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Split Fermi seas in one-dimensional Bose fluids

T. Fokkema,” 1. S. Eliéns, and J.-S. Caux
Institute for Theoretical Physics, University of Amsterdam, Science Park 904 Postbus 94485, 1090 GL Amsterdam, Netherlands
(Received 31 January 2014; published 31 March 2014)

For the one-dimensional repulsive Bose gas (Lieb-Liniger model), we study a special class of highly excited
states obtained by giving a finite momentum to subgroups of particles. These states, which correspond to
“splitting” the ground-state Fermi-sea-like quantum number configuration, are zero-entropy states which display
interesting properties more normally associated with ground states. Using a numerically exact method based
on integrability, we study these states’ excitation spectrum, density correlations, and momentum distribution
functions. These correlations display power-law asymptotics and are shown to be accurately described by an
effective multicomponent Tomonaga-Luttinger liquid theory whose parameters are obtained from the Bethe

ansatz. The nonuniversal correlation prefactors are moreover obtained from integrability, yielding a completely

parameter-free fit of the correlator asymptotics.

DOI: 10.1103/PhysRevA.89.033637

I. INTRODUCTION

Many-body quantum physics in one dimension [1] is
a well-known theater in which strong correlation effects
systematically take the leading role. Besides providing many
examples of quantum critical ground states, one-dimensional
(1D) systems also interestingly suffer from the breakdown
of single-particle pictures, making calculations difficult but
providing interesting physics through the appearance of new
forms of quasiparticles with unconventional (fractionalized)
statistics, dispersions, and correlations.

Much of our understanding of 1D systems stems from
the existence of robust nonperturbative methods developed
over the last few decades. First and foremost, the concept
of the Tomonaga-Luttinger liquid [2] and the technique of
bosonization [3,4] have provided a consistent framework for
describing the universal low-energy physics of these systems.
On the other hand, the existence of isolated examples of
exactly-solvable 1D models [5] whose wave functions can
be obtained from the Bethe ansatz [6] has opened up the door
to many nonperturbative computations of physical properties
of representative systems.

One seldom-exploited characteristic of the Bethe ansatz
is that, in marked contrast to bosonization, it provides exact
wave functions for any state in the Hilbert space, irrespective
of its energy. Besides allowing us to consider, e.g., finite-
temperature thermodynamics of exactly-solvable models, this
fact also opens the door to the investigation of many more
general issues going beyond conventional equilibrium physics.

Our aim here is to consider a relatively simple class of
states of 1D repulsive bosons which display a number of
interesting properties. These states, which can be intuitively
pictured as eigenstates in which the fluid contains a number of
“pockets” of atoms moving at distinct momenta, share many
features with the ground state, including signs of quantum
criticality. Since they are extremely highly excited states, they
would ultimately be unstable to external perturbations; on
the other hand, being eigenstates of a physically meaningful
Hamiltonian, their lifetimes can, in principle, be extremely

“T.B.Fokkema@uva.nl

1050-2947/2014/89(3)/033637(10)

033637-1

PACS number(s): 67.85.—d

large if perturbations are weak. They therefore realize another
instance of “metastable criticality” [7] in interacting gases.

On the experimental side, there has been remarkable
progress in the realization and investigation of isolated
quantum systems [8], in particular bosonic systems in one
dimension, with these providing rich and interesting physics
[9]. Part of our motivation thus also came from the famous
quantum Newton’s cradle experiment [10] in which a Bragg
pulse is used to produce an initial state with a doubly
peaked momentum distribution. In attempts to understand
this experiment, proximity to integrability is often invoked as
the physical reason for the absence of relaxation. Although
not meant to model this initial state accurately, the states
we consider do contain similar features in their momentum
distribution function and might form a useful starting point for
a more refined attempt at phenomenology.

This paper is organized as follows. After introducing the
Lieb-Liniger model, we precisely define the type of states
that we will study. A detailed discussion of the excitations
that govern the correlations in the system is followed by
results for dynamical correlations obtained numerically from
an integrability-based method. We provide results for the most
easily measured observables, namely, the density correlations
(the dynamical structure factor) and the momentum distribu-
tion function. We then discuss how the system can be under-
stood in terms of a multicomponent Tomonaga-Luttinger lig-
uid, for which all effective parameters are related to data com-
putable from integrability. Finally, we compare the computed
correlations with the asymptotic Luttinger liquid, parameter-
free predictions and end with conclusions and perspectives.

