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Abstract

Background: The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved
genes for gut formation during its early development. During the last decade, the spatial distribution of many of these
genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis’
curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-
dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial
patterns.

Methods/Result: In this work, first standardized gene expression profiles are generated from publicly available N. vectensis
embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered
based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic
development. Representative expression profiles are manually selected from these clusters, and used as input for a
simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an
optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized
model parameters.

Outlook: While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory
networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut
formation in silico across various species.
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Introduction

During animal development asymmetric signals set up during

the early cleavage stages are utilized to initiate different pathways

of cell type specific differentiation. Individual cells undergo a

complex sequential and combinatorial pattern of differential

activation/repression of gene activity that are causally required

for the correct assignment of cell identity [1]. The body plan is

thus formed by interactions between genes and proteins. A

collection of such interactions defines a gene regulatory network

(GRN).

A GRN can be described using mathematical models. The goal

of modeling GRNs is to understand the basic properties of these

networks. Various mathematical frameworks have been proposed

for the description of GRNs [2]. Some models are quantitative,

some models include time or spatial compartments, but combined

quantitative spatio-temporal models are rare. Dynamic models

that simulate quantitative gene expression levels in interacting

domains can capture the formation of gene expression patterns

during early animal development [3]. These dynamic simulation

models are validated by their ability to reproduce spatio-temporal

patterns based on experimental measurements.

The general model building process contains three main steps

[4]. First, quantitative gene expression data is required, which is

extracted from spatio-temporal measurements. Second, a model-

ing framework is established from a set of mathematical equations.

Third, the parameters in the modeling framework are estimated:

the optimal parameters produce simulated expression patterns that

correspond to the quantitative gene expression data. An overview

of the modeling cycle is shown in Figure 1.

Modeling GRNs has the advantage that parameters can be

investigated without the noise and limited precision of experimen-

tal measurements. The influence of the proposed mechanisms can

be tested without the interference of many other processes that
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occur in living systems. Moreover, new hypotheses can be

generated from abstract model properties that cannot be obtained

from experimental measurements. For example, Manu et al. [5]

suggested that anterior and posterior regions in the early fly

embryo move towards separate basins of attraction, based on a

phase space analysis of their quantitative spatial dynamic model.

Biologists may regard the inferred parameters as new hypotheses

for conducting further experiments. On a lower level, the

quantitative extraction of spatio-temporal gene expression patterns

provides a convenient method to systematically organize, analyze

and share these data among workers around the world.

When modeling methods are applied to investigate GRNs, some

pitfalls should be avoided. The data quality, scope and usefulness

of a model should be considered.

The reliability of a numerical model depends on the quality of

the data that is supplied as input. For example, RNA in situ
hybridizations can come from various laboratories, implying that

the images could be produced with different light settings,

operators and purposes. Moreover, differences may also arise

from variation among individual samples.

Conclusions beyond the scope of the model should also be

viewed with caution. If a model identifies spatial and temporal

correlations between pairs of genes, then these should not be

treated as interactions, even though direct or indirect influences

would be the most straightforward cause of these correlations.

However, these proposed interactions can be directly tested

experimentally thus vetting the model’s predictions.

Finding an optimal solution in problems with many unknown

parameters can be computationally extremely intensive. Besides,

the optimal solution is not necessarily the best approximation of

the biological system. Analyzing multiple solutions from a repeated

stochastic search to determine which parameters are most

consistent (and therefore most reliable) is an alternative method.

An analysis of many solutions can provide more information than

the best solution from a single optimization run.

Currently, the most precisely described spatio-temporal regula-

tion mechanism for early development is the gap gene network in

the fruit fly Drosophila melanogaster [6,7]. One notable insight is

the function of cross-regulatory interactions among gap genes [8].

These interactions are necessary for precise gap gene expression

domains to emerge from a larger spread in maternal concentration

gradients.

In comparison to most other metazoans, gene regulation in

early fly embryos such as Drosophila melanogaster is easy to

understand, because the regulatory proteins do not require

intermediate metabolites to interact with the DNA [9]. These

straightforward regulatory interactions are coupled to the early fly

morphology: no membranes are present during the first nuclear

division cycles, so transcription factors can diffuse between nuclei.

In other metazoan embryos, complex signaling pathways operate

from the early cleavage stage cells, and many regulatory

interactions are mediated by a chain of inter- and intracellular

compounds.

Even after the formation of membranes around the nuclei, the

fly embryo outline does not change much due to its encapsulation

in the eggshell. This allows a highly automated procedure for

image segmentation and expression profile extraction [10].

However, the shape of most other metazoan embryos changes

continuously, especially during blastula formation and gastrula-

tion.

