectrum at
E < Ep. In the vicinity of the peak, this tail can be approximated by a constant
(figure 3.4c). Taking into account the effect of the energy resolution, the charge
sharing component of the spectrum can thus be written as

Scs(E) =
dNcs
dE

(E) =
fcsNp

2

[
1 + Erf

(
−E − Ep√

2σp

)]
. (3.29)

The total spectrum is the sum of Sp and Scs, plus a possible background
component Sb(E). In an energy range around of the photopeak this latter can

60



CHAPTER 3. SPECTRAL SENSITIVITY

E

d
E

d
N

(a) Monochromatic
input

E

d
E

d
N

(b) Effect of the en-
ergy resolution

E

d
E

d
N

(c) Effect of charge
sharing

Figure 3.4: The model used to describe the spectral response of a Medipix
based semiconductor detector.

be taken as a constant contribution Sb(E) = Cb = const. Putting all terms
together results in

S(E) = Sp(E) + Scs(E) + Cb. (3.30)

This formula contains 5 free parameters: Ep, σp, Np, fcs and Cb.
Despite its simplicity, formula 3.30 is well suited for fitting the data in the

vicinity of the photopeak. A better parametrization of the detector energy
response, and in particular of the charge sharing tail, will be addressed in chap-
ter 5.

Inclusion of the Kβ component

The energy resolution is such that in many cases the fluorescence spectrum
shows the contribution of the Kβ peak alongside the more intense Kα line.
For a conventional 300 µm silicon sensor on Medipix, this is the case for all
the targets with atomic number Z ≥ 32 (from germanium on in our set of
targets), for which the distance between the two peaks is larger than ∼1 keV.
In such circumstances, the detected spectrum in a close neighborhood of the
characteristic lines is given by

S(E) = Sαp (E) + Sαcs(E) + fβ/α
[
Sβp (E) + Sβcs(E)

]
+ Cb, (3.31)

where now the superscripts α and β are applied on Sp(E) and Scs(E) to distin-
guish the two peak positions Eαp and Eβp , and fβ/α is the relative intensity of
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the Kβ radiation with respect to the Kα component.
Notice that in first approximation, the σp and fcs parameters are shared

between the α and β contributions. This choice stems from the assumption
that, within the energy range considered, the resolution of the detector and its
spectral response do not vary significantly. As a result, despite the increase in
complexity, the spectrum 3.31 only leaves 7 free parameters: the energy Eαp
of the Kα peak, the energy Eβp of the Kβ peak, the intensity Np, the detector
resolution σp, the charge sharing scalar fcs, the Kβ to Kα relative intensity fβ/α
and the background constant Cb.

3.3.3 Calibration procedure

The calibration curve can be built by measuring the fluorescence spectrum from
different targets and by correlating the position of the photopeaks with the
known emission energies.

A common technique to measure a full energy spectrum with Medipix based
detectors is to perform a threshold scan, i.e. monotonically varying the threshold
in fine steps during the exposure. The result is a cumulative representation of
the source spectrum that can later be retrieved by differentiating the scan.
However, differentiation leads to an amplification of the stochastic noise, which
in most cases results in a poorly defined spectrum. This is particularly true when
considering that the calibration procedure is carried out on a per-pixel basis,
where the typical statistics are limited to 100-1000 photon counts at the lowest
threshold. To avoid differentiation, the integral expressions of formulas 3.30
or 3.31 can be fitted directly to the raw threshold scan. Notice that the resulting
formulas are still analytical.

Convergence of the fit might strongly depend on the initialization values of
the parameters. This is especially true when the full 7-parameters model 3.31 is
employed to fit both theKα and theKβ peaks. Manual fine tuning is impractical
when the full pixel matrix has to be calibrated.

To maximize the number of pixels for which the fit converges, the fitting
procedure is organized in successive steps in which an initial model function
depending on few parameters is progressively developed until the final form 3.30
(or 3.31) is reached, and where each step is initialized using the results from the
previous estimation. For details about this procedure, see appendix D.

Figure 3.5 illustrates an example of a single pixel calibration of the lower
threshold (THL) for a Medipix2 based silicon detector. Figure 3.5a shows the
fit of the single peak expression 3.30 to the cumulative spectrum from a nickel
target, while figure 3.5b, shows the fit of the double peak expression 3.31 to the
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Figure 3.6: Distributions of the calibration line parameters (offset and
slope) for all the pixels in the detector.

cumulative spectrum from a tin target. The results of this latter fit are shown
in figure 3.5c.

Finally, the full calibration curve for the same pixel is shown in figure 3.5d.
In this plot each point corresponds to the Kα or the Kβ peak from one of the
employed targets. The data are fitted with a first degree polynomial. The
distributions of the calibration parameters (offset and slope of the calibration
line) over the full pixel matrix are shown in figure 3.6.

3.4 Threshold equalization

Although pixels are designed to be exact copies of each other, small variations
unavoidably occur because of systematic and environmental causes that affect
the manufacturing process. One of the parameters that suffers from inter-pixel
mismatches in Medipix and Timepix is the discriminator threshold: while pixels
are expected to operate all at the same energy threshold, variations are observed
throughout the pixel matrix.

The threshold equalization is the procedure that aims at minimizing this
dispersion by fine tuning the threshold in each pixel. This is accomplished by
setting the values of the adjustment bits of the discriminator(s) in each pixel (3
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Figure 3.7: ToT calibration curves for different values of the Krummenacher
leakage compensation current (Ikrum, see appendix B).

bits for Medipix, 4 for Timepix).

By definition, the most effective equalization strategy is the one that ex-
ploits the per-pixel calibration to calculate the actual energy threshold of each
pixel. However, this procedure is often impractical, since it requires a full char-
acterization of the detector energy scale, which is too time consuming for most
applications.

As an alternative, the equalization can be performed by exploiting the posi-
tion of the noise floor of the pixels. This approach is indeed faster and easy to
perform, but the result is effective only as long as the detector is operated at
low thresholds. In fact, this method only equalizes the threshold offset, while it
doesn’t take into account the inter-pixel gain variations. When the threshold is
set further and further from the noise floor, the equalization gradually worsens.
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3.5 Calibration of the Timepix ToT

When operated in photon counting mode, the Timepix chip is equivalent to the
Medipix chip, with the difference that only one threshold is available instead of
two (Medipix2) or more (Medipix3 in spectroscopic mode).

However, as far as other applications are concerned, Timepix strongly differs
from Medipix in that spectral sensitivity can be achieved by operating the chip
in Time-over-Threshold mode. In this case, energy estimation can be performed
directly on single quanta by measuring the time the signal stays above threshold.

The calibration of the Time-over-Threshold scale requires a dedicated tech-
nique, aimed at minimizing the effect of pile-up, arising from the fact that the
Timepix logic is designed in such a way that the Time-over-Threshold values of
signals that exceed the threshold within the same shutter time are integrated.
This implies that, when multiple signals are detected in the same pixel within
the shutter time, the information on the energy associated to individual quanta
is lost. Under these circumstances, the possibility of a calibration is hindered.

As with the case of the threshold calibration, the Time-over-Threshold cali-
bration can be performed using X-ray fluorescence. In order to acquire energy
information on single photons, the probability of more than one photon being
detected in the same shutter time must be as low as possible. The simplest
approach is to keep the radiation fluxes at low levels, so that the occupancy in a
single frame is in the order of few percent. This implies that the measurements
for a ToT calibration, especially when performed on a per-pixel basis, generally
take much longer than those required for the calibration of the threshold.

The Time-over-Threshold spectrum can be retrieved by selecting only iso-
lated events. A photon event is considered isolated when it triggers a single
pixel and none of its first neighbors. This selection results in the minimization
of the effect of charge sharing.

ToT spectra can be fitted directly with a Gaussian function in a range around
the photopeak(s). The final calibration curve exhibits the typical shape shown
in figure 3.7. The trend of the data can be parametrized in terms of a function
of the form

ToT = aE + b− c

E − E0
, (3.32)

where a and b are line parameters, while c and E0 are the parameters of the
inverse law describing the low energy part of the data.
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3.5.1 Limitations of the ToT mode

Contrary to the simple application of a threshold, the Time-over-Threshold
mode in Timepix is the only method that provides an actual energy measure-
ment. The question that might arise at this point is: why not always exploit
Timepix and the ToT to measure directly the full radiation spectrum in each
pixel?

A first reason against this possibility is that the energy resolution in Time-
over-Threshold is poorer than the resolution of the threshold itself. While the
latter is basically driven by the noise of the discriminator only, the former is
determined by a combination of factors, among which the settings of the leakage
current compensation circuitry in the amplifier.

The second point is that, as explained in section 3.5, energy estimation on
single quanta can be achieved only at the expense of the flux. One possibility
to overcome this limitation is to reduce the shutter duration until, even at high
fluxes, single signals are isolated within different shutter periods. However, in
this situation the measurement period is dominated by the dead time. Even
if this would be an acceptable condition, in order for a signal to exceed the
threshold and fall back below in such a short time, its falling time should be
reduced to such an extent that the resolution of the clock would be strongly
impaired.

In addition, as it will be clear in chapter 6, at least in principle the solution
of the spectral CT problem just requires the measurement of X-ray projections
at multiple thresholds, without the need to determine the full spectrum.

ToT mode still remains a powerful approach for applications where lower
fluxes are involved than in X-ray imaging, such as particle tracking or dosimetry.
As a matter of fact, the performance of Timepix as a spectroscopic tracker of
relativistic ionizing particles will be the key aspect of the sensor characterization
analysis presented in section 4.1.
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Chapter 4

The energy response
function: particle beam
data

The energy response function of a spectroscopic X-ray detector is one of the most
important features that enter the image reconstruction algorithm in spectral X-
ray computed tomography, as will be described in chapter 6.

In the previous chapter, a simple model of the detector response to fluores-
cence X-rays was introduced. This model is efficient for the purpose of fitting
the calibration data in the vicinity of the photopeaks, but cannot fully charac-
terize the energy response over the whole range. In particular, the shape of the
charge sharing tail of the spectra is not described properly.

To understand how X-ray spectra are distorted by detector effects, the
charge transport properties of the sensor need to be characterized. This chapter
presents the analysis performed on data from an experiment with a relativistic
charged particles beam, where the evolution of the lateral profile of the charge
cloud as a function of the drift distance is determined. This information is used
to calculate the spectrum detected from a fluorescence source, and it is at the
basis of the model of the response function that will be developed in chapter 5.
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4.1. MEASUREMENT OF CHARGE DIFFUSION USING TRACKS FROM
MINIMUM IONIZING PARTICLES

4.1 Measurement of charge diffusion using tracks
from minimum ionizing particles

The idea of this measurement is to exploit the spectral capability and the spatial
resolution of a Timepix based silicon pixel detector and turn a beam of ionizing
particles into a microscope to look at the charge transport phenomena taking
place within the volume of a single pixel. It will be shown that the precision
achieved with this technique is in the order of a few microns in the plane of the
pixel matrix, and even less along the direction of the drift motion.

The advantage of this method is that the results are solely based on mea-
surements. This avoids the a-priori introduction of physics parameters, such as
diffusion and drift constants, that might bias the outcome of the analysis, as
well as the need to know the electric field configuration in the sensor, which
would require a complete description of its doping profile.

4.2 Experimental setup

The measurements have been performed with four Timepix chips bump-bonded
to a single 300 µm thick p-on-n quad1 silicon sensor biased at 100 V. The detec-
tor is exposed to a beam of 40 GeV negative pions at the H6-SPS experimental
area at CERN.

A quad detector is chosen over a single device because of the larger sensitive
area. In fact, the exploitation of the full 512 × 512 pixel matrix, for a total
of approximately 2.8 × 2.8 cm2, allows for the detection of long particle tracks
at longitudinal incidence. This feature will have an influence on the quality of
the final result, since the uncertainty on the parameters of the reconstructed
trajectories, which propagates through the steps of the analysis, is in general
lower when the particle tracks are longer.

Figure 4.1 shows the setup geometry. The sensor is positioned in the beam
such that particles cross it longitudinally and the trajectories are in line with

1Medipix and Timepix chips can be tiled along the 3 free sides. As a consequence, 2×N
arrays of an indefinite number of detectors, or 2×2 matrices, can be built with 100% sensitive
area. These latter are referred to as quad modules. A quad detector is built by connecting the
2×2 matrix to a single sensor, in order to avoid any insensitive gap between the chips. Due to
technical limitations in the wafer dicing process, a non-zero pixel-to-edge distance in the chips
is always present. This causes the effective size of the pixels in the boundary between chips
to increase. This feature causes a typical cross shaped artifact to appear in correspondence
of the chip boundaries, especially visible in imaging applications, and an off-line correction is
required.
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Figure 4.1: Setup geometry: positioning of the detector in the beam. Also
shown are the coordinate axes (x, y, z) defining the reference frame used in
the analysis.

the pixel rows. A small tilt (∼0.5◦) in the polar angle is applied in order for a
minimum ionizing particle to leave a long straight track (200 pixels on average)
that, at the same time, has a high probability to be contained within the detector
area. The detector plane was tilted as well by ∼1◦ to ensure that tracks would
span over multiple pixel columns. Both conditions are fundamental in reaching
sub-pixel resolution on the particle track hits.

The Timepix quad is operated in Time-over-Threshold mode (see section 2.4.1).
This means that for each pixel traversed by a particle the value of the local en-
ergy release is given. A ToT-to-energy calibration has been performed after the
beam test period using an Fe-55 source and X-ray fluorescence emission from
pure metal targets irradiated by an X-ray tube.

4.3 Raw data analysis

The analysis described in the following is based on the assumption that mini-
mum ionizing particles travel along a straight path while traversing the sensor.
However, due to the different interaction mechanisms that a hadron can un-
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Figure 4.2: Some examples of the typical track topologies: (a) a straight
track from a minimum ionizing particle with few delta electrons, (b) a
highly energetic delta emission, (c) production of a high energy secondary
particle and (d)-(e) events with nuclear interactions.

dergo with the sensor material, the set of possible track topologies observed in
the data is much wider than just line segments.

4.3.1 Reference frame

The (x, y, z) reference frame was presented in figure 4.1. Pixel coordinates are
recorded in the frame of the pixel matrix: from 0 to 511 in x and from 0 to 511
in y. The corresponding values in microns are obtained by multiplying by 55.

Apart from the small detector tilt, tracks develop along the y coordinate.
The entrance point of the track in the sensor can be identified as the point with
higher y value, while the exit point is the one with lower y value.

The z coordinate (in microns) identifies the depth in the sensor. The sensor
backside corresponds to z = 0 µm, while the readout side corresponds to z =
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300 µm.

4.3.2 Track selection and fitting

Tracks are identified in the raw frames as isolated clusters of pixels. In order
to take into account dead pixels or pixels where the signal has fluctuated below
the threshold, a gap of maximum three empty pixels is allowed.

Figure 4.2 shows a few examples of the most common track types. Each
track is a cluster of particle hits where each dot represents a pixel with a non-
zero digitized value. The color scale in the picture encodes the unnormalized
signal amplitude, namely the Time-over-Threshold value of each pixel before
calibration.

Two of the clusters in the figure (clusters (d) and (e)) present clear signatures
of nuclear interactions. One of the goals of the track selection algorithm is to
remove these type of events, whereas straight tracks left by minimum ionizing
particles, such as (a), are kept and processed further.

The routine is not only designed to select straight tracks, but at the same
time to remove hits associated with the emission of a delta electron. This condi-
tion ensures that the final fit is performed only on those hits that actually belong
to the main trajectory, therefore maximizing the precision on the estimation of
the track parameters.