II. LIEB-LINIGER BOSONS

The Lieb-Liniger model [11] is a model for one-
dimensional bosons with a §-function interaction. Setting
h = 2m = 1, the Hamiltonian of the model is

L
H:/ dx[0, ¥ ()3, W(x) + W )W) W)W (x),
0

(1)

where W(x),WT(x) are boson annihilation and cre-
ation operators obeying canonical equal-time commutation
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relations [W(x), Uf(x")] = 8(x — x’). The interaction strength
is parametrized by a single dimensionless parameter, y =
c/po, where pg = N/L is the average density. We will only
consider repulsive interactions ¢ > 0 and will, for definiteness,
impose periodic boundary conditions. The N-particle wave
functions are given by the Bethe ansatz as a linear combination
of plane waves,

N
an G, oxn) = [ senr; — x0) Y Ape 24 (2)

Jj<k P

where Ap = (—1)[})]6% Lok 3800 =200Gr; =2r) - The  two-
particle phase shifts are 6(1) = 2 arctan(X/c), and P denotes a
permutation of N indices. With periodic boundary conditions,
the eigenstates of the Lieb-Liniger Hamiltonian with N par-
ticles are specified by giving N quantum numbers which are
integers for odd N and half-odd integers for even N. Multiple
occupation of quantum numbers is not allowed. In particular,
the ground state is given by the quantum numbers I €
{—(N —-1)/2,...,(N — 1)/2},i.e., a Fermi-sea configuration.
The quasimomenta {A j}]]_\/:l relate to the quantum numbers
{1 J'};v , through the Bethe equations as

N
ML:MQ—Zyufmg (3)
=1

The total momentum of an eigenstate is P = 27=1 Aj and
is zero for the ground state. The energy of an eigenstate is
E=Y" 22

In the so-called Tonks-Girardeau limit ¢ — oo [12,13], the
system simplifies considerably, reducing to a gas of impenetra-
ble bosons which, up to particle statistics, is equivalent to free
fermions. We will use this limit later on as a separate check of
our results.

A. Zero-entropy critical states

We will consider states in the Lieb-Liniger model cor-
responding to one or more intervals of occupied quantum
numbers (no holes) and all other quantum numbers to be unoc-
cupied. The simplest case is the ground state, corresponding to
a single interval as described above. In general, we can think
of a number of disjoint intervals [1;z,Iir], ... ,[l.r,Inr]. We
will focus on the case of two intervals [I1z,[1g] and [I>1, hr]
in particular. As this type of state can be obtained by splitting
the Fermi sea, we will generally refer to it as a Moses state.

Some immediate facts concerning Moses states are that
their energy is thermodynamically large above that of the
ground state and their momentum distribution will be peaked
around nonzero momenta (namely, at momenta dictated by
the size of and distance between the Fermi pockets), unlike
the ground-state case. Moreover, the fact that these states have
zero entropy maximizes quantum effects in observables such
as correlation functions.

Such Moses states were previously considered in [14],
where their local two- and three-body correlations were
calculated (similar correlations were computed in [15] using
the method of [16]). As argued in [14], the momentum
kick caricatures the effects of the Bragg pulse performed in
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FIG. 1. Illustration of the notations used to specify a Moses
state. (top) The ground state has quantum numbers —(N —
1)/2,...,(N —1)/2 occupied. (bottom) The Moses state specified
by {Ii.,11r, 21, 2r} has occupied quantum numbers in the intervals
[1ir,5ig] and [Ir1, Iog].

[10]. Of course the real experiment leads to a much more
complicated initial state than a mere idealized Moses state such
as considered here. One could, however, imagine defining a
generalized Gibbs ensemble (GGE) [17] with the power-law
charges of the Lieb-Liniger model, as in [18], specializing to
a double-well generalized free energy leading to a description
in terms of an ensemble of states in the vicinity of the Moses
state. The Moses state would then be the zero-entropy limit of
this GGE. Such a situation would differ from an equilibrium
situation where the ground state consists of a split Fermi sea, as
occurs in certain phases of integrable spin ladder systems [19]
where the dressed energy obtains a double-well shape. The
difference lies in the fact that, in reality, two Hamiltonians
have to be distinguished: the one setting the equilibrium
ensemble average and the one driving the unitary quantum
time evolution. In equilibrium these operators are identical. In
a GGE (or similar) description out of equilibrium, however,
this is not the case. This distinction does not matter for static
quantities (like the ones considered in [14]) but does matter
for dynamic ones such as those we study here, in which the
Lieb-Liniger Hamiltonian (1) drives the time evolution but the
Moses state emerges as the saddle-point state of some (here
left unspecified) effective theory.