Figure 1. Overview of the modeling cycle. The modeling cycle
starts with a framework of general mathematical equations. Initial
parameter values are randomly generated or manually provided. These
values are substituted into the general framework to define a specific
set of equations. The equations are applied to the initial state of the
system (usually derived from measurements) and produce intermediate
and final states. These simulated states are compared to reference data
and their similarity is determined. New parameter values are generated
and new simulation runs are performed repeatedly, while stopping
conditions are tested after each run (such as a maximum number of
runs, a target similarity or a lack of improved similarity after multiple
runs). As soon as a stopping condition applies, the cycle is terminated
and the set of parameter values that results in the closest match with

the observations is the optimized model. The steps that require
quantitative data are encircled.
doi:10.1371/journal.pone.0103341.g001
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An extended pipeline is proposed with the purpose of

elucidating gene regulation mechanisms in other animals beyond

flies. The particular steps in this pipeline, summarized in Figure 2,

already provide means to quantitatively compare external

properties like average shapes and expression patterns among

different species. The complete procedure may eventually allow

the comparison of pattern formation programs.

In the current study, the starlet sea anemone Nematostella
vectensis (hereafter referred to as N. vectensis) is used as a case

study to investigate GRNs during embryonic development. As a

model organism, N. vectensis is very convenient since it is

sufficiently small and transparent for use with various microscopy

methods, it is easily grown in a petri dish and it can reproduce

sexually and asexually in a laboratory environment [11]. Also in

terms of development, N. vectensis is an interesting model

organism, as its mode of gastrulation is common among

metazoans and many conserved signaling pathways have been

identified, while its body plan is relatively simple (Figure 3H) [12].

Many gene expression images have been published for N.
vectensis, and some papers are listed at the Cnidarian Evolution-

ary Genomics Database [13]. An increasing number of raw

pictures, including unpublished material, is collected in the marine

invertebrates database Kahi Kai [14]. While these images show

the spatio-temporal progress of gene expression patterns, they do

not give insight into how these complex patterns arise.

Previously, a method was described for the quantitative

extraction of gene expression patterns in embryos with a changing

morphology [15], such as N. vectensis. The availability of such a

method is a basic requirement for modeling spatio-temporal gene

regulation and forms the first step towards GRNs for morpholog-

ical development in various animals. Still, an understanding of the

dynamical aspects of these GRNs requires a more precise

Figure 2. Overview of the GRN production pipeline. The pipeline is divided in three main parts, which are required for the study of pattern
formation in any system, and nine smaller steps that apply specifically to complex and changing shapes. The main parts are the design of digital
morphologies, the preparation of standardized gene expression profiles and the implementation of gene regulation models. For complex and
changing morphologies, the particular steps are explicitly mentioned. First, embryo micrographs are prepared with a sufficiently high resolution to
observe the tissue outlines. The outlines in every time bin are averaged to obtain representative embryo geometries for all developmental stages of
interest. Points for an approximate spline of each geometry are selected and these spline points are interpolated for subsequent geometries to
obtain a continuous series of digital embryo morphologies. The second part is the preparation of expression profiles from observed gene expression
patterns, starting with the adjustment of a digital morphology to a gene expression image such as an in situ hybridization. The spatial gene
expression is quantified by measuring the expression signal along the adjusted morphology. The raw signal is edited and interpolated at a fixed
number of equidistant points to arrive at a standardized gene expression profile. In the third part, the gene regulatory network is inferred and
updated. A set of expression profiles is selected as modeling input. The free parameters of a network model are estimated with an optimization
algorithm. The optimized parameters are incorporated in an interaction network that can be analyzed and validated; the modeling cycle is then
repeated with new conditions.
doi:10.1371/journal.pone.0103341.g002
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description of the complex signaling between genes and among

cells.

Therefore, in this study we first apply the above method on

microscopy images of RNA hybridizations and protein antibodies,

and quantitative PCR (qPCR) measurements, such as obtained

from the Kahi Kai database. Having quantified these images, a

high-level mathematical description is sought to understand what

properties and interactions are required for gene products to

exhibit these spatial distributions during the embryo’s progressing

development. We start with a minimal set of genes to explain the

appearance of characteristic features in the quantified expression

patterns. We assume that initially studying a small number of

genes will provide a clear view on the major mechanisms, while

refining a model by adding more genes should show additional

mechanisms responsible for properties like stability and fixed final

expression domains.

We focus on N. vectensis gut formation. The gut is formed from

an embryonic tissue called endoderm, and the delineation of

endoderm (internal tissue) from overlying ectoderm (giving rise to

the outer epidermis of the animal) is among the first visible

developmental events in sea anemone development. To select a set

of genes for simulation, we first determine which of the genes that

are involved in the process of endoderm formation display similar

behavior by clustering genes with similar patterns. We assume that

selecting a single member from each cluster of genes is usually

sufficient to discover the main mechanism that can then be

elaborated on with additional genetic information. When a main

mechanism has been elucidated, additional genes can be selected

by narrowing the cluster sizes.

Our general approach consists of three basic steps: 1) design of

digital morphologies, 2) quantification of spatial expression data

and 3) mathematical analysis. For the model organism N.
vectensis, a range of morphologies are derived from high-

resolution confocal microscopy pictures during the first three days

of embryonic development (Figure 4). These morphologies are

then applied as adaptive masks to quantify expression intensity

from RNA in situ hybridization and protein immunolocalization

images of N. vectensis development (Figure 5). To infer the

regulatory gene network, selected expression profiles from four

genes at three distinct time points serve as reference data in the

gene circuit model. Genetic interactions that show the same sign in

many optimization runs are incorporated in a regulation network.

