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Optimal Learning on Climate Change: Why Climate

Skeptics Should Reduce Emissions∗

Abstract

Climate skeptics typically argue that the possibility that global warming is exoge-

nous, implies that we should not take additional action towards reducing emissions

until we know what drives warming. This paper however shows that even climate

skeptics have an incentive to reduce emissions: such a directional change generates

information on the causes of global warming. Since the optimal policy depends

upon these causes, they are valuable to know. Although increasing emissions would

also generate information, that option is inferior due its irreversibility. We show

that optimality can even imply that climate skeptics should actually argue for lower

emissions than believers.

JEL-classification: D83, Q54, Q58

Key words: climate policy, global warming, climate skepticism, active learning,

irreversibilities

1 Introduction

Many policy makers and members of the public question the supposed link between global

warming and man-made emissions of greenhouse gases: according to a 2007/8 Gallup

Polls survey, 97 percent of all US adult citizens say they are aware of global warming,

but only 49 percent of them believe that it is anthropogenic. Although there is more

consensus among climate scientists, some remain uncertain as well: Farnsworth and Lichter

(2011) for example report that 16 percent of climate scientists are not wholly convinced of

∗We thank two anonymous referees, Andrea Craig, Christian Gollier, Mark Kagan, Larry Karp, Shaun
Larcom, Radek Stefanski, Cees Withagen, and audiences at the LSE (Grantham Institute), University of
Oxford (OxCarre), VU University Amsterdam, and the EAERE-conference in Toulouse for their input.
Comments and references provided by John van Boxel, Gian-Kasper Plattner, and Bart Verheggen greatly
improved the climate-scientific side of this paper. Any errors are naturally ours.
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the anthropogenic view. Skepticism among policy makers seems even more widespread:

in 2006, the US president of that time (George W. Bush) expressed his concerns on

global warming, but simultaneously stated that “there is a debate over whether it is

man-made or naturally caused”.1 Corresponding views can for example be heard among

policy makers in China (Xie Zhenhua, their lead negotiator in the last three UN Climate

Conferences), the Czech Republic (their previous president Václav Klaus), and Russia

(Vladimir Putin). More generally, virtually all countries have their climate skeptical

political parties, Members of Parliament, et cetera.

Since the climate skeptic position is so widely represented in reality, this paper casts

the underlying debate in a formal framework and provides a normative analysis of what

the optimal policy for these skeptics actually looks like. We focus on skepticism on the

causes of global warming (is it due to natural, or due to anthropogenic forces?) and define

a climate skeptic as someone who is uncertain on these causes.2 In practice, such skeptics

typically propose a rather passive policy. They tend to argue that the possibility that

global warming is driven by exogenous factors (like increases in solar activity) implies that

we should not take additional action towards reducing greenhouse gas emissions until we

know what causes our climate to change: Mitt Romney (the Republican candidate in

the 2012 US elections) for example argued in October 2011 that “we do not know what

is causing climate change on this planet” and that “the idea of spending trillions and

trillions of dollars to try to reduce CO2 emissions is not the right course for us”.3 Since this

position opposes that of “IPCC believers”(who are convinced of the anthropogenic nature

of climate change and therefore argue in favor of emission reductions), these contrasting

views on the causes of global warming have led to a fierce policy debate.

Although the argument that genuine uncertainty on the causes of global warming

weakens the case for emission reductions may make intuitive sense at first sight, this

paper shows that it is incomplete as it neglects the production of information and the

accompanying learning process on how our climate functions. Once this learning process is

taken into account, it is shown that uncertainty is not a reason for inaction, but a powerful

motive for action instead. In particular, we show that even climate skeptics have an

1See http://georgewbush-whitehouse.archives.gov/news/releases/2006/06/20060626-2.html.
2This seems the most common form of climate skepticism, but there are others. Note that this

is different from someone who is 100 percent certain that global warming is exogenous. This extremer
position, which leaves no room for learning, is relatively rare among policy makers (cf. the aforementioned
quote by George W. Bush, where he talks about “a debate”, while Xie Zhenhua has stated that China
is keeping “an open attitude”on the causes of climate change). It is moreover also inconsistent with the
standard definition of a skeptic (“a person inclined to question or doubt accepted opinions”).

3See “Mitt Romney Embraces Climate Denial: ’We Don’t Know What’s Causing Climate Change’”
in The Huffi ngton Post of October 28, 2011.
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incentive to reduce greenhouse gas emissions relative to current levels: when uncertain on

the relationship between a control variable (such as emissions) and a potentially dependent

variable (such as global temperature), decision makers obtain an incentive to change

the control through a policy shift (like reducing emissions). The reason is that such a

change of direction produces information on whether the potentially dependent variable

is indeed dependent. Since the optimal policy depends on whether this is the case or not,

information on the causes of global warming is valuable.

Although an equally-sized increase in emissions could be just as informative, that

strategy suffers from the fact that emitting these gases is irreversible. Consequently,

there is the risk that decision makers cannot adjust their policy to the additional infor-

mation they have produced over time - thereby rendering this information useless. After

all, information is only valuable if it is able to change behavior. If we (after consciously

emitting more greenhouse gases) learn that global warming is indeed caused by this chan-

nel, we cannot use this information by undoing the previous policy via removing these

gases from the atmosphere (although we have by then found out that they are harmful).

In contrast, a cautious policy leaves all options open - making it more robust: if this

policy teaches us that there is a link between the stock of greenhouse gases and global

temperature, the prudence was justified. Alternatively, we can always increase future

consumption of greenhouse gases if the cautious policy tells us that there is no such link.

So under the cautious strategy, the information that is produced over time is actually

useful as decision makers can improve their future actions by incorporating it.

One may of course question whether outspoken characters (like Al Gore in the “IPCC

camp”or Václav Klaus in the “non-believers camp”) actually want to learn and are willing

to change their beliefs in response to new data.4 Even in the most extreme case where

this is not so, more outspoken data would make it more likely that new policy makers

(who have not joined a particular camp yet) will adopt the correct view - especially if

more informative data also raises the proportion of voters with correct beliefs (as this

increases the probability that they will elect politicians who share these beliefs).

4But keep in mind that agents have updated their beliefs in similar debates which had equally polarized
starts, like that on acid rain (see Section 3 below). Also note that the former Russian president Dmitry
Medvedev did “switch camps”by abandoning his initial skepticism (see “6 Global Warming Skeptics Who
Changed Their Minds”in The Week of September 1, 2010). So did the Australian prime minister Tony
Abbott: although he initially dismissed the man-made global warming hypothesis (famously stating in
2009 that “the argument is absolute crap”), he said in 2013 that “climate change is real”and that “hu-
manity makes a contribution” (cf. http://www.abc.net.au/insiders/content/2012/s3838363.htm). This
still did not prevent him from scrapping Australia’s carbon tax, though. Also see “The Conversion of a
Climate-Change Skeptic” in The New York Times of July 28, 2012 for an account of a former climate
skeptic (Richard A. Muller, professor of physics at UC Berkeley) who has become an IPCC believer after
seeing more data points.
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At this stage, we wish to emphasize that this paper is normative in nature and inten-

tionally abstracts from political-strategic considerations: we take policy makers for their

word if they claim to be climate skeptic and assume that they are genuinely uncertain

on the causes of climate change (descriptively, this assumption seems most appropriate

for skeptical voters). Subsequently, we ask what the optimal policy for these skeptics

looks like, and find that even they should argue (or vote) for emission reductions relative

to current levels. This brings consensus in the policy debate, while it - ironically - also

reduces the political attractiveness of the climate skeptic position. In fact, we will show

that it is even possible that a climate skeptic should actually argue for tighter emission

standards than a convinced IPCC believer!

The remainder of this paper is structured as follows. After linking this paper to the

existing literature in Section 2, Section 3 illustrates that the learning process on the causes

of global warming is facilitated by either in- or decreasing greenhouse gas emissions relative

to some uninformative emission level. Section 4 will then show that an optimizing agent

who is faced with the irreversibilities related to the emission of greenhouse gases, prefers

to experiment by reducing emissions. Section 5 discusses this result and its implications,

after which Section 6 concludes.

