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Topological Semantics for Conditionals

JOHANNES MARTI AND RICCARDO PINOSIO

Abstract: In this paper we explore the topological semantics for condi-
tional logic that arises from the Alexandroff equivalence between preorders
and topological spaces. This clarifies the relation between the standard or-
der semantics and premise semantics for conditionals. As an application we
provide a construction of relative similarity orders between possible worlds
from topologies of relevant propositions. The conditional logic over topolo-
gies is intertranslatable with the modal logic S4u.

Keywords: Conditionals, Counterfactuals, Similarity Orders, Premise Se-
mantics, Evidence Models, Topological Semantics, S4u

1 Introduction

Preorders are the standard semantics for conditional logic. The Alexandroff
correspondence associates to every preorder a unique Alexandroff topolog-
ical space, which is a topological space closed under arbitrary intersections.
This suggests using Alexandroff topological spaces as a semantics for con-
ditional logic. We show that this topological semantics captures all that is
relevant in premise semantics for the evaluation of conditionals.

We apply this topological approach to the logic of counterfactual con-
ditional. Concretely, we provide a construction of order frames, which are
relative similarity orders between worlds, from an Alexandroff topology of
relevant propositions. This yields a well-motivated way to obtain a rela-
tive similarity order from information which is more basic than similarity
among worlds. We completely characterize the class of order frames which
results from this construction. This yields strong constraints on order frames
which imply the commonly assumed centring condition. We completely ax-
iomatize the validities of this restricted semantics via an intertranslatability
result between conditional logic and S4u, which is the usual S4 modal logic
on topological spaces, augmented with a universal modality.
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2 Alexandroff Correspondence for Conditionals

2.1 Conditional Logic

Various minimization procedures over preorders have naturally arisen in
contexts such as the formal semantics of modal notions, belief revision the-
ory or default reasoning (Baltag & Smets, 2006; Imielinski, 1987; Kratzer,
1977; Lewis, 1973). In this paper, we restrict our attention to a setting where
a binary modal operator is used to express such a minimization condition.
This means we are working with a modal language built according to the
following grammar:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ

where p ∈ Atom is any atomic sentence from a given infinite set Atom.
We will call formulas of the form ϕ  ψ conditionals. Depending on
the application the conditional ϕ  ψ can be read in different ways, for
instance as “If ϕ had been the case then ψ would have been the case”, “An
agent believes ψ conditional on believing ϕ”, or as “If ϕ then you must ψ”.

The semantics for this modal language based on preorders, variously
worked out in (Lewis, 1973; Pollock, 1976; Veltman, 1985), has been in-
fluential. This approach associates a preorder to every possible world to
evaluate the conditional at that world. This yields the following definition:

Definition 1 (Order frame) An order frame over a set of possible worlds
W is a family (≤x)x∈W , which associates to every world x ∈W a preorder
(i.e. reflexive, transitive relation) ≤x ⊆W ×W over the set W .

Depending on the setting the preorder associated with a world in a or-
der frame can have different interpretations. In the logic of counterfactual
conditionals, the preorders represents metaphysical similarity of the worlds.
Thus, y ≤x z means that the world y is more similar to the world x than
the world z. On an doxastic interpretation of the conditional, the preorder
associated to a world represents the plausibility of worlds according to the
mental state a given agent at that world. Thus, y ≤x z means that at x the
agent considers it more plausible that y is the actual world than that z is
the actual world. We will mostly focus on these two interpretations of the
preorder as metaphysical similarity or as plausibility for an agent. It is im-
portant to notice that similarity is an ontological notion, while plausibility
is an agent relative epistemic notion. For instance for similarity orders, but
not for plausibility orders, it is common to require some form of centring,
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meaning that the world x is in some sense minimal in≤x. On the other hand
for plausibility orders, but not for similarity orders, it is common to require
doxastic introspection, meaning that the order associated to any world that
the agent considers possible is the same as the preorder in the actual world.

