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Abstract 
This study uses differential evolution to identify the coefficients of second-order differential equations 
of self-excited vibrations from a time signal. The motivation is found in the ample occurrence of this 
vibration type in engineering and physics, in particu lar in the real -life problem of v ibrations of 
hydraulic structure gates. In the proposed method, an equation structure is assumed at the level of the 
ordinary differential equation and a population of candidate coefficient vectors undergoes 
evolutionary training. In this way the numerical constants of non-linear terms of various self-excited 
vibration types were recovered from the time signal and the velocity value only at the initial t ime. 
Comparisons are given regarding accuracy and computing time . Dependency of the test errors on the 
algorithm parameters is studied in a sensitivity analysis. The presented evolutionary method shows 
good promise for future applicat ion in engineering systems, in particular operational early -warning 
systems that recognise oscillations with negative damping before they can cause damage. 
 
Keywords: evolutionary computing, system identification, self-excited vibrations, differential evolution 

1 Introduction 
This paper exp lores the use of evolutionary computing (EC) for the identificat ion of vibration 

types appearing in many problems in physics and engineering. As an illustrative example, we consider 
the flow-induced vibrations of large gates of hydraulic civ il engineering structures, such as flood 
barriers and weirs. In particular, self-excited vib rations have been found to be a cause of threatening 
dynamic forces associated with flu id-structure interactions between the discharge-controlling gates 
and the turbulent flow moving past them (Kolkman 1976). 
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Like most flow-induced vibrations, gate dynamics can  be suitably investigated by modelling the 
suspended gate body as a one degree-of-freedom mass-spring oscillator (Blevins 1990) which is 
classically described by second-order ordinary  differential equations (ODEs). For oscillat ing objects 
submerged in water, the coeffic ients –representing mass, damping and stiffness– have additional 
hydraulic components (Naudascher & Rockwell 1994), which  can only be estimated by dedicated 
studies under specific conditions that are typically absent in real-life scenarios. 

Self-excited or ‘self-induced’ vibrations are widely studied because they describe many problems 
in engineering and physics . They are also analytically and numerically interesting objects of study 
(Verhulst 1996). Th is vibration type is defined by the driving force comin g from the displacement of 
the oscillat ing body itself (Den Hartog 1956). That is, a self-sustained system exists without the need 
for external forcing. New energy is fed into the system through negative damping. The first two 
columns in Fig.1 show quintessential self-excitation cases: a negative damping constant and the Van 
der Pol oscillator. The latter famous example has a non-linear damping term and for h igh enough 
values of the parameter , so-called ‘relaxat ion vibrations’ occur which show sudden transitions with 
short moments of high velocity at certain  parts of the period. The third example in the right column of 
Fig.1 shows an undamped oscillat ion with a non-linear mass term. A standard way of depicting non-
linearities is in the phase-plane; a deformed limit  cycle is usually a good telltale of non-linear 
behaviour. 
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Figure 1: Vibration examples shown in time domain (upper row) and in phase plane (lower row). Left 

column: constant negative damping; middle column: non-linear damping by Van der Pol oscillator; right column: 
non-linear mass term. The corresponding ODE equations are written on top; y is the vertical displacement of the 

mass. The initial states are indicated by thick dots. 

Returning to the example of gates of hydraulic structures, identification of negative damping is the 
engineer’s chief concern. Due to structural limitations, however, amplitudes do not grow boundlessly 
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(Blevins 1990); this gives rise to a certain f(y) in the damping term. Non-linear effects were observed 
in several laboratory studies of gate vibrations (Billeter & Staubli 2000). 

Spectral analyses of gate motion or fo rce signals that are commonly  carried  out do not detect such 
non-linearities and, arguably as a result of this, are not good tools for predicting the occurrence of self -
excited vibrat ions with dangerously high dynamic forces on the structure. Furthermore, previous 
research has shown that the complex interactions between the moving structure and the turbulent flow , 
as observed in physical scale models , are not fu lly and readily captured by physics -based numerical 
simulations (Erdbrink et al. 2014a). Other prev ious work includes the outline of a data -driven system 
for classicification and avoidance of gate vibrations by combin ing spectral analysis and machine 
learning (Erdbrink et al. 2013) and multi-scale simulations of flow impact on hydraulic structures 
(Erdbrink el al. 2014b). 