Let us establish some notations. We specify the partic-
ular Moses state under study by listing the four extremal
quantum numbers {/;;,Ir,l>1, g} or the associated “Fermi
momenta” {ki;,kig,kor,kor}, with k;, = ZT”I,-a. We will use
indices i, j,k, ... = 1,2 to denote the two “seas” and indices
a,b,c,... = L,R to denote the edge of a sea. The extremal
quantum numbers [;, are mapped by the Bethe equations to
the quasimomenta A;,, which become equal to k;,, in the Tonks-
Girardeau limit. It is useful to define kr = Zia Sakia = 00O
with sz, = %1. Figure 1 illustrates the construction.

III. EXCITATION SPECTRUM

The splitting up of the Fermi-sea quantum number configu-
ration has great consequences on the structure of the excitation
spectrum of the theory. For the case of the ground state,
one can identify particle (type I) and hole (type II) branches
[11] of solitonlike excitations [20], leading to a characteristic
single-particle-hole continuum (see inset of Fig. 2) clearly
visible in correlation functions. The generalization of these
modes to a symmetric Moses state is illustrated in Fig. 2. The
edges correspond to the new particle and hole dispersion lines
generalizing the Lieb type-I and type-II modes. Due to the
vacancies for quantum numbers in between the seas, part of
the spectrum is shifted to the negative energy domain, leaving

033637-2



SPLIT FERMI SEAS IN ONE-DIMENSIONAL BOSE FLUIDS

E/k}

F
A — —Oe

2r B o =06
C — O
D o6
E ——0-e

1t P —0 .
G m—0 g
H m——Om o
| O —_—

5 k/kr

1 2

FIG. 2. (Color online) The single-particle-hole excitation spec-
trum for a Moses state at ¢ = co with Fermi momenta given by
{—%rr, —%rr, %rr, %rr} and a description of the excitations correspond-
ing to the different lines. Starting with a particle excitation at /;x and
a hole in the right Fermi sea, we get line A, which corresponds to
the standard Lieb type-I excitation, and line B, which corresponds to
the Lieb type-II excitation. At the end of line B, when the hole is at
I, the hole cannot move any farther to the left. Instead, we can now
have a particle in between the two Fermi seas and a hole at /¢; this
gives line D. Line H can be seen as a continuation of the Lieb type-II
excitation of line B. The other dispersion lines are easily understood in
a similar fashion. The inset shows the single-particle-hole excitation
spectrum for the ground state at ¢ = co. In both Moses and ground
states, the single-particle-hole continuum gives the dominant support
for density correlations.

S(k,m),c=1,L=64

m/ki

Sk, ),c=16,L =64

2
(olkF
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a characteristic excluded area compared to the ground-state
case. The types of excitations that correspond to the different
parts of the spectrum are also indicated. Another difference
compared to the ground-state situation is that because of the
negative-energy branch the spectrum will become completely
gapless if multiple-particle-hole excitations are taken into
account. We will discuss the spectrum and its linearization
further when presenting the effective Tomonaga-Luttinger
description of states in the vicinity of the Moses states.

IV. CORRELATION FUNCTIONS FROM INTEGRABILITY

A. Dynamical structure factor

The dynamical structure factor (DSF) is defined as

Stk,w)

o] L
/ d / dxe ™= (p(x.1)p(0,0))
—00 0
2 2
== > lM|pila)P8(w — Eq + Ep).  (4)

where | M) symbolizes the Moses state, « labels a complete set
{la)} of eigenstates with energies E,, and p(x) = Wi(x)¥(x)
is the density operator. This correlator is an efficient probe of
the structure of particle-hole excitations. It relates directly to
the linear response of the system with respect to perturbations
coupling to the density. We have used the ABACUS routine [21]
to evaluate the DSF numerically (see Fig. 3), generalizing the
ground-state DSF [22]. The DSF of Moses states displays a
number of features paralleling those of the ground state. First

