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1 INTRODUCTION

ABSTRACT

Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine
whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is
driven by UV/optical seed photon variations. We present the results of the largest study to
date of the relationship between the X-ray, UV and optical variability in an AGN with 554
observations, over a 750 d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good
overall correlation between the X-ray and UV/optical bands, particularly on short time-scales
(tens of days). The UV/optical bands lag the X-ray band with lags which are proportional
to wavelength raised to the power 1.23 & 0.31. This power is very close to the power (4/3)
expected if short time-scale UV/optical variability is driven by reprocessing of X-rays by
a surrounding accretion disc. The observed lags, however, are longer than expected from a
standard Shakura—Sunyaev accretion disc with X-ray heating, given the currently accepted
black hole mass and accretion rate values, but can be explained with a slightly larger mass
and accretion rate, and a generally hotter disc. Some long-term UV/optical variations are
not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical
variability arising perhaps from accretion rate perturbations propagating inwards through the
disc.

Key words: accretion, accretion discs—radiation mechanisms: general —galaxies: active —
galaxies: Seyfert—ultraviolet: galaxies — X-rays: galaxies.

time-scales. An X-ray/UV correlation on short time-scales could
result if the UV/optical emission is produced by reprocessing of

The origin of the UV and optical variability in AGN, and its rela-
tionship to the X-ray variability, is still a subject of considerable
debate. A number of studies (e.g. Uttley et al. 2003; Suganuma
et al. 2006; Arévalo et al. 2008, 2009; Breedt 2009; Breedt et al.
2009, 2010; Lira et al. 2011; Cameron et al. 2012; Cameron 2014,
Shappee et al. 2014) have shown strong X-ray/UV or X-ray/optical
correlations on short time-scales (weeks—months), with lags close
to zero days, but poorer correlations on longer time-scales (months—
years), usually due to long-term UV/optical trends which are not
mirrored in the X-ray variability. These observations suggest that
different processes dominate the UV/optical variability on different
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X-rays by the nearby accretion disc. The UV/optical would then lag
the X-rays by the short light travel time between the X-ray source
and the disc. Alternatively, if the X-ray variations are produced by
variations in the UV seed photon flux, produced by accretion vari-
ations in the disc at very small radii, then the X-rays should lag the
UV-optical by that same short light travel time. Thus determining
the precise lag between the X-ray and UV-optical emission is a
strong diagnostic of the origin of the UV-optical variability.
Almost all previous studies, based mainly on a combination of
X-ray monitoring with RXTE and ground based optical monitoring,
show short (~1 d) lags of the X-rays by the optical. However, in
no individual case is the lag measured well enough to rule out,
unambiguously, that the optical might lead. Ground-based optical
monitoring suffers from interruptions by bad weather but the Swift
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observatory can provide regular simultaneous X-ray, UV (UVW2,
UVM2, UVW1) and optical (U,B,V) monitoring, allowing measure-
ment of wavelength-dependent lags

Based on Swift observations, Cameron et al. (2012) were able
to show B band lagging the X-rays by less than 45 min in
NGC 4395 and Shappee et al. (2014), using Swift and ground-based
observations, were able to measure interband lags in NGC 2617
which were in good agreement with a reprocessing model. Purely
within the optical bands Sergeev et al. (2005) and Cackett, Horne &
Winkler (2007) measured lags consistent with a reprocessing origin.

Shappee et al. (2014) observed for 50 d with almost daily sam-
pling following NGC 2617 in outburst. Here, we report on 554
observations of the Seyfert 1 galaxy NGC 5548 over a 750 d period.
These observations were largely made as a result of our own pro-
posals but also contain some archival data from other programmes
(e.g. Kaastra et al. 2014). Our observations were not scheduled to
follow particular flares and so are typical of the long-term behaviour
of NGC 5548. This AGN is already known to show a strong X-ray/
V-band correlation (Uttley et al. 2003) with an estimated V-band
lag of 1-2 days (Suganuma et al. 2006; Breedt 2009). However no
simultaneous monitoring of the X-rays with any other optical or UV
band has yet been reported.