After an overall correction of the quad cross artifact and a consequent recal-
culation of the energy in the involved pixels, the following criteria are applied:

1. Removal of incomplete clusters. A major requirement of the analysis
is that the first and the last track hits can be identified as the entrance/exit
points of the particle in/from the sensor. This is true only if the track is
fully contained in the detector area. Clusters that contain pixels at the
edge of the detector matrix are rejected.

2. Removal of short and long clusters. The cluster length L is calculated
as the distance, in number of pixels, between the entrance point and the
exit point. Clusters that do not fall within the [150-300] pixels length
selection window are removed.

3. Selection of minimum ionizing particle topologies. For each track,
the

η =

√
A

L
(4.1)
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parameter is calculated. Here A is the area (in units of pixels) of the
cluster, calculated as the number of pixels belonging to the cluster that
have at least one neighboring hit along x. According to this definition,
a fully straight track along y would have A = 0. More in general, high
η values are indicative of the presence of nuclear interaction topologies,
while more straight tracks, associated with minimum ionizing particles,
assume η values close to zero. In order to select only these latter, clusters
with η > 0.05 are rejected (see figure 4.3).

4. Topological analysis. This step, together with the following (the fit-
ting), are illustrated in figure 4.5 for a single track. For each hit in the
cluster, two scalar quantities are defined, called ηx and ηy. ηx is the length
(in number of pixels) of the sub-cluster formed by all the hits with the
same y- coordinate as the pixel being considered. In the same way, ηy is
defined as the area of the corresponding sub-cluster along the y direction,
with the difference that here a tolerance of up to five empty pixels be-
tween two non-empty ones is applied, to account for the possibility that,
in the transition between two pixel columns, signals could be undetected
because, due to charge sharing, they fall below threshold.

ηx and ηy are used to identify hits associated to delta electrons, which are
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labeled as “bad hits”. In fact, if a hit has a too small ηy value (ηy < 2), i.e.
it has few neighbors along y, it most likely belongs to a delta ray extending
transversally with respect to the main track. Such a hit is labeled as a
bad hit. Moreover, all the hits with the same x coordinate are labeled
as bad because at this stage no track fitting has been performed yet, and
therefore there is no information on whether a hit belongs to the particle
track or to a delta electron cluster. After track fitting, these hits will be
re-analyzed to finally assess their status (“bad” or “good”).

The typical track from a minimum ionizing particle is made by the connec-
tion of long single line segments along the y direction. In the connection
points between segments, charge sharing effects are strong. In these zones,
the width of the track is mostly two hits, corresponding to ηx = 1. Since
this is the maximum extension observed along x for good tracks, hits with
larger ηx are labeled as bad.

After these steps, it is possible that one or both of the two hits that were
identified as first and last hits of the cluster are now labeled as bad hits,
because they are part of a delta electron trail. In such a case, the first and
last hits are redefined using the set of good hits and the cluster length is
recalculated.

At this stage the track cluster in the example, deprived of all the bad hits,
looks like the one in figure 4.5b.

5. Track fit. Minimum ionizing particles traverse the sensor along a straight
path and the corresponding tracks can be fitted with a first degree poly-
nomial in the plane of the pixel matrix. However, in order to properly
estimate the original trajectory, the fit has to be performed only on those
hits that actually belong to the particle path, while excluding the hits
associated to delta electrons. For this purpose, the fit and the topological
analysis are iterated according to the following procedure:

(a) Following the topological analysis, a first fit is performed, in order to
give a first estimation of the track parameters.

(b) Hits farther than three pixels (165 µm) from the estimated track are
labeled as bad hits, since they most likely belong to delta rays. A
second fit is performed.

(c) Hits farther than one pixels (55 µm) from the estimated track are
labeled as bad hits. A third fit is performed.
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         (a)                      (b)                      (c)                      (d)                       (e)

Figure 4.5: An example of a minimum ionizing particle track going through
the steps of the topological analysis and the fit.

(d) At this stage some good hits are likely to have been labeled as bad
hits from the previous cuts, due to the fact that at that point the
track was not well estimated. Therefore each pixel is checked again
for the ηx and ηy values together with the 1 pixel distance condition,
and the good/bad hit label is reassigned. A final fit is performed.

To minimize the uncertainties on the line parameters, all fits are performed
in a reference frame where the origin corresponds to the geometric center
of the track. An example of these steps is shown in figure 4.5 from c to e.

6. Track quality selection. The root mean square distance (RMSD) of the
track hits to the fitted line is calculated and tracks with RMSD > 27.5 µm
(0.5 pixels) are rejected (see figure 4.4).

For each track the two hits corresponding to the entry and exit points are not
considered in the rest of the analysis. The reason is that since these pixels are
not fully traversed by the particle, their energy value is intrinsically distorted.
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Figure 4.6: Passage of a minimum ionizing particle in the pixel volume.

4.4 Determination of track hit coordinates

The result of the selection and pre-processing is a collection of straight tracks
where each pixel contains information about the energy released by the particle
in its volume. This information can be correlated with the exact position where
the particle passed, which can be calculated with a precision well below the
pixel size, by using the fit parameters.

Figure 4.6 shows a drawing of a particle traversing a pixel volume. The x
coordinate of the pixel hit is calculated as the (signed) distance of the fitted
track from the center of the pixel. If the track is parametrized as x = ay + b,
and if (xi, yi) are the coordinates of the pixel, then

xi =
ayi − xi + b√

1 + a2
(4.2)

As figure 4.7 shows, the distribution of the uncertainty ∆x/x, determined
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by propagating the errors, peaks below 5-10%.
The z coordinate is given by

z = t
l

L
, (4.3)

where t is the sensor thickness (300 µm) and l is the distance of the current hit
from the first track hit. For an average track length L = 200 pixels, this yields
an uncertainty ∆z below one micron2.

2This result is obtained by propagating the error in formula 4.3, which yields

∆z =
t

L2

√
L2∆2l + l2∆2L,

where t = 300 µm is assumed as a parameter. Both l and L are calculated as the distance
between two pixels, the first and the last in the case of L. Given a pixel size of 55 µm, this
means that ∆l = ∆L = 55/

√
6.

∆z is bound by the extreme values assumed when l = 0 and when l = L, which yield

55t
√

6L
< ∆z <

55t
√

3L
.

For an average track length of 200 pixels, i.e. L = 200 × 55 µm, this results in 0.61 µm <
∆z < 0.87 µm.
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Since the particle beam is almost parallel to the y axis, full translational
symmetry is assumed within the pixel volume in this direction.

4.5 Analysis of lateral charge diffusion

After selection and fitting, the whole data set consists of 5522 tracks and a total
of more than 1 million pixel hits, each identified by a coordinate vector (x, z)
and an energy E given by the calibrated Time-over-Threshold value of the pixel.

Due to the sub-pixel precision with which the hit coordinates are known,
these data can be used to study how charge is collected from the sensor to the
readout, when generated at different depths and at different positions in the
pixel area.

In order to avoid inter-chip mismatches, from now on the analysis is carried
out separately for each chip of the quad. The results shown in the following
refer to chip 0 (chip 0 and chip 3 were exposed to higher beam intensity). For
this chip the data set consists of 3981 tracks and more than 500k good hits.

4.5.1 Charge sharing model

At this point, information on the diffusion of the charge carriers in the sensor
can be extracted from the data by correlating the track hit positions in each
pixel with the corresponding value of the measured energy, and exploiting charge
sharing to retrieve information on the geometry of the process.

To do this, the data are fitted with a simple model of charge diffusion, which
is sketched in figure 4.8. The sensor has thickness t and is segmented into square
pixels of size p. A fast ionizing particle enters the pixel at position (x0, z0) and
deposits energy along the y direction through the 55 µm path length, giving rise
to an elongated cloud of charge carriers.

By treating transport of charge carriers as a combination of just drift and
diffusion, the transverse (namely, along x) cloud profile is a Gaussian whose
width σ(z, z0) is growing as a function of z. Notice that there is no need to
consider diffusion along z, because this doesn’t have an influence on charge
sharing. Similarly, due to the translational symmetry in y, diffusion has no net
effect in this direction, i.e. the density along y is constant at each moment
during the drift.

IfQ0 is the total charge released by the particle in this pixel, the charge distri-
bution at depth z is found by substituting the initial concentration Q(x, y, z) =
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Figure 4.8: Model of charge diffusion and charge sharing: the cloud is dis-
tributed according to a Gaussian profile in the x direction, whose width
σ(z) increases as the carriers drift towards the collection electrode (at the
bottom). The model is fully symmetrical for translations along the y di-
rection.

dQ0

dy δ(x
′ − x0)δ(z′ − z0) into equation 3.15, giving

dQ

dx
(x, z;x0, z0) =

Q0√
2πσ(z, z0)

e
− (x−x0)2

2σ2(z,z0) . (4.4)

Assuming that no charge is lost during the drift and that the electric field is
uniform through all the sensor depth, the charge collected by the electrode is
the integral of the charge density in the pixel area at depth z = 300 µm, namely

Q(x0, z0) =

∫ p/2

−p/2

dQ

dx
(x, 300;x0, z0)dx. (4.5)
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Figure 4.10: Landau curve fit-
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bin.

If σ(z, z0) < p/2 for all values of z and z0, when x0 > 0 (as in figure 4.8), the
previous expression can be rewritten as

Q(x0, z0) ∼ Q0

2
+

∫ p/2

x0

dQ

dx
(x, 300;x0, z0)dx, (4.6)

which can be worked out to yield

Q(x0, z0) ∼ Q0

2

[
1 + Erf

(
p/2− x0√
2σ(300, z0)

)]
. (4.7)

The analogue formula for x0 < 0 is obtained by transforming x0 → −x0. The
assumptions used to derive this formula will be validated in paragraph 4.5.3.

Since the collected charge Q is proportional to the energy released by the
particle, it fluctuates according to a Landau distribution and Q0 has a natural
interpretation as the corresponding most probable energy loss.

4.5.2 Determination of σ(z0)

Formula 4.7 can be used to fit the data in a Q0 vs x plot in order to retrieve
the final charge profile width σ(z0) = σ(300, z0). Such a plot can be made for
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Figure 4.11: Most probable energy, as obtained from the fit in figure 4.10,
versus x0, for two z0 bins. The central band highlights the pixel volume.

different values of the conversion depth z0. The final result will thus show the
dependence of σ(z0) on z0.

For this purpose, the track hits were binned in 1 µm intervals in z0 and
1.5 µm intervals in x0. At each (x0, z0) bin a plot of the energy distribution is
made as the histogram of the energy values of all the hits falling in this range.
A plot of the correlation between z and energy for tracks traversing the pixel in
the center (x ∼ 24 µm) is shown in figure 4.9, while an example of the Landau
energy distribution for a given (x0, z0) bin is shown in figure 4.10. Within the
uncertainty, the average energy of each Landau distribution agrees with the
value of 29.5 keV for the Bethe-Bloch energy loss expected for a 40 GeV pion
traveling 55 µm (the pixel size) in silicon.

A Landau curve convoluted with a Gaussian profile, multiplied by an error
function modeling the onset of the detector threshold at 4.50 keV, was fitted to
each distribution and the most probable value for the energy loss was retrieved
from the Landau component.

The dataset is now reduced to a 100 × 300 matrix of energy values (the most
probable energy loss) at the corresponding positions in the (x0, z0) pixel plane.
By plotting the most probable energy as a function of the x0 coordinate at a
given z0 bin, one obtains graphs of type shown in figure 4.11 as an example.
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The central band in the plot highlights the pixel volume, and helps forming
a clear idea of the effect of charge sharing. In fact, while the energy values at
the center of the pixel are distributed on a plateau at around 21-22 keV (which,
again, corresponds to the expected most probable energy loss for 40 GeV pions
in 55 µm of silicon, given a Landau distribution), these values decrease more
and more as the particle trajectory moves towards the neighboring pixels, due
to the fact that part of the charge is shared. Eventually, the energy drops to
half the plateau value at the boundary between two pixels, and goes towards
zero when |x0|> p/2.

The solid line shows the fit to the data according to function 4.7, plus its
counterpart for x0 < 0. Two values of σ(z0) are extracted simultaneously by
fitting the data in the left side and on the right side of the plot, and a mean
value is computed by averaging the two.

Notice that the total charge Q0 appearing in equation 4.7 can be determined
before the fit, by separately fitting a constant value to the plateau region of the
plot in figure 4.11. As a consequence, the only free parameter in equation 4.7
remains σ(z0).

These plots were made for each of the 300 z0 bins, and the fit was repeated
for each distribution. As a result, the full σ(z0) function could be determined,
as shown in figure 4.12.

4.5.3 Validation of the model

The charge sharing model used to fit the data was derived from the assumptions
that σ(z, z0) < p/2 and that charge trapping during the drift is negligible. One
possibility to validate these assumptions is to look at how the plateau values
evolve as a function of z0. This is illustrated in figure 4.13. Here the most
probable value of the energy released at small distances from the pixel center
(x − x0 < 10µm), i.e. at the plateau region in the plots of the type shown in
figure 4.11, is plotted against z0. The plot shows that these values are constant
throughout all the sensor depth, with the only exception of a shallow region
close to z0 = 300 µm, where anyway charge collection inefficiencies are expected
due to the distortion of the electric field close to the pixelated electrode.

From these data it can be concluded that

(a) a charge cloud initiated in the center of the pixel is fully contained in the
same pixel throughout the whole process of drift towards the electrode (i.e.,
σ(z, z0) < p/2),

(b) the signal contribution is uniform through all the interaction depths.
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4.6 Generalization of the result

The σ(z0) function as determined from this analysis represents the lateral charge
cloud spread at z = 300 µm (i.e. at the collection electrode), when a minimum
ionizing particle traverses the sensor at a depth z0.

Starting from the ansatz that this result is in fact generalizable, σ(z0) is also
usable to define a function σ(z) describing the development of the charge cloud
created by any mechanism. At this point, z represents the distance in depth
traveled by the charge carriers from the point of initiation of the charge cloud.

4.6.1 Parametrization of σ(z)

According to the theory of diffusion, the width of the carriers distribution in-
creases as the square root of time. This feature is not visible in the results
presented here, since diffusion is studied not as a function of drift time, but of
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Figure 4.14: Linear evolution of the diffusion profile.

the drift distance. Translation into the time domain would require the knowl-
edge of how the drift velocity varies during the process, which in turn requires
the knowledge of the electric field, that can be calculated only if the doping
profile of the sensor is known precisely.

However, for the scope of this thesis, what matters is just how the width of
the distribution of carriers increases as a function of the drift distance, i.e. the
plot in figure 4.12. This result shows that, within the experimental errors, the
σ(z) function can be parametrized by a first degree polynomial. Although this
assumption is not physical, it turns out that a linear relation is already enough
for obtaining good results when implementing σ(z) in a numerical model to
calculate the detector energy response. A more detailed study would not lead
to a significant change in the results. This issue will be addressed in section 5.6,
where a systematic study of the parametrization of σ(z) will be undertaken. In
the rest of the treatment σ(z) will be parametrized with a linear relation.

Figure 4.14 provides an illustration of the full size of the diffusion profile
while the carriers are drifting along z according to this parametrization.
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Figure 4.15: Collected charge fraction for two different values of z computed
by applying equation 4.9. The color scale represents the energy fraction
seen by the pixel at the top right corner (by symmetry, only one quarter
of it is represented).

4.6.2 Calculation of the detector response to X-ray spec-
tra

As a simple test, σ(z, z0) is implemented in a diffusion model that can be used to
compute the energy spectrum detected from a molybdenum X-ray fluorescence
source, which is then compared to a measured one.