The aim of our present study is to devise and test a computational method that solves the inverse 
problem of identifying self-excited vibrations from only a d isplacement (output) signal y(t), that is 
without using a force (input) signal. This has to be done in a way that permits speed-up to practical 
time frames for real-world operational early-warning systems. 

System identification studies embarked on the task of inferring ODE models  a few decades ago 
(Åström & Eykhoff 1971). However, the fixed structure acting as a vehicle for the parameter 
optimization was usually not an ODE itself, but rather an easy-to-compute basis function like a 
polynomial. The advent of modern heuristics (Rothlauf 2011) and the steady increase in computing 
power has enormously boosted possibilities for regression of all kinds (e.g. by artificial neural 
networks), but many techniques do not provide clear insights into the working of the system. A 
breakthrough came with the b irth o f genetic programming (GP) by Koza (1992), which has been 
applied intensively to system identification problems ever since (Bongard & Lipson 2007). Genetic 
programming, part of the evolutionary algorithms family, proved to be ideal fo r evolv ing the 
underlying equation structures by means of symbolic regression, e.g. Babovic & Keijzer (2000) . 
Schmidt & Lipson (2009) elegantly demonstrated the power of GP for identify ing non -linear 
dynamical systems by discovering physical laws and functions automatically from experimental data. 

In our study it will be assumed that the main part of the structure is already known , this is the basic 
second order ODE that holds for all v ibrations without external forcing. The search for the remaining 
unknown non-linear terms could benefit from symbolic modelling, but we choose to focus on finding 
only the coefficients for a number of reasons. First, we are interested in developing a computationally 
efficient tool for quick assessment that is more easily usable in early-warn ing systems. Second, in 
many practical situations, such as the vibrations in this study, only a reduced number of hypotheses for 
equation structure exist thanks to domain expertise input. The third reason is that in the development 
of GP, the problem of determin ing non-trivial numerical constants (i.e. coefficients) is often 
overlooked. Lastly, the chosen differential evolution (DE) method facilitates a future extension of the 
algorithm to GP-based system identification, as the algorithmic set-up is similar. 

2 Methodology 
We use the evolutionary algorithm DE to  optimise the coefficients of second-order ODEs with the 

goal of identify ing self-excited and non-linear v ibrations. Differential evolution  is a competitive 
derivative-free meta-heuristic global optimization method (Storn & Price 1997). It  has a natural 
robustness that makes it stand out from earlier EC methods , such as genetic algorithms. Its 
performance has grown by several improvements (Das & Suganthan 2011), most notably the use of 
dynamic control parameters. We apply a recent version of DE by Choi et al. (2013) that has self-
adaptive control parameters which are varied  by drawing from the Cauchy distribution. The pseudo-
code of the algorithm is given below. 
  

 Identifying Self-Excited Vibrations with Evolutionary Computing C. Erdbrink, V. Krzhizhanovskaya

 639



 
Initialization 
-Initialize population of NP vector individuals X1,G, … , XNP,G where Xi,G = [x1,i,G, x2,i,G, … , xC,i,G] and where C 
is the number of coeff icients that are being evolved, G the generation (G = 0, ... , Gmax). Entries xj,i,0 are 
uniformly random from [-1,1] for i = 1, … , NP and j = 1, … , C. 
-Initialize control parameters CRi,0 = 0.25, Fi,0 = 0.6 (acc. to Choi et al. 2013) and adaptation parameters 
CRavg,0 = CRi,0 and Favg,0 = Fi,0  
-Generate target data y(t), y’(t) and divide into training and test sets. 
 