2 Related literature

This paper applies the notion of “active learning”(also referred to as “optimal learning”

or “optimal experimentation”) to the climate change debate. The idea of this concept is

that a decision maker optimally balances the trade-off between estimation and control of

a system. In particular, active learners realize that they are learning from self-generated

observations. Consequently, they optimally take the production of information into ac-

count when setting their control variable, recognizing that their actions can also produce

information. Active learning was first developed in the engineering literature (where it

is known as “dual control”) and was subsequently brought to the economic sciences by

MacRae (1972) and Prescott (1972). Since then, it has for example been applied to a mo-

nopolist who wants to learn his demand curve (Rothschild (1974); Aghion et al. (1991);

Willems (2012)), experimental consumption of medicinal products (Grossman, Kihlstrom

and Mirman, 1977), as well as to a monetary authority who wants to learn parameters of

an economy it tries to control (Bertocchi and Spagat, 1993).

This paper analyzes how we can optimize our learning process on the causes of climate

change. In this sense it also relates to Kelly and Kolstad (1999). In their paper, however,
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the decision maker is convinced that global warming is anthropogenic and only wants

to increase the precision of his estimate of the sensitivity of global temperature to the

atmospheric stock of greenhouse gases. Motivated by the observation that many agents in

practice are stuck at an earlier stage (questioning whether there is a link between global

warming and human activities in the first place), this paper abstracts from the learning

process on the climate sensitivity parameter - all the more so because the exact value

of that parameter does not seem to be very learnable (even in the face of more extreme

data; see Kelly and Kolstad (1999) and Roe and Baker (2007)). This reduces the active

learning incentive along that dimension (after all: why introduce costly deviations from the

myopically optimal emission level if such deviations do not produce much information?).

Here, we take this to the extreme by completely neglecting the active learning motive for

the climate sensitivity parameter - focusing on the learning process about whether global

warming is endogenous or exogenous instead.

Finally, this paper also builds upon studies that have investigated the consequences of

irreversibilities in environmental settings. Following the seminal contributions of Arrow

and Fisher (1974) and Henry (1974), many papers have analyzed the so-called “quasi-

option value”to maintaining flexibility that exists if the quality of information increases

over time (see e.g. Epstein (1980) and Gollier and Treich (2003); contributions by Kolstad

(1996a,b) and Ulph and Ulph (1997) focus explicitly on global warming). These papers

however assume that information arrives exogenously with the passage of time, while the

key of this paper is that the acquisition of information is endogenized.

3 Learning the causes of global warming

To see how the active learning process on the causes of global warming evolves, this section

develops a tractable Bayesian learning model that will be employed in the policy maker’s

decision problem in Section 4.

In the model, the change in global temperature τ from period t−1 to period t (∆τ t ≡
τ t − τ t−1) is given by:5

∆τ t = α + βct + εt (1)

Here, ct is the period t emission of greenhouse gases, while the intercept α represents

the possibility that global temperature is increasing because of long-run exogenous factors,

5“Global temperature”should be taken as a broad, encompassing metric. It should not just capture
the temperature of the Earth’s atmosphere, but also that of the oceans (as they absorb heat as well;
Guemas et al. (2013) argue that this is why the warming of our atmosphere has slowed down recently).
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such as a trend in solar activity (see Solanki et al. (2004) who show that solar activity

has been exceptionally high over the past 70 years).6 The slope parameter β on the other

hand captures the possible relationship between global temperature and greenhouse gas

emissions.7 Finally, εt is a disturbance term representing other shorter-lived phenomena

that temporarily affect global temperature (such as a cold winter in Latin America due to

tropical volcanic eruptions). It is assumed that disturbances ε are i.i.d. and that they are

drawn from a uniform distribution with known, bounded support, i.e. ε ∼ U [−ε, ε]. As we
will see later on, this assumption implies that Bayes’rule renders learning discrete (either

nothing is learned, or the full truth is learned), which delivers analytical convenience

without losing generality (cf. Bertocchi and Spagat (1993)). Relaxing this assumption

would not affect the active learning incentives (see Appendix A), but doing so greatly

increases analytical complexity because of the nasty form Bayesian updating then takes.

The key is that the true values of both α and β are unobserved. It is however known

that there are only two possible states of the world (let us refer to the accompanying

parameter values as φ1 and φ2). State 1 represents the IPCC scenario in which increases

in global temperature are driven by greenhouse gas emissions, while there is no upward

trend due to exogenous factors (such as solar activity). Hence, α(φ1) = 0 and β(φ1) = β,

with β > 0. In state 2 on the other hand, the upward trend in global temperature is

completely exogenous to human behavior and the emission of greenhouse gases does not

play a role. Hence, α(φ2) = α and β(φ2) = 0, with α > 0.8 We thus have:

∆τ t (φ1) = βct + εt

∆τ t (φ2) = α + εt

6Although we take α to be constant, one could also allow for exogenous changes in this parameter.
But in order to be able to match the observed persistent increases in global temperature (which have
been going on for over 100 years already), one would have to make the cycle for α slow-moving with a
very long period. Consequently, holding α constant over the time-scale of our learning model might not
be such an unrealistic approximation.

7Observe that repeated substitution on (1) leads to τ t = τ + (t+ 1)α+ β
∑t
j=0 cj , where

∑t
j=0 cj is

the atmospheric stock of greenhouse gases at time t (potentially relative to a certain base level c, which
we have normalized to zero for convenience). This expression for the time t temperature level is relatively
standard in the literature (cf. equation (1a) of Kelly and Kolstad (1999)), apart from the fact that we
allow for an exogenous trend α.

8Our assumption that global warming is either fully due to exogenous factors or fully due to green-
house gas emissions, is probably a stretch of reality: there, the IPCC acknowledges a (minor) role for
natural factors, while some skeptics also allow for a (minor) role for greenhouse gases. What does seem
true however, is that α(φ1) < α(φ2) and β(φ2) < β(φ1). This is the essential part of our argument.
Consequently, our assumption that α(φ1) = β(φ2) = 0 is without loss of generality. In reality there is
also a debate on the exact value of β, but as set out in Section 2 the value of this climate sensitivity
parameter is not very learnable, as a result of which we will abstract from active learning motives with
respect to this term.
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The remainder of this section shows that these two cases are easier to distinguish for

more extreme emission levels (i.e. emission levels that are located further away (in ab-

solute value) from the uninformative “confounding”emission level, which will be defined

below). Intuitively, in the limiting case where we stop emitting greenhouse gases alto-

gether (i.e. set ct+k = 0 ∀k > 0), the upward trend in global temperature should slow

down if the IPCC is right (as illustrated in Figure 1 of Solomon et al. (2009), which is

reproduced as Figure 3 in Appendix B to this paper). On the other hand: if the Earth

continues to heat up at a constant rate well after we have stopped emitting greenhouse

gases, global warming is likely to be driven by exogenous factors. A similar reasoning

applies to upward experimentation.

The idea is thus to engineer a trend break in the control (emissions) and see whether

this subsequently translates into a trend break in the potentially endogenous variable

(global temperature). The rise in global temperature following the post-World War II

trend break in emissions already convinced many skeptics that global warming is man-

made, but others attribute it to the coinciding increase in solar activity (for example

documented by Solanki et al. (2004)). As can be seen from the so-called “Keeling Curve”

(which shows a sustained linear increase in carbon concentration levels), there are no

trend breaks in the post-war data. Consequently, the current data are not able to falsify

either hypothesis. Introducing a trend break would change this.

Since our model is essentially concerned with hypothesis testing, agents should of

course commit themselves to a particular hypothesis that can be falsified by the data. If

such falsification occurs, they could always propose ex-post modifications to the theory so

that it can explain the data after all. The point however is that this does the credibility

of their theory little good - particularly in the climate setup. After all, it would be

unlikely that an exogenous, unexpected, non-cyclical change in natural factors turns out

to coincide with a man-induced trend break in emissions (especially since natural changes

of this kind are extremely rare and often operate at geological time-scales).9

One should also keep in mind that this learning process will take time: despite the fact

that changes in greenhouse gas emissions have an instantaneous impact on atmospheric

temperature (Solomon et al., 2009), the presence of noise (weather) obscures inference by

decreasing the signal-to-noise ratio. Santer et al. (2011) take this into account and show

that one needs about 15 years of data before temperature changes can be attributed to

9The required natural phenomenon should be an unexpected, non-cyclical change: after all, if the
change would be expected (e.g. driven by a turning point in the solar cycle, which is predictable up to
an error margin of several years), it would be factored into the predictions made. Moreover, the solar
cycle is cyclical (with a period of about 11 years), as a result of which it would not be able to account
for a structural break in the temperature data, which is what agents in our paper are looking for.
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either changes in greenhouse gas emission levels or exogenous factors. Consequently, a

period in the model should be thought of as about a decade and a half in reality.

