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On the equivalence of two fundamental theta identities

Tom H. Koornwinder

Dedicated to the memory of Frank W. J. Olver

Abstract

Two fundamental theta identities, a three-term identity due to Weierstrass and a five-
term identity due to Jacobi, both with products of four theta functions as terms, are shown
to be equivalent. One half of the equivalence was already proved by R. J. Chapman in 1996.
The history and usage of the two identities, and some generalizations are also discussed.

1 Introduction

Theta functions occur in many parts of mathematics and its applications [17]. While they had
roots in the work of Jakob Bernoulli and Euler, they were introduced in full generality, depending
on two arguments, by Jacobi. They became very important in nineteenth century complex
analysis [6], [25, Ch. 11] because elliptic functions could be expressed in terms of them. Theta
functions in several variables, later called Riemann theta functions [34, §21.2], played a similar
role for abelian functions. Riemann’s geometric approach [35] and Weierstrass’ analytic approach
[51] were opposed to each other. Ramanujan, in Chapters 16–21 of his Notebooks, gave many
new theta identities, with an emphasis on number theoretical and modular aspects; see Berndt
[4] for an edited version with proofs. Algebraic geometry, number theory and combinatorics are
some of the fields where theta functions have played an important role since long. New fields
of application arose during the last decades of the twentieth century: nonlinear pde’s like KdV
[16], solvable models in statistical mechanics [3], Sklyanin algebra [45], [46], elliptic quantum
groups [19] and elliptic hypergeometric series [21], [22, Ch. 11], [48].

In literature identities involving theta functions abound, see for instance Whittaker &Watson
[53, Ch. 21], Erdélyi et al. [18, §13.10] and Olver et al. [34, Ch. 20], but two identities (given
in [53] and [34]) stand out because of their fundamental nature and because many of the other
identities can be derived from them. Both have the form of a sum of products of four theta
functions of different arguments being zero, with three terms in the first formula and five terms
in the second formula.

First fundamental theta identity

θ1(u+ u1)θ1(u− u1)θ1(u2 + u3)θ1(u2 − u3) + θ1(u+ u2)θ1(u− u2)θ1(u3 + u1)θ1(u3 − u1)

+ θ1(u+ u3)θ1(u− u3)θ1(u1 + u2)θ1(u1 − u2) = 0 (1.1)
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(or equivalently with θ1 replaced by σ), see p.451, Example 5 and p.473, §21.43 in [53], or
(23.10.4) and (23.6.9) in [34].

Second fundamental theta identity

2 θ1(w) θ1(x) θ1(y) θ1(z) = θ1(w
′) θ1(x

′) θ1(y
′) θ1(z

′) + θ2(w
′) θ2(x

′) θ2(y
′) θ2(z

′)

− θ3(w
′) θ3(x

′) θ3(y
′) θ3(z

′) + θ4(w
′) θ4(x

′) θ4(y
′) θ4(z

′), (1.2)

where

2w′ = −w + x+ y + z, 2x′ = w − x+ y + z,

2y′ = w + x− y + z, 2z′ = w + x+ y − z
(1.3)

and similar equivalent identities starting with θ2, θ3 or θ4 on the left-hand side, see §21.22 in
[53], or (21.6.6) and (21.2.9) in [34]

Identity (1.2) (the oldest one) was first given by Jacobi [27, p.507, formula (A)]; this paper is
based on notes made by Borchardt of a course of Jacobi which were later annotated by Jacobi.
It first entered in Jacobi’s lectures of 1835–1836 and he was so excited by the result that he
completely changed his approach to elliptic functions, using (1.2) as a starting point [6, p.220].

Identity (1.1) was first obtained by Weierstrass [50, (1.)]. For the proof he refers to Schwarz
[43, Art. 38, formula (1.)] (these are edited notes of lectures by Weierstrass). Weierstrass [50]
mentions that he first gave this formula in his lectures in 1862. He emphasizes that (1.1) is
essentially different from Jacobi’s formulas (1.2) and variants.