The primary objective of this paper is setting up a flexible and

complete workflow to obtain putative regulatory information from

gene expression images at multiple time points. Current limitations

are stated with propositions for improvements. In this preliminary

study, we arrive at a rough network structure of regulatory

interactions in the gut formation of N. vectensis during early

development. This regulation network will be improved based on

new expression data that have become available recently.

Results

A set of conserved genes that are expressed in cnidarians and

echinoids is provided in [16] (Figure 4 herein) and these genes are

ordered in functional modules that are associated with tissue

differentiation. A single functional module is an interesting starting

point for studying gene regulation, because a functional module

may act as a regulatory module as well. The genes that are

associated with gut development are useful for two-dimensional

quantification, because their expression patterns are cylindrically

symmetric. Based on the list of conserved genes for gut

development, a total of 70 gene expression micrographs for 13

genes from N. vectensis have been retrieved from various sources.

No gene expression images have been found for six1/2 and blimp,

while gata displays a grainy pattern during gastrulation [17],

which is unsuitable for quantification.

The 70 gene expression images and the derived spatial

expression profiles for the cluster analysis are listed in Dataset

S1. The correlation matrix and dendrogram are displayed in

Figure 6. Applying a similarity cut-off of 0.6 (one minus the

correlation coefficient), the genes are clustered in three groups, for

which the profiles are plotted in Figure 7. The largest branch,

colored in red, contains 40 profiles characterized by their

expression in the endoderm. The green branch contains 28

Figure 3. Various stages of N. vectensis embryonic development. Development stages from egg to polyp are shown, with the oral pole to the
left in panels F-H (indicated with an asterisk). A) Fertilized egg (0 h). B) Four-cell stage (3 h), often after two cleavages finish simultaneously. C) 32-cell
stage (5 h). D,E) Cleavages result in a hollow sphere called a blastula (10–20 h). F) Invaginating cells at the oral pole mark the beginning of
gastrulation (24 h). G) Planula larva (72 h) with a double cell layer and apical tuft (at). Black arrows indicate the oral and aboral directions. H) Juvenile
polyp with four early tentacles (ten). (cd = central domain, cr = central ring, mo = mouth, oe = oral end, ph = pharynx. Development times in
hours at 16uC estimated from [20,30].)
doi:10.1371/journal.pone.0103341.g003
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profiles characterized by expression in the (presumptive) oral

region. The two remaining profiles in the blue branch correlate

with both clusters, as these consist of sharp peaks at the edges of

both regions.

Expression domains for a large set of genes in the N. vectensis
blastula have recently been analyzed with in situ hybridization

[18]. Expression was found in a central domain at the oral pole, in

rings at various distances from the oral center and in an aboral

region. The genes in our cluster analysis correspond to those that

are expressed either in the central domain or in the central ring

(these regions are indicated in Figure 3E). Even though our

analysis contains relatively few measurements from the blastula

stage, the strong correlation within the two main clusters agrees

with this classification. Note that some genes appear in both

clusters; this could be caused by dispersion of the staining agent in

older images, while some genes are repressed in the central

domain after initially being expressed in this area. The separation

into these two clusters also suggests that the central domain

develops into endodermal tissue, while the central ring becomes

the future mouth and pharynx (Figure 3H). Cell fate experiments

are however required to confirm this observation.

The expression profiles within each cluster are strongly

correlated (Figure 6) and show substantial overlap (Figure 7). Half

of the genes have expression profiles in multiple clusters. In the

blastula and early gastrula stages, the separate domains have

partially overlapping lines of sight. Moreover, oral views reveal

that these expression domains can have irregular shapes [18],

causing a variable domain boundary among individuals.

In Table 1, the primary spatial expression feature for each gene

is indicated at the cleavage, gastrula and planula stages. Because

many genes appear in two clusters in the gastrula stage, the

expression cluster for each gene is only indicated for the planula

stage. Based on the stage they first appear and on their spatial

expression in the planula, four groups of genes are identified. First,

b-catenin, dishevelled and tcf are expressed already at the early

cleavage stage. Second, otxA, otxC and snail are present in the

gastrula and expressed in the planula endoderm. Third, brachyury,

foxA, otxB and sprouty are expressed at the oral pole in the

planula. Fourth, foxC, msx and twist are not yet expressed at the

gastrula stage. To arrive at a set of profiles to be used for

simulation, we selected from each cluster the single gene with the

largest number of expression profiles, namely b-catenin, snail,
foxA and twist.

For b-catenin, a profile is selected as a maternal gradient,

because its expression precedes the gene expression in the other

groups. For the purposes of the model, this means that b-catenin is

initiated with a nonzero profile that remains constant. The other

genes are initiated with an expression level of zero.