Given a photon of energy E0 converted at position (x0, y0, z0) in the pixel
volume, the energy (more precisely, the amount of charge) reaching z0 = 300 µm
(i.e. the collection electrode) is distributed on the x, y plane according to a
Gaussian profile

d2E

dxdy
(x, y;x0, y0, z0) =

E0√
2πσ(z, z0)

e
− (x−x0)2+(y−y20)

2σ2(z,z0) . (4.8)

Here again only pure diffusion is considered. The energy detected by the pixel
is given by the integral over the pixel area

E(x0, y0, z0) =

∫
Pixel area

d2E

dxdy
(x, y;x0, y0, z0)dxdy. (4.9)

Figure 4.15 shows the detected energy fractions calculated with equation 4.9,
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at two different z0 values as an example. The same calculation is performed for
any value of z0, thus yielding a full 3D map of values.
The probability for a photon of energy E0 to interact at a given depth z0 in a
sensor of thickness t is given in terms of the exponential attenuation law

P (z0, E0) =
e−µ(E0)z0∫ t

0
e−µ(E0)t′dt′

, (4.10)

where µ(E0) is the energy dependent absorption coefficient for the sensor mate-
rial. Combining 4.10 and 4.9, it is possible to calculate the effect of the detector
energy response on the detection of a spectrum S(E0). More details on these
formulas will be given in section 5.1.

4.6.3 Measurement and comparison with the model

The spectrum used for the test is taken from the X-ray fluorescence emission
of a molybdenum target irradiated by the primary beam of a tungsten anode
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X-ray tube. The same detector used for the test beam, at the same conditions
of operation, was employed.

The cumulative spectrum was determined via a threshold scan, as described
in section 3.3.3. By fitting the data with function 3.31 (see details in ap-
pendix D), the two components of the source spectrum S(E0), the Kα at
17.5 keV and the Kβ at 19.6 keV, each with a width of 0.6 keV, can be re-
trieved, as shown in figure 4.16.

The energy response of the detector is calculated on S(E0) using equa-
tions 4.9 and 4.10, where the σ(z) parametrization is derived by fitting a straight
line to the data in figure 4.12.

In a first comparison, the calculated spectrum does not reproduce the data
satisfactorily. What can be observed is that in order to adapt the model to
the data the σ(z) function has to be shifted, namely the offset of the linear
parametrization has to be optimized. Indeed, it is reasonable to assume that
the initial size of the charge cloud, which determines the offset of σ(z), has to be
adapted from case to case. The problem of determining the exact parametriza-
tion of σ(z) as a function of the photon energy will be the topic of section 5.1.

For this measurement, the optimization of the σ(z) offset was done by mini-
mizing the root mean square distance (RMSD) between the data and the model.
The final result, obtained by shifting σ(z) by ∆σ = (0.49± 0.21) µm, is shown
in figure 4.17. Here the calculated spectrum is superimposed on the measured
one, showing good agreement between the two.
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Chapter 5

The energy response
function: synchrotron data

To calculate the detected spectrum for any given input spectrum, the energy re-
sponse function of the detector must be known. The response function at a given
energy is the detector response to a monochromatic input at that energy. Ex-
perimentally, this can be measured by exposing the detector to mono-energetic
radiation sources.

This chapter describes a measurement of the detector response function using
synchrotron radiation, and how these data can be used to calculate the detected
X-ray spectra.

5.1 Measurement of the energy response func-
tion using synchrotron radiation

In section 4.6 it was shown how to use the σ(z) function measured from the
CERN test beam data to calculate numerically the distortions undergone by an
incoming X-ray spectrum during the detection process. In that example it was
also stressed that, in order to reproduce the data, a recalibration of the σ(z)
parametrization was needed to adapt the results from the measurement with
minimum ionizing particles to a model of X-ray photon detection.

The principle underlying the model of the energy response function devel-
oped in this chapter is based on a similar recipe: calculate numerically the de-
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tector effects on monochromatic radiation, using σ(z) and formulas 4.9 and 4.10.
The determination of the optimal values of the parameters employed to model
σ(z) can be done by fitting the calculation to direct measurements of the spec-
tral response function at few energies, hence the idea of a synchrotron test
beam. Values at other energies can then be computed by interpolation, and
the response matrix formalism can be used to calculate the spectral distortion
undergone by any incoming spectrum.

5.2 Experimental setup

This experiment is performed with the same detector type used for the CERN
test beam, operated at the same conditions: a 300 µm p-on-n silicon sensor set
at 100 V bias voltage. The readout is a single Timepix chip on a RelaxD [70]
system.

The measurements have been conducted at the X-ray Absorption Spec-
troscopy (XAS) beam line of the Dutch-Belgian Beam Line (DUBBLE) at the
European Synchrotron Radiation Facility (ESRF), Grenoble, France [47].

The white X-ray beam produced by a bending magnet is analyzed by a
double-crystal Si(111) monochromator in order to have monochromatic radia-
tion on the detector. The accurate measurement of the beam energy is per-
formed by using a ionization chamber positioned before the detector.

The pitch of the second crystal and the gap between the crystal pair are
adjusted for each energy to guide the beam into the ionization chambers. In
addition, a vertically collimating mirror before the monochromator and a ver-
tically focusing mirror after the monochromator, each with selectable silicon or
platinum coatings, are used to align the beam and to suppress the higher har-
monic content. The silicon mirror bare surface is used for experiments carried
out in the 5-12.5 keV energy range, whereas the platinum coated mirror is used
for the measurements in the 15-32.5 keV range.

The gas mixture in the first ionization chamber is changed as a function of
the energy used in order to have approximately 10% absorption at each energy.
This, together with the possibility to add different absorption filters (Al and
C absorbers of different thicknesses [11]), ensures that the flux reaching the
detector is optimized with respect to its expected performance, and does not
exceed the value of 1011 cm−2s−1, after which pile-up effects become important.
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5.3 Dataset

The photon energy is changed in steps of around 2.5 keV, covering the energy
range between 5 keV and 32.5 keV. At each energy the beam spot is maximized
in size by fine tuning the beam optics, in order to maximize the number of illumi-
nated pixels. The typical spot size is a rectangle of approximately 10 × 0.5 mm2

area, from which a large fraction of pixels are selected off line for the analysis.

Care is taken to keep the X-ray beam spot on the same detector area, thus
ensuring that the data at different energies are collected by the same pixels.

The cumulative X-ray spectra are measured with the threshold scan method
(see section 3.3.3). Multiple short scans (few minutes each) are performed for
later integration, rather than a single long one. This minimizes intensity drift
effects due to the beam current slowly decaying in time. In fact, beam refill
takes place every four hours, with an intensity variation between refills of about
40%.

5.4 Analysis

Pixels exposed to the X-ray beam are selected for analysis by requiring a mini-
mum number of photon counts at a given threshold. Among the selected pixels,
only those whose neighbors are also in the selected region are retained. This
ensures that each selected pixel does not have in its vicinity an inefficient (or
dead) pixel that could distort the charge sharing contribution in the tail of the
spectrum at low energies.

5.4.1 Reconstruction of the energy spectra and calibration

At a given photon energy, the different frames are integrated for each threshold
and for each pixel in the beam spot the threshold scan is differentiated in energy
in order to retrieve the raw spectrum.

An example of a pixel spectrum is shown in figure 5.1a. Such spectra show
the typical features already introduced in section 3.3.2: a photopeak in corre-
spondence of the nominal energy of the photon beam plus a continuous tail at
lower energies arising from charge sharing effects. Notice that in this plot the
horizontal scale is inverted. This is due to the positive polarization of the silicon
sensor (hole collection), which causes the threshold units to assume low values
for high energy thresholds, and vice versa.
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Figure 5.1: (5.1a), the 17.504 keV spectrum of pixel (82, 57) obtained by
differentiating the threshold scan, together with the Gaussian fit at the
peak position; (5.1b), the calibration plot for the same pixel; (5.1c), the
calibrated spectrum; (5.1d), the total spectrum at 17.504 keV, namely the
sum of the calibrated spectra of all pixels selected from the beam spot at
this energy.
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Figure 5.2: On the left, the determination of σ(z0) at 17.504 keV, via a
parabolic fit in the minimum of the RMS curve; on the right, the calculated
spectrum (continuous line) at this energy compared to the corresponding
measurement (dots).

The pixel spectra at different energies are first used for calibration of the
energy scale. For this purpose, a Gaussian function is fitted to the photopeaks
in order to retrieve its position (an example in figure 5.1a). The photopeak
positions are plotted as a function of the corresponding nominal energy of the
beam, and a straight line is fitted through the points (figure 5.1b). The line
parameters are used to calibrate the energy scale of the spectra pixel by pixel
(figure 5.1c).

After calibration, a total spectrum is obtained by summing the aligned spec-
tra of all the pixels contained in the beam spot (figure 5.1d).

5.4.2 Fit of the diffusion model to the data

Being measured from monochromatic radiation, each spectrum is a direct rep-
resentation of the unnormalized detector response at the corresponding energy.
For this reason, these data can be used for comparison with the energy re-
sponse model introduced in section 4.6. This comparison ultimately provides
the optimal parametrization of the model, which leads to two results:

1. the possibility to determine the absolute scale of the measured synchrotron
spectra at different energies,
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Figure 5.3: The values of σ(z0) for all the measured energies.

2. the possibility to compute analytically the spectral response function at
any energy in the range of the measurement or, by extrapolation, outside
it.

The energy response model starts from the diffusion profile defined in for-
mula 4.8, that is rewritten here for convenience:

d2E

dxdy
(x, y;x0, y0, z0) =

E0√
2πσ(z, z0)

e
− (x−x0)2+(y−y20)

2σ2(z,z0) . (5.1)

Following the discussion in section 4.6.1, σ(z) is parametrized as a first degree
polynomial

σ(z, z0) = σ(z0) +Az (5.2)

The charge that reaches the collection electrode for a given pixel is the
integral in the pixel area of the charge distribution at z = t, where t is the
sensor thickness. In terms of the detected energy fraction f = E/E0, this
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quantity takes the form

(5.3)f(x0, y0, z0) =
1√

2πσ(z, z0)

∫
Pixel area

e
− (x−x0)2+(y−y20)

2σ2(z,z0) dxdy.

Thanks to the Timepix Time-over-Threshold logic, f(x0, y0, z0) represents the
actual energy fraction that is measured by the pixel.

For z = 0, σ(z0) represents the initial spread of the charge cloud which,
in a model of X-ray detection, is affected by the transverse range of the pho-
toelectron. In particular, one expects that σ(z0) is an increasing function of
the photon energy, since the higher the energy of the X-ray photon, the higher
the energy of the photoelectron, which therefore has a longer range in the sen-
sor. This information can be extracted from the synchrotron data by using
formula 5.3 to calculate the expected spectra, that can then be compared to the
reconstructed spectra, and the values of σ(z0) can be determined for each of the
experimental energies.

For this purpose, the total synchrotron spectra at each energy E0 are fitted
with a Gaussian function in the region around the photopeak. The width of
the distribution is used to produce a Gaussian spectrum S0(E;E0) that mim-
ics the synchrotron source at energy E0 convoluted with the detector spectral
resolution. The latter has shown no particular dependence as a function of E0.
In fact, an average value of 0.698 keV for the Gaussian width has been adopted
for all E0 values.

By applying 5.3 and using the energy dependent X-ray attenuation coefficient
µ(E) in silicon, the expected synchrotron spectrum, i.e. the energy response
function R at energy E0, is calculated as

R(E;E0) =
1

V

∫ t

0

dz0S0(E;E0)
[
1− e−µ(E)z0

] ∫∫
A

dx0dy0f(x0, y0, z0). (5.4)

In this formula A is the area in the x, y plane in which the surface integral is
calculated, and V is the corresponding volume extending through the full depth
of the sensor. A doesn’t simply comprise the pixel where the signal is being
read out, but also the neighboring ones. This accounts for the contribution to
the pixel signal from the charge cloud leaking into the neighboring pixels.

The spectrum R(E;E0) calculated with 5.4 is compared to the correspond-
ing one measured at energy E0. The value of σ(z0) that best fits the data is
determined by minimizing the root mean square distance (RMS) between the
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two spectra1. The minimization is restricted to the energy range from E0/2
onwards. In fact, at lower energies the spectrum contains contributions from
the charge leaking from the neighboring pixels and can thus be distorted if the
efficiency of the pixels is different.

An example of the procedure is shown in figure 5.2 for the 17.504 keV peak.
On the left, the determination of σ(z0) via a parabolic fit in the minimum of
the RMS curve is shown; on the right, the calculated spectrum at this energy
is compared to the corresponding one from the measurement, showing the good
agreement between the two.

A plot of the σ(z0) values for all the energies measured in the experiment is
provided in figure 5.3. This latter shows a “knee” at around 10 keV, the origin
of which is still not understood.

5.4.3 Calculation of the energy response function

Using the result in figure 5.3, the value of σ(z0) for each energy in the mea-
surement range can be determined by interpolation. Two straight lines are
separately fitted to the regions before and after 10 keV, where the “knee” of
the data is present, and the line parameters are used to calculate σ(z0) at any
energy. This also allows for extrapolation at energies beyond the experimental
points.

Using this information, the energy response function can be calculated at
each energy E0 using formula 5.4 acting on a Gaussian X-ray spectrum S0(E;E0)
with a width of 0.698 keV (see paragraph 5.4.2).

Formula 5.4 can be applied on restricted areas A of the detector surface2,
in order to calculate the energy response function separately for a generic pixel
and for the pixels in its neighborhood. This choice has an advantage in imaging
applications, as illustrated in figure 5.4. Depending on the X-ray path inside
the sample, the source spectrum is attenuated by different materials, distributed
with different geometries. Thus, in general, each pixel sees a different transmit-
ted spectrum, and as a consequence it contributes in a different amount to the
signal detected in its neighbors.

1Given two generic spectra S1(E) and S2(E), the RMS distance is here defined as

RMS =

√√√√√∫ Emax
E0
2

[S1(E)− S2(E)]2 dE

Emax − E0
2

2And, accordingly, on restricted volumes V .
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Figure 5.4: Different spectra reach different pixels due to the sample inho-
mogeneities.

A separate calculation of the components of the energy response function
is illustrated in figure 5.5, where the comparison of the model to the 17.5 keV
synchrotron data is shown. The calculation is performed separately for the
central pixel and its 8 neighbors (4 at the sides and 4 at the corners).

Figure 5.6 shows a one dimensional representation of the total response func-
tion calculated in the energy range from 2 keV to 50 keV at discrete values of
the photon energy.

5.5 Verification of the result

To verify the model, the energy response function is used to calculate the spec-
trum from an X-ray tube source, which is then compared to a measured one.

The 300 µm p-on-n silicon sensor type, biased at 100 V and read out by
a Timepix chip, is exposed to a W-anode X-ray tube operated at 50 kV. A
threshold scan is performed and the cumulative source spectrum is retrieved.

Each pixel is calibrated individually using X-ray fluorescence emission from
different metal targets exposed to the source beam. The calibration ranges from
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Figure 5.5: Calculation of the energy response function at 17.5 keV.

9.89 keV (Kα emission from germanium) to 25.27 keV (Kα emission from tin).
The same spectrum is then measured using a silicon drift detector (Amptek

model XR-100SDD), whose energy scale is calibrated using the characteristic
peaks of the sealed tube X-ray source spectrum and the K-edge positions in the
spectrum transmitted by different metal foils placed between the source and the
detector.

The spectrum measured with the silicon drift detector is used to retrieve the
true source spectrum I0(E) by deconvolving the energy dependent absorption
in the 500 µm silicon sensor. From this, the distorted Timepix spectrum I(E)
is determined as

I(E) =

∫ ∞
0

R(E;E′)I0(E′)dE′, (5.5)

The result is shown in figure 5.7, where the calculated spectrum is super-
imposed onto the single-pixel spectrum from the Timepix measurement, deter-
mined by differentiating the raw threshold scan. The agreement between the
two spectra is good for energies above ∼ 8 keV, while the mismatch at lower
energies might well be due to the extrapolation of the energy scale outside the
calibration range.
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Figure 5.6: The energy response function R(E;E0) of a 300 µm thick silicon
sensor read out by a Medipix or Timepix chip, for discrete values of E0 in
the range from 2 keV to 50 keV.