History moreover suggests that the time delay associated with the learning process is

not an insurmountable problem: the workings of the “active learning by doing”strategy

we propose have already been shown in relation to a similar problem from the past, namely

that of acid rain.10 During the 1960s, an increasing number of streams and lakes in Norway

were reported to be acidic. Initially, it was fiercely debated whether these changes were

anthropogenic or not, but nevertheless sulfur emissions were cut in a drastic manner.

After several years (again due to the existence of short-run fluctuations), observers began

to notice that the level of acidity in Norwegian waters had fallen, as a result of which there

is nowadays little doubt left that the changes were in fact man-made (even former skeptics

have updated their beliefs by now). Consequently, we are still careful with emitting sulfur

today, and will remain so in the future, so the aggressive sulfur reduction policies from

the 1970s and 80s did produce valuable information. Along similar lines, the EU recently

decided to ban pesticides linked to bee deaths, despite the fact that the supposed link

is debated. The European Commission however said that it wanted to “err on the side

of safety”.11 The ban is in any case going to be in place for two years (to allow for the

learning lag), unless any new scientific evidence emerges before that time.

To formalize the learning process for the global warming case, we can exploit our

assumption that the disturbance term ε has bounded support (i.e. that ε ∈ [−ε, ε]).
Consequently, we know with certainty that:

∆τ t (φ1) ∈
[
βct − ε, βct + ε

]
(2)

∆τ t (φ2) ∈ [α− ε, α + ε] (3)

Graphically, this can be visualized as in the upper panel of Figure 1. There, the key is

to observe that learning is complete when ct ≤ c∗ or ct ≥ c∗∗. In those cases, the regions

for ∆τ t (φ1) and ∆τ t (φ2) are non-overlapping as a result of which we immediately find

out which state we are in.

We can actually derive analytical expressions for these cut-off values. In particular, c∗

10See Seip (2001) for an overview of this debate with a particular focus on Norway.
11See http://money.cnn.com/2013/04/29/news/world/bees-ban-pesticide-europe/index.html. This is

an expression of the so-called “precautionary principle”, which prescribes that if there is a risk that
a certain activity produces irreversible damage, lack of consensus should not be used as an argument
to postpone measures that can prevent such damage from occurring (see e.g. Bodansky (1991) and
Immordino (2003) on this principle).
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Figure 1: Graphical representation of the learning process

and c∗∗ are defined by:

βc∗ + ε = α− ε⇔ c∗ =
α− 2ε

β

βc∗∗ − ε = α + ε⇔ c∗∗ =
α + 2ε

β

We will assume that ε < α/2, such that c∗ > 0. This restricts the power of the active

learning motive in such a way that it will never call for a negative greenhouse gas emission

level (this will become clear in our discussion around equation (23) below). Given the

magnitude of current emissions, we see this as a realistic restriction. After all, it is hard to

imagine that the experimentation motive by itself becomes so strong that, starting from

current greenhouse gas emission levels of about 50,000 megatonnes per annum, it would

actually call for reducing emissions all the way down to zero.

In the overlap region for which ct ∈ (c∗, c∗∗), learning is probabilistic: if you are lucky

enough to receive a (∆τ t, ct)-observation that lies outside the range of either (2) or (3),

you learn the full truth. When the (∆τ t, ct)-observation can occur under both scenarios,

the uniformity assumption on the noise term implies that nothing is learned (the posterior

belief is just equal to the prior belief). Exploiting this uniformity of ε, the probability of
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learning the truth for all ct ∈ (c∗, c∗∗) can be shown to equal:

P =

∣∣α− βct∣∣
2ε

(4)

Note from equation (4) that when either c∗ or c∗∗ (or something more extreme) is

chosen, P = 1 - which is consistent with the way these revealing emission levels are

defined. On the other hand, P = 0 for c = α/β (also see the lower panel of Figure 1,

which depicts P as a function of c). Hence, for ct = α/β the endogenous and exogenous

warming case are indistinguishable. The reason is that this is the so-called “confounding”

emission level, where the two lines intersect and where we do not learn anything about

what drives global warming.

Also observe from (4) and the lower panel of Figure 1 that the function P is symmetric

around this confounding emission level: the production of information only depends on∣∣ct − α/β∣∣ (not on sgn
(
ct − α/β

)
), so positive deviations of ct from α/β are just as

informative as negative ones. The fact that positive deviations of ct from α/β are exactly

as informative as negative ones is due to the assumption that equation (1) is linear.

Although this assumption is common in the literature (cf. footnote 7), assuming that

(1) is non-linear could make a difference. In this respect, climate studies suggest that

the temperature response to an emission reduction is faster than that to an increase in

emissions.12 Since this non-linearity increases the attractiveness of implementing a policy

change in the downward direction relative to one in the upward direction for reasons other

than the irreversibility (namely learning speed), this modification would only strengthen

the findings that this paper will arrive at.

4 Optimizing model

Now that we are familiar with the active learning process on the causes of global warming,

we can investigate how this process affects decisions related to greenhouse gas emissions.

We do this through a simple two-period model, in which the active learning motive is

going to interact with the fact that emitting greenhouse gases is irreversible. In the

model, period 1 represents the learning phase, while period 2 captures the remaining

12See Stouffer (2004): any development that cools the ocean surface makes the oceans less stable,
thereby promoting mixing between the surface and deeper (cooler) waters. As a result, cooling the
oceans down is easier than warming them up. Given the tight link between oceanic temperatures and the
average temperature of the Earth’s atmosphere, this implies that the atmospheric temperature response
to an emission reduction is faster than that to an increase in emissions.

10



future. Over time, learning occurs by applying Bayes’rule in the face of new data points.

We consider a decision maker who derives utility from the consumption of greenhouse

gases ct in each period t. Upon consuming a unit of c, it is emitted into the Earth’s

atmosphere. Consumption of greenhouse gases is free, but the atmospheric presence of

these gases may prove to be harmful in the future (if it causes global warming). Fur-

thermore, greenhouse gas consumption is irreversible: once emitted, it is not possible to

remove greenhouse gases from the atmosphere again, so ct ≥ 0.

Following Ulph and Ulph (1997, p. 640), we assume that damages resulting from

global warming are going to materialize at the end of period 2. If global warming is

man-made, these damages will be proportional to
∑2

t=1 ct, the atmospheric greenhouse

gas stock at that point (as those then determine (τ 2 − τ), which is the total amount of

warming relative to the base temperature level τ).

At the beginning of period 1, the Earth is endowed with an exhaustible stock of

greenhouse gases that resides beneath the Earth’s surface (think of this as subsoil oil).

We normalize this stock to 1. Since it is depleted over time, future consumption choices

are constrained by the amount of gases consumed in the past. In particular:

c1 ∈ [0, 1] (5)

c2 ∈ [0, 1− c1] (6)

We follow the literature in assuming that the objective function (the sum of the utility

generated by the consumption of greenhouse gases and the disutility of global warming)

is concave. For concreteness we will take it to be linear in temperature increases and

logarithmic in greenhouse gas consumption (but our results are robust to other com-

mon specifications, such as the more general CRRA-utility function). Abstracting from

discounting and natural decay of atmospheric greenhouse gases to lighten notation, the

pay-off function (conditional on the actual values of α and β and the realizations of the

ε’s, indicated by α̂, β̂, and ε̂ respectively) is given by:13

U(c1, c2; α̂, β̂, ε̂) =

2∑
t=1

log(ct)− (τ 2 − τ) =
2∑
t=1

log(ct)− 2α̂− β̂
2∑
t=1

ct −
2∑
t=1

ε̂t (7)

13In this specification both periods receive equal weight. Since the final period is meant to capture the
infinite future, that period should actually obtain a larger weight (proportional to 1/(1− d), where d is
the discount factor). However, as this would only affect the optimal level of experimentation (which is
not analyzed in this paper, since it would require a less stylized model to start from), we neglect this for
analytical convenience. Moreover, as we will point out in footnote 17, the effect of this assumption on
the crucial first-order condition (23) is actually not that unrealistic.
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How and whether the decision maker finds out which state we are actually in (i.e.

what the true values of α and β are), will be differentiated in the following subsections.

We will use our model to answer two questions:

1. Given the current state, what does the optimal policy for a climate skeptic look like

from period 1 onwards? That is: what kind of policy would be implemented by a

climate skeptical social planner if he were to take over power at the beginning of

period 1? Would he in- or decrease emissions relative to current levels? This is dealt

with in Section 4.1.

2. Can optimality imply that climate skeptics should actually argue for lower emission

levels than IPCC believers? This is dealt with in Section 4.2.