Some papers in the last decades have attributed these formulas to Riemann, although with-
out reference. Frenkel & Turaev [21, pp. 171–172] call formula (1.1) Riemann’s theta identity.
Some later authors [40, (3.4)], [38, (5.3)], [48, (6)] also use this terminology or speak about Rie-
mann’s addition formula. As for (1.2), Mumford [32], [33, p.16] calls it Riemann’s theta relation.
However, I have not been able to find formula (1.1) or (1.2) in [35] or elsewhere in Riemann’s
publications [36].

Formula (1.2) has a generalization [33, Ch. 2, §6], [34, §21.6(i)] to theta functions in several
variables, which is called a generalized Riemann theta identity by Mumford. Weierstrass [50],
[52] gave a generalization of both (1.1) and (1.2), respectively, to the several variables case. It
is not immediately clear how the results in [33] and [52] are related.

The main purpose of this paper is to show in Section 5 that (1.1) and (1.2) easily follow from
each other, and therefore can be considered to be equivalent identities. We will work in the no-
tation [22, (11.2.1)] for theta functions which is now common in work on elliptic hypergeometric
series. Its big advantage is that we have only one theta function instead of four different ones,
by which lists of formulas can be greatly shrinked. Another feature of this notation is that we
work multiplicatively instead of additively. Instead of double (quasi-)periodicity we have quasi-
invariance under multiplication of the independent variable by q. This notation is introduced in
Section 2. Some variants and applications of the two fundamental formulas are given in Section
3. For completeness the elegant proofs by complex analysis of the two fundamental formulas
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are recalled in Section 4 and some other proofs are mentioned. An Appendix compares some
four-term theta identities (mostly extending (1.1)).

During the revision of an earlier version of this paper my attention was called to work by
Wenchang Chu. Apparently unaware of the earlier occurrence of (1.1) in the literature he posed
it as a problem in the Monthly to prove this formula (as a solution to a functional equation).
Several authors gave solutions [9]. One of them, R. J. Chapman, derived (1.1) from (1.2), essen-
tially the same proof as my proof in Section 5. Thus the present paper has become even more
a survey paper than originally intended.

Acknowledgements I thank an anonymous referee for corrections of minor errors, for impor-
tant additional material, and for posing a question which brought me to writing the Appendix.
I also thank Bruce Berndt, Hjalmar Rosengren and Michael Schlosser for providing additional
references, and Michael Somos for interesting comments.

2 Preliminaries

Let q and τ(mod 2Z) be related by q = eiπτ and assume that 0 < |q| < 1, or equivalently
Im τ > 0. We will define and notate the theta function of nome q as in Gasper & Rahman [22,
(11.2.1)]:

θ(w) = θ(w; q) := (w, q/w; q)∞ =

∞
∏

j=0

(1− qjw)(1 − qj+1/w) (w 6= 0), (2.1)

θ(w1, . . . , wk) := θ(w1) . . . θ(wk). (2.2)

By Jacobi’s triple product identity [22, (1.6.1)] we have

θ(w; q) =
1

(q; q)∞

∞
∑

k=−∞

(−1)kq
1

2
k(k−1)wk. (2.3)

Clearly,

θ(w−1; q) = −w−1θ(w; q), (2.4)

θ(qw; q) = −w−1θ(w; q), (2.5)

θ(qkw; q) = (−1)kq−
1

2
k(k−1)w−k θ(w; q) (k ∈ Z). (2.6)

The four Jacobi theta functions θa or ϑa (a = 1, 2, 3, 4), written as

θa(z) = θa(z, q) = θa(z | τ) = ϑa(πz, q) = ϑa(πz | τ),
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can all be expressed in terms of the theta function (2.1):

θ1(z) :=i q
1/4(q2; q2)∞ e−πiz θ(e2πiz; q2),

θ2(z) :=q
1/4(q2; q2)∞ e−πiz θ(−e2πiz; q2) = θ1(z +

1
2),

θ3(z) :=(q2; q2)∞ θ(−q e2πiz ; q2) =
∞
∑

k=−∞

qk
2

e2πikz,

θ4(z) :=(q2; q2)∞ θ(q e2πiz; q2) = θ3(z +
1
2).