Sk, w),c=4,L=64

0.8
- los
oW
<
= 0.4
0.2
0
S(k, ), c = 64, L = 128
oW
3

FIG. 3. (Color online) The dynamical structure factor S(k,w) for the Moses state for different values of the interaction strength. From top
left to bottom right: ¢ = 1,c¢ = 4,c¢ = 16,c = 64. The calculation was performed for 64 particles, 32 in each Fermi sea, and 32 holes separating

the two Fermi seas, except for ¢ = 64, where 128 particles were used.
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FIG. 4. (Color online) (left) Extremal rapidities A,z,A g of the
right Fermi sea (dashed red line) and velocities ¥, /2,725/2 (solid
blue line) as a function of ¢ (in units where 2m = 1 and N/L = 1, so
¢ is dimensionless) calculated for a state with Fermi momenta k;, =
{—2m,—m,m,27}. (right) [lustration of the Moses state in the limits
¢ = 00,0. In the ¢ = oo limit, the extremal rapidities correspond to
Mia = kiu = 2 1;, /L. For ¢ = 0 the rapidities collapse onto the inner
value Ay;,Aop — kpz. In the limits ¢ = 0 and ¢ = oo the velocities
are consistent with quadratic dispersion, i.e., 3;, = 2X;,.

of all, the vast majority of the correlation weight is located
within the single-particle-hole continuum. At the edges of
this continuum, the DSF displays threshold singularities with
interaction- and momentum-dependent exponents. Within the
continuum, the distribution of the correlation weight is strongly
interaction dependent.

For small interactions the system becomes more and more
like two coupled Bose-Einstein condensates (BECs), as can
also be seen from the solution of the extremal rapidities
that collapse onto each other when ¢ — 0 (see Fig. 4). The
DSF is then extremely sharply peaked at low energy and at a
momentum corresponding to the distance between the internal
edges of the two seas. On the other hand, for very large interac-
tions, the DSF becomes essentially energy independent, and its
support espouses the single-particle-hole continuum of Fig. 2.

In Fig. 5 the DSF for an asymmetric configuration is shown.
The effects of “unbalancing” the Fermi pockets are quite easily

Sk, m),c=16,L =64

/K

k/kF

FIG. 5. (Color online) The dynamical structure factor S(k,w) for
an asymmetric Moses state for ¢ = 16. The calculation was per-
formed for 64 particles with quantum numbers {/,;,1ir,>., g} =
{—41.5,-20.5,—1.5,39.5}.
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FIG. 6. (Color online) Fixed momentum cuts of the dynamical
structure factor S(k,w) at (top) k = 7 and (bottom) k = 2x for ¢ =
1,4,16,64. These graphs are obtained from the same data as in Fig. 3,
showing the threshold singularities at the edges of the single-particle-
hole continuum.

visualized by following the changes in the dispersion lines. All
features of the DSF mentioned above survive imposing such
an asymmetry with minimal change.

In Fig. 6 momentum cuts of the DSF at fixed momenta 7
and 27 are shown. The threshold singularities are clearly seen,
as well as the flattening out of the correlation for increasing
interaction strength.

The quality of the computations is evaluated with sum rules.
For the DSF, the f-sumrule ffooo wS(k,w)‘zl—;" = %kz was used.
Saturation levels at two representative momenta for all data
sets presented in Fig. 3 are given in Table I. Lower momenta
are saturated better than the percentages given.

TABLE 1. Levels of saturation of the f-sum rule for the DSF
computations presented in Fig. 3.

c=1 c=4 c=16 c=064
k=m 99.3% 99.2% 99.6% 99.7%
k=2m 98.1% 97.0% 98.6% 98.9%
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FIG. 7. (Color online) The static structure factor for c = 1, ¢ =
4, ¢ = 16, and ¢ = 64 with the exact Tonks-Girardeau result as a
benchmark. The data presented here are the frequency-integrated
data of Fig. 3.