The input profiles for parameter estimation are listed in

Table 2, with all non-constant profiles initialized at zero and a

constant maternal profile. These profiles are displayed in Figure 8

and compared to the simulated profiles from the model with the

highest similarity. The parameter sets from every run (100 runs in

total) are collected in Figure 9 and the parameter sensitivities are

plotted in Figure 10. If an interaction parameter is positive in at

least 90% of the estimated parameter sets, a corresponding

activation is indicated in the regulation network (Figure 11).

Figure 4. Graphical embryo morphologies derived from confocal microscopy images. A-D) N. vectensis embryos were stained at various
stages of gastrulation with fluorescent markers for filamentous actin (phalloidin in green) and nuclei (propidium iodide in red). Arrowheads indicate
the endoderm. The embryos are oriented with the blastopore to the right. Development times after fertilization at 16uC are indicated in the lower left
corner. The images are modified from [20]. A) Cells at the oral pole are invaginating. B, C) The inner cell layer (endoderm) is zipping up with the outer
layer (ectoderm). D) The endoderm is flattening against the ectoderm. E-H) Based on these confocal cross sections, average cell layer geometries have
been constructed. The cell layer outlines are closed loops; the inner loop overlaps itself where endoderm and ectoderm are zipped up. Only a
selection of confocal micrographs and embryo geometries is shown. More details on the construction of these geometries are given in Methods.
doi:10.1371/journal.pone.0103341.g004

Gene Regulation in Nematostella vectensis

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e103341



Likewise, an inhibition is added for an interaction parameter that

is negative in 90% of the sets or more.

Figure 8 shows that the simulated twist expression pattern

deviates most from the observed expression pattern: both

simulated foxA and simulated snail patterns display peaks at the

observed locations, while a shallow simulated twist band appears at

the incorrect location. twist expression is observed only at the last

time point and even then the area under the peaks is smallest for

twist, so correctly simulated twist peaks would contribute the least

to the overall similarity. Moreover, the twist peaks are located

within the central region of both the b-catenin and snail domains,

so no agent is present to induce a separation in the twist domain.

Compare this to the simulated foxA peaks that are induced by

activation from b-catenin and repression from snail (purple line in

Figure 9).

Because the simulated twist pattern shows the worst fit with the

observed pattern and maintains the lowest expression levels over

the whole length, it is expected that the parameters that involve

the twist gene are the least sensitive. The graphs in Figure 10 show

that this is indeed the case.

In the simulation, twist is upregulated early (at 25 hours), and at

the wrong location (in the aboral endoderm). A gene that is

expressed in the aboral endoderm is needed to limit a twist peak to

the oral endoderm (Figure 12). This role might be fulfilled by otxA,

otxB or otxC, but another gene that is not necessarily conserved

could serve this purpose as well.

Our results are not conclusive, so a comparison with a gene

network from another organism would not yield new knowledge.

Still, the model may allow initial comparisons with observations in

sea urchins.

For example, the regulation of endomesoderm formation in the

sea urchin is intensely studied [19]. The extensive network shares

the genes b-catenin, brachyury, foxA, otx and tcf with our limited

study. The reported interactions in the sea urchin system are listed

in Table 3, along with a comparison to the inferred edges in the

sea anemone regulation network. From this comparison, it seems

that the regulatory function of otx in sea urchins is more similar to

otxB than to otxA or otxC in sea anemones. The correspondence

of most relations in sea urchin and sea anemone is remarkable,

although no strong conclusions can be drawn.

Methods

Digital morphologies from high-resolution micrographs
N. vectensis embryos at 16uC were stained with propidium

iodide and phalloidin to visualize nuclei and cell boundaries,

Figure 5. Gene expression quantification procedure. A) An in situ hybridization of the gene brachyury (blue reaction product) of an N. vectensis
embryo at the correct developmental stage oriented with the site of gastrulation to the right (modified from www.kahikai.org). The overlaid
prototype morphology has not been adapted. B) The morphology has been adjusted to the observed cell layer outlines. C) The cell layer is
decomposed into segments of approximately the user-defined width. D) For each segment the average color intensity is calculated (the red intensity
profile has been selected in this example). Expression intensity is measured along the cell layer and plotted against the cell layer position. E) Gene
expression profile after editing the raw intensity profile. The vertical black lines correspond to the position of the oral pole.
doi:10.1371/journal.pone.0103341.g005
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respectively, and imaged with a confocal microscope [20]

(Figure 4A-D). These images were used to generate nodes placed

along the cell layer boundaries to indicate their shapes over

developmental time points. Multiple samples (2 to 5) were

recorded and node locations are averaged to generate represen-

tative geometries for all time points (Figure 4E-H). This averaging

reduces the influence of local irregularities in individual embryos.

Strategic points are picked from these average geometries for

interpolation of subsequent geometries, to obtain a continuous

range of embryo morphologies.

Standardized profiles from gene expression images
Published and raw gene expression images are imported into

GenExp, a Matlab interface to quantify gene expression patterns.