Note that θ1(z) is odd in z, while θ2(z), θ3(z) and θ4(z) are even in z.
The notation θa is used in [18, §13.10] and [34, Ch. 20], while the notation ϑa is used in [53,

Ch. 21]. Mumford [33] writes ϑ(z, τ) instead of θ3(z | τ).
The first fundamental identity (1.1) now takes the form

yu θ(xy, x/y, vu, v/u) + uv θ(xu, x/u, yv, y/v) + vy θ(xv, x/v, uy, u/y) = 0, (2.7)

or variants by applying (2.4), see [22, (11.4.3)]. The terms in (2.7) are obtained from each other
by cyclic permutation in y, u, v.

The second fundamental identity (1.2) can be rewritten in the notation (2.1) as

2θ(w2, x2, y2, z2; q2) = θ(w′′, x′′, y′′, z′′; q2) + θ(−w′′,−x′′,−y′′,−z′′; q2)

+ q−1xyzw
(

θ(qw′′, qx′′, qy′′, qz′′; q2)− θ(−qw′′,−qx′′,−qy′′,−qz′′; q2)
)

, (2.8)

where
w′′ = w−1xyz, x′′ = wx−1yz, y′′ = wxy−1z, z′′ = wxyz−1.

3 Variants and applications of the two fundamental formulas

As already observed in Section 1, Weierstrass wrote (1.1) as

σ(u+ u1)σ(u − u1)σ(u2 + u3)σ(u2 − u3) + σ(u+ u2)σ(u− u2)σ(u3 + u1)σ(u3 − u1)

+ σ(u+ u3)σ(u− u3)σ(u1 + u2)σ(u1 − u2) = 0. (3.1)

The two formulas (1.1) and (3.1) are equivalent because by [53, p.473, §21.43], for periods 1
and τ , we have σ(z) = C eη1z

2/2 θ1(
1
2z | τ) with C and η1 only depending on τ . For v = 1,

u = −1 formula (2.7) yields (using (2.4)):

y θ(xy, x/y)

θ(x)2 θ(y)2
= f(y)− f(x), where f(x) :=

θ(−x)2

θ(−1)2 θ(x)2
. (3.2)

Conversely, (3.2) implies (2.7), for any choice of the function f . Indeed, after two substitutions

from (3.2), the first term of (2.7) becomes
(

θ(x)θ(y)θ(u)θ(v)
)2

(f(y)−f(x))(f(u)−f(v)), which
adds up to 0 under cyclic permutation of y, u, v.
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Weierstrass, according to Schwarz [43, Art. 38, formula (1.)], derived (3.1) from the formula
[43, Art. 11, formula (1.)]:

σ(u+ v)σ(u − v)

σ2(u)σ2(v)
= ℘(v)− ℘(u), (3.3)

where ℘(z) is Weierstrass’ elliptic function. By the expression [18, 13.20(4)] of ℘(z) in terms
of theta functions, (3.3) is equivalent to (3.2) just as (3.1) is equivalent to (2.7). Whittaker &
Watson give these results in [53, p.451, Examples 1 and 5]. Formula (3.3) is also given in [18,
(10.13.17)] and [34, (23.10.3)].

All addition formulas for theta functions in [53, pp. 487–488, Examples 1, 2, 3] are instances
of (3.2) or slight variants of it which can be obtained by specialization of (2.7). Some of these
formulas are used in the proof that certain actions of the generators of the Sklyanin algebra
on the space of meromorphic functions determine a representation of the Sklyanin algebra [46,
Theorem 2].

Weierstrass [50] observed at the end of his paper that (3.1), as a functional equation for
the sigma function, has a general solution given by a power series and still depending on four
arbitrary constants. This was finally proved in full rigor by Hurwitz [26]. However, [53, pp. 452,
461] gives earlier references for this result to books by Halphen and by Hermite.

A stronger characterization of the sigma function (up to trivial transformations) and its
degenerate cases was given by Bonk [5] as continuous solutions τ : Rn → C of the functional
equation

τ(u+ v)τ(u− v) = f1(u)g1(v) + f2(u)g2(v),

where f1, f2, g1, g2 : R
n → C are arbitrary. Note that (3.3) is of the above form.