FOR R = 1 to Rmax DO   % run loop 
    FOR G = 1 to Gmax DO  % generation loop 
        FOR i = 1 to NP DO  % individuals loop 
            Main loop: Differential Evolution 
            -Determine f itness f(Xi,G) of individuals (see routine) 
            -Mutation: generate a mutant vector Vi,G = Xr1 + Fi,G*(Xr2 – Xr3) from three donor vectors Xr1, Xr2, Xr3 

randomly selected from the individuals of generation G-1. 
            -Crossover: generate a trial vector Ui,G composed of uj,i,G (j = 1, … , C) by applying the rule IF 

rand[0,1] ≤ CRi,G-1 OR j = jrand THEN uj,i,G = vj,i,G , ELSE uj,i,G = xj,i,G-1 , where jrand is a random integer 
1 ≤ jrand ≤ C and vj,i,G is an entry of Vi,G. 

            -Selection: determine f itness f(Ui,G) of trial vectors. IF f(Ui,G) ≥ f(Xi,G-1) THEN Xi,G = Ui,G and inherit 
associated f itness and control parameters, ELSE Xi,G = Xi,G-1 and leave f itness and control 
parameters unchanged. 

        END FOR 
        -Update control parameters Fi,G and CRi,G by adding a randomly drawn number from the Cauchy 

distribution Ca(0,0.1) to the mean value of the control parameters of all successfully evolved vectors. 
Truncate if necessary. 

        -Replace a non-fittest individual by a new ly generated individual. 
    END FOR 
    Post analysis 
    Compute test error of run R by solving the ODE w ith the winning set of coeff icients and determining the 

mean absolute error of all predicted values compared to the test values. 
END FOR 
Compute mean duration and mean and min of test errors of all runs R…Rmax. 
 
 
Fitness computation 
-Insert the coeff icients of each candidate vector in the f ixed, assumed ODE equation structure. 
-Apply Runge-Kutta, with adaptive step-size and predetermined relative error tolerance for numerical 
integration. 
-Fitness := -1*MAE*penalty, w here MAE is the mean absolute error of the training data compared to the 
result from solving the ODE w ith candidate coeff icients. The penalty punishes candidate models for which 
the integration failed to determine values at all training times, penalty := ((size of training set – size of 
candidate set) / size of candidate set)*100 and penalty = 1 if  the integration w as completely successful. 

 
The generated synthetic data set is randomly d ivided into a training set and a test set, based on a 

chosen percentage of data to be used for training. After the evolution has ended, the unseen target 
points are used to quantify the predictive power of the candidate model by computing a test error.  

In order to compare the test errors of different target data sets, we normalize the mean absolute test 
error (MAE) as follows: 

 

  (1) 

 
where  contains the predictions and  the target values for testing,  is the mean of  and  is 

the standard deviation of . All results in the figures and in the table of this paper are given as 
normalized mean absolute test errors (NMAE). 

The computations were done unparallellized on a single Intel i7 processor, 2.93 GHz, 8 Gb RAM. 
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3 Numerical experiments set-up 
The numerical experiments consist of three parts: a validation case, the self-excited cases and a 

sensitivity analysis . The results are reported in Sections 4.1 to 4.3. 
The case of forced vibrations for a linear system with constant coefficients is used for validation: 
 

    (2) 
 
where y  is the displacement, t is time (the independent variable) and all other symbols are physical 

constants. Newtonian notation is used for time derivatives. Together with the real-valued in itial 
conditions  and , equation 2 constitutes an initial value problem that will be solved in two ways: 
(i) non-linear regression on the analytical solution and (ii) regression on a fixed ODE structure: 

The first approach uses the sum of the general and particular solution of fo rced vibration with 
viscous damping as an assumed equation structure: 

 
   (3) 

 
The second approach stays at the level of ODE: 
 

  (4) 
 
For both approaches, the coefficients are init ialized randomly between -1 and 1. They are stored in 

a seven-dimensional vector and optimized via DE, as described in the pseudo-code in Section 2. A 
variation of the second approach where only five coefficients are evolved is also considered, where the 
initial conditions (IC) are assumed known. 

Practically  all non-linear v ibration problems defy  fu ll analytical t reatment, so there is no closed -
form equation available fo r y(t). For these problems we work with the ODE structure 

, where mass m or damping c are replaced by a first or second order polynomial term in y  to 
account for the non-linearity. The results of this are summarised in Section 4.2. Also, a non-linear 
mass system and a system with time-vary ing stiffness (Mathieu equation) are examined. These are all 
unforced oscillators where chaos does not play a role. 