B. Static functions

a. Static structure factor. The dynamical functions give
direct access to static correlations functions. From the DSF,
we obtain the static structure factor (SSF)

S(k) = / 99 ko), 5)
2

which is plotted in Fig. 7 for different values of the interaction
strength in a symmetric Moses state. Figure 8 shows the
SSF easily obtained from single-particle-hole excitations
in the Tonks-Girardeau limit for different configurations,
illustrating the effects of varying the momentum distance and
configuration of the seas.

b. Momentum distribution function. The momentum distri-
bution function (MDF) is defined as the Fourier transform of
the static one-body function:

L
nk) = / dxe™ (Wi (x)W(0)). (6)
0

Let us begin by discussing the impenetrable limit, which
illustrates some generic features and can be treated analytically
following the work of Lenard [23]. This calculation can also
be done for states different from the ground state, and we
used the result in the form given in [24]. In Fig. 8, the
momentum distribution for different configurations of the
Fermi seas is given in the Tonks-Girardeau limit. In this
limit we see four peaks in the momentum distribution. If the
Fermi momenta are given by {kz,kr,k21,k2r}, then the peaks
are located at {ky; + kp,kir — kp,kor + kp,kor — kr}, where
krp = Zia Sqkia = mpg. The outer Fermi edges thus give rise to
the inner peaks in the momentum distribution, and inner Fermi
edges giverise to the outer peaks. Moving the two seas closer to
each other, we see that the outer peak becomes smaller and the
inner peak becomes larger and closer to zero. If the Fermi seas
are far away from each other, the peaks become equally large.
The limit of the two Fermi seas far away from each other is
thus completely different from two noninteracting Fermi seas.
In the latter case one would just have two peaks and not four.

The MDF for generic values of the interaction parameter
¢ is computed using ABACUS again using an adaptation of the

PHYSICAL REVIEW A 89, 033637 (2014)
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FIG. 8. (Color online) Illustration of the effect of chang-
ing the Moses state quantum number configuration on static
correlation functions, using the solvable ¢ = oo limit. The
dashed lines represent a standard situation with Fermi momenta
{(=3/2n,—1/27,1/27,3 /27 }; the solid lines correspond to a modi-
fied configuration. From top to bottom, increasing separation between
seas, decreasing separation between seas, and asymmetric seas with
Fermi momenta {—2m,—3/27,5/2m,4m}. (left) The static structure
factor. (right) Momentum distribution function.

ground-state algorithm used in [25]. For finite values of ¢, the
outer peak of the momentum distribution becomes smaller, and
the inner peak becomes larger since reducing the repulsive
interactions makes the system more like a decoupled BEC,
whose MDF would have two isolated § peaks. Already for ¢ <
10, the momentum distribution shows only two distinguishable
momentum peaks instead of four. One can thus view the
internal peaks as BEC driven and the outer ones as interaction
driven. It is an interesting challenge for experiments to try to
create a state sufficiently similar to a Moses state in a tight
toroidal trap [26] such that the interaction-driven peaks in
the MDF are visible, thereby demonstrating that the system
is in a highly correlated quantum state, similar to the phase
correlations in spatially split one-dimensional Bose gases [27].

V. MULTICOMPONENT TOMONAGA-LUTTINGER
MODEL DESCRIPTION

One-dimensional quantum liquids in low-temperature equi-
librium generally fall into the universality class of the
Tomonaga-Luttinger liquid [1,2]. The low-energy physics is
dominated by excitations in the vicinity of the Fermi points
+kp. By linearizing the dispersion relation, an effective de-
scription in terms of free bosons can be obtained, parametrized
by the sound velocity v and a single parameter, K, encoding
the interactions.

033637-5
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Although we study a far-from-ground state, its physical
properties are governed by states that are, in a sense, close
to the Moses state under consideration. The correlations of
simple operators will be dominated by contributions from
intermediate states with only a few additional particles and/or
holes near the generalized Fermi momenta, similar to the
ground-state case. It is a fact that the logic of bosonization is not
strictly limited to ground states: one can explore the vicinity (in
Hilbert space) of any zero-entropy state with finite velocities
using the Tomonaga-Luttinger effective Hamiltonian logic.
For Moses states, we therefore linearize the dispersion relation
around the four points k;,. Indeed, it turns out that the situation
is well described by a multicomponent Tomonaga-Luttinger
model similar to that used in equilibrium cases [28-30]. As we
will show, asymptotes of correlation functions are accurately
reproduced, including exponents and prefactors, using the
same technology as for ground-state ones.