The expression profile is extracted as described in [15]. A

prototype morphology is overlaid with the image (Figure 5A). The

selected morphology is adapted to the observed embryo’s cell layer

by dragging the points of the digital morphology over the cell layer

boundaries (Figure 5B). The cell layer is decomposed into

segments with edges between the inner and outer cell layer

boundaries (Figure 5C). The average color intensities of the pixels

within each segment are plotted as a function of the segment’s

position on the cell layer (Figure 5D). This plot is edited to

compensate for artifacts from the environment, annotations and

decomposition (Figure 5E). The edited plot is interpolated at a

hundred equidistant points and the intensity is scaled to unity to

arrive at a standardized expression profile suitable for numerical

analysis.

Numerical analysis
Spatial correlation and gene selection. All standardized

expression profiles are clustered with average linkage and Pearson

correlation distance; these measures are straightforward and

applied most frequently in co-expression analysis [21]. In a table,

the genes are ordered based on the characteristics of their

expression profiles at the cleavage, gastrula and planula stages.

From each group of genes with similar expression characteristics, a

gene is selected for simulation. Expression profiles of the selected

genes at roughly 0, 25 and 50 hours after fertilization serve as

input for the parameter estimation.

Parameter estimation. The gene circuit model [4] (derived from

the connectionist model [22]) is a mathematical framework that

Figure 6. Correlation matrix and dendrogram of expression profiles for gut development genes. The 70 profiles listed in Dataset S1 are
clustered using Pearson correlation and unweighted average linkage. The color scale goes from red (negative correlation) to black (no correlation) to
green (positive correlation). The dendrogram is cut off at linkage distance 0.6 to obtain the three clusters colored in green, red and blue. (Here, the
linkage distance is one minus the correlation coefficient.)
doi:10.1371/journal.pone.0103341.g006
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can simulate gene regulation in flies with no prior knowledge

about interaction mechanisms. It is based on the assumption that

the gene products influence the production rate of proteins, while

diffusion and decay are protein-specific. The general differential

equations for the protein concentrations in a one-dimensional

chain of nuclei are
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j zmiP
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with product concentrations P of gene i in nucleus a, interaction

matrix T, maternal influence m of maternal gene mat, constant

influence h, sigmoid function s, production rate R, diffusion

coefficient D and decay rate l. For each gene i, the value of

parameters Tij, mi, hi, Ri, Di and li need to be determined.

The modeling cycle is summarized in Figure 1. Parameter

values are obtained by simulating a system with many sets of trial

parameters from an initial state and comparing the simulated

concentration profiles to the observed reference data.

We simplified the gene circuit formalism for the simulation

model:
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with parameters T, m, h and l, and sigmoid function s(f) = K +
arctan(f)/p. The main motivation for removing the diffusion and

replacing the production rate with a constant is our focus on the

interaction parameters T and m. Moreover, our one-dimensional

expression profiles are simplifications of two-dimensional curved

surfaces. The relative amount of cells that is mapped to each point

depends on the embryo’s spacial shape, and this shape is changing

during the embryo’s development. Therefore, the diffusion

function would be time dependent and too complicated for our

simple model. Neglecting the diffusion is justified based on the

insensitivity of the diffusion coefficients in Drosophila gene circuits

[23]. The production rate would correlate strongly with the decay

rate, and this would result in a superfluous expansion of the search

space. The production rates in Drosophila gene circuits are

insensitive as well.

Figure 7. Spatial gene expression profiles divided in three hierarchical clusters. A) The embryo cell layer is mapped to the horizontal axis.
B-D) The spatial expression profiles plotted in each graph show common features within the clusters from the dendrogram in Figure 6. B) Genes in
the red cluster are mainly expressed in the endodermal region (segments 40 to 60). C) Genes in the green cluster show expression at the oral pole
(segments 30–40 and 60–70). D) The remaining gene is expressed in a narrow domain that roughly corresponds to the border of both regions (right).
These clusters are applied for the selection of genes that are used in the simulations. E-G) In situ RNA hybridizations from each cluster in the planula
stage: snail (E), foxA (F) and twist (G). The annotations appear in the original publications [17,31]; the meaning of these annotations is irrelevant for the
quantification procedure.
doi:10.1371/journal.pone.0103341.g007
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With this simulation model, a hundred optimization runs are

performed, minimizing the root-mean-squared value of differences

with the reference profiles at 25 and 50 hours. We applied the

enhanced scatter search (eSS) algorithm [24] with at least 10,000

function evaluations for each run and the local search options

deactivated. The eSS algorithm performed well for high-dimen-

sional benchmark problems in comparison to other methods [25].

Regulation network inference. The best parameter set

found in each optimization run is collected for a statistical analysis.

The values from these parameter sets are displayed in a scatter plot

and standard deviations around the means are indicated.

The parameter sensitivities from the optimized sets are

calculated with the iterative approximation based on directional

derivatives [26]. A parameter’s sensitivity is the change in the

system with a changing parameter value. The derivative of a

protein concentration to the parameter value is a measure for the

parameter sensitivity. The algorithm calculates the derivatives of

all concentrations with respect to the parameter value for every

point along the cell layer. The derivatives are averaged along the

cell layer for each concentration and the highest average derivative

is defined as the system’s sensitivity towards this parameter. The

sensitivities are plotted for all parameters in the optimized sets,

along with the mean sensitivity values and standard deviations

(Figure 10).