4 Results 

4.1 Validation: Forced vibrations with constant coefficients 
The following target function is defined for the validation runs: 

 
, with initial conditions .    (5) 

 
Fig.2 (left) shows the sampled target data-set and an example of a candidate solution. The total 

data set consists of 465 points, meets the Nyquist criterion, and is split in train ing and test data in 
different ratios (in Fig.2. half of the data are train ing points, and half are test points). Population size 
was set at 80, and 250 generations were computed. 
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Figure 2: Differential Evolution applied to regression on the signal of a forced vibration. Left: the target data. 
In this example 50% of the data is used for training. Right: The best-so-far fitness of three runs, for an assumed 

structure of the analytical solution and for the ODE structure. 

The right plot in Fig.2. shows three examples of how the solutions improved with generations. The 
two applied expression structures were laid out in the previous section, the only necessary addition is 
that the fitness evaluation of the analytical solution structure runs differs from the pseudo -code in 
Section 2 because there is no need to solve an ODE; the candidate values follow right away after 
substitution in the assumed y(t) expression. 

The resulting coefficients reflect the multimodality of this optimizat ion problem, since for example 
sin(t) = sin(t+2 ). It was generally found that the less successful computed functions capture the low-
frequency damped free vibration quite well, but give a rather poor estimate of the forced vibration. 

Figure 3 below gives an overview of the results based on 10 runs per plotted point. The p lot on the 
left gives test errors expressed as NMAE, according to equation 1. The plot on the right shows the 
average runtime in seconds. 

 

    
 

Figure 3: Results of evolving the forced vibration based on analytical solution structure and ODE structure as 
a function of the percentage of data used for training. Left: test errors (NMAE); right: computing time. IC stands 
for initial conditions, P stands for population size. Every point represents an average of 10 runs, for an evolution 

of 250 generations with a population of 80; except for the ODE with initial conditions, for which only five 
lengthy runs were made for each training data set. 
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The plots show that the analytical structure requires the least computation time, but it is 
significantly less accurate than the ODE structure with five evolved coefficients where the initial 
conditions are known (“ODE without IC”). The analytical structure is more accurate than the ODE 
case that also evolves the two init ial conditions (“ODE with IC”). An attempt to reduce the 
computation time for the ODE structure by using a smaller population of 40 (“ODE without IC, 
P=40”) resulted in higher test errors and computation times comparable to the analytical runs. The 
results show that including or excluding the two  in itial condit ions makes no difference for 
computation time. Additionally, the validation proves that there is litt le overall dependence on the 
percentage of data used for training. The test errors are only  slightly  worse when less than 40% of the 
data is used for training. Computational factors related to the convergence of the DE algorithm and the 
ODE solution process are apparently dominant. In particu lar, it was found that the settings of relative 
tolerance that determine the number of iterations of the ODE solver during the error computation have 
a profound influence on the standard deviation of the achieved total runtimes . 

4.2 Self-excited vibrations 
Table 1 shows the results of computing coefficients for various self-excited vibrat ions. All 

computations had a population of 50 individuals with 120 generations computed, and used 50% of 500 
data points for training, and the remainder for testing. For each case the mean and standard deviation  

of the NMAE test error is computed over 25 evolutionary runs. 

The results in Table 1 show that the constant negative damping and non-linear mass cases have 
low test errors compared to the validation case of the forced linear vibrat ion with constant coefficients. 
Moreover, their test errors show very little  variation. For the negative damping case, it  makes no 
difference whether the constant coefficient is found using a single coefficient, C1, or a linear term with 
two coefficients, C1+C2y, or a second-order polynomial term with three coefficients , C1+C2y+C3y2. 
Similarly, the Van der Po l oscillator shows a small, insignificant deterio ration when a linear term is 