In this case, where each pixel receives the same spectrum, the energy re-
sponse function R(E;E′) used in formula 5.5 can be calculated through for-
mula 5.4 with A being the area of the pixel and its neighbors. In the most
general case, where a different spectrum is seen by each pixel, the detected
spectrum is determined as the superposition of all the contributions from the
neighbors to the main spectrum from the central pixel. Each contribution can be
determined by applying formula 5.5 using R(E;E′) calculated under the corre-
sponding conditions. This approach will be used in chapter 6, where the energy
response function is implemented in a spectral CT reconstruction algorithm.

5.6 Systematic uncertainties on the parametriza-
tion of σ(z)

The energy response function shown in figure 5.6, that is used to obtain the
result in figure 5.7, is calculated assuming a linear parametrization of σ(z). As
already anticipated in section 4.6.1, this assumption is not derived from physical
principles, but it turns out to be suitable when σ(z) is used to reproduce the
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Figure 5.7: The calculated open beam spectrum superimposed to the mea-
sured one.

results presented in this chapter.

The experimental determination of σ(z) from the CERN test beam, pre-
sented in figure 4.12, shows a fundamental lack of data in the region z > 250 µm.
This region will therefore contribute to the systematic uncertainty on the energy
response function calculated using σ(z) via formula 5.4. In order to establish
the magnitude of this effect, the following study has been carried out.

As a first step, the energy response function is re-calculated by truncating
the linear parametrization of σ(z) at z = 250 µm. This extreme situation is
studied to determine to what extent the final results can be influenced by this
region of the plot. The outcome of this experiment is shown in figure 5.8a,
where a clear deviation of the newly calculated spectrum (in blue in the plot)
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(a) Model 2: σ(z) truncated at z = 250 µm.
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(b) Model 3: σ(z) ending with a
√

log function from z = 250 µm to z = 300 µm.

Figure 5.8: Study of the systematic effects of the σ(z) parametrization.
Model 1 in the legends refers to the full linear parametrization.

101



5.7. POSSIBLE EXTENSIONS OF THE MODEL

from the data appears at low energies.
Next, the shape of σ(z) for z between 250 µm and 300 µm is parametrized

as a
√

log function according to the model described in appendix E, where
the ideal pn junction electric field is considered. The parameters of the

√
log

function are chosen by requiring that the value of the function and of its first
derivative at z = 250 µm coincide with the corresponding values from the linear
parametrization at z < 250 µm.

The spectrum calculated using the new energy response function is shown
in figure 5.8b in blue, superimposed to the one calculated using the full linear
model of σ(z), in red. The two results show a slight difference in the low energy
region (E < ∼ 8 keV), where the new model fits the data with a χ2 5 % better
than in the other case. In the rest of the energy spectrum, no improvement with
respect to the full linear model is observed, meaning that the linear model can
be used to parametrize σ(z) with sufficient accuracy, and leads to the correct
calculation of the energy response function for energies above ∼ 8 keV.

5.7 Possible extensions of the model

The numerical model employed to calculate the energy response function is
based on a simple geometrical treatment of the diffusion and charge sharing
effects. A more accurate description should take into account other effects,
among which scattering and fluorescence.

5.7.1 Scattering

Radiation reaching a given pixel might not belong to the X-ray line path origi-
nating from the source, but might originate from scattering centers in the mea-
surement setup, in the detector itself or, in case of X-ray imaging, in the sample.
The effect of scattered radiation on the detected spectra is to add a continuum
component, the shape of which strongly depends on the nature of the scattered
radiation.

This situation is not taken into account in the simple model of the energy
response function defined in this chapter. However, all the results reported
in this thesis are obtained using low energy X-rays, for which the Compton
cross section is always negligible by orders of magnitude with respect to the
photoelectric cross section. Inclusion of scattering effects will become important
when high energy X-rays will be considered or when high-Z sensor materials will
be used as detectors.
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5.7.2 Fluorescence escape peaks

The effect of fluorescence in the sensor gives rise to escape peaks in the detected
spectrum. These appear when part of the energy released by the X-ray photon
is not converted into charge, but escapes the sensor through the emission of
fluorescence radiation when a vacancy is created in an inner atomic shell.

Since the energy Ei of a fluorescence photon is fixed, the effect on the spec-
trum is the appearance of peaks at energies E0−Ei alongside the main peak at
E0. In silicon the distance of the escape peaks from the photopeak is 1.74 keV
for the Kα and 1.83 keV for the Kβ .

The intensity of the escape peaks relative to the photopeaks depends on the
fluorescence yield of the material, and is therefore higher for high-Z sensors, such
as germanium, GaAs and CdTe, where usually the effect cannot be neglected.
In silicon, typical values are in the order of few percent at energies around
5 keV, slightly increasing for higher energies (see, for example [67]). Such small
values confirm that, at least on first approximation, these contributions can be
neglected.

5.8 Summary

The work described in this chapter and the previous one explains how the energy
response function of the detector used throughout the rest of the thesis has been
determined. To achieve this goal, two measurements at test beam facilities have
been carried out, one at CERN with relativistic charged particles and one at
ESRF with synchrotron radiation.

From the first measurement, the evolution of the diffusion profile in the sili-
con sensor has been determined precisely by exploiting the high granularity and
the spectral capability of the Timepix readout chip. The results show that the
cloud of charge carriers evolves linearly as a function of the drift distance from
the initiation point. It has been shown that this information can be used to
explain the shape of the spectra measured when the detector is exposed to fluo-
rescence X-ray emission from pure metal targets. In particular the characteristic
charge sharing tail can be well reproduced by the model.

The diffusion and charge sharing model has then be used to calculate the
energy response function, i.e. the detector response to monochromatic radiation
at different energies. To determine the parameters of the model, the calculation
has been fitted to the data from the synchrotron measurements. A study on the
systematic uncertainties on the parameters has shown that the energy response
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function thus calculated is well suited to reproduce the detector effects that
cause the distortion of X-ray spectra from vacuum tubes. This result is of
primary importance for the work that will be presented in the next chapter,
since it will be a crucial feature of the spectral CT reconstruction methods that
will be there developed.

5.9 Outlook

The results so far presented could be improved in future work. One of the main
issues to be addressed regards the stability of the detector. Extensive studies
are needed to determine whether the operational parameters of the detector
(e.g. the threshold) are stable in time or, if they change, what the magnitude
of the effect is, what its causes are and how it can be limited and/or controlled.
Time variation of the detector performance might have a significant influence
on the validity of the calibration after its establishment, as well as the validity
of the energy response function. How can these effects be measured, controlled
and compensated?

More work is also needed to understand why the energy response function
cannot yet properly describe the data for energies below ∼ 8 keV. Is this a mis-
calibration effect, or is the model too simple? How does the inclusion of other
effects, such as scattering and fluorescence, affect the results? Such a study
would probably require the use of an accurate simulation framework that could
account for all possible physical effects that might give a significant contribution.
Such a work would be especially required as soon as high-Z sensor materials
rather than silicon will be employed. In this case, the contribution of high
energy photons to the detected spectra will be significant, and scattering as
well as fluorescence effects will not be negligible anymore.

Finally, for other detector types the energy response function has to be
determined. A systematic study of how the energy response function changes
as a function of, for example, the pixel size, the sensor material or the readout
mode3, would be of great interest.

3For example, how does the response function look like for Medipix3 operated in charge
summing mode?
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Chapter 6

Spectral CT

The different image reconstruction techniques presented in the first chapter were
all based on the assumption that the X-ray source is monochromatic and, as a
consequence, the derived algorithms only provided an approximate solution to
the problem of tomographic reconstruction.

In this chapter, spectral computed tomography is introduced, aiming at the
inclusion, in both the detection and the reconstruction steps, of the full infor-
mation on the polychromatic X-ray tube spectrum and of how this is modified
when the beam is transmitted through the imaged sample and then detected.

In this chapter, the detector spectral response determined from the results
of chapter 5 is used to implement this information in a reconstruction algorithm
that can be applied on data from a silicon detector read out by a Medipix chip.

The results are color three dimensional X-ray images of the sample, in which
different materials are represented by different colors.

6.1 Material resolution and color X-ray imaging

Spectral tomography is also referred to as “material resolving” or “color” tomog-
raphy. The meaning of this can be explained with the aid of figure 6.1, showing
the energy dependence of the attenuation coefficient for different elements in
the X-ray range. This means that distortions undergone by the source spec-
trum while traversing the sample carry information about the material content
of the object. The fundamental idea of spectral X-ray imaging in general, and
spectral CT in particular, is that by exploiting the energy information encoded

105



6.2. MATERIAL ASSIGNMENT IN CT NUMBER SPACE

Energy [keV]
1 10 210

g

2
c
m

 
ρµ

1

10

210

310

Element

Al

I

Au

Figure 6.1: Mass attenuation coefficient for different elements.

in the data from spectroscopic X-ray detectors, one is able to measure energy
dependent features in the image that can be correlated with the presence of a
specific element or, more in general, material in the sample.

Once different materials have been recognized and located, different colors
can be assigned to each of them, thus leading to color X-ray imaging. The
meaning of colors usually employed in conventional rendering of computed to-
mography reconstructions is fake in the sense that colors do not identify different
materials, but they represent an alternative scale to visualize scalar X-ray val-
ues.

6.2 Material assignment in CT number space

Contrast in different materials can be achieved by looking at the characteristic
dependence of the associated signal at different detector thresholds. This princi-
ple is illustrated in figure 6.2, where a calculation is carried out for the case of a
Medipix based silicon detector exposed to the beam from an X-ray tube source.
This plot shows how the number of photons (in units of − log

(
Nγ/N

0
γ

)
, where

N0
γ is the signal from the open beam spectrum) detected at different thresholds,

changes for different materials, in this case pure elements. For this calculation,
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Figure 6.2: Medipix signal expected from different elements as a function
of the threshold position.

elements are considered at the nominal density, and the thickness is 55 µm for
all of them1. This situation thus reproduces the case of the 2D images of 55 µm
thin foils of different materials.

Each element shows a very characteristic curve. By setting the detector
at a specific threshold, in most of the cases every element yields a different
value of the signal, thus giving the possibility to identify it. This capability
depends on two parameters. First, the statistics of the data, that determines
the fluctuations of the signal. Second, the resolution of the threshold, that
determines the fluctuations in the energy scale.

To enhance the material separation power, images at different threshold can
be compared. This operation can be aided by the presence, especially in high-Z
elements, of strong deviations from monotonicity caused by the presence of K-
edges in the photoelectric cross section. In figure 6.2, this is visible especially for

1This thickness corresponds to the voxel size that will be assigned to the reconstructed
images later on, matching the size of the detector pixel.
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Mo and Sb. Results on material recognition in two-dimensional X-ray imaging
using spectroscopic detectors can be found, for example in [65].

The situation presented in this example is, however, very simplified. When
different thicknesses and/or densities are involved, the curves in figure 6.2 can
get close to each other, to such an extent that the different materials cannot be
distinguished. This is particularly true for elements with similar Z, for which
the shape of the curve is similar. Furthermore, this example does not account
for situations in which different materials overlap. This gives rise to an infinite
amount of possible combinations and the corresponding expected signals, which
can be very complex to control.

All these issues are resolved in 3D imaging. In computed tomography the
sample is reconstructed in a volume of voxels of well defined size. This means
that the signal (i.e. the CT value) assigned to a specific voxel corresponds to
the signal of a specific material thickness t, the one corresponding to the voxel
linear size. Save for variations in density, the CT numbers in the reconstruc-
tion represent signals from materials all at the same thickness. Moreover, if
the voxel size is sufficiently small, each voxel will possibly contain only one ma-
terial. These features drastically reduce the signal degeneracy problem of 2D
imaging, which can be finally eliminated by including spectral information, e.g.
by taking images at multiple thresholds. This makes it possible to correlate the
CT numbers with different materials and realize color, i.e. material resolved,
computed tomography.

6.2.1 A color CT example

A simple object is prepared for a proof of principle of material resolved X-ray
computed tomography with Medipix based detectors. The sample, shown in
figure 6.3, consists of a 5 mm plastic rod around which a 100 µm thick cadmium
foil and a 40 µm thick copper foil are wrapped.

Dataset

The object is imaged using a micro-focus X-ray tube operated at 70 kV - 10 µA
and a quad detector read out by four Timepix chips operated in Medipix mode.
The full CT scan is repeated at three different thresholds of the Timepix chip:
4, 17 and 28 keV. These values are chosen in order to enhance the material
contrast in the data. In fact, the k-edge positions of copper and cadmium are
at 8.98 keV and 26.71 keV respectively, so laying between the chosen threshold
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Figure 6.3: Picture of the sample used for the color CT proof of principle.
Copper and cadmium foils are wrapped around a plastic rod.

values. Figures 6.4, 6.5 and 6.6 show a raw projection at the three threshold
values, making visible the change in relative contrast of the three materials.

For this experiment, each scan consists of just 20 projections between 0◦

and 180◦, each corresponding to an exposure time of 10 s. The projections
are pre-processed with the signal-to-thickness calibration technique described
in appendix A, in order to equalize the detector response and to minimize beam
hardening effects, and the quad cross artifact is corrected.

Reconstruction

For each dataset at each threshold, a full tomographic reconstruction is per-
formed using the OSEM algorithm described in section 1.5.1 applied on the
signal-to-thickness corrected projections.

The correlation plot for the CT values at each threshold (figure 6.7) shows
that the three materials create separate “clouds” in this space. By defining
boundary hyperplanes in the plot, voxels can be assigned different colors ac-
cording to which sub-space they belong to in the CT numbers space.
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Figure 6.4: Raw image at
4 keV threshold
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Figure 6.5: Raw image at
17 keV threshold
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Figure 6.6: Raw image at
28 keV threshold
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Figure 6.7: Correlation plot of the voxel values at the three thresholds. The
colors (blue-plastic, red-copper, green-cadmium) are assigned a posteriori
to guide the eye.

The final reconstruction, obtained by assigning materials/colors according to
this scheme, is shown in figure 6.8, where a snapshot of a final three dimensional
view is reported after noise reduction via Gaussian filtering.

6.3 Inclusion of spectral information in OSEM

The method described in section 6.2 exploits the correlations in the CT numbers
at different thresholds to assign materials in X-ray tomographic data.

This approach is not complete. By carefully looking at figure 6.8, one may
notice that the reconstruction presents voxels with mis-assigned colors. Espe-
cially, the two metallic bands are surrounded by a halo of blue voxels, which
does not correspond to reality: there is no plastic around the metal strips.

The reason for this can be attributed to the fact that the three reconstruc-
tions are separately performed with a conventional algorithm, and the spectral
information, although somehow exploited after the reconstruction, is not yet
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Figure 6.8: Color tomography: blue-plastic, red-copper, green-cadmium.

included in this phase.

In the desire to improve the reconstruction, the OSEM algorithm is modified
such that spectral information is included. This approach, compared to the more
natural statistical approach that will be described in section 6.4, will turn out to
be impractical and, in general, at least for the formulation presented hereafter, it
will prove to be suitable only for a limited subset of sample geometries. However,
this strategy represents a good stepping stone to show the kind of benefits that
spectral tomography can produce compared to conventional CT.

6.3.1 A spectral OSEM algorithm

The way to include full spectral information in OSEM is by modifying the ex-
pectation step as exposed in section 1.5.1 into a procedure in which the forward
projection is calculated by transmitting the actual source spectrum through the
estimated reconstruction.