To evaluate formulas on an order frame (≤x)x∈W we also need to pro-
vide an interpretation for the atomic sentence in Atom. As usual this is done
by considering an evaluation function V : Atom→ PW which maps every
atomic sentence to the set of worlds where it is true. The semantic clause for
the atomic sentences make use of the valuation V , the Boolean connectives
are defined as usual, while the semantics of the conditional is as follows:

x |= ϕ ψ iff for all y ∈ JϕK there is a z ∈ JϕK such that z ≤x y

and u |= ϕ→ ψ for all u ≤x z

Given a frame (≤x)x∈W and a valuation V , we use J·K as a shorthand for the
set of all worlds which satisfy the formula ϕ, i.e. JϕK = {x ∈W | x |= ϕ}.

It is possible to simplify the semantic clause for the conditional by as-
suming an additional condition on the frame (≤x)x∈W which is called the
limit assumption (Warmbrod, 1982). It requires that for any x ∈ W and set
of worlds X ⊆W , X has ≤x-minimal elements. In this case one can check
that x ∈ Jϕ ψK iff for all the ≤x-minimal elements y in JϕK we have
that y ∈ JψK. It is this fact which explains the notion of minimisation on a
preorder we mention above.

The set of validities for the above semantics can be completely axioma-
tized, see (Veltman, 1985) for details and a completeness proof.

2.2 Alexandroff Correspondence

We make use of a correspondence between preorders and topological spaces,
first noticed by Alexandroff in (Alexandroff, 1937), to derive a topological
semantics for the conditional from its order semantics. A topology over a
set of points W is family τ ⊆ PW of sets of points such that ∅,W ∈ τ and
τ is closed under arbitrary unions and finite intersections of sets. The family
τ is called the topology of the topological space (W, τ) and its elements are
called open sets. We shall just write τ for the topological space (W, τ). The
topological spaces that stand in correspondence to preorders are Alexan-
droff topological spaces, which are additionally closed under arbitrary, not
necessarily finite, intersections. We denote an Alexandroff topology by the
symbol A instead of τ to emphasize that the topology is Alexandroff.
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We shall now explicitly describe how the Alexandroff correspondence.
Let ≤ be a preorder over over a set W , then the corresponding Alexandroff
topology Do(≤) ⊆ PW is defined as the set of all downsets of the preorder:

Do(≤) = {U ⊆W | if x ∈ U and y ≤ x then y ∈ U}

In the other direction, for an Alexandroff topologyA ⊆ PW one can define
the specialization preorder ≤A = Sp(A) on W by:

x ≤A y iff for all U ∈ A if y ∈ U then x ∈ U

The classic result by Alexandroff is that these constructions establish a bi-
jective correspondence between preorders and Alexandroff spaces.

Theorem 2 For all preorders ≤ on a set W it holds that Sp(Do(≤)) = ≤
and for all Alexandroff topologies A it holds that Do(Sp(A)) = A.

2.3 Topological Semantics

The Alexandroff correspondence associates to every preorder an Alexan-
droff topology; conversely, every Alexandroff topology arises from a unique
preorder. We use this fact to obtain a topological semantics for the condi-
tional. We need just replace every preorder ≤x associated to a world x
in a order frame (≤x)x∈W with its corresponding Alexandroff topology
Do(≤x).

Definition 3 (Neighbourhood space) A neighbourhood space over a set of
possible worlds W is a structure (Ax)x∈W which associates to each world
x ∈W an Alexandroff topology Ax ⊆ PW over the set W .

By pointwise application of Do(·) we obtain a neighbourhood space
LDo((≤x)x∈W ) for every order frame (≤x)x∈W . Analogously, for every
neighbourhood space (Ax)x∈W we obtain an order frame LSp((Ax)x∈W ).
This is a bijective correspondence meaning that LSp(LDo((≤x)x∈W )) =
(≤x)x∈W and LDo(LSp((Ax)x∈W )) = (Ax)x∈W .