In Section 2, we discuss the Swift observations and light curves
and in Section 3, we discuss the interband correlations and lags on
both long and short time-scales. In Section 4, we compare our lag
measurements to those expected from reprocessing from a standard
Shakura & Sunyaev (1973) accretion disc model, and in Section 5,
we discuss the implications of our results for the origin of the
variability in the optical, UV and X-ray bands in Seyfert galaxies.

2 Swift OBSERVATIONS

The Swift X-ray observations are made by the X-ray Telescope
(XRT; Burrows et al. 2005) and UV and optical observations are
made by the UV and Optical Telescope (UVOT; Roming et al.
2005). The XRT observations were carried out in photon-counting
mode and UVOT observations were carried out in image mode.

These data were analysed using our own pipeline which is based
upon the standard Swift analysis tasks as described in Cameron et al.
(2012). X-ray data are corrected for the effects of vignetting and
aperture losses and data obtained when the source was located on
known bad pixels, or with large flux error (>0.15 count s~!) are
rejected. Unless otherwise stated, we use the 0.5-10 keV X-ray
band. Occasional UVOT data points were seen to lie 15 per cent or
more below the local mean, usually as a result of extremely rapid
drops. All such data points were examined individually and some
were found to be the result of bad tracking and were rejected. The
rest occur when the image falls on particular areas of the detector,
suggesting one or more bad pixels. All such data were removed.

Here, we consider the long, well-sampled, period from
MID—-50000 of 5960 to 6709, although there are a small number
of earlier observations. Dates hereafter are in these units. Observa-
tions, mostly of 1 ks though sometimes of 2 ks, typically occurred
every 2 d although periods of less frequent (4 d) or more frequent
(1 d) sampling occurred. Each observation was usually split into
two or more individual visits, improving time sampling. In total
554 visits were made. After rejection of bad data 465 X-ray mea-
surements remain, with 300 occurring between day 6383 and 6547.
Initially, we restricted our UVOT observations to UVW2, following
guidelines to reduce filter wheel rotations. Later, we relaxed the
rotation constraint and additional filters were used.

The UVW?2 band was sampled in almost all visits and the resultant
X-ray count rate and hardness ratio (H =2-10keV; S =0.5-2keV),
and UVW?2 flux light curves, at the highest available time resolu-
tion, are shown in Fig. 1 (Kaastra et al. 2014, S4, show a 1 d
binned version of this figure). The gaps centred on 6220 and 6580
result from Swift sun-angle constraints. We see a generally close
correspondence between the X-ray and UVW2 flux light curves as
noted previously between the X-ray and V bands by Uttley et al.
(2003). The correspondence on short time-scales (~10 d) is strong
but the amplitudes of variability on longer time-scales are not al-
ways identical, e.g. from day 6470 to 6550 when UVW2 shows a
strong upward trend but with a much weaker trend in the X-rays.
From day 6380, observations were made in additional UVOT filters
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Figure 1. Bottom panel: long-term Swift 0.5-10 keV X-ray count rate; middle panel: X-ray hardness ratio, where H = 2—10 keV count rate and S = 0.5-2 keV

count rate; and top panel: UVW2 flux.
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Figure 2. Multiband UVOT light curves in mJy.

and the resultant light curves are shown in Fig. 2. We see a close
correspondence between all UVOT bands.

3 X-RAY/UV-OPTICAL CORRELATIONS

3.1 X-ray/UVW?2 correlation

The UVW?2 band is the best sampled of the UVOT bands and in
Figs 3 and 4 we show the discrete (DCF; Edelson & Krolik 1988)
and interpolation (ICCF; Gaskell & Sparke 1986) cross-correlation
functions (CCFs; see also White & Peterson 1994) for the com-
plete X-ray and UVW2 data sets from day 5960 to 6710. Only the
more slowly varying UVW2 band is interpolated. We do not inter-
polate over the two large gaps but take the weighted mean ICCF of
the three sections seen in Fig. 1. The N per cent confidence levels
are defined such that if correlations are performed between the ob-
served UVW?2 data and randomly simulated X-ray light curves with
the same variability properties as the observed data (e.g. Summons
2007), only (100 — N) per cent of the correlations would exceed
those levels (e.g. see Breedt et al. 2009, for more details). The con-
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Figure 3. Discrete cross-correlation function between the X-ray and UVW2

light curves shown in Fig. 1. The 95 per cent (dashed red) and 99.99 per
cent (solid thin blue) confidence levels are also shown.