In order to calculate the attenuation of the beam through the sample, the
material composition of this latter has to be estimated as well. The new algo-
rithm thus needs to include a further step in the iteration in which, just before
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the expectation step, the material distribution is determined.
In the following, few examples on simulated data will make the whole pro-

cedure clear, and will show the fundamental limitations of this approach.

Simulation of an ideal dataset

As a first test, a simulated dataset is generated using the virtual phantom
shown in figure 6.9b and an ideal bremsstrahlung X-ray tube spectrum S0(E)
with energies up to 40 keV (figure 6.9c).

The object is made of three different materials: aluminium, titanium and
iron at the nominal densities, whose distributions in the (x, y) plane are dis-
cretized in voxels of 55 µm pitch. These materials will be encoded by the colors
purple (aluminium), green (titanium) and red (iron) in the following discussion.

Three different datasets at 3 keV, 10 keV and 20 keV thresholds are simu-
lated, including Poisson noise from photon statistics (figures 6.9d, 6.9e and 6.9f).
The detector is assumed to be a 300 µm thick pixel silicon sensor with 55 µm
pixel pitch. For simplicity, the energy response function of the detector is taken
to be an ideal Dirac delta at any energy. In this situation, and using the dl,θij
coefficients notation introduced in section 1.4, the detected number of photons
at each ray path l, θ is given by

Nlθ =

∫ ∞
Et

S0(E)e−
∑
i,j d

l,θ
i,jµij(E)dE, (6.1)

where Et is the energy threshold of the detector and µij(E) is the energy de-
pendent absorption coefficient at position i, j, corresponding to the nominal
absorption coefficient of the material present in this voxel.

Reconstruction

The crucial phases of the reconstruction algorithm are illustrated in figure 6.10
for the case of iteration 1. For a better view of the individual steps of the
reconstruction, these figures are produced for the algorithm run with only one
subset corresponding to the full set of projections.

Figures 6.10a, 6.10b and 6.10c show the three images obtained from the first
backprojection of the datasets at each threshold.

By looking at the correlations in the CT number space (as explained in
section 6.2.1), a first estimation of the distribution of the three materials is
produced, as shown in figure 6.10d.
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(a) Setup settings.
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(b) Virtual phantom: purple-
aluminium, green-titanium,
red-iron.
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(c) Ideal bremsstrahlung
spectrum.
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(d) Sinogram at
3 keV.
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(e) Sinogram at
10 keV.
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(f) Sinogram at
20 keV.

Figure 6.9: Simulation of an X-ray CT dataset under ideal detection condi-
tions.
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(a) Backprojection at 3 keV.
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(b) Backprojection at 10 keV.
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(c) Backprojection at 20 keV.
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(d) Material assignment:
purple-aluminium, green-
titanium, red-iron.

Figure 6.10: Iteration 1 of the modified OSEM algorithm.
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Formula 6.1 can now be applied to this data and three sets of projections,
one per threshold, are calculated. The new projections are then compared to
the simulated measurement, and correction coefficients are determined. These
coefficients are finally backprojected and applied to the corresponding images in
the CT number space (the ones represented in figures 6.10a, 6.10b and 6.10c).

Using the updated images, a new correlation plot is made, and materials are
re-assigned. Iteration 2 can now be performed.

Result

The parameter employed to determine the convergence of the algorithm is the
root mean square distance between the computed sinograms and the measured
ones in the projection step. When the change in this parameter between two
successive iterations is lower than 1%, the algorithm is stopped. In the most
general case, when the data is divided into subsets, the first convergence con-
dition can be followed by a new set of iterations on the full set of data, until a
better convergence condition is reached.

The final reconstruction is shown in figure 6.11. Here the final image (fig-
ure 6.11c) is compared to the equivalent ones obtained by applying the material
assignment technique through the CT number correlation plot to the images
reconstructed with a filtered backprojection algorithm (FBP, figure 6.11a) and
with a conventional OSEM (figure 6.11b).

The mis-assignment of the materials is very strong in the FBP case, and
although the OSEM technique leads to a far better result, artifacts are still
visible. The reconstruction with the modified OSEM algorithm shows that the
effect is drastically reduced.

However, this is only true as long as the three metals are concerned. The
boundary regions between the aluminium (purple) and the open beam (white)
present clear mis-reconstructions in the regions where sharp edges are located,
especially the two topmost corners. Indeed, as it will be clear in the next
examples, this formulation of the algorithm only works when applied to very
simple geometries, such as cylinder sections.

In the next step, the algorithm is improved from the ideal case by leaving the
ideal conditions and by adapting the forward projector to the case of a Medipix
based silicon detector.
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(a) Material assignment in FBP.
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(b) Material assignment in OSEM.
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(c) Final reconstruction from the
modified OSEM algorithm.

Figure 6.11: Final reconstruction and comparison with FBP and OSEM:
purple-aluminium, green-titanium, red-iron.
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(a) Virtual phantom: purple-
aluminium, green-titanium,
red-iron.
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(b) Source spectrum.

Figure 6.12: Simulation of an X-ray CT dataset using a real X-ray tube
spectrum and the energy response of a Medipix based silicon detector.

Inclusion of the detector response function

Another simulation is performed to reproduce a more realistic reconstruction.
The virtual phantom, shown in figure 6.12a, contains the same materials as the
previous one (aluminium, titanium and iron, represented in purple, green and
red, respectively), arranged in cylinder sections of different sizes, on a mesh of
256 × 256 square voxels of 55 µm pitch.

The source spectrum is taken from a measurement from a tungsten anode
X-ray tube operated at 50 kV, obtained using a silicon drift detector (the same
mentioned in section 5.5). The spectrum, after calibration and deconvolution
of the absorption in the sensor (see section 5.5), is shown in figure 6.12b, in
logarithmic scale.

Once again, three different tomography scans are simulated at three thresh-
olds: 3, 13 and 25 keV. This time, the energy response function as determined
in chapter 5 is applied to the transmitted spectra before integration according
to formula 5.5, in order to simulate a 300 µm thick silicon sensor operated at
100 V and read out by a Medipix chip.

Not only Poisson noise is applied to the final images, but also the typical
Medipix noise arising from the inter-pixel threshold variation is implemented.
This latter is taken from an actual measurement of the threshold dispersion at
each threshold value.
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(a) Final reconstruction:
purple-aluminium, green-
titanium, red-iron.
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(b) Convergence plot. RMS
is the root mean square dis-
tance of the raw sinogram
from the calculated sinogram
at each iteration.

Figure 6.13: Reconstruction.

The simulated data are first fed into a conventional OSEM reconstruction
algorithm. After 10 iterations, the algorithm is stopped and the resulting images
are used to initialize the modified spectral OSEM algorithm. After 100 itera-
tions, the reconstructed image looks like the one shown in figure 6.13a. This
image differs from the true sample (figure 6.12a) only in few pixels. As the plot
in figure 6.13b shows, the convergence of the spectral version of the algorithm
is faster than the one of the conventional algorithm.

6.3.2 Limitations

Even though obtained under controlled conditions, the previous results on sim-
ulated data show that the inclusion of spectral information in the tomographic
reconstruction algorithm leads to a concrete improvement in the quality of the
final images.

However, the OSEM scheme, at least in the formulation reported here, is not
the proper framework for spectral computed tomography. One of the reasons for
this was already clear in the reconstruction in figure 6.11c where, even though
the material assignment was properly done for titanium and iron, the procedure
fails at the boundaries between the aluminium and the open beam, especially
where sharp corners are present.
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(a) Spectral OSEM.
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(b) OSEM.

Figure 6.14: Distortion in the CT number space in the spectral OSEM al-
gorithm, and comparison with conventional OSEM, for the 20 keV dataset.

The reason for this is that in this algorithm the material space and the CT
numbers space are decoupled. The effect of substituting the simple algebraic
expectation step in OSEM with the projector 6.1 (or the equivalent one after
the application of the detector energy response) is that at each iteration the CT
numbers are redistributed in order to compensate for beam hardening.

This situation is clarified in figure 6.14. Figure 6.14a shows as an example
the final CT space image for the 20 keV dataset obtained with the modified
OSEM algorithm, while figure 6.14b presents the corresponding reconstruction
via conventional OSEM. In both images the grayscale is logarithmic.

The beam hardening artifacts, appearing as dark shadows in the space be-
tween the cylinder sections in the bottom half of the sample reconstructed with
conventional OSEM in 6.14b, disappear in the other image 6.14a. However, the
modified algorithm introduces inhomogeneities in regions where the CT num-
bers distribution should be flat. These are particularly visible in the core of
the aluminium structure and in the topmost titanium cylinder sections, both
regions that appear much more homogeneous in the other reconstruction.

Although this redistribution does not seem to affect the material assignment
strategy in the regions of the cylinder sections (and indeed, there was almost no
mis-assignment in the reconstruction of the second sample, figure 6.13a, which
is made by just convex structures), this effect is completely destructive in the
zones where sharp corners are present.

When attempting to apply the algorithm to data derived from samples with
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(a) Virtual phantom.
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(b) Reconstruction at iteration 40.

Figure 6.15: Spectral OSEM algorithm applied to an object with concave
structures: purple-wax, green-aluminium, red-copper. The convention
here is that wax is assigned atomic number 1.

more complex geometries, the reconstructed images diverge after a few itera-
tions. This situation is illustrated in figure 6.15, for a sample containing concave
structures made of metal components (aluminium and copper) in a substrate
of low attenuating material, in this case wax (figure 6.15a). The reconstruction
after 40 iterations, shown in figure 6.15b, exhibits the divergence from the true
image. A possibility to solve this problem is to define new backprojection opera-
tors, that would take into account for the material information estimated during
the iteration [5]. However, this solution adds complexity to the reconstruction
algorithm, while a more natural implementation can be achieved in a statistical
algorithm.

6.4 Statistical algorithm

Opposite to all other approaches, the statistical formulation of the tomographic
reconstruction problem provides a natural framework for the extension to spec-
tral CT, which makes this approach preferable with respect to OSEM.

6.4.1 Formulation

Extending the maximum likelihood problem introduced in section 1.6.1 to the
case of spectral computed tomography requires the substitution of formula 1.20
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with a proper expression for the expectation value of the Poisson distributions
at each detector pixel. This way, the polychromatic nature of the X-ray source
spectrum is taken into account.

The starting point for this extension is expression 1.24, that is hereby re-
peated by writing the energy dependent absorption coefficient µ(x, y, E) as the
product of the density distribution ρ(x, y) and the mass attenuation coefficient
µ(E)/ρ:

Sout(E, x) = Sin(E)e−
∫
ρ(x,y)

µ(E)
ρ dy. (6.2)

This formula defines an X-ray spectrum Sout(E, x) resulting from the attenua-
tion of a source spectrum Sin(E, x) through the density field ρ(x, y) along the
y direction.

Sout(E, x) is the spectrum that reaches the detector. The effective spectrum
seen by the detector is the result of the distortions undergone by Sout(E, x) as a
consequence of the energy dependent detector efficiency and other phenomena,
such as charge sharing.

All these effects are accounted for in the definition of the energy response
function R(E;E′). According to formula 5.5, the effective spectrum deriving
from Sout(E, x) can be written as

Seff (E, x) =

∫ ∞
0

R(E;E′)Sout(E
′, x)dE′. (6.3)

In order to simplify the notation, this formula will be used throughout the rest
of the treatment even if, as discussed in section 5.5, Seff (E, x) will be calculated
as the superimposition of the separate contributions from the central pixel and
its neighbors.

For a photon counting detector, the signal issued by pixel x, set at threshold
Eth(x), is finally given by

Ith(x) =

∫ ∞
Eth(x)

Seff (E, x)dE. (6.4)

More generally, for a ray path l, θ, the full expression of the associate signal has
the form

Ithl,θ =

∫ ∞
Ethl

dE

∫ ∞
0

dE′R(E;E′)Sin(E′)e−
∫
l,θ
ρ(s)

µ(E)
ρ ds, (6.5)

where s is the coordinate along the ray path l, θ. This expression is the new
expectation value for the Poisson distribution 1.21.
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Notice that no term was added to the model that accounts for detector
noise. Such a term is usually introduced as a constant offset in formula 6.4 (see,
for example [24]). However, photon counting detectors, such as Medipix based
semiconductor detectors, can be operated in electronic-noise free conditions,
which makes the addition of such term superfluous.

6.4.2 Definition of the likelihood function

In the maximum likelihood formulation of the tomographic reconstruction prob-
lem (see introduction in section 1.6.1), the X-ray projections obtained from the
CT scan of the sample are interpreted as a collection of random variables Cthl,θ
distributed according to a probability density function

P (~C|~I) =
∏
l,θ,th

(Ithlθ )C
th
lθ eI

th
lθ

Cthlθ !
, (6.6)

where Ithl,θ is now given by expression 6.5 and ~C and ~I indicate the set of all

values of Cthl,θ and Ithl,θ respectively.

Spectral information is included in the definition of P (~C|~I) at two levels:

1. at sample level, through the definition of the Ithl,θ’s via formula 6.5;

2. at detector level, through the inclusion of the th parameter, representing
the threshold position.

As a matter of fact, these two points relate to the two different areas of the
problem where energy dependencies play a role:

1. the transmission of the source spectrum through the sample, and the dis-
tortion of the resulting spectrum in the sensor material;

2. the spectral capability of the detector, achieved by repeating the same
measurement at different values of the threshold.

Notice that the formulation of the expectation values according to for-
mula 6.5 takes into account the inter-pixel threshold mismatches, since the
energy threshold Ethl for each pixel l appears explicitely. These values can
be determined precisely by performing a per-pixel calibration (see chapter 3).
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6.4.3 Expansion onto material basis functions

As defined up to now, the solution of the maximum likelihood problem is stated
as follows: given the set of observed values Cthl,θ, determine the µ(x, y) distri-
bution that maximizes the probability density function 6.6. However, µ(x, y)
is not sufficient to achieve material separation, because different materials may
show the same absorption properties. In order to discriminate between different
materials, the density ρ(x, y) must be determined.

One possibility of isolating ρ(x, y) is by following the dual energy formulation
and expand the absorption coefficient onto a set of basis functions [2]. The
natural choice of the basis functions is the mass attenuation coefficient2 of the
N different materials that are expected to be present in the imaged object.
Thus, one can write

µ(x, y, E) =

N∑
n

ρn(x, y)
µn(E)

ρn
, (6.7)

where n is the material subscript and ρn is the constant nominal density of
material n.

The unknowns with respect to which the likelihood function has to be max-
imized are now the N × Nv × Nv values ρn(x, y), where Nv is the number of
voxels of the reconstructed image.

The implementation can be simplified by rewriting the expansion as

µ(x, y, E) =

N∑
n

fn(x, y)µn(E), (6.8)

where the fn(x, y)’s are the new unknowns, defining the relative density of
material n at voxel (x, y). Substituting this expansion into expression 6.5 yields
a final formula for the Poisson expectation values:

Ithl,θ =

∫ ∞
Ethl

dE

∫ ∞
0

dE′R(E;E′)Sin(E′)e−
∑N
n µn(E)

∫
l,θ
fn(s)ds. (6.9)

If material n is present inside the object in uniform and homogeneous clus-
ters that are larger than the voxel size, then the corresponding fn(x, y) is a
discrete field that can take only values: one if voxel (x, y) contains material

2Following the original dual energy concept, in principle separation of the photoelectric
from the Compton cross section could be done as well [2].
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n, zero otherwise. In the most general case fn(x, y) is a continuous function
that can take all values between zero and one. It therefore expresses the effec-
tive concentration of material n inside voxel (x, y), which reflects two typical
conditions:

1. material n is located in small regions that only partially fill the volume of
one voxel;

2. material n is “dissolved” into a substrate material, for example it is part
of a liquid solution or of a more complex composite material.