Those interaction parameters that have an equal sign for 90%

of all values are incorporated into the proposed regulation

network. These parameters are expected to be most significant,

so they should exhibit high sensitivities.

Discussion

Gene expression quantification issues
Embryonic tissue is expanding during development, but this

expansion is not homogeneous. Static points on the embryo

geometries are mapped to fixed positions to minimize the apparent

shift of expression patterns due to different growth rates in the

embryo body. The fixed points are located roughly at the oral end

after gastrulation has commenced (this region is indicated in

Figure 3F), because many genes display a stable expression

domain around this point and this location is readily established.

Without a correction for inhomogeneous tissue expansion,

expression at the oral ectoderm would be displaced toward the

aboral ectoderm in the one-dimensional cell layer during

gastrulation. The uncorrected patterns would exhibit less corre-

lation over time and model parameters would be inferred to

accommodate the imaginary shift, while the expression remains at

the same position in three-dimensional space.

All quantified expression intensity is normalized to unity,

because the raw intensity of in situ RNA hybridizations depends

on the duration of hybridization, which is different for separate

measurements. As a consequence of the normalization, the

absolute expression levels between genes and developmental

stages cannot be compared. All analysis is based on the differential

gene expression within the individual embryos, which means that

the strength of regulatory interactions between genes cannot be

determined. The sign of the interaction parameters can only be

inferred if the regulatory interactions do not influence the

maximum expression. A justification for this strong assumption

is that the simulated genes are selected for their expression in

different domains. To enable more accurate simulations, the

quantified gene expression patterns can be combined with

information from qPCR measurements.

If spatial information is available for proteins, then this is used

rather than mRNA distributions, because proteins are the
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compounds with actual regulatory function. For dishevelled, both

protein antibody stainings, fluorescent protein constructs and in
situ RNA hybridizations in N. vectensis were available, and

therefore only the protein pictures have been analyzed. Moreover,

dishevelled transcripts are uniformly expressed throughout embry-

onic development [27], so dishevelled in situs do not provide

information on differential regulation. For b-catenin, only protein

distributions are available.

From the in situ measurements consulted in this study, the

initial time of expression is hard to determine for each gene. The

measurements are not part of a systematic time series, so an

approximate time of development is derived from the embryo

morphology. For the majority of genes that make their first

appearance during the blastula stage, this time can only be

classified as roughly as 10 to 20 hours after fertilization. Besides

this lack of precise timing, the in situ hybridization technique is

quite insensitive to low expression levels. These limitations are

reduced with the availability of systematic measurements in the

blastula stage and highly sensitive qPCR data. These quantitative

measurements can be applied to define the total amount of mRNA

in an embryo. This amount is then approximated as the total

expression intensity in quantified gene expression patterns from in
situ hybridizations.

Proposed improvements for geometry extraction
Currently, the geometry extraction procedure is very labor

intensive and time consuming. For fly embryos, algorithmic image

segmentation speeds up this task substantially [10]. For N.
vectensis embryos, an extended image segmentation method

would be required to take irregular shapes and low-contrast

internal structures into account. Such an extended image

segmentation method could significantly reduce the manual effort

to identify the cell layer boundaries. Algorithm-guided image

segmentation would also reduce subjective human judgment in

estimating the boundaries, especially for rough or blurred edges.

Raw RNA hybridization images of N. vectensis and other marine

invertebrates are available in large numbers and high quality at

Kahi Kai [14]. The embryo images in this database can serve as a

benchmark for general image processing methods.

Selection of representative genes
One gene was selected for the simulations from each gene

cluster in Table 1 based on the number of available expression

profiles for each gene. While the availability of a large number of

profiles reduces the uncertainty in reconstructing the spatiotem-

poral expression patterns for that particular gene, it does not

Figure 8. Simulated profiles compared to observations. A) All simulations start with the interacting genes foxA, snail and twist unexpressed
and a gradient of b-catenin. B) At 25 hours, foxA and snail are expressed in domains near the center. C) At 50 hours, sharply bound twist expression
occurs within the snail domain. The bounds of foxA and snail expression are sharper as well. D, E) The best simulation model approximates the
positions of the foxA and snail domains, while the late twist peaks are not reproduced. The b-catenin gradient is kept unchanged in both the
reference and the simulations, therefore this profile is not displayed in the middle and bottom plots.
doi:10.1371/journal.pone.0103341.g008

Gene Regulation in Nematostella vectensis

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103341



guarantee that this gene is representative of all other genes in the

same cluster. To address this issue, it needs to be established, for

each selected gene, whether this gene is an outlier in its own

cluster.

Effects of simplifications in the simulation model
The simulation model is formally fitted to 50 unique spatial

points for 2 time points per gene (Figure 8B,C). However, all

differential dynamics is observed between segments 25 and 45,

while each gene reaches its final expression pattern from zero in

roughly one time frame due to the intensity normalization. In this

way, the useful information contained in the reference profiles is

reduced to about 20 points for each of the 3 genes. The total

information content is thus 60 points.