To define the topological semantics of conditional logic on a neighbour-
hood space (≤x)x∈W we again need a valuation function V : Atom→ PW
to fix the truth values of atomic sentences. The semantics for atomic and
Boolean formulas is as usual, while for the conditional we have:

x |= ϕ ψ iff for all ϕ-consistent U ∈ Ax there is a ϕ-consistent
V ∈ Ax with V ⊆ U and V ∩ JϕK ⊆ JψK
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Again JϕK ⊆W is the set of worlds which make the formula ϕ true and we
call a setU ⊆W ϕ-consistent ifU∩JϕK 6= ∅. The reader can verify that this
semantic clause for the conditional on a neighbourhood space corresponds
to its semantic clause on the corresponding order frame.

Our topological semantics is akin to the premise semantics for coun-
terfactuals developed in (Kratzer, 1981; Lewis, 1981) and to the evidence
models of (van Benthem & Pacuit, 2011). In premise semantics every world
in a frame is associated to an arbitrary subset of the powerset of the set of
worlds which is not required to be a topology. The elements of this set of sets
of worlds associated to a world are called the premises and are thought of
as being the relevant background information against which a conditional is
evaluated. Lewis (Lewis, 1981) studies the relation between this premise se-
mantics and the order semantics and gives a construction which associates to
any order frame an logically equivalent premise frame and viceversa. Lewis
does not mention the fact that the construction he uses is the same as the
Alexandroff correspondence. Since Lewis does not require the premise sets
to be Alexandroff topologies he does not obtain a 1-to-1 correspondence
between order frames and premise frames. However, closing an premise
set under arbitrary intersections and unions does preserve the truth of all
counterfactuals. Therefore one does not collapse any substantial semantic
distinctions by requiring premise sets to be Alexandroff topologies, but one
gains the 1-to-1 correspondence with order frames.

In the context of epistemic logic, premise frames reappear in the guise of
evidence models (van Benthem & Pacuit, 2011). Here the elements of the
premise set associated to a world represent a piece of evidence that some
agent has about the actual world. Again, Pacuit and van Benthem estab-
lish the same relation to order frames but do not mention the underlying
Alexandroff correspondence.

3 Coherent Neighbourhood Spaces and Order Frames

In this and the following section we discuss an application of the Alexan-
droff correspondence to the semantics of counterfactual conditional logic.
We observed in the previous section that one can think of the open sets in
the local topology Ax associated to a world x as the facts obtaining at x
which are relevant to determine similarity of other worlds to x. The defini-
tion of the similarity order ≤x from the topology Ax was such that another
world y is the more similar to x the more of the relevant propositions in Ax
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are true at y. We present a plausible procedure to construct a neighbourhood
frame, and hence an order frame, from an independently given Alexandroff
topology of relevant propositions. A proposition is deemed to be relevant
if its truth or falsity at worlds matters for the relative similarity of worlds.
Additionally, we characterize the neighbourhood spaces and order frames
that arise in this way, which we name “coherent”.

Assume that we are given a set A of propositions which are relevant to
determine the similarity among worlds. For instance one might in general
consider the physical laws holding at a world as relevant whereas accidental
facts are not relevant. We also assume that A is an Alexandroff topology,
meaning that that relevant propositions are closed under arbitrary conjunc-
tions and disjunctions. We mention possible weakenings of this assumption
in section 5. The propositions relevant to determine relative similarity to
a particular world x are now all the relevant propositions in A which are
actually true at x. This motivates the following definition.

Definition 4 For a topological space A define the corresponding neigh-
bourhood space Loc(A) = (Ax)x∈W by:

Ax = {U ∈ A | x ∈ U} ∪ {∅}

Once we have a neighbourhood space one can apply the Alexandroff
correspondence to obtain the corresponding order frame. In this sense Def-
inition 4 provides a construction of relative similarity orders LSp(Loc(A))
from any set of relevant propositions A ⊆ PW .

In the rest of this section we characterize the neighbourhood spaces and
order frames which arise from an Alexandroff space via this construction.