To answer Question 1, we need to compare the optimal climate policy to actual policies

followed by most countries in the recent past. Consequently, we first need to characterize

the latter in terms of our model. To obtain such a “benchmark”emission level (henceforth

referred to as cb), we assume that it is based upon an optimization process in our two-

period framework when the policy maker is climate skeptic, but when he does not take

the possibility of learning into account (which seems a reasonable description of current

practices in reality). In this respect, it is straightforward to show that maximizing (7)

while ignoring the possibility of learning leads to:

cb =
1

θβ
, (8)

where θ ∈ (0, 1) denotes the policy maker’s prior belief that global warming is endoge-

nous.14

According to climate skeptics, this emission level cb is non-informative on the causes

of climate change. Todd Myers, a prominent climate skeptic, has for example stated that

“climate models indicate that the impact of current CO2 concentrations on the climate is

slight, within the noise level in the data. In other words, according to the climate models,

we are at levels in which it is hard to distinguish the CO2 impacts from natural forces”.15

14Strictly speaking the solution is cb = min
[
1
θβ
, 12

]
, but the problem becomes trivial if the exhaustibility

constraint binds in the absence of learning considerations. In that case, the optimality of downward
experimentation follows immediately from concavity of the utility function: when the resource constraint
is binding, an increase in emissions by X in period 1 should be met by a corresponding decrease of at
least X in period 2. But when marginal utility decreases with consumption, the latter correction induces
a larger utility loss than the utility gain enjoyed in period 1. Consequently, downward experimentation
becomes optimal for reasons that are not the focus of this paper. We therefore assume that we are at an
interior optimum such that cb = 1

θβ
. We thank an anonymous referee for pointing this out.

15See “Climate Data That Sounds Meaningful...But Isn’t”(by the Washington Policy Center).
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This description fits closely with our Figure 1, which shows that the confounding emis-

sion level equals α/β. So apparently the values of α and β that climate skeptics like Todd

Myers have in mind, are such that the exogenous and endogenous global warming case are

diffi cult to distinguish from each other around current emission levels. Consequently, we

follow skeptics like Myers by assuming that the current emission level cb is uninformative

on the causes of global warming, which in terms of our model implies that:

cb =
α

β
(9)

4.1 Characterization of optimal policy

Climate policy as encapsulated in the choice of cb is clearly suboptimal given the fact that

informational spillovers (and the associated learning considerations) are not incorporated.

Let us therefore investigate what the optimal policy looks like. That is: what policy would

be implemented by a social planner who takes into account that the quality of information

may increase over time?

In order to answer this question, we start by considering the problem under complete

certainty in Section 4.1.1. In this case, the decision maker knows the actual values of α

and β (indicated by α̂ and β̂) at the start of period 1 (before setting c1) already. Section

4.1.2 analyzes what happens if he does not have this information at the start of period 1,

but may learn it (in a passive manner) at the start of period 2 (before setting c2). Section

4.1.3 subsequently analyzes the case of active learning, in which the decision maker realizes

that the probability of learning is actually endogenous. In all specifications the pay-off

function is given by (7), while ct is set sequentially at the beginning of each period t.

4.1.1 Complete certainty

First consider the extreme case where the decision maker knows at the beginning of period

1 already whether global warming is exogenous or endogenous (so that uncertainty and

learning do not play a role). His problem reads:

max
c1,c2

log(c1) + log(c2)− 2α̂− β̂ [c1 + c2] ,

subject to (5) and (6).

Here, α̂ = 0 and β̂ = β (α̂ = α and β̂ = 0) for a decision maker who knows that global

warming is endogenous (exogenous). The first-order conditions then imply:

13



cCCt =

{
1
2

if warming is exogenous

min
[

1
β
, 1

2

]
if warming is endogenous

, for t = 1, 2 (10)

where “CC” indicates that this is the solution under complete certainty. Equation

(10) shows that if global warming is known to be exogenous, the exhaustible resource

will be fully exploited; the exhaustibility constraint is then always binding and ct = 1
2

for t = 1, 2. If global warming is known to be endogenous, (10) implies that either the

resource will be exploited fully as well (if β < 2), or greenhouse gas consumption will be

reduced compared to the exogenous warming case (if β > 2).

When β < 2, climate sensitivity is so low that emissions are not a problem worth

worrying about. As a result, the exhaustibility constraint will be binding even it is known

that global warming is endogenous and there is no value to learning the true causes of

climate change anymore: the optimal policy does not depend on the nature of global

warming and cCCt = 1/2 in both states. Consequently, there is nothing to argue about for

policy makers. In the second case (β > 2), warming is serious enough such that knowing

that global warming is anthropogenic would lead to a change in policy compared to the

exogenous warming case. In particular, emissions would be reduced.

Judging from the existence of a fierce policy debate on which state we are actually

in (exogenous or endogenous global warming?), climate policy being irrelevant because

inconsequential does not seem to be the case in reality. We therefore assume that β > 2

henceforward, as a result of which there does exist a meaningful climate-debate. Under

this condition, a decision maker living in a world where global warming is known to be

anthropogenic would set a lower emission level than a decision maker living in a world

where global warming is known to be exogenous.

4.1.2 Skepticism, passive learning

As set out in the Introduction to this paper, many policy makers (and voters) in practice

do not adhere to one of the extreme positions covered by (10), but hold a skeptical attitude

towards the causes of global warming instead.

Let us therefore consider a skeptical social planner who does not know the true values

of α and β at the beginning of period 1, but who knows that he will learn these values with

probability P at the beginning of period 2 (before he sets c2). Exploiting our assumption

that the costs of global warming are incurred in the final period (so that they are contained

in the indirect utility functions V (·)), the optimization problem can be written as:

14



max
c1,c2

log(c1) + PE1

{
V (cSL2 )

}
+ [1− P ]E1

{
V (cSNL2 )

}
,

subject to (5) and (6).

We can solve the problem by backward induction. Here, the fact that our disturbance

term ε is drawn from a uniform distribution with bounded support (as a result of which

learning is discrete) pays off in terms of tractability. Thanks to this assumption, there are

only two possibilities at the beginning of period 2: either the decision maker has learned

the true state of nature (which happens with probability P ), or he has not. Consequently,

those are the only two cases that we need to consider at the start of the second period,

after which we can move back and analyze the problem at the beginning of period 1.

Period 2, no learning First consider the beginning-of-period-2 problem of a deci-

sion maker who has not learned the true causes of global warming by the end of period 1.

Consequently, he continues to use his prior belief θ in period 2 (this follows from combin-

ing Bayes’rule with the uniformity assumption on ε; cf. Bertocchi and Spagat (1993)).

The problem is then given by:

max
c2∈[0,1−c1]

log(c2)− 2 (1− θ)α− θβ [c1 + c2] , (11)

and the decision maker sets:

cSNL2 = min

[
1

θβ
,
1

2

]
, (12)

where “SNL”indicates that this is the solution to a skeptic’s problem who has not

learned the causes of global warming. One can furthermore show that cSNL1 = cSNL2 , which

we will use later on.

Going forward, we first assume θβ > 2 such that (12) simplifies to cSNL2 = 1
θβ
(but as

we will argue at the end of this section, the case where θβ < 2 has similar implications).

Using this in the pay-off function (11), shows that indirect utility to this policy maker is:

V (cSNL2 ) =

{
− log

(
θβ
)
− 2α if warming is exogenous

− log
(
θβ
)
− βc1 − 1

θ
if warming is endogenous

(13)

Period 2, learning Next, consider a skeptical decision maker who has learned the

causes of global warming by the end of period 1 (indicated by “SL”). He solves:

15



max
c2∈[0,1−c1]

log(c2)− 2α̂− β̂ [c1 + c2] (14)

So he sets:

cSL2 =

{
1− c1 if warming is exogenous

1
β

if warming is endogenous
(15)

Expression (15) is intuitive: if it is learned that global warming is exogenous, there

is nothing wrong with emitting greenhouse gases and it is optimal to consume whatever

there is left at the beginning of the final period (1 − c1). If the decision maker learns

that global warming is anthropogenic on the other hand, he will be more cautious - and

increasingly so the more responsive global temperature is to the atmospheric stock of

greenhouse gases (captured by β). Plugging (15) into the pay-off function (14) gives:

V (cSL2 ) =

{
log (1− c1)− 2α if warming is exogenous

− log
(
β
)
− βc1 − 1 if warming is endogenous

(16)

Period 1 Now we can move back to the start of period 1. At this stage our decision

maker is uncertain on the causes of global warming (as expressed by his prior belief