We approach the problem from the Tonks-Girardeau limit,
recasting it in terms of fermions, and we project the fermion
annihilation operator around the extremal momenta as

Wr(n) & Y e (). ™
ia
Here, ¥;,(x) are chiral fermions with nonzero-momentum
modes in a restricted interval around zero.
We may now use the bosonization identity for the four chiral
fermionic fields,
1 —iia(x)
Via(x) = —=e "%, (®)
VL
where Klein factors and normal ordering are implicit. The
fields ¢;,(x) satisfy commutation relations,

[6ia(x). V@ p(¥)] = —=$a27i8(x — y)ia, b 9

where §;, j; is the Kronecker delta and sz = 1, s;, = —1. The
bosonic fields relate to the density operators of the chiral
fermions as

pia(x) = Ul () Wialx) = ;S“
JT

By linearizing the dispersion relation we obtain an effective
Hamiltonian. In the Tonks-Girardeau limit, this may be written
in terms of the bosonic fields as

Ht= Y0 [ anvaueor. an

Via(x). (10)

4

Here, the velocities v;, are like the Fermi velocities derived
from the dispersion relation of the Tonks-Girardeau gas at the
respective edges of the two seas. We include the sign factors
s, to compensate for the “wrong” direction of the derivative
for left edges, such that the energy of excitations with small
momenta on top of the Moses state have the right sign. Note,
however, that excitations in the region between the two seas
have negative energies: vig,—vy; < O.

To get away from the Tonks-Girardeau limit, we add
density-density interactions between the chiral fermions,

Hyl = Z/dxgia,jbpiu(x)pjb(x). (12)

ia,jb

PHYSICAL REVIEW A 89, 033637 (2014)

The Hamiltonian can be rediagonalized by a canonical
transformation such that it becomes a free-boson Hamiltonian
again,

SeUke -
HI\T/P(;ses = Z 4_; / dx[v¢kc(x)]29 (13)
ke

with renormalized velocities #;,. The behavior of the rescaled
velocities ¥;, as a function of ¢ for the Moses state is plotted
in Fig. 4. Again the sign sg/; = £1 implements the correct
energy for left movers for which velocities are measured to the
right so that negative velocity corresponds to positive energy.
The interaction is encoded in the definition of the free fields
according to

$ia(¥) =Y Usa kePre(x). (14)
ke
The free-field correlator that we will frequently use is
. a2
(gieieto) giadie®) — ( i ) . (15)
PoX

Let us make the connection with the conventional
Tomonaga-Luttinger liquid. There we have only one Fermi
sea and kg, = £kr. The real-valued U matrix is then related
to the Luttinger parameter K via

1 1

1

1
WK 2 )

1 Ndk
WK T2

In our more general context, U arises from a (d > 2)-
dimensional Bogoliubov transformation and is no longer
parametrized by a single “Luttinger parameter”’; hence we keep
its matrix elements explicit in our formulas. In order to respect
the commutation relations of the bosonic fields it must satisfy
the quasiunitarity condition (U’l),’a,j;, = SaSpU jpiq- It is well
known that the Luttinger parameter K can be obtained from
the compressibility of the system in the ground state, which
is easily obtained numerically by finite-size calculations [1].
Similarly, U can be obtained from finite-size computations
from the 1/L corrections to the spectrum, which are given
by

(16)
1 1
svx —2vK

L _ T I NN
H]/L = zsasbchia,kCUjb,kcvchiaij- (17)

Here N;, measures the excess number of particles on the ia
branch on top of the Moses state. In the case of symmetric
seas this relates simply to the response to a change of total-
particle number or relative filling of the seas [31], which in
an equilibrium context can be obtained by the variation of the
chemical potential and the effective magnetic field. In our case,
the calculation proceeds as follows: for a given interaction
value ¢ and for a chosen Moses state (in terms of a quantum
number configuration), energies of states with various N;,
are computed by solving the relevant Bethe equations, and
the Ujq k are read off. The effective theory for states in the
vicinity of the Moses state, which will be used later to fit the
correlations from integrability, is thus completely specified
using energy data only.
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VI. CRITICALITY IN ASYMPTOTICS OF CORRELATIONS

A. Density-density correlation

The physical density operator is expressed in terms of chiral
fermions as

PE) = po+ ) piale) + D e CTEDY (e (x),

ia ia#jb
(18)
The density-density correlation function
(p(x)p(0))
S(x) = L2000 (19)
Po

can easily be obtained from the multicomponent Tomonaga-
Luttinger model as

Y ia.jbke SaSoUiakcUjb ke

Sx)=1-—
) PESTp
Aia jb S§(1—8::
b (1 yoan(1=8)
+ Z el
ia#jb
1 Hia,jb
x cos[(kiq — kjh)x](_> , (20)
PoXx
with
Miajp = Y (SaUiake = $5U jbie)- 2y

ke

In the Tonks-Girardeau limit, Uiy, jp = 8i4,j» and A;q jp, = 1,
the above expression reduces to the exact result for any