fidence levels are appropriate to a single trial, i.e. a search at zero
lag, approximately what we are investigating here. Both functions
show a broad, but highly significant correlation, peaking near zero
lag, with the DCF favouring UVW?2 lagging the X-rays by about a
day.

CCFs can be distorted when there is a long-term variation in the
mean level in one light curve which is not present in the other and
so it is recommended practice to subtract a running mean (Welsh
1999). We therefore subtracted a mean based on a running boxcar
of width 20 d from both UVW2 and X-ray light curves. As 300
of the 465 good X-ray data points lie within the intensively sam-
pled period from 6383 to 6547 whose data dominate the measure-
ment of short time-scale lags, we concentrate on this period where
~2 visits per day are made. As the separation between Visits is not
uniform, good sampling of sub-daily variations is provided. The
resulting 20 d mean-subtracted UVW2 and X-ray light curves for
the intensive period are shown in Fig. 5.

We have calculated a variety of DCFs, ICCFs and ZDCFs
(Alexander 2013, Fig. 6), and all show a UVW?2 lag of ~1 d. Sub-
tracting a 40 d running mean gives a similar result.
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Figure 4. Interpolation cross-correlation function between the X-ray and
UVW?2 light curves shown in Fig. 1. The 95 per cent (dashed red) and 99 per
cent (thin blue) confidence levels are also shown.
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Figure 5. Swift 0.5-10 keV X-ray (bottom panel) and UVW?2 (top panel)
light curves for the intensively sampled period. The mean level from a 20 d
running boxcar has been subtracted from both light curves.
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Figure 6. ZDCF between the X-ray and UVW?2 light curves from day 6383
to 6547. The blue line is the result when both X-rays and UVW2 have been
mean subtracted using a 20 d running boxcar (Fig. 5) and the dashed red
line is the result when only the UVW?2 has been mean subtracted.

To refine the lag measurement, we followed Shappee et al. (2014),
and the recommendation of Pancoast, Brewer & Treu (2014), and
calculated the distribution of likely lags from 10 000 simulations
for the data from day 6383—6547 using the JAVELIN cross-correlation
program (Zu, Kochanek & Peterson 2011; Zu et al. 2013). We
allowed a search range of 10 d. JAVELIN assumes a similar pattern of
variability in both bands. Although the X-ray and UVW?2 variability
properties will be slightly different, the lag measurement should
not be noticeably affected (Shappee et al. 2014). The resulting lag
distribution is shown in Fig. 7 (left-hand panel). The median UVW2
lag is +0.707037 d where the errors are the standard javeLIN 16 and
84 per cent probability levels. Changing the observation period does
not noticeably change the result; e.g. for the period 6248—6547 the
derived lag is +0.79102) d and if we use the whole data set from
5960 to 6710, the lag is 0.62 £ 0.35 d. When applied to the non-
mean-subtracted light curves, JAVELIN does not converge to the single
distribution of Fig. 7 but produces a wide, multimodal distribution,
presumably due to the presence of uncorrelated long time-scale
variations. We have also calculated separately the UVW?2 hard band
and UVW?2 soft band lags. There is no measurable difference.

MNRAS 444, 1469-1474 (2014)
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Figure 7. Lag distributions from JaveLIN. Left-hand panel: UVW?2 following
X-rays using data shown in Fig. 5. Right-hand panel: V following UVW?2
using data shown in Fig. 2.