θ ∈ (0, 1)). He does however realize that there is a probability P that he will learn these

true causes before setting c2. We can rewrite the first-period maximization problem for

this decision maker as:

max
c1∈[0,1]

log(c1) + PE1

{
V (cSL2 )− V (cSNL2 )

}
+ E1

{
V (cSNL2 )

}
(17)

By applying the prior belief θ to equation (13), one can show that the beginning-of-

period-1 expectation of the indirect utility that will be obtained by a policy maker who

will not learn the causes of global warming before the start of period 2, equals:

E1

{
V (cSNL2 )

}
= − log

(
θβ
)
− θβc1 − 2 (1− θ)α− 1 (18)

Similarly, the expected value added from learning the causes of global warming at the

beginning of period 2 (indicated by E1

{
V (cSL2 )− V (cSNL2 )

}
≡ E1

{
∆V L

}
) equals:

E1

{
∆V L

}
= log (θ) + (1− θ)

[
1 + log

(
β
)

+ log (1− c1)
]

(19)

Using the result that 1/θβ ≤ (1− c1) (by feasibility) and − log (θ)− 1/θ < −1 (since
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θ ∈ (0, 1)), a comparison of equations (13) and (16) shows that:

E1

{
∆V L

}
> 0 (20)

So knowing whether emitting greenhouse gases is damaging or not is valuable, which

is intuitive: after all, once we know which state of the world we are in, we can condition

our decision and implement the optimal policy for that state. If we remain uncertain on

the other hand, we cannot condition. In that case, we would have to work with some kind

of average rule (in this paper’s context given by (12)), which works well in expectation,

but is suboptimal for either state realization. However, do observe from (19) that:

∂E1

{
∆V L

}
∂c1

= − 1− θ
1− c1

≤ 0 (21)

This expression is important to the results in this paper (while a similar effect typically

arises in other papers along the Arrow-Fisher-Henry lines). It tells us that the expected

benefit from learning the truth is decreasing in first period consumption c1. The intuition

for this is that a higher choice of c1 reduces the action space of the decision maker in the

second period, as a result of which he has less room to actually use the information that

he produced during the first period (also see Gollier and Treich (2003) on this). In the

limit, if the decision maker decides to consume the complete resource stock in period 1,

he is very likely to find out whether global warming is endogenous or not, but he has no

freedom left to exploit this information: irrespective of the outcome of his learning process,

there is nothing left to consume (while reducing the atmospheric stock of greenhouse gases

above the natural rate of decay is not feasible because of the restriction that ct ≥ 0).

Using (18) and (19), one can rewrite the problem in (17) as:

max
c1∈[0,1]

log(c1) + P
{

log (θ) + (1− θ)
[
1 + log(β) + log(1− c1)

]}
+
{
− log

(
θβ
)
− θβc1 − 2 (1− θ)α− 1

}
Hence, the accompanying first-order condition reads:

1

c1

− θβ − P (1− θ)
1− c1

= 0 (22)

By comparing the passive learner’s first-order condition (22) with that of a non-

learning skeptic (given by 1
ct
− θβ = 0), one can see that the prospect of learning reduces

a skeptic’s optimal emission level, i.e. cSPL1 < cSNL1 . As noted by O’Neill et al. (2006, p.
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585), this conclusion is supported by a wide variety of richer climate models.

So far, we have restricted our discussion to the case where θβ > 2. One should however

note that cSPL1 < cSNL1 also holds in the alternative case where θβ < 2 (which implies

that cSNL1 = 1
2
), provided that θβ + P (1−θ)

1−c1 > 2 (which makes cSPL1 < 1
2
by (22)). When

θβ + P (1−θ)
1−c1 < 2, we have cSPL1 = cSNL1 . Crucially, however, cSPL1 will never exceed cSNL1

- so in no parameter-configuration will the possibility of future learning lead to higher

emissions in the current period.

4.1.3 Skepticism, active learning

Just taking into account that additional information may arrive over time, is however

not enough to make a skeptic implement the optimal policy. The reason is that last

section’s passive learner neglects the fact that the signal-to-noise ratio, and thereby the

probability of learning the truth P , are actually endogenous. In particular, the passive

learner fails to realize that he is learning from self-generated observations and erroneously

sees the probability of learning the truth as an exogenous constant (that is: he thinks

that dP/dc1 = 0). The truth is however that P is given by equation (4) and is hence a

function of the first period decision c1. Consequently, the fully optimizing active learner

takes the effect of first period consumption on the probability of learning the truth into

account. The first-order condition of such an agent therefore reads:16

1

c1

− θβ − P (1− θ)
1− c1

+
dP

dc1

∣∣∣∣
c1=cSPL1

E1

{
∆V L

}
= 0, (23)

with
dP

dc1

=
βc1 − α∣∣βc1 − α

∣∣ β2ε
This first-order condition characterizes the active learning rule (cSAL1 ), which is the op-

timal period 1 consumption choice. Unfortunately, it is not possible to solve this equation

explicitly for cSAL1 , but we can determine the direction of experimentation by comparing

(23) with the first-order condition of the passive learner (22).

When doing so, it should be noted that E1

{
∆V L

}
> 0 (information is valuable, cf.

16Formally, (23) assumes that ε < α/2. This implies that c∗ > 0, such that there exists a region (0, c∗)
wherein learning is guaranteed with probability 1 (recall Section 3). If this weren’t the case, there is the
theoretical possibility that the active learning motive becomes so strong that it actually calls for setting
cSAL1 < 0 (even if cSPL1 > 0), which is not feasible due to the non-negativity constraint on ct. But
given the magnitude of current emissions (about 50,000 megatonnes per year), it strikes us as extremely
implausible that the experimentation motive by itself would call for reducing emissions by such a large
amount. Consequently, we are comfortable with ruling this extreme scenario out by imposing ε < α/2.
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equation (20)), while dP/dc1|c1=cSPL1
= −β/2ε < 0. The reason for the latter is that

cSPL1 < α/β (compare (22) with equations (8) and (9)), which follows from the fact that

taking the prospect of learning into account reduces first-period emissions. This places us

to the left of the confounding emission level in Figure 1. In that part of the state space

the probability of learning the truth is decreasing in emission levels, so active learning

induces the decision maker to reduce emissions relative to the passive learning solution

cSPL1 (and even more so relative to its current level cb). That is: cSAL1 < cSPL1 < cb.17

A climate skeptic thus has an incentive to change course, while the irreversibilities

associated with emitting greenhouse gases make him want to change “in the safe direction”

(recall the discussion following (21)). Hence, even climate skeptics have an incentive to

argue (or vote) for emission reductions relative to current (in their eyes uninformative)

levels. For politicians, a failure to do so could be explained by political motives, but is

hard to justify upon grounds of optimality.

So far, we have focused on the case where θβ > 2. In the alternative scenario where

θβ < 2, it follows from (23) that cSAL1 < cSPL1 still holds when cSPL1 < cSNL1 (= cb), i.e. the

case when θβ + P (1−θ)
1−c1 > 2 (recall the end of Section 4.1.2). If the latter condition is not

met, we again have that cSPL1 = cSNL1 (= cb) in which case the derivative dP/dc1|c1=cSPL1
is

no longer defined as its denominator
∣∣βc1 − α

∣∣ then collapses to zero (since then c1 = cb =

α/β, at which point the P -function given by equation (4) is non-differentiable). Intuitively,

even though the decision maker still wishes to move away from the confounding emission

level, he is indifferent as to whether he wants to deviate in the upward or downward

direction. But because θβ < 2 implies that the resource constraint will be binding in

the no learning case, it immediately follows that downward experimentation is the only

possible option left to him (due to the binding constraint, there is simply no room left to

experiment by emitting more).

4.2 Should skeptics actually emit less than IPCC believers?

Having said all this, one may wonder: is it actually possible that learning considerations

become so strong that a climate skeptic should in fact argue (or vote) for lower emissions

than a believer of the IPCC analyses?

17Under explicit incorporation of a discount factor d, the last two terms of (23) would be pre-multiplied
by d/(1− d). Note that when d = 0.5, this expression equals unity (as is implicitly the case in equation
(23)). Since a model period should be thought of as about 15 years in reality, d = 0.5 corresponds to an
annual discount rate of approximately 4.5 percent, which is at the upper end of the rates used in most
climate studies (Nordhaus tends to use 4.3 percent). Using a lower discount rate (like the “Stern Review”
did), would only strengthen the active learning motive.
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To answer this question, we rewrite the first-order condition for the active learner and

compare it to that of an IPCC believer (referred to as “IB”for short):

IB :
1

c1

= β (24)

SAL :
1

c1

= β − (1− θ) β︸ ︷︷ ︸
I

+
P (1− θ)

1− c1︸ ︷︷ ︸
II

− dP

dc1

∣∣∣∣
c1=cSPL1︸ ︷︷ ︸
III

E1

{
∆V L

}︸ ︷︷ ︸
IV

(25)

In the comparison, we refer to the terms by the Roman subscripts attached to them.