The original gene circuit formalism (Equation 1) includes n(n+5)

optimization parameters for n fitted genes, which amounts to 24

optimization variables for our 3+1-gene simulation model. To

limit the search space, i.e. the set of models that could potentially

be evaluated during the optimization, the production rates and

diffusion coefficients are excluded from the variation parameters.

Figure 9. Parameter sets from 100 optimization runs. From left to right, the elements in interaction matrix T, the maternal influences m, the
default influences h and the decay coefficients l. The best fit is displayed in Figure 8.
doi:10.1371/journal.pone.0103341.g009

Figure 10. Parameter sensitivities for the parameter sets in Figure 9. The sensitivity is calculated as the highest average derivative of all
concentration profiles to the parameter value (see Methods). From left to right, sensitivities of the elements in interaction matrix T, of the maternal
influences m, of the default influences h and of the decay coefficients l.
doi:10.1371/journal.pone.0103341.g010
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These modifications to the model reduce the number of variables

to n(n+3), or 18 for the studied system. A lower number of

variation parameters reduces the effects of overfitting, but also

limits the solution space, i.e. the set of models that could be

considered a good fit to the data.

The production rate in equation 1 determines the range of the

production term. This means that a higher production rate allows

a larger increase in gene product, and a higher production will

generally result in higher product concentrations. In our

simulations the reference input is normalized, so solutions with

varying concentration maxima for the different genes do not

contribute to a lower score. Therefore the variation of the

production rates would not result in new regions of accessible

solutions.

The diffusion coefficient determines the exchange rate of gene

products between adjacent cells. A higher diffusion coefficient will

smoothen the concentration profiles by decreasing large concen-

tration differences between neighboring cells. In our best

simulation the effect of removing diffusion is clearly visible for

the spiked FoxA pattern at 25 hours (Figure 8D). Increasing the

smoothness of the simulated patterns would result in a better fit.

A small, constant value for the diffusion coefficient that is the

same for all genes can be a good alternative to completely

neglecting diffusion. This will generate smooth profiles without

expanding the search space, while inconsistencies with the real

three-dimensional embryo morphology remain limited.

Comparison to experiments
Tcf is an effector of the canonical Wnt pathway that forms a

complex with b-catenin for its regulatory action. The effects of Tcf

on the expression patterns of other genes in the blastula stage has

been studied with knockdown experiments [18]. The genes

brachyury and foxA are downregulated by NvTcf knockdown,

while no significant effect is observed in the expression patterns of

snailA, snailB, sprouty, otxA, otxB and otxC. Based on these knock-

down experiments, this means that b-catenin/Tcf likely activates

brachyury and foxA, but does not interact with the other genes.

Our inferred GRN correctly includes activation of foxA and

incorrectly predicts activation of snail by b-catenin.

The influence of Tcf on twist expression has not been addressed,

because the knockdown study was limited to targets that are

expressed in the blastula stage, and twist expression has not been

observed before the late gastrula. The prediction from our

regulation network that b-catenin/Tcf does not influence twist

can be tested with a functional study.

Comparison to another quantification approach
Our approach is similar to that of Crombach et al. [28] for

Drosophila. The main features of their inferred gene networks are

more reliable than ours, even though they include more genes and

more parameters per gene in their optimizations. This is caused by

Figure 11. Proposed gene regulation network for gut devel-
opment in Nematostella vectensis. The connections in this network
are based on the estimated parameters in a simplified gene circuit
model from 100 parameter estimations from 0 to 50 hours after
fertilization. Interactions with a consistent signal in 90% of the
estimated sets are incorporated into the network. The genes in this
network represent groups of spatially correlated genes, as indicated in
Table 1.
doi:10.1371/journal.pone.0103341.g011

Table 2. Gene expression profiles selected for simulations.

Interacting genesa Maternal genea Timepointsb

0 hours 25 hours 50 hours

foxA zeros fork:26 fork:44

snail zeros snail:24 snail:45

twist zeros zeros twi:54

b-catenin Bcat:b2 Bcat:b2 Bcat:b2

aThe interacting genes are included in the interaction matrix, while the maternal gene is merely a regulator with a constant profile. The four genes are selected from the
groups indicated in Table 1 (see text).
bThe expression profiles at 0 hours serve as initialization for the simulations. The profiles at 25 hours and 50 hours are used as fitting targets to rank the simulation
models. The table entries refer to the profiles in Dataset S1 and are plotted in Figure 8. ‘‘zeros’’ means no observed expression and represents a list of zeros.
doi:10.1371/journal.pone.0103341.t002

Figure 12. Approximated pattern for twist inhibitor. A gene that
is expressed in the aboral endoderm is necessary to suppress the twist
gene and limit twist expression to the oral endoderm.
doi:10.1371/journal.pone.0103341.g012
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different features in the source images, besides the obvious

differences in image processing.