Elliptic, and in particular theta functions, entered in work on solvable models in statistical
mechanics started by Baxter [3] and followed up in papers like [1], [13], [14]. While building
on these publications, Frenkel & Turaev [21] in their work on the elliptic 6j-symbol introduced
elliptic hypergeometric series. Among others, they obtained the summation formula of the
terminating well-poised theta hypergeometric series 10V9(a; b, c, d, e, q

−n; q, p). Formula (2.7)
occurs as the first non-trivial case n = 1 and it also plays a role in the further proof by induction
of this summation formula [22, §11.4]. Closely related to these developments is the introduction
of elliptic quantum groups by Felder [19]. Again theta functions play here an important role
[20], [29]. In [29, Remarks 2.4, 4.3] formula (2.7) is used in connection with the representation
theory of the elliptic U(2) quantum group.

If we pass in (2.7) to homogeneous coordinates (a1, a2, a3, b1, b2, b3) satisfying a1a2a3 = b1b2b3
and expressed in terms of x, y, u, v by

a1 = b3xu, a2 = b3xy, a3 = b3xv, b1 = b3x
2, b2 = b3xyuv,

then, after repeated application of (2.4), we obtain another symmetric version of (2.7):

θ(a1/b1, a1/b2, a1/b3)

θ(a1/a2, a1/a3)
+
θ(a2/b1, a2/b2, a2/b3)

θ(a2/a3, a2/a1)
+
θ(a3/b1, a3/b2, a3/b3)

θ(a3/a1, a3/a2)
= 0 (a1a2a3 = b1b2b3).

(3.4)
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Formula (3.4) has an n-term generalization which is associated with root system An−1:

n
∑

k=1

∏n
j=1 θ(ak/bj)

∏

j 6=k θ(ak/aj)
= 0 (a1 . . . an = b1 . . . bn), (3.5)

see [47, (5)], [15, Lemma A.2], [37, (4.1)], [22, Exercise 5.23]. The formula is given in terms
of σ(z) in [53, p.451, Example 3]. Rosengren [37, p.425] traced the formula back to Tannery
and Molk [49, p.34]. Another n-term generalization, which reduces for n = 3 to (2.7) after
application of (2.4), is associated with root system Dn−1, see [24, Lemma 4.14], [15, Lemma
A.1], [37, (4.6)]. More complicated many-term identities of theta products are given by Kajihara
& Noumi [28, Theorem 1.3] and by Langer, Schlosser & Warnaar [30, Theorem 1.1].

Of particular interest are the four-term cases of the above identities. Quite some four-term
theta identities can be found on scattered places in literature, and they also arise as special
cases of some identities in [22]. One may wonder if some of these identities are essentially the
same (a question asked by a referee). In one important case the answer will be negative, see the
Appendix.

Various proofs and applications of (2.7) were given in [9], [11], [8]. Schlosser [42, Remark
3.3] observed that (2.7) pops up in connection with a telescoping property of the special case
e = a2/(bcd) of Bailey’s 6ψ6 summation formula [22, (II.33)]. This was converted into a proof of
(2.7) by Chu [10, Theorem 1.1]. In [40, p.948] formula (2.7) is used in the proof of a determinant
evaluation associated to the affine root system of type C. In [12] a 3× 3 determinant with theta
function entries is evaluated, thus solving an open problem in [23]. The determinant evaluation
has (2.7) as a special case. In [44] the so-called quintuple product identity [22, Exercise 5.6] is
derived from (2.7).

The second fundamental formula (1.2) and its variants can be written in a very compact
form by using the notation (cf. (1.3))

[a] := θa(w)θa(x)θa(y)θa(z), [a]′ := θa(w
′)θa(x

′)θa(y
′)θa(z

′).

Then (the first one implies the others):

2 [1] = [1]′ + [2]′ − [3]′ + [4]′, 2 [2] = [1]′ + [2]′ + [3]′ − [4]′,

2 [3] = −[1]′ + [2]′ + [3]′ + [4]′, 2 [4] = [1]′ − [2]′ + [3]′ + [4]′.
(3.6)

These are easily seen to be equivalent with [53, p.468, Example 1 and p.488, Example 7]:

[1] + [2] = [1]′ + [2]′, [1] + [3] = [2]′ + [4]′, [1] + [4] = [1]′ + [4]′,

[1]− [2] = [4]′ − [3]′, [1] − [3] = [1]′ − [3]′, [1]− [4] = [2]′ − [3]′.
(3.7)

Jacobi [27, p.507, formula (A)] first obtained (3.7) and then derived (3.6) from it.
For x = y = z = w (1.2) implies [53, p.469, Example 4]

θ1(z)
4 + θ3(z)

4 = θ2(z)
4 + θ4(z)

4.