3.1 Coherent Neighbourhood Spaces

The neighbourhood spaces arising from the construction above satisfy the
following properties:

(C) If U ∈ Ax, U 6= ∅ then x ∈ U

(Ov) If U ∈ Ax and y ∈ U , then U ∈ Ay

(CU) If U ⊆
⋃

x∈W Ax then
⋃
U ∈ Ax for some x

We call a neighbourhood space satisfying the above three conditions a
coherent neighbourhood space. The first condition (C) is a version of cen-
tring for premise frames. The second condition (Ov) captures our assump-
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tion that relevance of propositions is not world relative. If a proposition is
relevant somewhere then it is relevant wherever it is true.

Theorem 5 Coherent neighbourhood spaces are in bijective correspon-
dence with Alexandroff topological spaces.

Proof. The reader can check that the construction from Definition 4 always
yields a coherent neighbourhood space.

For the other direction assume we are given any coherent neighbourhood
space (Ax)x∈W . We define the following Alexandroff topology on W :

Col((Ax)x∈W ) =
⋃

x∈W

Ax

Using the conditions on coherent neighbourhood spaces one can check that⋃
x∈W Ax is indeed an Alexandroff topology.

It is easy to check that Col(Loc(A)) = A for any Alexandroff space A.
For the other direction, we show that (A′

x)x∈W = Loc(Col((Ax)x∈W )) is
equal to (Ax)x∈W for any neighbourhood space (Ax)x∈W . We need that
Ax = A′

x for all x ∈ W . So take any U ∈ Ax. Then U ∈ Col((Ax)x∈W ).
Hence it is also in A′

x = {U ∈ Col((Ax)x∈W ) | x ∈ U} ∪ {∅} because by
(C) it follows from U ∈ Ax that x ∈ U . If on the other hand U ∈ A′

x =
{U ∈

⋃
x∈W Ax | x ∈ U} ∪ {∅} then U is either empty hence clearly

U ∈ Ax or there is some y ∈ W such that U ∈ Ay and x ∈ U . By (Ov) it
follows that U ∈ Ax.

3.2 Coherent Order Frames

Corresponding to the notion of a coherent neighbourhood space we define
coherent order frames as the class of order frames (Ax)x∈W which satisfy
the following two axioms:

(Ex) For all x, y, z ∈W : If x ≤y z then x ≤z y

(St) For all x, y, z ∈W : If x ≤y z then x ≤y y or x ≤z z

A version of centring is implied by (Ex): Because by reflexivity x ≤y x it
follows that x ≤x y for all x, y ∈ W . This version of centring is slightly
weaker than the strong centring which requires x ≤x y and not y ≤x x for
all x, y ∈ W . It is, however, stronger than weak centring which requires
only hat x is a minimal element in the order ≤x. For discussion of different
centring conditions see (Veltman, 1985).
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The two conditions (Ex) and (St) are quite strong. One can check that
neither satisfied by relative closeness of points in a metric space, as consid-
ered e.g. in (Lehmann, Magidor, & Schlechta, 2001). However, the two con-
ditions corresponds exactly to the coherence conditions on neighbourhood
spaces, which are justified by the intuitive construction of a neighbourhood
space from the set of relevant propositions.

Theorem 6 Coherent order frames are in bijective correspondence with
coherent neighbourhood spaces.

We first need some lemmas which require an additional notion. Define
the minimal neighbourhood of y in the topology Ax of a neighbourhood
space (Ax)x∈W by:

Nx(y) =
⋂
{U ∈ Ax | y ∈ U}

Since Ax is an Alexandroff topology Nx(y) is again open and it is in fact
the minimal open set in Ax containing y.

Lemma 7 Let (≤x)x∈W be an order frame. Then (≤x)x∈W satisfies (Ex)
if and only if LDo((≤x)x∈W ) satisfies for all y, z ∈W

(Ex’) Ny(z) = Nz(y)

and it satisfies (St) if and only if LDo((≤x)x∈W ) satisfies for all y, z ∈W

(St’) Ny(z) ⊆ Ny(y) ∪Nz(z)

Proof. Omitted.