3 ' ‘
: == =1
c=4
£ 5 c=16
2.5 Bl === c=064|
£ Pl — TG
2 | i : |
¥ ¥
= 15t i
<
1+ 4
! 1
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051 it it 1
| ’ 123
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ln\_' i\ / \ \-u‘
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O == 7. AL ~ i S
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FIG. 9. (Color online) The momentum distribution for different
values of the interaction (¢ = 1,¢ = 4,¢c = 16,c = 64) and the exact
Tonks-Girardeau result. Calculations were performed on a Moses
state with a symmetric configuration of filled quantum numbers: two
Fermi seas of 32 particles each, separated by 32 holes.
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configuration of the Fermi seas with edges {ki,k1z,k2r,k2r},
as can be confirmed by an exact calculation.

The A;,, j, are nonuniversal prefactors, giving the amplitude
of the fluctuating terms (corresponding to umklapp-like exci-
tations). It was recently shown that the nonuniversal prefactors
in Luttinger liquid correlations can be obtained from the
finite-size scaling of matrix elements [32,33]. This logic can
be carried over to the present context. In leading order, the
matrix elements satisfy the scaling relation

|(ia, jbloIM)I*  Aiajb < 27 )’“‘””’ 22)

05 ~ 4n2 \ poL

where |M) denotes the Moses state and |ia, jb) is the state
obtained after creating an “umklapp” excitation transferring a
particle from the ia to the jb branch or vice versa (see [32,33]
for detailed explanations). We obtained the scaling numerically
by explicitly evaluating the relevant matrix elements for
increasing system size. This provides the prefactors, which,
combined with the effective parameters of the Tomonaga-
Luttinger model obtained above, yield a completely parameter-
free fit for the correlations away from the Tonks-Girardeau
regime. In addition, the exponents are obtained efficiently from
the scaling of the prefactors, providing an independent check
on the parameters determined from finite-size corrections to
the spectrum or a different route to obtaining the correlation
exponents. In Fig. 10 the density-density correlation for
different values of ¢ as obtained from the DSF presented
in Fig. 3 is shown. In Fig. 11 we compare the field-theory
results with the numerical data. To fit the finite-size data,
we make the substitution pox — pfr—Lsin(rrx /L). There is
excellent agreement for all distances larger than a fraction
of the system length (Fig. 11). Figure 12 shows the prefactors
as a function of the interaction c.

0 0.02 0.04 0.06 0.08 0.1
x/L

FIG. 10. (Color online) The density-density correlation function
S(x) for a Moses state for different values of the interaction obtained
from the numerical data of the DSF as shown in Fig. 3.
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c=4 c=16 - c=64
0 0.025 0 0.025 0 0.025 0 0.025

x/L

FIG. 11. (Color online) Comparison of the density-density cor-
relation obtained numerically (dashed lines) and the analytic results
from the multicomponent Tomonaga-Luttinger model (solid lines).
The Tomonaga-Luttinger prediction differs from the numerical data
by less than 0.01 when x is larger than 6.1% of the system length
for c =1, 2.8% for ¢ =4, 2.3% for ¢ = 16, and 1.4% for ¢ = 64.
Calculations were performed at unit filling with 64 particles on length
L =64.

B. The one-body density matrix

The one-body reduced density matrix is given by

T
1) = L DVO) 23)
00

which is simply the Fourier transform of the momentum

distribution functions.
In order to obtain g;(x) in our Tomonaga-Luttinger descrip-
tion one must be careful to take particle statistics into account.
We therefore introduce a Jordan-Wigner string operator and

1.5 F i
w
A 1r
»
3
£ | |
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FIG. 12. (Color online) Prefactors of the Tomonaga-Luttinger
correlation asymptotics as a function of c.
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define the boson annihilation operator as

Y(x) = cos <7r/ dyp(y)> Wr(x), (24)
0

where Wr(x) has been defined in (7). The physical density
operator is given in Eq. (18). Neglecting the fast fluctuating
terms of the density operator under the integral and using (10),
we find the expression

0 b/

* k Sa
/ dyp(y) = —-x = D S gra(x), (25)
i,a
leading to

W(x) ~ % Z Z ol kiatekp)x

ia e==l

x e ! Zkr(esr/2+5i0,kc)¢kr(x)' (26)

The one-body function is readily computed as

Bia,e s ik 1 Hiae
gi(x) =Y S (=t (— ) (27)

2 X
ia,€ Po

where

2
Miae =Y [Z(e/zﬂaaw,mwc,m] . @)

ld ke

with the notation k;, = ki, + €kr. The nonuniversal prefac-
tors B;, . have to be obtained independently from

[(ia,e|W|M)]> By < 2 >“i”“
oL '

£o 27
according to a procedure similar to that described above for the
DSF (see also Fig. 12). The correlation is shown for different
values of ¢ in Figs. 13 and 14.