Vibration Target ODE #C 
Average of 

NMAE 

Standard 
deviation of 

NMAE 
linear, constant coeff.*  5 39.2∙10-3 69.5∙10-3 Negative damping  1 3.44∙10-3 0.89∙10-18   2 3.07∙10-3 1.77∙10-18   3** 3.23∙10-3 1.88∙10-3 Non-linear damping  3 287∙10-3 373∙10-3 Van der Pol oscillator  2 3.13∙10-3 0.42∙10-3   3 3.26∙10-3 0.82∙10-3 Non-linear mass  3 3.28∙10-3 0.0776∙10-3 Mathieu equation***  3 70.8∙10-3 25.9∙10-3 

Table 1: Computation results based on normalized mean absolute error (NMAE). #C denotes the number 
of evolved coefficients. For each case, 25 runs of 120 generations were done with a population size of 50, 

using 250 training points and 250 test points. 

*     Based on the ODE-runs with 50% training data and without evolving initial conditions. 
**   Only three runs were made due to poor convergence of ODE solver. 
*** The Mathieu equation describes not self-excited but parametrically excited vibrations. 
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added to the C1+C2y2 term that is strictly required. The poor result for the non-linear damping case is 
due to suboptimal convergence of eight runs out of 25. Extending the runs to more generations  will 
most likely improve the mean NMAE. The same can be said of the Mathieu equation, which belongs 
to a distinctly different class of parametrically excited vibrations. 

The test errors of the best runs are plotted in Fig. 4 as function of their computation times.The 
errors are the minima of the NMAE values of the 25 runs for the vibrations mentioned in Table 1. 
There are two outliers: the negative damping evolved with a polynomial term took much longer to 
compute and the best run for the Mathieu equation is significantly less accurate. It is remarkab le that 
the best non-linear damping run is slightly better than the other non-linear cases. 
 

 
 

Figure 4: The best achieved test errors (NMAE) out of 25 runs as function of the computing time  of the best 
runs for the cases listed in Table 1. The numbers inside the figure denote the number of evolved coefficients. 

4.3 Sensitivity analysis 
A sensitivity analysis was done to study the effect o f d ifferent population sizes, number of 

generations and tolerance settings of the ODE solver. The results are summarized in Fig.  5. The test 
errors are NMAE values over 25 runs, as defined in equation 1. 

      
 

Figure 5: Sensitivity analysis results. Left: sensitivity on population size and number of generations showing 
normalized mean absolute errors (NMAE) of 25 runs. Right: sensitivity of test error (NMAE) on tolerances of 
ODE solvers for computing fitness values (“evaluation tolerance”) and test errors (“testing tolerance”). On the 

axes, “1e-2” means 10-2, etc. and the grey scale refers to base-10 logarithms of NMAE values. 
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The sensitivity analysis is based on the three-dimensional optimization problem of finding the 
coefficients of an unforced vibration with non-linear damping term -0.4501+1.0283y+1.903y2. The 
results show that a population size of 50 yields much better results than a population size o f 25 (Fig. 5, 
left), and 100 generations score far better than 50 generations. Further increases in population size and 
generations give considerably smaller improvements. 

The right plot of Fig. 5 shows the effect of d ifferent combinations of termination settings for the 
numerical integration algorithm used for computing errors of the candidate ODE models (“evaluation 
tolerance”) and of the winning model (“testing tolerance”). Unsurprisingly, stricter (lower) tolerances 
lead to more accurate results (“-4” in the colorbar refers to  a NMAE value of 10-4, etc.). The worst 
results occur for a strict evaluation tolerance in combination with a coarse testing tolerance. 
Furthermore, it is seen that relatively low test errors are found if the relative tolerance of the ODE 
solver for evaluation and testing are the same. Of course we need to realize that the lower the 
evaluation tolerance, the longer on average the runs are likely to be and that the testing tolera nce 
should always be relatively strict in order to make a fair judgment. Based on these observations, a 
relative evaluation tolerance of 10-3 and a testing tolerance of 10-5 were chosen for the simulat ions in 
Sections 4.1 and 4.2. 