The computation [46, Proposition 3] of the action of the Casimir operators in the represen-
tation of the Sklyanin algebra uses (3.6).
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4 Proofs of the fundamental theta relations

For completeness I recall here the short and elegant complex analysis proofs of the fundamental
theta relations (2.7) and (2.8).

Proof of (2.7) (Baxter [3, p.460], see also [48, p.3]).
Consider the theta functions in (2.7) with nome q2. For fixed y, u, v we have to prove that

F (x) :=
yv−1 θ(xy, x/y, vu, v/u; q2) + yu−1 θ(xv, x/v, uy, u/y; q2)

θ(xu, x/u, yv, y/v; q2)

is equal to −1. For generic values of y, u, v F (x) is a meromorphic function of x on C\{0}. Then
the numerator vanishes at all (generically simple) zeros x = q2ku±1 (k ∈ Z) of the denominator.
Indeed, for these values of x the numerator equals

yv−1 θ(q2ku±1y, q2ku±1y−1, vu, vu−1; q2) + yu−1 θ(q2ku±1v, q2ku±1v−1, uy, uy−1; q2)

= q−2k(k−1)u∓2k
(

yv−1θ(u±1y, u±1y−1, vu, vu−1; q2) + yu−1 θ(u±1v, u±1v−1, uy, uy−1; q2)
)

= 0,

where we used (2.6) and (2.4). Thus F is analytic in x on C\{0}. Furthermore, F (q2x) = F (x)
by (2.5). Hence F is bounded. Thus the singularity of F at 0 is removable and, by Liouville’s
theorem, F is constant. Now check that F (v) = −1 by (2.4).

Whittaker & Watson [53, p.451, Examples 1 and 5] obtain (2.7) from (3.3). They suggest a
proof of (3.3) by comparing zeros and poles of elliptic functions on both sides. Liu [31, (3.34)]
proves (2.7) by using a kind of generalized addition formula for θ1.

Bailey [2, (5.2)] gives a more computational proof of (2.7). Among others he derives a three-
term identity [2, (4.6)] for very well-poised 8φ7 series, which Gasper & Rahman [22, Exercise
2.15] write in elegant symmetric form. By [22, Exercise 2.16] formula (2.7) then should follow
from this three-term identity. Indeed, reduce it to a three-term identity of very well-poised 6φ5
series which are summable by [22, (2.7.1)]. See also [22, Exercise 5.21].

Schlosser [41, after (4.2)] points out that (2.7) is also the special case b = 1 of [22, (2.11.7)]
(put a = qxv, c = xy, d = qx/y, e = qvu, f = qv/u and use (2.4) and (2.5)).

Proof of (2.8) (Whittaker & Watson [53, p.468]).
Divide the right-hand side by the left-hand side and consider the resulting expression as a
meromorphic function F (w) of w on C\{0} (the other variables generically fixed) with possible
simple poles at the zeros ±qk (k ∈ Z) of θ(w2; q2). Since F (w) = F (−w) we can write F (w) =
G(w2), where G is a meromorphic function on C\{0} with possible simple poles at q2k (k ∈ Z).
We have F (qw) = F (w) because, by (2.5),

θ(±q−1w′′; q2)

θ(q2w2; q2)
=

±q−1xyzw θ(±qw′′; q2)

θ(w2; q2)
,

±xyzw θ(±q2x′′,±q2y′′,±q2z′′; q2)

θ(q2w2; q2)
=
θ(±x′′,±y′′,±z′′; q2)

θ(w2; q2)
.
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Hence G(q2u) = G(u). But then

2πiResu=q2k
(

u−1G(u)
)

=

∫

|u|=|q|2k−1

G(u)
du

u
−

∫

|u|=|q|2k+1

G(u)
du

u
= 0.