Notice that the N materials don’t need to be pure elements only. Expan-
sion 6.7 (or 6.8) can be done in terms of mass absorption coefficients and densi-
ties of specific compounds or materials, like water, fat and bones, just to mention
an example from the medical field.

The multiple energy set of equations is diagonalizable only if N measure-
ments at different energy settings are performed. The difference of the spectral
CT formulation with respect to conventional multiple energy CT (e.g. dual
energy CT) is that the multiple-energy information is not achieved by simul-
taneously imaging the sample with several different X-ray sources, but by re-
peating the measurement at different detector thresholds. This approach has a
clear advantage in that only one source is required, meaning that no increase of
dose is needed as in conventional multiple energy systems. This can be made
possible thanks to new detector readout concepts, like Medipix3, where the N
measurements at N different thresholds are performed within a single exposure.

6.4.4 A simulation study

First tests of the algorithm have been conducted through a simulation study
implemented in RooFit [68, 54]. The function returning the detected intensity
given by formula 6.9 as a function of the X-ray path l, θ and the pixel threshold
t is used to calculate the expectation values entering the Poisson probability
density function 6.6.

The physics model is based on the energy response function of a 300 µm
thick silicon detector read out by an energy dispersive pixel chip of the Medipix
family, as determined through the measurements described in chapter 5.

A simulated dataset is generated for a simple object discretized on a 20×20
voxel grid. The sample, shown in figure 6.16, consists of an aluminium cluster
(in green) and a separated cluster of iron-filled voxels in air (in red). Iron is also
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Figure 6.16: Virtual sample.
Small clusters, in red = iron;
large cluster, in green = alu-
minium.
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Figure 6.17: Tube spectrum.

present inside the aluminium volume. The X-ray spectrum, shown in figure 6.17,
reproduces a tungsten anode tube spectrum at 50 kV.

A CT scan is simulated for 60 projections at 3◦ angle steps. Three simultane-
ous datasets at 4, 10 and 20 keV detector thresholds are generated (figures 6.18,
6.19 and 6.20).

The resulting reconstruction is shown in figures 6.21 and 6.22, where the
aluminium and iron components of the fn(x, y) field are given.

6.4.5 Discussion

The results presented by this simulation show that the two materials can be
perfectly separated. In particular, the sample geometry was chosen to be as
more complex as possible in order to study whether specific structures, such as
holes, appendices or concavities, could lead to image artifacts or to divergence,
as it was in the case of the improved OSEM algorithm.

For this study, the size of the sample could not been extended further than
20 × 20 pixels, due to the fact that, before being able to handle larger datasets,
RooFit needs to undergo few optimizations. The reason for this is that, for
the typical applications in high energy physics, RooFit is conceived to work on
complex likelihood functions but with a relatively small number of parameters.
To give an example, one of the most well known problems in high energy physics
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Figure 6.18: Generated
data at 4 keV thresh-
old.
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Figure 6.19: Generated
data at 10 keV thresh-
old.
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Figure 6.20: Generated
data at 20 keV thresh-
old.
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Figure 6.21: Reconstruction of
the aluminium component of
the fn(x, y) field.
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Figure 6.22: Reconstruction
of the iron component of the
fn(x, y) field.

has recently been the extraction of a Higgs boson signal from the data accumu-
lated at the Large Hadron Collider [15]. For this analysis, the physics models
are built in terms of probability density functions combining 23000 functions
and 1600 parameters.

The case for computed tomography is rather the opposite. The probability
density function, at least in the formulation presented here, is a product of
Poissons depending on a huge number of parameters. This is in fact given by
the number of voxels times the number of materials to be identified, which
easily leads to values in the order of several tens of thousands. If one considers
data from a single Medipix chip at full spatial resolution, then one would have
256× 256×N parameters in an algorithm for the identification of N materials

127



6.5. SUMMARY

and a voxel size of 55 µm. At the same time, the likelihood function would be
defined as the product of 256 × Nθ × Nth Poisson functions, where Nθ is the
number of angles at which the CT scan is performed and Nth the number of
thresholds at which the data are taken.

In order to develop a dedicated framework for the application of RooFit to
CT, a working plan has been recently scheduled. As soon as the size of the
sample can be scaled up, first tests on real data could be performed, with also
the possibility to test the algorithm on biological materials.

6.5 Summary

The results presented in this chapter represent the final step of the work de-
veloped throughout the whole thesis. The goal of the project was to show how
spectral CT is possible when using energy sensitive X-ray imaging detectors
such as silicon sensors read out by Medipix chips. This improves X-ray imaging
by leading to a material separation capability that is very hard to achieve in
conventional CT, while in spectral CT it follows from the principles of the tech-
nique itself. What one obtains are color X-ray reconstructions, where each color
represents a different material identified in the imaged object. Moreover, since
spectral information is included in the reconstruction algorithm, beam harden-
ing artifacts that usually appear in conventional CT images can be minimized.

The key role in this research line is played by the detector, which provides
spectral capability at the level of single pixels. It has been shown that, to achieve
material separation, it is not necessary to measure the full detected spectrum,
but one only needs to take images at different energy thresholds and look at how
the signals from different materials evolve as a function of the threshold value.
Although conventional systems, such as dual energy scanners, already exploit
this principle3, spectroscopic pixel devices give this capability at the detector
level. This means that multiple images at different thresholds can be taken
simultaneously within a single exposure, thus keeping both the measurement
time and the delivered dose at ordinary levels or lower levels.

The first result obtained by applying these principles was the one presented
in section 6.2, figure 6.8, where it has been shown that materials can be sep-
arated when looking at the correlations of the CT numbers in the threshold
space. However, this is not enough. This technique, in fact, is applied after the

3They may use either different threshold settings, or different sources or different detector
sensitivity layers.
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reconstruction, and not during the reconstruction. As a consequence, artifacts
that are produced by conventional algorithms, such as beam hardening artifacts,
are still present and produce errors in the assignment of materials.

The solution to this problem is the inclusion of the spectral information in
the reconstruction algorithm, which is not done in conventional CT. This feature
represents the second key point of spectral CT. In fact, the only valid method to
account for spectral distortions and beam hardening artifacts is to incorporate
these effects in the reconstruction phase in such a way that the data can be
reproduced as truthfully as possible. This possibility, that required the detailed
study of the energy response function of the detector presented in chapters 4
and 5, has been investigated in section 6.3, where an iterative spectral CT algo-
rithm, based on an improved OSEM method, has been developed. Here it has
been shown that, indeed, beam hardening artifacts can be strongly minimized,
resulting in a better material assignment in the final reconstruction than the
one obtained with the previous method.

However, at least in the formulation presented here, this algorithm yields
good results only on a small subset of sample geometries. Although the method
could be generalized4, it still does not represent the most natural approach
where to implement spectral information. For this reason, a different technique
has been developed in section 6.4. The physical processes that lead to pho-
ton detection and the generation of the image are now accounted for in their
statistical nature. Thanks to this, the maximum likelihood principle can be
applied and the (vectorial) image can be reconstructed by determining the field
that maximizes the associated probability density function. Preliminary studies
have been carried out by employing RooFit, an analysis tool largely used in
high energy physics, to implement the algorithm itself. The results show that
materials can be well separated even for complex geometries.

Altogether, this work has shown the potential benefits arising from spectral
CT in addressing the issues that typically appear in conventional CT. As a
matter of fact, technologies like Medipix are regarded as the necessary evolution
step for the next generation of X-ray imaging machines. In the next chapter, a
general outlook will be provided on how this research can possibly be valorised.

4E.g., by implementing proper backprojection operators
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Chapter 7

Future perspectives for
spectral CT with Medipix

The work presented so far has been dedicated at investigating how spectroscopic
pixel detectors based on readout chips of the Medipix family can be applied in
spectral CT imaging, i.e. computed tomography exploiting energy information
on single X-ray quanta.

Approaching the problem from the perspective of high energy physics has
led us to the full understanding of the properties of our silicon sensor, and to the
implementation of an image reconstruction algorithm based on RooFit, a tool
widely employed in the particle physics community, which has proven to have
potentials for spectral CT. In this chapter, the results are put in perspective
regarding the possibility of applications outside high energy physics, with a
discussion on the possible benefits for society.

7.1 Spectral computed tomography with Medipix

Everyone is familiar with X-ray images from the usual radiographs of the human
body, where bones features appear light on a dark background because, having
absorbed more radiation, they yield a higher value on the corresponding region
in the image. In fact, the grayscale value in a specific position on a radiograph
is connected to the total absorption of the X-ray beam while traversing the
corresponding region in the sample.

However, a serious ambiguity arises, in that the combination of different
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materials in different proportions can lead to the same image value. This issue
is addressed in current Computed Tomography (CT), i.e. three dimensional
X-ray imaging, where the internal 3D geometry of the object is reconstructed,
giving the possibility to estimate the thickness of the materials traversed by the
beam in a specific direction. This information strongly constrains the set of
possible material combinations that yield a specific intensity on the detector.

The limitation of conventional CT is that it only produces scalar images, i.e.
images where the value assigned to each voxel (a 3D pixel) is still a grayscale
number. This number (the CT number) is a measure of the absorption coefficient
µ estimated at that position. This information is not yet enough to recognize
materials, because different materials may have very similar, or even equal,
absorption coefficients. What allows for discrimination is the energy dependence
of µ, that is characteristic of each material.

7.1.1 Material separation

In the majority of X-ray imaging applications, the sources employed are vac-
uum tubes emitting highly polychromatic radiation. As a consequence, the
final value estimated at a given voxel1 position derives from a complex physi-
cal process where the incoming spectrum is distorted by the different materials
according to their characteristic mass attenuation coefficient. If spectral infor-
mation is measured instead of just beam intensity (or beam power), material
information can be retrieved by deconvolving the relative contributions of the
different attenuation coefficients to the detected signal.

An example of this principle is shown in figure 7.1. A color tomography, i.e.
a computed tomography reconstruction in which different colors are assigned to
different materials, is performed on a sample made of three different materials:
plastic, copper and cadmium. The X-ray data are taken using a 512 × 512
pixels Medipix based silicon detector, and spectral information is estimated
by repeating the measurement at three different energy thresholds. Material
separation is achieved as a post-processing step, where identification of materials
is performed after the 3D images at the three thresholds are reconstructed with
a conventional algorithm. In this sense, this example cannot be regarded yet as
a full representative of spectral CT, since spectral information is not included
in the reconstruction phase.

The main work has thus been to develop reconstruction techniques suited
for data taken with Medipix based detectors, that would account for spectral

1A voxel is a three dimensional pixel.
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(a) Picture of the sample.
Copper and cadmium foils
are wrapped around a plastic
rod.

(b) Color computed tomog-
raphy: blue-plastic, red-
copper, green-cadmium.

Figure 7.1: Color CT proof of principle.

information. The results show how to apply spectral CT to obtain vectorial 3D
images, i.e. CT reconstructions where vectors are assigned to each voxel, whose
elements correspond to the relative density of a specific material found at that
position.

7.1.2 Reduction of beam hardening artifacts

Spectral CT not only leads to material resolved 3D images, but is also highly
beneficial in minimizing the appearance of beam hardening artifacts in the re-
constructed images, which are common in conventional CT. Few examples of
such artifacts are shown in figure 7.2 for the case of medical X-ray computed
tomography.

Beam hardening artifacts appear in conventional computed tomography be-
cause, although the X-ray source employed in CT scanners are highly polychro-
matic, spectral information is not measured by detectors, hence it cannot be
accounted for in the reconstruction. Beam hardening is a well known issue that
can strongly degrade image quality. Being able to eliminate, or at least mini-
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(a) A dark band appears in-
side the skull.

(b) Streak artifacts are gen-
erated by dental metal im-
plants.

Figure 7.2: Examples of beam hardening artifacts in medical X-ray com-
puted tomography. Image credit [49].

mize, the effect would lead to a significant improvement in the medical practice.
Although the problem has been extensively addressed throughout the develop-
ment of many pre- and/or post-processing techniques (see, for example, [10]),
only spectral CT provides a direct solution. In this thesis, the strong reduction
of beam hardening artifacts has been demonstrated for the case of spectral CT
making use of Medipix based detectors.

7.2 Towards medical applications

Computed tomography is a well established technique in the medical practice.
Beautiful and useful 3D X-ray images of the human body are reconstructed
every day in many hospitals around the world, providing physicians with an
invaluable diagnostic tool. So, why is there a need for spectral CT, and where
can the Medipix technology, or similar ones, make a real difference?

There are two main reasons that make spectral CT with spectroscopic de-
tectors so appealing. The first is that, for the first time, spectral CT would
provide a definitive solution to the problem of beam hardening artifacts, which
will improve significantly the quality of the images, and thus their diagnostic
power. This would be beneficial, for example, also in treatment planning for
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radiotherapy, where the presence of artifacts can prohibit the automation of
the procedure. Second, the possibility to achieve material separation opens the
way towards imaging techniques that have been so far impossible, such as tissue
resolved imaging and molecular imaging in X-ray computed tomography.

Tissue separation would be highly beneficial, for example, to distinguish fat
from liver in the study of liver diseases. A pilot study has already demonstrated
the capability of a Medipix based detector system to distinguish fat from liver
in phantom specimens when taking CT data at different thresholds [6]. The ap-
plication of spectral CT reconstruction techniques for Medipix based detectors,
as the ones developed in this thesis, is therefore of high interest, since it may
lead to valuable results for the clinical practice.

The other technique, molecular imaging, will make it possible to image spe-
cific functional areas in the body in computed tomography. This is achieved by
injecting contrast agents chemically bound to cell specific substances which, via
the blood circulation, are carried to a target area where they accumulate. If the
contrast agent is a high density material (most common are gold nanoparticles,
or iodine, or gadolinium), X-ray data will achieve high contrast in correspon-
dence of the location of the region of interest. Medipix detectors are particularly
suited for this purpose because, thanks to the availability of multiple simulta-
neous thresholds (up to 8 in Medipix3), different contrast agents can be used
simultaneously, thus enhancing contrast in different target areas within a single
X-ray scan.

7.3 Applications other than medicine

One may think of fields of application other than medicine where spectral CT
with Medipix based detectors may be beneficial. For example, it has been
recently suggested that computed tomography can be applied in quality control
chains where industrial products need to be non-destructively inspected for inner
defects [38]. Metrological studies could be performed on CT reconstructions
of these objects in order to asses the properties of the specimen. Medipix in
particular, thanks to its small pixel size (55 µm), would be suited for micro-CT
metrology, where small samples need to be imaged.

Conventional CT is not enough for these applications, because beam harden-
ing artifacts distort the images to such an extent that metrological information
would be affected. Studies on the influence of beam hardening artifacts have
been carried out where measurements before and after a post-processing based
correction technique were compared [20, 64]. These results show that beam
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hardening corrections often introduce other artifacts that distort the geometry
and structure of the visualized sample. On the contrary, spectral CT, being able
to account for beam hardening in the reconstruction phase, would yield artifact
free images. Studies of applications of spectral CT in industrial micro-metrology
could possibly show the advantages from using the Medipix technology combined
with a dedicated reconstruction algorithm.

7.4 Using RooFit for CT reconstruction: how
fundamental research can lead to applica-
tions

Discoveries in science are usually done by people who want to satisfy their
curiosity. Mr. Faraday and Mr. Maxwell did not disclose the secrets of electro-
magnetism with the goal of inventing telecommunications, and Mr. Anderson
sure did not imagine that his positive electron would later be at the basis of
the Positron Emission Tomography (PET) imaging systems widely employed in
hospitals around the world.