II is a positive term that raises the RHS of (25) and thus lowers c1. This term stems from

the pure impact of learning as such and works towards conservatism (recall the discussion

following equation (21) for the intuition behind this).

We have already seen in Section 4.1.3 that III is negative while IV is a positive term,

as a result of which their product is negative. Because of the minus sign preceding it in

(25), the product term III ∗ IV thus raises the RHS of (25) and hence also lowers c1.

This is the active learning effect, which also leads to more conservatism.

Finally, term I is positive so preceded by a minus sign it lowers the RHS of (25) -

thereby increasing first period emissions c1. This term is unrelated to learning and simply

captures the fact that doubts on the link between greenhouse gas emissions and global

warming in isolation, justify more consumption of greenhouse gases. This seems to be an

argument for climate skeptics who argue that uncertainty on the causes of climate change

weakens the case for emission reductions. But as equation (25) nicely shows, that kind

of reasoning neglects terms II, III and IV . These terms are all related to the learning

process and work towards more conservatism.18

Whether the “skeptical”or the “believing”first-order condition prescribes the lower

emission level, is therefore ambiguous: a climate skeptic who is learning in the optimal,

active manner may or may not want to set tighter emission standards than a convinced

18If we would incorporate a discount factor (d), terms II, III, and IV would all be multiplied by
d/(1− d). This makes it more likely that skeptics should argue for lower emissions than believers when
d is close to 1. Since the benefits of experimentation lie in the future (while the costs are incurred
today), discounting decreases experimentation incentives (Keller and Rady (1999) prove this in a general
setup). However, because the information produced by experimentation is not subject to depreciation
(the mere presence or absence of a link between greenhouse gas emissions and global temperature is
unlikely to change in the future (only the exact intensity may vary)), there is a strong benefit to learning
whenever some weight is attached to future generations (this is what the 1/(1− d)-term captures): once
we have learned whether the atmospheric presence of greenhouse gases is harmful or not, we can exploit
that information “until the end of the world” (cf. how the information produced by aggressive sulfur
reduction policies in the 1970s and 80s is still useful to us today in preventing acid rain).

20



IPCC believer (or another skeptic, but one with a higher θ) would.19 To shed light on

that question, consider the derivative of cSAL1 with respect to θ which can be obtained by

differentiating equation (23) and using the implicit function theorem (see Appendix C for

the derivation):20

∂cSAL1

∂θ
= −

[
1

(cSAL1 )
2 +

β(1− θ)
(
α/β − cSAL1

)
2ε (1− cSAL1 )

2

]−1
β

2ε

[
1

θ
−
(
1 + log β + log(1− cSAL1 )

)]
(26)

Since cSAL1 ≤ 1
2
and cSAL1 < α/β (recall Section 4.1.3), the denominator of (26) is

always positive. So if we define θ2 as the value for which the last term in (26) equals zero:

θ2 ≡
1

1 + log β + log(1− cSAL1 )
, (27)

we get the following result for the derivative of cSAL1 with respect to θ:

∂cSAL1

∂θ
=

< 0 for θ < θ2

> 0 for θ > θ2

(28)

The logic behind the results summarized in equation (28) is as follows. Starting from

θ = 0, an increase in θ initially makes the decision maker more cautious (i.e. cSAL1 falls).

The reason is twofold. Firstly, a decision maker with a higher θ becomes more convinced

of the IPCC-hypothesis, which reduces the optimal emission level as the expected damage

caused by emissions (θβ) goes up. Stated in terms of the relevant first-order condition

(25), an increase in θ diminishes the importance of term I. Simultaneously, starting from

a value of θ < 1
2
, an increase in θ makes the decision maker also more uncertain: the

variance of his belief, given by θ (1− θ), increases. This strengthens his learning motive
(by increasing the importance of the term III ∗ IV ), which makes cSAL1 fall even further.

Hence, as long as θ < θ2, it follows that ∂cSAL1 /∂θ < 0.

However, as θ continues to rise, it will at some stage cross the point at which the

expected value of learning (given by (19)) is maximized, θ2.21 Beyond that point, the

active learning term III ∗ IV becomes less important and first-period consumption under
19Note: the question being asked here is very different from the issue whether skeptics should reduce

emissions relative to current levels (which are uninformative in the eyes of skeptics). There, the answer
is an unambiguous “Yes”(recall Section 4.1).
20We thank an anonymous referee for suggesting this analysis to us.
21Here, the expected value of learning reaches its maximum at a point that is somewhat higher than

the maximum variance point θ = 1
2 because of the asymmetry in the underlying pay-offs in the different

states of the world.
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the active learning rule comes back up again with θ. So for θ ∈ (θ2, 1), we have that

∂cSAL1 /∂θ > 0 - implying that, in that range, a decision maker with a lower θ (i.e. a

decision maker who is relatively less convinced of the IPCC-hypothesis), should emit less.

The implications of all this for the optimal emission level cSAL1 are illustrated in Figure

2. The figure shows that skeptics with θ ∈ (θ1, 1) should emit less than believers in the

IPCC-hypothesis (those with θ = 1).
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Figure 2: Impact of changes in θ on cSAL1 for α = 2, β = 7 and ε = 0.6.

Evaluating the impact of θ on the passive learning emission level by analyzing ∂cSPL1 /∂θ

sharpens this result (again see Appendix C for the derivation):

∂cSPL1

∂θ

∣∣∣∣
P=P

= −
[

1

(cSPL1 )
2 +

P (1− θ)
(1− c1)2

]−1 [
β − P

1− cSPL1

]
(29)

In (29), the denominator is clearly positive, while the numerator is so as well (because

P ≤ 1, cSPL1 ≤ 1
2
and β > 2 (by our assumption that there is a meaningful climate

debate)). Consequently, ∂cSPL1 /∂θ|P=P < 0 (note the minus-sign up front).

The negativity of (29) over the entire range for θ implies that our result that, possi-

bly, climate skeptics should be more conservative than IPCC believers can never occur

under passive learning. The reason is that limθ→0 c
SPL
1 (θ) > limθ→1 c

SPL
1 (θ) = 1/β, with

∂cSPL1 /∂θ < 0 for all θ ∈ (0, 1). It is thus really the active learning motive that generates

the potential to turn the climate-debate upside-down.
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Similarly, one can also analyze how the strength of the active learning channel varies

with the other relevant parameters. It is for example possible to show that a higher

effectiveness of experimentation (captured by term III) promotes a more conservative

climate policy for skeptics. By recalling that:

dP

dc1

∣∣∣∣
c1=cSPL1

= − β

2ε
, (30)

one can see that the effectiveness of experimentation is decreasing in the variance of

the noise term (which is given by ε2/3 for the uniform distribution with support [−ε, ε]
underlying our model). So the noisier the climate, the less likely it becomes that a skeptic

should implement a more conservative policy than an IPCC believer. In contrast, a high

potential climate sensitivity parameter β increases the attractiveness of experimentation

along this dimension.

However, since β affects the problem through several channels, this does not yet es-

tablish that a larger β decreases first-period emissions under the optimal active learning

strategy. To show this, one must obtain ∂cSAL1 /∂β which can be done by applying the

implicit function theorem to the first-order condition of an active learner (23). Doing so

yields (the derivation can once more be found in Appendix C):

∂cSAL1

∂β
= −

[
1

(cSAL1 )
2 +

β(1− θ)
(
α/β − cSAL1

)
2ε (1− cSAL1 )

2

]−1 [
θ +

1

2ε

(
E1

{
∆V L

}
+

(1− θ)
(
1− 2cSAL1

)
1− cSAL1

)]
(31)

Again since cSAL1 ≤ 1
2
and cSAL1 < α/β, it follows that ∂cSAL1 /∂β < 0. This implies

that an increase in the supposed impact of emissions on global temperature β, prescribes

tighter policies.