Lemma 8 For every neighbourhood space (Ax)x∈W we have:

1. (C) and (Ov) imply (Ex’)

2. (Ov) and (CU) imply (St’)

3. (Ex’) implies (C)

4. (Ex’) and (St’) imply (Ov)

5. (St’) and (Ov) imply (CU)
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Proof. We leave the points 1 and 3 to the reader.
For point 2: By (CU), Ny(y) ∪ Nz(z) ∈ Aw for some w. But then

because y ∈ Ny(y) we have by (Ov) that Ny(y)∪Nz(z) is in Ay . Because
z ∈ Nz(z) ⊆ Ny(y) ∪ Nz(z) and Ny(z) is the minimal open set in Ay

containing z it follows that Ny(z) ⊆ Ny(y) ∪Nz(z).
For point 4: consider U ∈ Ax and y ∈ U . To show that U ∈ Ay , we

show that for any z ∈ U , there exist an open set O ∈ Ay such that z ∈ O
andO ⊆ U . Let z ∈ U , and considerNy(z): it is open inAy , and z belongs
to it. We show that Ny(z) ⊆ U . By (St’), Ny(z) ⊆ Ny(y) ∪Nz(z). Hence
it is w.l.o.g. enough to show that Ny(y) ⊆ U :

Ny(y) ⊆ Ny(x) y ∈ Ny(x) by (C)
= Nx(y) (Ex’)
⊆ U y ∈ U ∈ Ax

For point 5: consider a family of sets U ⊆
⋃

x∈W Ax. If
⋃
U = ∅,

then certainly
⋃
U ∈ Ax for any x. Otherwise, pick B ∈ U non-empty,

and point b ∈ B. We prove that
⋃
U ∈ Ab. It suffices to show that for

any x ∈
⋃
U the set Nb(x) is open in Ab, and x ∈ Nb(x) ⊆

⋃
U . By

definition Nb(x) is open in Ab and x ∈ Nb(x). To show that Nb(x) ⊆
⋃
U

it is enough to prove that Nb(b) ⊆
⋃
U and that Nx(x) ⊆

⋃
U , because

by (St’), Nb(x) ⊆ Nb(b) ∪ Nx(x). The former holds because Nb(b) ⊆ B,
since b ∈ B ∈ Ab, and B ⊆

⋃
U , since B ∈ U . For the latter take a

U ∈ U such that x ∈ U . By (Ov) it follows that U ∈ Ax and hence
Nx(x) ⊆ U ⊆

⋃
U .

We can now prove Theorem 6.

Proof. (of Theorem 6) Let (Ax)x∈W be a coherent neighbourhood space.
By 1. and 2. of Lemma 8 it must satisfy conditions (Ex’) and (St’) of Lemma
7. Hence, the corresponding order frame LSp((Ax)x∈W ) is coherent.

Let (≤x)x∈W be a coherent order frame. By Lemma 7 the corresponding
neighbourhood space LDo((≤x)x∈W ) satisfies (Ex’) and (St’). By points 3.
4. and 5. of Lemma 8 it follows that LDo((≤x)x∈W ) is a coherent neigh-
bourhood space.

The correspondence between order frames and neighbourhood spaces re-
mains bijective when restricted to coherent order frames and coherent neigh-
bourhood spaces.
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4 S4u and Completeness

The purpose of the present section is to show that the conditional logic over
coherent neighbourhood spaces and S4u over topological spaces are inter-
translatable. This gives us an easy route to the completeness of conditional
logic on coherent neighbourhood spaces. We obtain the complete axioma-
tization by translating the already know axiomatization of S4u into the lan-
guage of the conditional and by adding axioms that guarantee the provability
of the the translation rules.

The results of this section also hold for coherent neighbourhood spaces
in which the local topologies associated to a world are not required to be
Alexandroff. Such a space can be obtained from an arbitrary topological
space of relevant propositions by means of the localisation procedure de-
scribed in Definition 4. In the following we however stick to the notation A
and Ax for the topology of a space and for the local topology at a world x.