The history of science is full of these examples. The discovery of the Higgs
boson, announced on July 4th 2012, must be regarded as a curiosity driven
result. However far from concrete applications it might seem, the technological
advancements that almost 50 years of science have brought about since the Higgs
mechanism was first conceived 2 are enormous. Such time span was needed to
develop the tools that were necessary to finally realize the discovery at the Large
Hadron Collider (LHC) at CERN: detectors, accelerators, superconductors, in-
frastructure, just to mention a few. All developments for which benefits were
immediate also outside fundamental research. The most famous example is the
World Wide Web, originally developed at CERN to share data and information
among the scientists involved in large physics experiments, which soon became
the most powerful communication system of the modern era.

The quest for the Higgs boson has also implied the evolution of the com-
puting tools necessary for the treatment of the large amount of data generated
by the LHC experiments. Extracting the needle-like signal of a new particle
from a haystack of background events requires an analysis framework capable
of modeling the underlying physics in the most precise and controlled way. For
this reason, the open source ROOT framework [55], and specifically the RooFit

2The Higgs mechanism was proposed in 1964 to explain the presence of the masses of
particles within the gauge invariant Standard Model.
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toolkit, have been designed by the high energy physics community [68, 54]. In
RooFit, complex probability density functions can be easily implemented and
handled, and maximum likelihood fits to experimental data can be carried out
efficiently.

From the formal point of view, this is exactly the same problem encountered
in X-ray Computed Tomography. When using a statistical model of photon
detection, CT data can be treated in terms of a multivariate probability density
function, and the problem of image reconstruction is translated into a problem
of likelihood maximization: find the values of the parameters (the image) that
best reproduce the observed variables (the CT data).

The idea to export RooFit from fundamental research to X-ray CT is at-
tractive since a reconstruction algorithm based on a statistical model provides a
natural framework for the implementation of spectral information. The advan-
tage of RooFit with respect to other similar toolkits is that the definition of the
physics model and the actual minimization are treated separately. An analysis
workspace containing all the necessary parameters and functions can be built
once and for all in a very intuitive way. The workspace can be stored sepa-
rately, and different datasets can be loaded into it when necessary. This saves
much of the computation time dedicated to the model definition and allows for
the separate optimization of the model. Once the data are loaded, different
minimization engines can be chosen in order to run the reconstruction, offering
different combination of computational speed and accuracy of the result.

The pilot experiments described in chapter 6 demonstrate the feasibility of
the concept, giving a proof of principle that can be seen as a seed for future
developments. With a dedicated research effort, RooFit, originally conceived for
completely different types of problems, could be optimized also for computed
tomography reconstruction, thus becoming competitive as an assessed toolkit
for related applications, providing yet another example of how knowledge can
be successfully exported from basic science to society.
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Appendix A

Signal to thickness
calibration

The signal-to-thickness calibration is an image post-processing method to equal-
ize the response of an X-ray imaging detector over the full sensitive area, and
at the same time to minimize beam hardening effects.

The fundamental idea is to calibrate each detector element (e.g., each pixel)
with signals from different thicknesses of a known material. For each pixel,
the photon counts are recorded after the transmission of the source spectrum
through different layers of this material. This data builds up a signal vs thickness
relation for each detector element, as the one shown in figure A.1.

The signal vs thickness relation can be parametrized by simply interpolating
the data points or by fitting it with local exponentials [33]. This latter method
is based on the approximation that, in small energy intervals, the spectrum
attenuation obeys the exponential law 1.1. Thus, at point k in the plot, one can
set that the signal s is related to the thickness t via

s = Ake
Bkt + Ck, (A.1)

where Ak, Bk and Ck are the free parameters, to be determined for each point
k.
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Figure A.1: Signal-to-thickness calibration plot with aluminium as calibra-
tion material.

This formula can be inverted to yield

(A.2)
t =

s− sk+1

Bk (sk − sk+1)
log

(
s− Ck
Ak

)
+

sk − s
Bk+1 (sk − sk+1)

log

(
s− Ck+1

Ak+1

)
,

which gives the thickness t associated to a signal s laying between the calibration
points k and k + 1.

Formula A.2 can be used to calibrate the X-ray images taken with the same
detector under the same experimental conditions (same settings of the detector
and same X-ray spectrum) as in the taking of the calibration data. The resulting
images are therefore corrected for systematic differences in the sensitivity of
the detector elements. Moreover, beam hardening effects are minimized if the
photon absorption coefficients of the different parts of the sample are not too
different from that of the calibration material. If the sample is only made of
the same material used for the calibration, then beam hardening artifacts are
completely removed.
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APPENDIX A. SIGNAL TO THICKNESS CALIBRATION

Notice that the calibrated images are expressed in units of equivalent thick-
ness of the calibration material, which is an additive quantity. This means that
CT projections calibrated with this method can be fed directly to a filtered
backprojection, algebraic or OSEM algorithm (see chapter 1).

An example of the effect of the signal-to-thickness calibration is presented in
figure A.2, where the X-ray image of a bee taken with a Medipix quad detector
is shown before and after the correction. For this data, the calibration data
was taken using different foils of aluminium at several thicknesses. Notice how
the calibration enhances the fine details of the sample, including the venation
structure of the wings and the hair around the body. The tape holding the bee
in place is also visible.
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Figure A.2: Application of the signal-to-thickness calibration.
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Appendix B

Medipix2 pixel logic

Figure B.1: Schematics of the Medipix2 pixel logic.

This appendix provides a more detailed explanation of the Medipix2 pixel
cell logic, with reference to figure B.1. The pixel electronics can be separated
into an analog and a digital circuitry.

Analog circuitry The charge collected at the input pad or via the test in-
put is amplified and shaped by a Charge Sensitive Amplifier (CSA). The CSA
also hosts a DC leakage current compensation system for noise reduction [37].
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The analog signal is then multiplexed to the two discriminators, where it is si-
multaneously compared to the Low Threshold (THL) and the High Threshold
(THH).

The global thresholds THL and THH are set by an external 8-bit Digital-
to-Analog Converter (DAC). To correct for local transistor mismatches and
minimize the inter-pixel threshold variation, each discriminator is provided with
a 3-bit local threshold adjustment current source. The procedure through which
the optimal values of this current are determined is the threshold equalization
described in section 3.4.

Shutter Polarity Threshold Operation Mode
OFF - - OFF
ON LOW (e−) THH > THL Energy Window
ON LOW (e−) THH < THL Single
ON HIGH (h+) THH > THL Energy Window
ON HIGH (h+) THH < THL Single

Table B.1: Operation modes of the Medipix2 Double Discriminator Logic.

Digital circuitry The Medipix2 chip can be operated in two modes: single
threshold and two thresholds (energy window) mode. The discrimination logic
is implemented in the Double Discriminator Logic (DDL) unit, and can be
configured to operate in both polarities (electron collecting or hole collecting)
via the Polarity input bit (see table B.1).

Single threshold mode is automatically accessed when THH is below THL.
In this configuration, the Double Discriminator Logic produces a digital output
only if the signal is above THL. Conversely, when THH is above THL, energy
window operation is activated. In this case, the DDL signal is issued only if the
signal falls in the threshold window defined by THL and THH.

The output eventually generated by the Double Discriminator Logic is sent
to the Shift Register and Counter (SR/C). Depending on the status of the
shutter signal, the SR/C can be operated as a 13-bit digital counter or as a
shift register that can be used either to shift the data from pixel to pixel up
to the periphery to read out the full matrix after acquisition, or to set the
Pixel Configuration Register (PCR). In the former case the output signal of the
Double Discriminator Logic itself acts as the clock of the counter, while in the
latter case an external clock (Clk Read) is activated, and the pixel matrix is read
out, provided that the configuration input bit (Conf) is inactive. If the Conf
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APPENDIX B. MEDIPIX2 PIXEL LOGIC

signal is active, the Shift Register and Counter is used to load the configuration
bits into the Pixel Configuration Register.

The Pixel Configuration Register stores the 8-bit pixel configuration data
(the 7-bit logic for the analog side plus 1 bit for masking the pixel). The PCR is
a static system: the stored data is kept in memory until new data are overwritten
or the chip is reset or shutdown. Every time the chip is switched on, the matrix
configuration needs to be loaded.

The digital part of the pixel occupies an area of 32 µm × 55 µm, and hosts
450 transistors [72], thus representing the largest portion of the circuitry.
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Appendix C

X-ray data

A list of the targets used for the generation of fluorescence radiation, along with
some relevant X-ray properties [46], is provided in table C.1. All targets are pure
metal foils of 0.001 inch thickness, with the exception of Mo, which is 60 µm
thick. The K yield is the fraction of radiative processes (fluorescence emission)
occurring to fill the K shell vacancy over the total number of vacancies created
in the K shell [31].

Element Z K edge [keV] Kα [keV] Kβ [keV] K yield
Ti 22 4.965 4.510 4.931 0.214
Ni 28 8.333 7.477 8.264 0.406
Cu 29 8.979 8.047 8.904 0.440
Zn 30 9.659 8.638 9.571 0.474
Ge 32 11.104 9.885 10.981 0.535
Zr 40 17.988 15.774 17.666 0.730
Nb 41 18.986 16.614 18.621 0.747
Mo 42 19.999 17.478 19.607 0.765
Pd 46 24.350 21.175 23.816 0.820
Ag 47 25.514 22.162 24.942 0.831
Cd 48 26.711 23.172 26.093 0.843
In 49 27.940 24.207 27.274 0.853
Sn 50 29.200 25.270 28.483 0.862

Table C.1: List of calibration targets and their X-ray properties.
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Appendix D

Per-pixel fit to fluorescence
spectra

The goal of the procedure described in this appendix is to establish a method
that maximizes the convergence yield when fitting the single-pixel fluorescence
spectra. The work has been the topic of a bachelor student project [66].

Experience has shown that the convergence of the fit might depend strongly
on the initialization of the parameters of the function. In this cases, the problem
can be solved through a procedure wherein the optimal initialization values are
determined automatically for each pixel.

The underlying idea is to fit the data using successive functions whose com-
plexity is increased step by step, and whose parameters are initialized by the
result of the previous stage. The initialization of the first function is performed
by identifying the position of the main peak directly from the histogram of the
differential spectrum.

An example of the algorithm is illustrated in figure D.1, D.2 and D.3. With
reference to this figure, the individual steps, starting from the raw cumulative
spectrum in figure D.1a, are described in the following.

1. Figure D.1b; The threshold scan is differentiated in order to retrieve the
spectrum.

2. Figure D.2a; The approximate position of the Kα peak is determined by
coarsely binning the differential spectrum. Eαp,i(here i is the pixel index)
is taken as the value at the center of the highest bin.
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(b) Differential spectrum.

Figure D.1: Calibration of the low threshold (THL) of a Medipix2 based
detector, per-pixel fitting procedure on fluorescence data from a silver
target: differentiation of the raw scan.

3. Figure D.2b; A second estimation of Eαp,i, plus a first evaluation of the
Gaussian width σp,i are realized by fitting the threshold scan via an error
function modulated by a first degree polynomial

Si(E) =
Ai
(
x− x0i

)
2

[
1 + Erf

(
−
E − Eαp,i√

2σp,i

)]
, (D.1)

where Ai and x0i are the two temporary line parameters.

4. Figure D.3a; The scan is fitted via the Kα-only model, the integral version
of function 3.30, whose full expression is

(D.2)
S(E) = Npfcs

{
1

2

(
E − Ep +

1

fcs

)[
1 + Erf

(
−E − Ep√

2σp

)]

+
σp√
2π
e
(E−Ep)2

2σ2p

}
+ CbE + S0,

with S0 as an integration constant.

5. Figure D.3b; When the inclusion of the Kβ peak is required (which is
usually the case for targets with Z ≥ 32) the scan is fitted via the 2-peaks
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(b) Fit of the scan via func-
tion D.1.

Figure D.2: Calibration of the low threshold (THL) of a Medipix2 based
detector, per-pixel fitting procedure on fluorescence data from a silver
target: rebinning and first fit.

model defined by the integral of function 3.31. Explicitly:

S(E) = Npfcs

1

2

(
E − Eαp +

1

fcs

)[
1 + Erf

(
−
E − Eαp√

2σp

)]

+
fβ/α

2

(
E − Eβp +

1

fcs

)[
1 + Erf

(
−
E − Eβp√

2σp

)]

+
σp√
2π

e (E−Eαp )
2

2σ2p + fβ/αe
(E−Eβp )

2

2σ2p

+ CbE + S0.

(D.3)

Notice that even after working out the integrals, expressions D.2 and D.3
are still algebraic summations of Gaussian and error function terms.

The performance of the algorithm is illustrated in figures D.4 and D.5, where
the distributions of the (reduced) χ2 from the fits to nickel and tin fluorescence
data are shown as an example. The distributions are obtained as histograms over
the χ2 values over the full pixel matrix. Examples of the per-pixel fit they refer
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Figure D.3: Calibration of the low threshold (THL) of a Medipix2 based
detector, per-pixel fitting procedure on fluorescence data from a silver
target: second and third fits.

to were represented, respectively, in figures 3.5a and 3.5b in chapter 3. The
cumulative versions D.6 and D.7 of the same distributions show that almost
100% of the pixels have χ2 < 2 in the case of Nickel, and χ2 < 1.7 in the case
of Tin.
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Figure D.4: χ2 distribution
from the fit to Nickel fluores-
cence.

Entries  65536

Mean    1.034

RMS    0.1818

/ndf2χ

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

4500 Entries  65536

Mean    1.034

RMS    0.1818

Figure D.5: χ2 distribution
from the fit to Tin fluores-
cence.
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Figure D.6: Normalized cumu-
lative χ2 distribution from the
fit to Nickel fluorescence.
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Figure D.7: Normalized cumu-
lative χ2 distribution from the
fit to Tin fluorescence.
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Appendix E

Diffusion in a uniform field
gradient

In this appendix a simple model of diffusion and drift is developed assuming an
ideal pn junction electric field increasing linearly as a function of the depth z in
the sensor.

Using this assumption and the proportionality between the drift velocity
and the electric field (relation 3.22), the drift velocity as a function of z can be
written as

v(z) =
z

τ
(E.1)

for some time constant τ .
Since v = dz/dt, this formula leads to equation

dv

dt
=
v

τ
, (E.2)

whose general solution is

v(t) = A+Be
t/τ . (E.3)

The condition v(t = 0) = 0 yields A = −B. By defining a dimensional
constant v0 = −A then one can write

v(t) = v0

(
e
t/τ − 1

)
. (E.4)
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By comparing definition E.1 to relation 3.22, one sees that τ ∝ (µ∇E)
−1

.
Using order of magnitude values for the mobility µ ∼ 103cm2/Vs and for the
field gradient ∇E ∼ 108V/cm2, one obtains τ ∼ 10−11s, which corresponds to
the typical time for a drift motion through 1 µm. Since here we are interested
in distances of several tenths of microns, one can set t � τ , and approximate
formula E.4 with

v(t) = v0e
t/τ . (E.5)

The equation of motion is thus

z(t) = z0 + v0τ
(
e
t/τ − 1

)
, (E.6)

where z0 is the initial value of z.
This formula can be inverted to give

t(z) = τ log

(
1 +

z − z0
v0τ

)
(E.7)

and therefore

σ(z) ∝

√
log

(
1 +

z − z0
v0τ

)
. (E.8)
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Summary

The retina of the eye is quite insensitive to these rays: the eye
placed close to the apparatus sees nothing.

W. C. Röntgen, 1895 [62].

Professor Röntgen calls these rays “X-rays”, as he says, for the sake of brevity
and probably to emphasize that, apart from the observation that bodies behave
to the X-rays as turbid media to light, he knew very little about the nature
of this phenomenon. To such an extent that he did not have any trouble in
placing his own eyes just in front of what seems to have been a rather powerful
radiation source if Platinum 2 mm thick allows some rays to pass. Today, we
are well aware of the dangers of such an action, and radiation protection teams
work hard in order to avoid such occurrences.