It is thus certainly possible that a skeptic (like George W. Bush) should argue (or

vote) for lower emissions than someone who is convinced that global warming is man-

made (such as Al Gore). Our analysis shows that this is more likely to be the case when

θ and β are large and ε is small. Whether the relevant conditions are met in reality

should be investigated with more sophisticated models of climate change, but it seems an

intriguing possibility.
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5 Discussion

Central to this paper is the learning process on the causes of climate change. As pointed

out in Section 3, this process takes time, since it takes about 15 years before temperature

changes can be attributed to either changes in greenhouse gas emission levels or exogenous

factors. Note that we did not have to assume anything on the length of a period in our

model. As long as some information is produced over time by extremer emission levels,

and as long as society attaches an epsilon-positive weight to the well-being of future

generations, a certain extent of policy experimentation becomes optimal since it produces

valuable information - no matter how long the learning process takes. The actual degree

of experimentation would of course be affected (Should emissions be reduced by 10% or

by 50%? And for how long?), but to answer those questions takes a less stylized model.

This paper only intends to point out the mechanism and the direction in which current

policy should move if we want to bring it closer to the optimum emission level.

Section 4 also showed that calls against greenhouse gas reductions by climate skeptics

are diffi cult to rationalize in an optimizing framework unless one refers to myopia or

strategic motives. It would therefore be interesting to consider the political aspects of

climate policy (such as lobbying and intergenerational issues), the analysis of which we

leave for future work. In this respect, the aforementioned cases of “acid rain”and “bee

deaths due to pesticides”deserve closer study, as policy makers were able to set strategic

issues and myopia aside to combat those problems in a way that is consistent with the

“active learning by doing”strategy proposed by this paper. More generally, voters (who

also have a say in democratic systems) do not have political-strategic motives, so their

electoral preferences should not be affected by them.

With respect to the decision making process, we have followed the lion’s share of the

literature in assuming that decisions are made by a single agent. In reality, however,

decisions come about after negotiations between the various countries involved, which

introduces additional mechanisms (cf. Ulph and Ulph (1996)). Strategic considerations

may furthermore affect the willingness of individual countries to experiment, but as shown

in a general framework by Bolton and Harris (1999), it is not clear in which direction this

effect works: on the one hand, the willingness to experiment will be reduced due to a

free-rider effect (after all, the benefits from experimentation are public while the costs are

private), but the strategic setup also brings an “encouragement effect”which increases

the incentives for each individual agent to experiment. Which effect dominates cannot be

established unambiguously.

Another issue is the fact that emission reductions could require irreversible investment,
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which may turn out to be wasted if global warming proves to be exogenous. As shown

by Kolstad (1996a), this introduces a second option value that actually makes emission

reductions less attractive. One could interpret this as suggesting that we should do less

to reduce greenhouse gas emissions. Another interpretation, given by Kolstad (1996b), is

however that we should seek for greenhouse gas reduction policies that work via reversible

actions. In this respect, Kolstad (1996b) pleads for the installation of a temporary carbon

tax, which we also see as an attractive option for two reasons: firstly, it does not intro-

duce any direct irreversibilities, and secondly it gives firms complete freedom on how to

respond to the changed incentives. If Kolstad’s (1996a) option value is indeed important

in practice, firms may choose to abstract from installing irreversible abatement capital

and they could pass the carbon tax on to consumers via prices (directly leading to less

greenhouse gas consumption). In that case, the cost of emission reductions is just the

utility loss associated with lower consumption of carbon-intensive goods, which is what

is captured by our model.22

While this paper has focused on irreversibilities related to the emission of greenhouse

gases, it is also possible that global warming produces irreversible damages (like the

extinction of species). These are not modeled in the present paper, but straightforward

intuition suggests that they would only strengthen the decision maker’s incentives to

experiment “in the safe direction”. After all, potential “tipping points”will be crossed

earlier if one experiments by increasing emissions.23

Finally, although this paper is phrased in terms of the climate debate, the underlying

idea could also be applied to other environmental problems. As pointed out in Section

3, the practical applicability of the “active learning by doing” strategy we propose has

already been illustrated in the debates surrounding acid rain and bee deaths, while this

approach could also be of value to future problems that are yet to arise. More generally,

this paper has developed a theory of optimal experimentation under irreversibilities, which

may have applications outside environmental economics as well. One application that

22In addition, not all “green” investments are fully wasted if emitting CO2 turns out to be harmless.
Although this is the case for carbon capture systems, this is much less so for investments in non-fossil
energy sources. After all, they continue to be productive - even if global warming would turn out to
be exogenous. Moreover, we will have to shift to non-fossil energy sources at some point in the future
anyway, and this is likely to be costlier if we wait until this becomes a last-minute operation (Ha-Duong,
Grubb, and Hourcade, 1997). In the run up to this transition, increasing the use of gas and oil (instead
of coal) would be an attractive option, as oil and gas emit less CO2 per generated unit of energy than
coal does (oil is roughly 10% more effi cient, while gas increases effi ciency by about 40%). Since almost
half of our electricity is currently generated by coal, there lies a huge potential there. Finally, the fact
that emission-reducing investments produce valuable information on the causes of global warming, always
justifies a certain degree of investment.
23Keller et al. (2004) confirm this intuition in a formal model.
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comes to mind is optimal consumer experimentation with addictive goods, such as Apple

products, hard drugs, or fatty food (for example: when I am uncertain on the relationship

between my weight and my calorie intake, should I experiment by consuming more calories

or by consuming less?).

6 Conclusion

Given the popularity of the climate skeptic position, this paper has cast the accompanying

debate in a formal framework which enables a normative analysis of what the optimal

policy for climate skeptics actually looks like. Typically, such skeptics adhere to a passive

policy and argue that the possibility that global warming is exogenous implies that it is

optimal not to take additional action towards reducing greenhouse gas emissions until we

know what causes our climate to change.

This paper has however shown that uncertainty on the causes of global warming does

not provide a case for inaction, but yields a particular incentive for action instead. The

reason is that the learning process and speed are endogenous, since we are learning from

self-generated observations. If climate skeptics are genuinely uncertain on the causes of

climate change, they apparently find the available emission/temperature data not infor-

mative enough on this issue. Since there is a positive value to knowing what drives global

warming, this implies that these skeptics should argue (or vote) for a policy change that

moves us away from current (in their eyes uninformative) emission levels, as such a change

of direction produces information on the nature of climate change. One can change direc-

tion by either in- or decreasing emissions, but the option of increasing emissions is inferior

because the irreversibilities associated with emitting greenhouse gases erode the value of

the information that is produced. So where uncertainty on the causes of global warming

gives skeptical decision makers an incentive to implement a policy change, the irreversible

nature of emitting greenhouse gases induces them to do so “in the safe direction”.

Once learning considerations are taken into account, the heated question whether one

is an IPCC believer or a climate skeptic thus becomes of subordinate importance from a

policy point of view. After all, the policy implications of the different positions turn out

to be surprisingly similar: both IPCC believers as well as climate skeptics should argue

for a more cautious climate policy, although for different reasons. The former, trivially,

because they are convinced that emitting greenhouse gases is damaging (which is/was

not taken into account by most current/recent policy makers), while the latter should do

so for learning considerations. In fact, we have shown that it is even possible that the
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debate should actually take the exact opposite form compared to what it currently looks

like (since optimality could very well imply that climate skeptics should argue for tighter

emission standards than IPCC believers).

To estimate how large a reduction in greenhouse gas emissions the active learning

motive actually calls for, requires a more realistic model of climate change. We leave this

issue for future work. In this paper we have focused at maintaining analytical tractability

so as to gain insight into the exact mechanisms at play, which forced us to simplify

along several dimensions. A more realistic model would generalize our two-period setup

as well as the learning process, while it would also take the irreversibilities in abatement

investments (but see footnote 22) and environmental damages into account. On this issue,

the “Stern Review”has argued that the investments in abatement capital necessary to

avoid the worst effects of climate change are small relative to the potential damages (while

this paper has pointed out that emission-reducing investments also carry an “informational

return”, which was not taken into account by the Review). This suggests that our main

conclusion is robust to the joint incorporation of these two additional irreversibilities,

although this of course remains to be verified through a formal analysis.24

7 Appendix A

In the main text it was assumed that the disturbance term ε has bounded support. As

a result, leaning was discrete and Bayesian updating took a particularly simple form

- thereby maintaining analytical tractability. This appendix shows that the idea that

extremer emission levels facilitate the learning process on the causes of global warming

(with negative deviations from the confounding emission level being equally informative

as positive ones) continues to hold in a model where the disturbance term ε has infinite

support. Assuming that εt is Gaussian, the model is given by:

∆τ t = α + βct + εt

εt ∼ N(0, σ2
ε)

As before, there are two possible states: either the IPCC is right (in which case

24Also see the commentary by O’Neill et al. (2006) on this. Drawing from various studies (many of
which taking the aforementioned issues lacking from our analysis into account), they conclude that “a
clear consensus on a central point is that the prospect of learning does not support the postponement of
emissions reductions today”.
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α = 0 and β = β > 0), or the skeptics are right (which implies α = α > 0 and

β = 0). Consequently, πt (the time t belief that the IPCC is right) is equal to the relative

probability of observing a particular (∆τ t, ct)-observation under that regime. Bayes’rule

now implies that:

πt =
πt−1 exp

(
−0.5

[
∆τ t − βct

]2
/σ2

ε

)
πt−1 exp

(
−0.5

[
∆τ t − βct

]2
/σ2

ε

)
+ [1− πt−1] exp

(
−0.5 [∆τ t − α]2 /σ2

ε

) (A1)

From (A1), it is easily verified that πt = πt−1 if the decision maker sets ct = α/β.