We give a brief overview of the aspects of S4u that we need here. For
further details consult (Aiello, van Benthem, & Bezhanishvili, 2003). The
language of S4u is a bimodal language with two unary modalities � and ∀.
On a topological space the semantics of � is the interior modality whereas
∀ is a universal modality. We formulate the semantics on the level of the
coherent neighbourhood space generated from a topological space. By The-
orem 5 this is the same as working with just topological spaces. The most
convenient formulation of the semantics for our purposes is:

x |= ∀ϕ iff U ⊆ JϕK for all U ∈ Ax

x |= �ϕ iff U ⊆ JϕK for some non-empty U ∈ Ax

Note that this induces the following clauses for the duals:

x |= ∃ϕ iff some U ∈ Ax is ϕ-consistent
x |= ♦ϕ iff all non-empty U ∈ Ax are ϕ-consistent

The validities of this semantics are axiomatized by the modal logic S4u in
which � is an S4 modality, ∀ an S5 modality and the interaction axiom
∀ϕ→ �ϕ holds.

The intuitive reading of the universal ∀ modality is metaphysical neces-
sity. This also becomes clear in the first translation rule of the following
theorem, which amounts to the same embedding of metaphysical necessity
into conditional logic as suggested in appendix 1 of (Williamson, 2007):
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Theorem 9 These equivalences hold on coherent neighbourhood spaces:

∀ϕ ≡ ¬ϕ ⊥
�ϕ ≡ > ϕ

ϕ ψ ≡ (♦ϕ→ �(ϕ→ ψ)) ∧ (¬♦ϕ→ ∀(ϕ→ ♦(ϕ ∧�(ϕ→ ψ))))

Proof. The proof of the first two equivalences is omitted.
For the third equivalence we start with the left to right direction. Let

(Ax)x∈W be a coherent neighbourhood space and x ∈ W such that x |=
ϕ  ψ. We distinguish two cases. Either all non empty opens in Ax are
ϕ-consistent or there is a non empty U ∈ Ax which is not ϕ-consistent.

In the first case where they are all ϕ-consistent it follows that x |= ♦ϕ.
To show x |= �(ϕ→ ψ) pick any non empty U ∈ Ax. We can assume that
U is ϕ-consistent, because otherwise U witnesses the truth of �(ϕ → ψ).
It follows by x |= ϕ ψ that there is a V ∈ Ax such that V ∩ JϕK ⊆ JψK.
So V witnesses the truth of �(ϕ→ ψ).

In the second case, where there is a non empty U ∈ Ax that is not ϕ-
consistent, it follows that x |= ¬♦ϕ. We need to show that x |= ∀(ϕ →
♦(ϕ∧�(ϕ→ ψ))). To prove this it is sufficient to take an arbitrary v ∈ JϕK
and to show that v |= ♦(ϕ∧�(ϕ→ ψ)). Pick any non empty V ∈ Av . We
need the existence of a z ∈ V such that z |= ϕ ∧�(ϕ→ ψ).

Consider U ∪ V . Since U ∈ Ax and V ∈ Av , then it follows by (CU)
that U ∪ V ∈ Aw for some w ∈W . Because U ∈ Ax it follows by (C) that
x ∈ U ⊆ U ∪ V . So it follows by (Ov) that U ∪ V ∈ Ax. Also because
V ∈ Av it follows again by (C) that v ∈ V ⊆ U ∪ V . So U ∪ V is ϕ-
consistent because v ∈ JϕK. Now we use the assumption that x |= ϕ  ψ
to obtain a ϕ-consistent Z ∈ Ax with Z ⊆ U ∪ V and Z ∩ JϕK ⊆ JψK.
Pick a z ∈ Z which satisfies ϕ. Then z ∈ V because Z ⊆ U ∪ V and U is
assumed to be not ϕ-consistent. Now we can see that z |= �(ϕ→ ψ) since
Z ⊆ Jϕ→ ψK, Z is not empty, and Z ∈ Az by (Ov).

For the right to left direction suppose that the formula on the right is
true at some world x. We need to show that then x |= ϕ  ψ. Again, we
distinguish the cases where all non empty elements of Ax are ϕ-consistent
and where there is an element in Ax that is not ϕ-consistent.