Apparently however, professor Röntgen was the first who, unwillingly, at-
tempted to detect X-rays with an energy sensitive pixel detector: the human
retina. Of course he could not see anything, because the retina is not at all
sensitive to X-rays. The technology required to realize energy sensitive X-ray
artificial retinas has become available only 100 years later. These detectors are
made by connecting a semiconductor pixel sensor to an energy resolving read-
out chip and can be employed to achieve color, i.e. material resolved, X-ray
imaging.

The principle of color vision in the retina relies on the presence of three
types of “pixels”, the cone receptor cells, each having its sensitivity peak at a
different wavelength. The incoming light spectrum is filtered by each receptor
and the image is decomposed onto a basis of three colors (red, green and blue,
see figure 7.1a).
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Following a different concept, spectroscopic pixel readout chips for semicon-
ductor X-ray detectors are able to separate an incoming radiation spectrum
into multiple energy channels, at the level of single pixels. Compared to the
retina principle, where three images in different color channels are obtained at
the expense of spatial resolution (one out of three receptors are used to form
each image), energy sensitive X-ray imaging devices allow for the formation of
multiple simultaneous images with no resolution loss (figure 7.1b).

We are able to see more “colors” in X-rays than in visible light. The question
that remains open is: what is color for X-rays?

In a similar way as different types of surfaces exhibit different reflection
properties of visible light, different materials are characterized by different X-
ray transmission properties. The X-ray spectrum reaching the detector pixel
thus bears information on the material traversed by the radiation along its path
from the source to the pixel.

Until recently, this information was completely lost, because X-ray detectors
were only able to measure one integral value, be it the total deposited energy
or, more recently, the total number of photons (the beam intensity). On the
contrary, spectroscopic X-ray detectors give the possibility to measure the full
energy spectrum, even if just coarsely binned, at single pixel level, which pro-
vides a handle to extract more significant knowledge on the material content of
the sample than the one encoded in a simple grayscale radiograph.

Spectral information can be used to identify different materials and their
distribution in the sample. If different colors are assigned to each material,
color X-ray imaging is achieved.

The set of 3D X-ray imaging techniques exploiting energy information is
called spectral Computed Tomography (CT). Spectral CT is a relatively new
field, due to the fact that energy sensitive X-ray imaging detectors only appeared
recently.

The main challenge in spectral CT is to answer the following question:

What is the best way to process spectral information from a
set of two-dimensional radiographs and realize color (i.e. material
resolved) X-ray three-dimensional imaging?

The aim of this thesis has been to answer this question for a specific set of
detectors, i.e. silicon sensors connected to the spectroscopic readout chips of
the Medipix family. The work needed to reach this goal not only involves the
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SUMMARY

(a) Human retina. (b) Medipix3 spectroscopic mode.

Figure 7.1: Image decomposition into color bases.

implementation of dedicated image reconstruction algorithms capable of han-
dling the spectral information measured by these detectors, but it also requires
a precise characterization of the properties of the silicon sensor. This knowledge
is necessary in order to implement the detector response in the reconstruction
phase.

In the first place, a calibration method is developed, needed in order to define
the detector energy scale. As monochromatic reference sources, the method
exploits fluorescence X-ray radiation emitted from elements that are excited by
the primary beam of an X-ray tube. A fitting procedure is designed to achieve
an efficient calibration of single pixels, which is crucial to correct for variations
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due to inter-pixel mismatches and to reach an equal response of the full detector.
To understand how an incoming X-ray spectrum is distorted due to detector

effects, the energy response function of the sensor has to be known. The strat-
egy adopted in this thesis is to reach this result with a fully measurement based
approach, in order to avoid biasing errors from the introduction of physics con-
stants and to avoid the need to calculate the electric field configuration, which
would require the precise knowledge of the doping profile of the sensor.

The measurement of the detector response function has been performed
through a test beam with relativistic charged particles and a synchrotron test
beam. Charged particles are used to study the transport properties of the sen-
sor. Exploiting the energy information provided by the pixel readout, the energy
deposition as a function of different positions in the pixel volume is determined.
This information is used to extract the evolution of the charge profile as a func-
tion of the drift distance. The particle beam is thus used as a micro-probe to
look at charge diffusion at microscopic level.

This information is exploited to implement a numerical framework for the
calculation of the detector energy response function. The synchrotron test beam
is needed to determine the values of the parameters of this model by compar-
ing the calculations with measurements. Using monochromatic synchrotron
radiation at different energies, the energy response function of the detector is
measured directly over a wide spectral range.

The energy response function is used to calculate the detected spectrum,
given an input spectrum coming from the transmission of an X-ray beam through
an object. This step is crucial for the implementation of a spectral CT recon-
struction algorithm suited for data taken with Medipix based silicon detectors.

As a proof of principle, an algorithm is derived by extending a conventional
iterative method in order to incorporate spectral information. The algorithm,
as formulated at this stage, is only applicable to a limited subset of sample
geometries. Nonetheless, the results not only show an example of material
resolved X-ray CT, but they also show the benefits arising from spectral CT
with respect to conventional CT. The quality of the reconstruction improves
as beam hardening artifacts are eliminated, which typically appear if spectral
information is not accounted for.

To obtain a more efficient implementation, a statistical reconstruction al-
gorithm is developed, based on a maximum likelihood principle. First results
on simulated data show the validity of the method and hint at the necessity
to further develop this research line in order to exploit the full potential of the
Medipix chip (and similar technologies) in X-ray imaging applications. The al-
gorithm is implemented using tools developed for the statistical treatment of
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SUMMARY

large amount of data from high energy physics, thus giving a demonstration of
how fundamental research can be exported to applications in other fields.

Although the results are derived only for a very specific type of detector
operated in a specific state (a 300 µm silicon sensor read out by a Medipix
chip and operated at 100 V bias) these devices, at these operating conditions,
are standard for the majority of the applications. The results, and especially
the methods, have thus a more general validity. First applications in several
fields, including medical, are not far away. The general belief is that once fully
understood and established, spectral CT will surely have a considerable impact
in the field of X-ray imaging.

Enrico Junior Schioppa
Amsterdam

30 November 2014
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Samenvatting

Het netvlies van het oog is niet gevoelig voor deze straling: het
oog dat vlak voor het apparaat wordt gehouden ziet niks.

W. C. Röntgen, 1895 [62].

Professor Röntgen noemde de straling “X-straling”, omdat, zoals hij zei: ko-
rtheidshalve, en waarschijnlijk om het te benadrukken, lichamen reageren het-
zelfde op X-straling als troebele media reageren op licht. Behalve deze waarne-
ming wist hij heel weinig over de aard van dit verschijnsel. Zelfs zo weinig dat
hij er geen moeite mee had om zijn ogen vlak voor een bron te plaatsen, die
behoorlijk krachtig is geweest, aangezien een deel van de straling door 2 mm dik
platinum heen kwam. Tegenwoordig zijn we goed op de hoogte van de gevaren
van deze X-straling, of Röntgenstraling, en stralingsbeschermingdiensten werken
hard om dergelijke voorvallen te voorkomen.

Professor Röntgen was de eerste die Röntgenstraling wilde detecteren met
een energiegevoelige pixeldetector: het menselijk oog. Natuurlijk kon hij niks
zien, omdat de retina totaal niet gevoelig is voor Röntgenstraling. De technolo-
gie die nodig is om pixeldetectoren te maken die gevoelig zijn voor Röntgenstraling
is 100 jaar later beschikbaar. Deze detectoren zijn gemaakt door een halfgelei-
dende pixelsensor te verbinden met een uitleeschip die energie gevoelig is. De
detectoren kunnen worden gebruikt om gekleurde (de kleur correspondeert met
de materiaalsamenstelling) Röntgenfoto’s te maken.

Het principe van kleurherkenning op het netvlies is gebaseerd op de aan-
wezigheid van drie type “pixels”, de kegelreceptoren. Elk type receptor is
gevoelig voor een andere golflengte. Het inkomende licht wordt gefilterd door
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elke receptor en het beeld wordt ontleed op basis van drie kleuren (rood, groen
en blauw, zie figuur 7.2a).

De pixelchips werken volgens een ander concept. De gebruikte pixelchips
voor Röntgendetectoren zijn in staat om, op pixelniveau, het binnenkomende
stralingsspectrum te scheiden in meerdere energieniveaus. In het netvlies worden
er drie beelden in verschillende kleuren gemaakt, waarbij de ruimtelijke resolutie
vermindert (één van de drie receptoren wordt gebruikt voor elk beeld), terwijl
bij de pixel chips verschillende beelden tegelijk gemaakt kunnen worden, zonder
verlies van ruimtelijke resolutie (figuur 7.2b).

We zijn in staat om meer “kleuren” te onderscheiden in Röntgenstraling dan
in zichtbaar licht. Maar de vraag blijft: wat betekent kleur voor Röntgenstraling?

Zoals verschillende oppervlakten het zichtbare licht verschillend reflecteren,
zo zijn verschillende materialen gekenmerkt door verschillende Röntgenstraling
transmissie eigenschappen. Het spectrum van de Röntgenstraling dat de pixels
van de detector bereikt, geeft dus informatie over het materiaal waardoor de
straling is gegaan gedurende de reis van de bron naar de detector.

Tot voor kort ging deze informatie volledig verloren, omdat Röntgen de-
tectoren alleen één integrale waarde konden meten. Dit was ofwel de totale
afgegeven energie, of, recenter, het aantal fotonen (de intensiteit van de bundel).
Spectroscopische Röntgen detectoren, daarentegen, hebben de mogelijkheid om
het volledige energie spectrum te meten. Zelfs als de data op pixelniveau wordt
opgeslagen, kunnen deze detectoren een beter idee geven van de materialen
waaruit het monster bestaat, dan de Röntgenfoto’s in grijstinten.

Informatie over het spectrum kan gebruikt worden om verschillende materi-
alen in het monster te identificeren en om iets te zeggen over de distributie van
deze materialen. Als elk materiaal een andere kleur krijgt toegewezen, leidt dit
tot gekleurde Röntgendiagnostiek.

Alle technieken die 3D Röntgenfoto’s maken en die daarbij gebruik maken
van de informatie over het energie spectrum van de bundel, worden samen spec-
traal Computer Tomografie (CT). Spectraal CT is een relatief nieuw onder-
zoeksgebied, omdat energie gevoelige Röntgen detectoren pas recentelijk zijn
verschenen.

De grootste uitdaging in spectraal CT is om antwoord te vinden op de vol-
gende vraag:

Wat is de beste manier om een set van twee dimensionale Röntgenfoto’s
te verwerken, zodat er een gekleurde drie dimensionale Röntgenfoto

176



SAMENVATTING

(a) Het menselijk netvlies (b) Medipix3 spectroscopische
modus.

Figure 7.2: De ontleding van beelden in verschillende kleuren.

kan worden gemaakt?

Het doel van dit proefschrift is om deze vraag te beantwoorden voor een
specifiek type detectoren: siliciumsensoren die verbonden zijn met de spectro-
scopische uitleeschips uit de Medipix familie. Om dit doel te bereiken moet er
niet alleen een algoritme worden toegevoegd dat in staat is om de informatie
over het energie spectrum te verwerken, maar moet er ook onderzocht worden
wat de eigenschappen van de silicium sensoren zijn. Deze kennis van de sensoren
is nodig om de detectorrespons toe te voegen tijdens de reconstructie.
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Allereerst is er een kalibratiemethode ontwikkeld om de energieschaal van de
detector te kunnen definiëren. Als monochromatische bron wordt fluorescentie
gebruikt: karakteristieke straling die wordt uitgezonden door elementen als deze
zijn geëxciteerd door de primaire bundel van de Röntgenbuis. Er is een model
ontwikkeld om een efficiënte kalibratie op pixel niveau te bereiken. Dit is cruciaal
om de verschillen tussen de pixels te kunnen corrigeren en om een gelijke respons
te krijgen van de gehele detector.

Om te kunnen begrijpen hoe een inkomend spectrum van de Röntgenstraling
verandert door de detector, moet de energierespons-functie van de sensoren
bekend zijn. Om dit te bereiken wordt er in dit proefschrift gebruik gemaakt van
een op metingen gebaseerde methode. Hierdoor is het mogelijk om onzekerheden
in fysische constanten te vermijden en is het niet noodzakelijk om de configuratie
van het elektrische veld te berekenen.

De meting van de detectorrespons-functie is gedaan met een testbundel met
relativistische, geladen deeltjes en met een synchrotron testbundel. Geladen
deeltjes zijn gebruikt om de transporteigenschappen van de sensor te bestuderen.
Door de informatie over de energie te gebruiken, kan de afgeleverde energie
worden per pixel. Deze informatie wordt gebruikt om de ontwikkeling van het
ladingsprofiel als functie van de driftafstand af te leiden. De testbundel wordt
dus gebruikt als microsonde om te kijken naar ladingsdiffusie op microscopisch
niveau.

De informatie over het ladingsprofiel wordt gebruikt als een numerieke struc-
tuur voor de berekening van de detectorrespons-functie. De synchrotron test-
bundel is nodig om de parameters voor dit model vast te stellen. Dit wordt
gedaan door de berekening te vergelijken met metingen. De energierespons-
functie van de detector kan gemeten worden over een groot energiespectrum
door gebruik te maken van monochromatischesynchrotron straling van verschil-
lende energieën.

Met de energierespons-functie is het mogelijk om het gedetecteerde spec-
trum te berekenen, uitgaande van het spectrum dat wordt gegenereerd door de
transmissie van een Röntgenbundel door een object. Deze stap is cruciaal voor
de implementatie van een spectraal CT reconstructie-algoritme dat geschikt is
voor het nemen van data met siliciumdetectoren gebaseerd op Medipix.

Om te bewijzen dat deze procedure werkt, wordt een algoritme afgeleid
waarvoor een bestaande iteratieve methode wordt uitgebreid met de informatie
over het spectrum. Op dit moment is het algoritme alleen geschikt voor een
beperkt aantal geometrieën van het monster. Toch laten de resultaten niet
alleen een voorbeeld van spectrale Röntgen CT zien, maar laten ze ook de
voordelen van spectraal CT boven de conventionele CT zien. De kwaliteit van
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de reconstructie verbetert door gebruik te maken van de informatie over het
energie spectrum.

Om de implementatie van deze methode efficiënter te maken, is er een statis-
tisch reconstructie algoritme ontwikkeld, op basis van de meest aannemelijke
schatting. De eerste resultaten op gesimuleerde data laten de validiteit van deze
methode zien en duiden aan dat het noodzakelijk is om deze methode verder
te ontwikkelen om zo de volledige potentie van de Medipix chip (en andere
vergelijkbare technieken) te kunnen benutten voor het maken van afbeeldingen
met Röntgenstraling. Het algoritme is toegepast door gebruik te maken van
methodes uit de hoge-energiefysica, waarbij grote hoeveelheden data met een
statistische methode worden verwerkt, en toont hiermee aan hoe fundamenteel
onderzoek gebruikt kan worden in toepassingen in andere velden.

Hoewel de resultaten alleen zijn afgeleid voor een specifiek type detector, ge-
bruikt in een bepaalde toestand (een silicium sensor van 300 µm dik, uitgelezen
door een Medipix chip en met een 100 V bias) is dit een veelgebruikte config-
uratie en vormt de standaard voor het grootste gedeelte van de toepassingen.
De resultaten, en voornamelijk de gebruikte methodes, hebben een algemenere
validiteit. De eerste toepassingen in verschillende velden, ook voor medische
toepassingen, zijn niet ver weg. In het algemeen wordt aangenomen dat spec-
traal CT een grote invloed zal krijgen op het gebied van Röntgendiagnostiek.

Enrico Junior Schioppa
Amsterdam

30 November 2014
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