Their expression images are systematic time series, while our in
situ hybridizations are obtained from several sources. Slight

differences in staining procedures and microscopy settings can

result in images with dissimilar properties.

Furthermore, the amount of images per gene in our sources is

highly variable. This causes the clustering to be biased towards

genes with many profiles. This bias could be diminished by

averaging the patterns of each gene at identical time points before

clustering, but for most images the exact development time is not

available.

Both sources of uncertainty are diminished with the increased

amount of hybridization images. A new series of hybridization

images has recently become available from the Martindale lab in

the Kahi Kai database. A repeated study including recent

contributions would allow a more balanced clustering, a less

biased gene selection and more accurate approximations of

selected time points. Because the new measurements are

systematic, it can even be sufficient to discard the nonsystematic

sources.

Robust results generated by the model
Some reliable results are obtained from the GRN model, despite

its shortcomings. The cluster analysis of gene expression patterns

confirms recent findings that genes in endomesoderm formation

are mainly expressed in two regions. Moreover, many parameter

sets in the gene circuit formalism are capable of simulating the

major gene expression features, so the correct interactions that

appear in the inferred GRN are probably necessary regulatory

interactions to describe the main mechanism of N. vectensis gut

patterning.

The main patterning mechanism includes maternal activation of

genes in the oral pole (represented by foxA) and in the presumptive

endoderm (represented by snail), and repression of the oral pole

genes by the presumptive endoderm genes. b-catenin/Tcf is not

necessary for snail expression, so snail requires another maternal

activator. The interaction between snail and foxA has not been

explored yet; a knockdown of snail is expected to upregulate foxA

in the endodermal region.

Suggested improvements to the model
The simulated genes have been selected based on a clustering of

expression patters. However, this cluster analysis is unbalanced,

with almost half of the profiles belonging to snail and foxA. A

more homogeneous spread of observations over the genes selected

for the correlation analysis should provide clusters that are

populated more evenly. More systematic measurements would also

provide more intermediate time points, allowing a more precise

emergence of simulated profiles.

The proposed mechanism does not rely on the presence of twist;

removing this gene from the simulation restricts the search space

and may increase the sensitivity of the remaining parameters.

Another strategy would be to increase the importance of a

correctly simulated twist pattern to the overall fitness value. An

increased weight for the simulated twist pattern can reduce the

negative bias caused by the limited twist expression. Increasing the

twist weight can be achieved by setting the twist similarity as a

separate objective in a multi-objective optimization approach.

Replacing twist with a more suitable gene for simulation input

will probably yield smoother simulated profiles and a better

understanding of the core regulatory interactions than adding

more genes to the current simulated system. Adding more genes

will increase the number of parameters, and the simulated profiles

can contain artifacts from irrelevant parameters.

Gene expression quantification in other animals
With the spatio-temporal RNA data available for N. vectensis, a

general procedure for improving GRNs can be designed. First, in
situs from a gene expression database are quantified and a

correlation analysis is performed. From this analysis, genes are

chosen that represent major correlation clusters. For these genes,

spatial distributions at fixed time points are constructed and

prepared as input for network inference. Many optimization runs

are performed and the resulting models are analyzed for their

targeted properties, such as statistical relevance and parameter

sensitivities. Based on this information, regulatory interactions

among the simulated genes are proposed. These interactions, or

their absence, are compared to experiments in literature or

evaluated by additional experiments. This validation is then a new

starting point to adjust the modeling framework or to change the

set of simulated genes. A repeated series of parameter optimiza-

tions and model analyses should result in an improved gene

interaction network.

Table 3. Experimental influences in the sea urchin [19] compared to inferred interactions in the sea anemone.

Sea urchin Sea anemone Agreement?

bra activates foxA brachyury and foxA are clustered yes

bra activates otxB brachyury and otxB are clustered yes

foxA represses foxA foxA cluster lacks interaction with itself no

otx activates bra brachyury and otxB are clustered ambiguous

otxA/C cluster likely represses brachyury cluster

otx activates foxA foxA and otxB are clustered ambiguous

otxA/C cluster represses foxA cluster

otx activates otx otxB cluster lacks interaction with itself no

otxA/C cluster represses itself

tcf/b-catenin activates bra b-catenin cluster activates brachyury cluster yes

tcf/b-catenin activates foxA b-catenin cluster activates foxA cluster yes

doi:10.1371/journal.pone.0103341.t003
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The genes involved in the formation of various tissue types and

organ systems have a high similarity across various organisms.

Comparison of developmental regulation networks in different

organisms can determine whether the regulatory interactions

among these common genes are similar as well. These results may

also test the hypothesis that an organism’s outward complexity

correlates with its number of regulatory interactions. In this light,

it is interesting to note that previous observations have indicated

that apparent complexity is independent from the organism’s gene

count [29].

Qualitative spatial expression maps have been drawn up for a

wide variety of organisms in the blastula stage. If digital

morphologies were constructed for these organisms, their spatial

gene expression distribution could be quantified as well.

Supporting Information

Dataset S1 List of analyzed gene expression images.
(ZIP)
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