3.2 X-ray spectral and UVW?2 variations

The X-ray spectral variations of NGC 5548 have been studied ex-
tensively, e.g. Sobolewska & Papadakis (2009) and Kaastra et al.
(2014), with the latter showing absorption variability on different
time-scales, together with intrinsic luminosity variations. In Fig. 1,
there is a general trend for NGC 5548 to become softer with increas-
ing UVW?2 and X-ray flux (as noted by Kaastra et al. 2014). In Fig. 8,
we plot hardness ratio versus UVW2 flux. There is a great deal of
scatter in this relationship but the source is generally brighter in the
UVW?2 band when it is softer. However, the very softest observations
occur at the very lowest fluxes. Broadly similar behaviour within
the X-ray band is seen by Connolly, McHardy & Dwelly (2014)
in NGC 1365. They explain the spectral variations with a combi-
nation of intrinsic luminosity variations and luminosity-dependent
obscuration in the context of a wind model, similar to Kaastra
etal. (2014). At the lowest fluxes only, the soft unabsorbed compo-
nent, scattered from the wind, is visible. The lack of dependence of
X-ray/UVW2 lag on X-ray energy suggests that changing absorp-
tion does not change the relative paths taken by the various bands,
although it may change the relative amplitudes, and so is not the
main cause of the lags. These spectral variations will be discussed
in a future paper (Connolly et al., in preparation).

3.3 UVOT interband lags

All the UVOT bands show the same long-term trends and so it
is not necessary to mean subtract the light curves. We therefore
simply use all available data, as shown in Fig. 2, and calculate the
lag distributions between UVW2 and the other UVOT bands with
JAVELIN. Some distributions, such as the example shown (Fig. 7,
right-hand panel), are slightly asymmetric. Use of the mode rather
than the median would slightly reduce the lags in some cases but
the differences are small. The X-ray, W1 and V bands have the best
overlap with W2 but we show the lags from all bands. The lags,
relative to the UVW2 band, of the UVM?2, UVWI1, U, B and V bands
are —0.01709%, 0187028, 0.877939, 0.577032 and 1.357032 days,
respectively.
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Figure 8. X-ray hardness ratio versus UVW?2 flux.
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Figure 9. Lag of the X-ray and other UVOT bands relative to UVW?2.
Lag oc wavelength?, where 8 = 1.23 + 0.31. The lower, dashed, red line is
the prediction for a standard disc as described in the text.

3.4 Lags and X-ray reprocessing

All UVOT bands lag the X-rays with lags which broadly in-
crease with wavelength (Fig. 9). We can compare the lags with
the prediction of reprocessing from a simple accretion disc where
the lag should vary as the 4/3 power of wavelength (e.g. Cack-
ett et al. 2007; Lira et al. 2011). Fitting a simple model of the
form lag = A + (B x A)?, and assuming Gaussian distributed er-
rors, we find that A = —0.70 £ 0.21, § = 1.23 + 0.31 and
B =32 £ 0.6 x 1073, The fit x? is 2.1 with 3 d.o.f. The
fit goes straight through the X-ray point so if the lags are mea-
sured relative to the X-rays then, unlike Shappee et al. (2014), no
additional unphysical offset to the X-ray pointis required. The slope,
B, is however similar to that derived by Shappee et al. (2014) for
NGC 2617 (1.18 £ 0.33), when including a fit offset.

This fit shows that reprocessing of X-ray emission from an ac-
cretion disc provides a very good explanation for the short-term
UV/optical variability in NGC 5548.

4 ACCRETION DISC MODELLING

To determine whether a disc consistent with other observed proper-
ties of NGC 5548 can explain the lags, we model the disc following
the prescription in Lira et al. 2011 (cf. Cameron 2014) which in-
cludes X-ray as well as gravitational heating. X-ray heating depends
on extrapolation of the observed 2—-10 keV luminosity (Lx;_10) to
~0.01-500 keV, and on the disc albedo. The height, H, of the
X-ray source above the disc, assuming a lamp-post geometry, and
the inner disc radius, R;,, are also important parameters.