The sign € in the Jordan-Wigner string operator shifts the
momenta k;, by kr to either the left or right. It absorbs the
mismatch of the quantum number lattices in the Bethe ansatz
solution for even and odd numbers of particles: it corresponds
to the choice of moving all occupied quantum numbers by a
half to the left or to the right after removing a single particle

(29)

1 ;
1 —=c=1
1" c=4
i} A -
0.5 Hi [ i c=16 |4
] A P | e e=64f
— 2 E.-7 S| — TG
= 0 ‘ > k 3 T
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FIG. 13. (Color online) The one-body reduced density matrix
g1(x) for a Moses state for different values of the interaction as
obtained from the numerical data of the momentum distribution
function in Fig. 9.
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FIG. 14. (Color online) Comparison of the one-body reduced
density matrix obtained numerically (dashed lines) with the
parameter-free fits using the multicomponent Tomonaga-Luttinger
model (solid lines). The difference between the numerical plot and
the analytic multicomponent Tomonaga-Luttinger curve becomes less
than 0.01 for x greater than 0.038L for ¢ =1, 0.028L for ¢ =4,
0.030L for ¢ = 16, and ¢ = 64.

from the system. The prefactors (see Fig. 12) and the exponents
both show the relative importance of the contributions with
€s, = —1: these have a much larger contribution and decay
more slowly. Indeed, this clarifies the position of the peaks
at {ky, + kp,kir — krp,kop + kp,kor — kg} in the momentum
distribution function that were mentioned above.

From the expression for g;(x) we find, for small k around
kiq.c, the result

n(k — kig.e) ~ [k — kig | <" (30)

In the limit of infinite repulsion this becomes
M =145 +es, (31)

where n is the total number of seas.

The power law at zero momentum for a gas of bosons in
the ground state is obtained from reduction to the conventional
Tomonaga-Luttinger liquid, i.e., with U given by Eq. (16). This
leads to the well-known result [34]

R G N—— (32)
’ 2K’
Choosing s;, = 1,6 = —1in Eq. (31) indeed gives the correct

result g™ = 1/2 for the Tonks-Girardeau ground state
(K =1.
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At large momenta, the MDF decays as 1/k*, as expected
from the logic of Tan’s contact [35]. We have also directly
verified this from the small-x expansion of g;(x) in the Tonks-
Girardeau limit.

VII. CONCLUSIONS AND OUTLOOK

We have studied a particular class of highly excited
states in the Lieb-Liniger model obtained by splitting the
ground-state Fermi sea, or in other words by giving finite
momentum to macroscopic subsets of atoms. These Moses
states possess a richer excitation spectrum than the ground
state and display a number of interesting features in their
correlations, namely, extra branches, critical power-law-like
behavior, and nontrivial threshold exponents. We have shown
that the integrability-based results obtained could be very well
fitted using a multicomponent Tomonaga-Luttinger descrip-
tion, whose effective parameters are set by energy (and thus
Bethe ansatz obtainable) data. The threshold behavior can
be studied in more detail (explicitly giving the interaction
and momentum-dependent threshold exponents) by adapting
methods from nonlinear Luttinger liquid theory [36,37]. It
is completely straightforward to generalize our results to the
case of multiple seas, although the computation of correlations
becomes increasingly difficult.

As mentioned in the Introduction, one of the motivations for
considering Moses states was to address the situation occurring
in the quantum Newton’s cradle experiment [10]. The Moses
state is a zero-entropy state with features such as its multiply
peaked momentum distribution function, but the Bragg pulse
used in the experiment does not create a zero-entropy state.
One interesting generalization is to consider “thermal-like”
dressing of Moses states. The ensemble of states thus obtained
could be used to model the initial state immediately after the
Bragg pulse.
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