5 Discussion 
The evaluation accuracy of the candidate models depends on the numerical integration method. 

Apart from the choice of integration algorithm, the tunable parameter here is the (relative) residual 
error. A  stricter integration error setting results in longer computation t ime and without further 
protection even occasionally crashes, but if the ODEs are solved too coarsely, promising candidates 
may not come out on top. The sensitivity analysis in Section 4.3 can be seen as a preliminary study for 
this issue. It is not surprising that the impact of the ODE solver settings on the solution accuracy also 
depends on the complexity of the displacement signal, in particular its degree of non -linearity. 
Ult imately, the dilemma lies in  optimizing the integration scheme for specific problems, or 
maintaining robustness – at the cost of longer total computation times. Solving this dilemma involves 
judgment of stiffness of the worst possible candidate (e.g. for h igh  Van der Pol cases). See 
Quateroni et al. (2010) for a treatment of different ODE solvers in MATLAB. 

An important observation is that achieving a low test error is not synonymous with finding values 
close to the original coefficients of the target motion equation. This is due to the mult imodality, or one 
could say ambiguity of the problem. The undamped natural frequency, for instance, is a function of the 
ratio of stiffness k and mass m, which can be ‘found’ by innumerable combinations of k and m. Ways 
to (partly) overcome ambiguous solutions in practice are a prio ri in jection o f knowledge about the 
physical domain and normalization (e.g. it is common to divide all terms by the mass coefficient).  In 
fact, in real-life applicat ions there is usually information availab le about parameter ranges. Estimates 
of the stiffness in a physical system, for instance, would lead to a constraint on the stifness coefficient, 
transforming the free optimization p roblem into a constrained optimization p roblem. The new 
developments in automated discovery of physical laws do not exempt scientists from their duty of 
making thorough interpretations of the results (as also noted by Schmidt & Lipson 2009). If this 
remains an important task anyway, then domain knowledge might just as well be applied beforehand, 
thus avoiding a search through a multitude of unrealistic candidate solutions. 

Other methods that infer ODEs may not suffer from a large computational load of solving 
candidates, but they often have other disadvantages worth mentioning. Some GP approaches for 
evolving dynamical systems perform training in the y’(t) domain. This means that the original time 
series first has to be differentiated fu lly, which is not a trivial task due to noise present in real-life data 
(see Kronberger 2011). In this study it was only assumed that the init ial values are known, in other 
words, the velocity is required only at the time of the first training point. Other approaches may use 
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structures that are easily computable, such as the discrete map used by Howard & Oakley (1994), but 
may  provide insufficient insight in the system because the resulting expression has a format  that is not 
easily interpreted. To be ab le to write the end result in the familiar ODE form is a necessary condition 
for serving engineering applications. 

6 Conclusions and outlook on future work 
The reverse engineering problem of finding the ODE expression of self-excited vibrations appears 

in innumerous applications. Particularly interesting is the idea of quick assessment of different 
vibration types. This enables operational and early-warn ing systems to recognise undesired vibrations 
in engineering installations before they inflict damage. 

In this paper it was examined how the differential evolution algorithm can  be applied to identify 
several vibration types by performing regression on the ODE that describes the displacement. The 
relatively simple case of a linear forced vib ration allowed a comparison between using the analytical 
solution structure and an ODE structure. Irrespective of the percentage of available training data, the 
ODE structure produced more accurate results, but required significantly more computational time 
than the analytical solution, under the condition that the initial velocity is known. Next, a  number of 
self-excited oscillations was identified, yielding reasonably accurate results. The presence of 
superfluous non-linear terms proved to have an influence on the achieved computation times , but not 
directly on test errors . A sensitivity analysis exposed the impact of the tolerance settings of the ODE 
solver. 

Ongoing work is looking at ways to use information from the frequency domain of the target data 
in the population, an idea found in Howard & Oakley (1994). A lso, it should be studied more deeply 
how the degree of non-linearity affects the accuracy. The algorithm could furthermore benefit from 
fitness prediction as used by Schmidt & Lipson (2009), with the goal of speeding up and improving 
the evolution. A third  point of attention for future work is to see which of the existing ‘n iching’ 
methods for mult imodal optimization are useful for the identification of vibrations. And finally, the 
algorithm will be applied to the sensor data from experiments with hydraulic gate vibrations. 
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