Assuming a black hole mass Mgy (6.7 x 107 M@; Bentz et al.
2007) and accretion rate mg (~0.03-0.04 of Eddington; Pounds
et al. 2003; Vasudevan et al. 2010), high X-ray heating luminosity
corrected for albedo of 6 x Lx;,_19, implying a low albedo of 20
per cent, H = 6 R,, consistent with X-ray source sizes measured
by other methods (Chartas et al. 2009, 2012; Emmanoulopoulos
et al. 2014) and R;, = 6 R,, the innermost stable circular orbit for
a Schwarzchild black hole, we obtain the predicted lags shown as
a dashed line in Fig. 9. These predicted lags for this standard disc,
following impulse X-ray illumination, represent when half of the
reprocessed light has been received. The peak response may be even
faster.

To increase the predicted lags to agree with observation, in this
homogeneous disc model, we have to change the geometry (e.g.

Tt -1 ]
9]

§ -12 -
o -13 :
& 4 |
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Figure 10. Disc emissivity profile in W2, W1 and V bands (lines) for the
parameters given in the text, with measured lags, relative to the X-ray bands,
as bars at the top. The W1 bar lies below the W2 and V band bars.

H =20 R,, Ri, = 20 R,) and require a larger (Mg = 108 Mgp)
and hotter (mg = 0.06) disc. Increased disc temperature is more
important here than disc flaring. In Fig. 10, we compare the model
flux distributions for the above parameters as a function of radius
in the W2, W1 and V bands, which are the best sampled, with the
radii estimated from the lags. There is reasonable agreement. These
lags will be modelled in more detail in a future paper (Lira et al., in
preparation).

5 DISCUSSION

Longer than expected lags. Although the wavelength-dependent
lags in Fig. 9 strongly support the hypothesis that reprocessing of X-
rays is the major cause of short time-scale UV/optical variability in
AGN, our observations imply that the reprocessed emission comes
further from the black hole than expected for a ‘standard’ accretion
disc. By pushing the parameter limits, we can reconcile prediction
and observation but we note that Morgan et al. (2010) also require a
larger than expected disc to explain their microlensing observations.
They suggest a low radiative efficiency, which is consistent with our
requirement for Rj, > 20 R,. An alternative solution is provided by
Dexter & Agol (2011) who propose inhomogeneous discs where
the outer portions will contribute more flux than for a uniform disc,
causing the disc to appear larger.

Long time-scale UVOT variability. Short time-scale X-ray/UVW2
correspondence is very good, and also generally good on long time-
scales, but from day ~6470 to 6547 the rise in the UV/optical is
significantly more pronounced than in X-rays, until ~6525 when a
large X-ray outburst starts. The UV/optical rise might be associated
with an inwardly propagating increase in accretion rate which even-
tually hits the X-ray emission region. However, unless the ratio of
disc scaleheight to radius is larger than the normally assumed value
of 0.1, or the accretion rate increase propagates not through the
disc but through a corona over the disc, or the perturbation starts at
small radius (~20 R,), this explanation is not viable as the viscous
time-scales from 100 R, are too long (~10 years; cf. Breedt et al.
2009).

The relevance of seed photon variations. Although it is possible,
by eye, to suggest periods when the UV-optical might lead on short
time-scales (e.g. day 6150), such periods are rare and may just be
statistical fluctuations. On average, the X-rays lead. Although this
observation is simply explained by assuming that all X-ray vari-
ability is generated within the corona, one might ask why variations
in seed photon flux, where we would expect the UV-optical emis-
sion to lead, appear to have little effect on the measured lags. We

MNRAS 444, 1469-1474 (2014)
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suggest that the answer is provided by a combination of relative solid
angles and conservation of photons during the X-ray scattering pro-
cess. Compton scattered X-ray photons have energies 10—100 times
greater than the seed photon energy. As the disc fills a large fraction
of half the sky as seen by the X-ray source, a large fraction of the
Compton scattered photons will hit the disc, out to radii beyond the
source of most of the seed photons. If these photons are absorbed
by the disc, leading to blackbody emission without conservation of
photon number, the resultant number of lower energy UV-optical
photons produced may exceed the initial seed photon fluctuation.
This process could also add a further delay to the optical light
curves, aiding agreement with observation.
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