Hence, at the confounding emission level (which still equals α/β), no information is pro-

duced on how our climate functions, as a result of which beliefs cannot be updated. Any

deviation of ct from α/β does produce valuable information - thereby enabling agents to

update their beliefs. Since the term
[
∆τ t − βct

]
only enters (A1) in a squared fashion,

the direction of the deviation does not matter.

8 Appendix B

Figure 3 shows the outcome of a simulation study by Solomon et al. (2009). The figure

shows what would happen under the IPCC-scenario if we were to reduce CO2 emissions

(i.e.: the flow) at certain points in time. Solomon et al. (2009) take the extreme case in

which emissions are reduced all the way down to zero, but as they note on p. 1705, a more

realistic partial emission reduction would induce similar responses (although obviously

somewhat muted).

In both cases one can observe a clear change in the rate at which global temperature

increases after emissions have been reduced. So under the IPCC-scenario, a trend break

in the control (emissions) translates into a trend break for the endogenous variable (global

temperature). If we were to observe such a temperature response in reality after decreasing

emissions, that would support the IPCC’s case. Absence of such a response on the other

hand, would suggest that global warming is exogenous. Once this knowledge has been

acquired, environmental policy can be conditioned on this information - enabling better

economic outcomes.
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Figure 3: Climate system responses for a ramp of CO2 emissions at a rate of 2% per year
to peak CO2 values of 450 to 1200 ppmv, followed by zero emissions.

9 Appendix C

In this appendix, we derive (26), (29) and (31) from the main text. We start by deriving

(31). To do so, first consider the first-order condition determining cSAL1 :

1

c1

− θβ − P (1− θ)
1− c1

+
dP

dc1

∣∣∣∣
c1=cSPL1

E1

{
∆V L

}
= 0, (C1)

with
dP

dc1

∣∣∣∣
c1=cSPL1

= − β

2ε
and P =

∣∣α− βc1

∣∣
2ε

Under passive learning, the endogeneity of P is ignored and we get:

1

cSPL1

= θβ +
P (1− θ)
1− cSPL1

,

so given P (i.e. on the differentiable submanifold in parameter space where P = P̄ ):
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−1

(cSPL1 )2
dcSPL1 = θdβ +

P (1− θ)
(1− cSPL1 )2

dcSPL1

⇒ dcSPL1

dβ

∣∣∣∣
P=P̄

= −
[

1

(cSPL1 )2
+

P (1− θ)
(1− cSPL1 )2

]−1

θ < 0

Incorporating changes in P yields:

−1

(cSPL1 )2
dcSPL1 = θdβ +

P (1− θ)
(1− cSPL1 )2

dcSPL1 +
(1− θ)

(1− cSPL1 )

[
− β

2ε
dcSPL1 − cSPL1

2ε
dβ

]
⇒ dcSPL1

dβ
= −

[
1

(cSPL1 )2
+

P (1− θ)
(1− cSPL1 )2

− (1− θ)
(1− cSPL1 )

β

2ε

]−1 [
θ − (1− θ)

(1− cSPL1 )

cSPL1

2ε

]

Next consider active learning. Then terms involving dP
dc1

∣∣∣
c1=cSPL1

E1

{
∆V L

}
come into

play. Recall that this term is given by:

dP

dc1

∣∣∣∣
c1=cSPL1

E1

{
∆V L

}
= − β

2ε
(log (θ) + (1− θ)

[
1 + log

(
β
)

+ log (1− c1)
]
) (C2)

Again, let’s start by considering the case where we ignore the impact of β and c1 on

P , so we once more differentiate on the submanifold where P = P :

−1

(cSAL1 )2
dcSAL1 = θdβ +

P (1− θ)
(1− cSAL1 )2

dcSAL1 +
β

2ε

[
1− θ

(1− cSAL1 )
(−dcSAL1 ) + (1− θ) 1

β

]
dβ +

E1

{
∆V L

}
2ε

dβ

⇒ dcSAL1

dβ

∣∣∣∣
P=P

= −
[

1

(cSAL1 )2
+

P (1− θ)
(1− cSAL1 )2

− β

2ε

1− θ
1− cSAL1

]−1 [
θ +

1

2ε
(E1

{
∆V L

}
+ 1− θ)

]

Note that P =
|α−βc1|

2ε
, so by using that 1−θ

(1−cSAL1 )2

[
P − β

2ε
(1− cSAL1 )

]
= β(1−θ)

2ε(1−cSAL1 )2

(
α
β
− 1
)

we can rewrite the denominator as:

dcSAL1

dβ

∣∣∣∣
P=P

= −
[

1

(cSAL1 )2
− β(1− θ)

2ε(1− cSAL1 )2

(
1− α

β

)]−1

[θ +
1

2ε
(E1

{
∆V L

}
+ 1− θ)]

Now consider the derivative without the restriction P = P :

−1

(cSAL1 )2
dcSAL1 = θdβ +

P (1− θ)
(1− cSAL1 )2

dcSAL1 +
β

2ε

[
1− θ

(1− cSAL1 )
(−dcSAL1 ) + (1− θ) 1

β

]
dβ

+
E1

{
∆V L

}
2ε

dβ +
1− θ

1− cSAL1

[
− β

2ε
dcSAL1 − c1

2ε
dβ

]
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⇒ dcSAL1

dβ
= −

[
1

(cSAL1 )2
+
β(1− θ)

(
α/β − cSAL1

)
2ε(1− cSAL1 )2

]−1 [
θ +

1

2ε

(
E1

{
∆V L

}
+

(1− θ)
(
1− 2cSAL1

)
1− cSAL1

)]
This is equation (31) in the paper.

Finally, we analyze the derivative of cSAL1 with respect to θ. Start out again with (C1).

First assuming P = P provides us with:

−1

(cSPL1 )2
dcSPL1 =

(
β − P

1− cSPL1

)
dθ +

P (1− θ)
(1− cSPL1 )2

dcSPL1 +
(1− θ)

1− cSPL1

dP

⇒ dcSPL1

dθ

∣∣∣∣
P=P̄

= −
[

1

(cSPL1 )2
+

P (1− θ)
(1− cSPL1 )2

]−1 [
β − P

1− cSPL1

]
This is equation (29) in the paper.

Incorporating the expression for P and dropping the assumption of fixed P (as a

preparation for our analysis of the active learning case) does not change much, since the

expression for P does not contain θ:

−1

(cSPL1 )2
dcSPL1 =

(
β − P

1− cSPL1

)
dθ +

P (1− θ)
(1− cSPL1 )2

dcSPL1 +
(1− θ)

1− cSPL1

(
− β

2ε

)
dcSPL1

⇒ dcSPL1

dθ
= −

[
1

(cSPL1 )2
− (1− θ)β

(1− cSPL1 )2

(
1− α

β

)]−1 [
β − P

1− cSPL1

]
Next, consider the active learning term (C2). Incorporating it leads to the following

additional terms in the expression for the derivative with respect to θ:

β

2ε
(1− θ) dcSAL1

1− cSAL1

+
β

2ε

[
(1 + log(β) + log(1− cSAL1 )− 1

θ

]
dθ

By using the substitutions derived earlier for the terms followed by dcSAL1 we get:

dcSAL1

dθ
= −

[
1

(cSAL1 )
2 +

β(1− θ)
(
α/β − cSAL1

)
2ε (1− cSAL1 )

2

]−1
β

2ε

[
1

θ
−
(
1 + log β + log(1− cSAL1 )

)]
,

which is equation (26) of the paper.
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