If all non empty U ∈ Ax are ϕ-consistent then x |= ♦ϕ and by assump-
tion we also have that x |= �(ϕ→ ψ). Hence there is a not empty Z ∈ Ax

with Z ⊆ Jϕ→ ψK. To prove that x |= ϕ  ψ pick any ϕ-consistent
U ∈ Ax. Now consider the intersection U ∩ Z ⊆ U . It is in Ax since
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Ax is a topology. By (C) we have that x ∈ U ∩ Z hence it is a non empty
element of Ax. Since we are in the case where all non empty elements of
Ax are ϕ-consistent it follows that U ∩ Z is also ϕ-consistent. It holds that
U ∩ Z ∩ JϕK ⊆ JψK because U ∩ Z ⊆ Z ⊆ Jϕ→ ψK.

In the other case there is a non empty Z ∈ Ax which is not ϕ-consistent.
Then x |= ¬♦ϕ and so x |= ∀(ϕ→ ♦(ϕ∧�(ϕ→ ψ))). To show that x |=
ϕ ψ take any ϕ-consistent U ∈ Ax. Because it is ϕ-consistent there is a
u ∈ U with u |= ϕ. So U is a non-empty element of Ax and hence by x |=
∀(ϕ → ♦(ϕ ∧ �(ϕ → ψ))) we have that U ⊆ Jϕ→ ♦(ϕ ∧�(ϕ→ ψ))K.
So u |= ♦(ϕ ∧ �(ϕ → ψ)). Because of (Ov) we have U ∈ Au and so
U is ϕ ∧ �(ϕ → ψ)-consistent. Hence there is a v ∈ U with v |= ϕ and
v |= �(ϕ → ψ). By the latter it follows that there is a non-empty V ∈ Av

such that V ⊆ Jϕ→ ψK. By (CU) V ∪Z ∈ Aw for some worldW . Because
x ∈ Z it follows that V ∪ Z ∈ Ax by (Ov). Since Ax is closed under
intersections we then obtain (V ∪Z)∩U ∈ Ax. Clearly (V ∪Z)∩U ⊆ U
and (V ∪ Z) ∩ U ⊆ V ∪ Z ⊆ Jϕ→ ψK ∪ J¬ϕK ⊆ Jϕ→ ψK because Z is
not ϕ-consistent. (V ∪ Z) ∩ U is ϕ-consistent because v ∈ V by (C) and
hence v ∈ (V ∪ Z) ∩ U .

Corollary 10 The validities of conditional logic over coherent neighbour-
hood spaces are completely axiomatizable.

Proof. One can obtain an axiomatization by translating the S4u rules and
axioms into the language of the conditional using the translation clauses in
Theorem 9 and adding the translation of the third equivalence from Theorem
9 as an axiom.

5 Conclusions and Further Work

In this paper we have done the following. We have used the Alexandroff
correspondence between preorders and Alexandroff topological spaces to:

• clarify the formal relation between the order semantics for condition-
als and its semantics based on sets of sets of worlds, as in the case of
premise frames and evidence models.

• present a topological semantics for conditional logic.

• provide a construction to generate a similarity order among worlds
starting from a set of relevant propositions. We also characterized the
order frames that arise from this construction.
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Additionally, we established the intertranslatability of the logic of counter-
factual over topological spaces and S4u, by means of which we obtained a
completeness result.

Some possible directions for further work are:

• One might try to weaken the somewhat implausible assumption that
the set of relevant propositions is closed under disjunctions. This
might lead to a weaker notion of coherence for neighbourhood spaces
and order frames.

• One can try to abstract away from possible worlds and construct them
and the relative similarity order from an algebra of propositions.

• The axiomatization of conditional logic on coherent order frames ob-
tained in Corollary 10 is not aesthetically pleasing. It remains an open
question whether there are more natural axioms.

• Our construction of a relative similarity order from a set of relevant
propositions treats all relevant propositions as equally relevant. How-
ever, it seems natural to rank propositions according to their impor-
tance, for instance see (Lewis, 1979, p. 472). This ranking might be
implemented by an ordering over the set of relevant propositions.

We hope to address some of these points in a future paper.
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