Hence G has no poles and similarly for F . Similarly as in the previous proof we conclude that
F is constant in w. By symmetry, F is also constant in x, y and z. Thus we have shown that

Aθ(w2, x2, y2, z2; q2) = θ(w′′, x′′, y′′, z′′; q2) + θ(−w′′,−x′′,−y′′,−z′′; q2)

+ q−1xyzw
(

θ(qw′′, qx′′, qy′′, qz′′; q2)− θ(−qw′′,−qx′′,−qy′′,−qz′′; q2)
)

, (4.1)

for some constant A. Put in (4.1) w = x = q
1

2 and y = z = iq. Then w′′ = x′′ = −q2 and
y′′ = z′′ = q and

Aθ(q, q,−q2,−q2; q2) = θ(q, q,−q2,−q2; q2) + q2 θ(q3, q3,−q2,−q2; q2).

Hence A = 2 by (2.5).

The last part of this proof is a slight improvement compared to [53, p.468]. There it is first
proved in [53, §21.2] (again by the same method) that

θ(q; q2)2 θ(qz; q2)2 = θ(−q; q2)2 θ(−qz; q2)2 − qz θ(−q2; q2)2 θ(−q2z; q2)2, (4.2)

and hence, by putting z = 1,

θ(q; q2)4 = θ(−q; q2)4 − q θ(−q2; q2)4. (4.3)

Then the value of A in the above proof is obtained by putting w = x = y = z = q
1

2 in (4.1) and
comparing with (4.3).

Note that (4.2) and (4.3) are special cases of (2.8). Another special case of (2.8), only leaving
two terms nonzero, was suggested by a referee:

(w, x, y, z) := (i/z, q−1/2/z,−iq1/2/z, z). Then (w′′, x′′, y′′, z′′) = (−1, q,−q−1, z−4).

Then (2.8) degenerates to

2θ(−z−2, q−1z−2,−qz−2, z2; q2) = θ(−1, q,−q−1, z−4; q2). (4.4)

This can be independently proved by (2.1) together with repeated use of the standard identities

(a, qa; q2)∞ = (a; q)∞ and (a,−a; q)∞ = (a2; q2)∞.

Of course, (4.4) can also be used to settle that A = 2 in (4.1).
In Jacobi [27, pp. 505–507] and in Mumford [33, Ch. 1, §5] a different proof of (2.8) is given.

It uses (2.3).
If we compare our proofs of (2.7) and (2.8) given above with each other then we see that in

the proof of (2.7) it is not automatic that the possible simple poles have residue zero because
there are two simple poles in each annulus to be considered. So we have to check there by
computation that the numerator of F (z) vanishes whenever the denominator vanishes.
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5 Equivalence of the two fundamental theta relations

Let us rewrite the first fundamental theta relation (2.7) as F1(x, y, u, v; q) = 0, where

F1(x, y, u, v; q) := θ(xy, x/y, uv, u/v; q2)− θ(xv, x/v, uy, u/y; q2)− uy−1θ(yv, y/v, xu, x/u; q2).
(5.1)

In the second fundamental theta relation (2.8) both sides are invariant under each of the trans-
formations of variable w → −w, x → −x, y → −y, z → −z. Therefore we obtain an equivalent
identity if we replace in (2.8) (w2, x2, y2, z2) by (xy, x/y, uv, u/v). Thus we can write (2.8)
equivalently, in a form closer to (5.1), as F2(x, y, u, v; q) = 0, where

F2(x, y, u, v; q)

:= 2θ(xy, x/y, uv, u/v; q2)− θ(xv, x/v, uy, u/y; q2)− θ(−xv,−x/v,−uy,−u/y; q2)

− q−1xu
(

θ(qxv, qx/v, quy, qu/y; q2)− θ(−qxv,−qx/v,−quy,−qu/y; q2)
)

. (5.2)

Theorem 5.1. The formulas F1(x, y, u, v; q) = 0 and F2(x, y, u, v; q) = 0 are equivalent to each
other because of the following identities:

F1(x, y, u, v; q) + F1(−x, y,−u, v; q) − xyF1(qx, qy, u, v; q) − xyF1(−qx, qy,−u, v; q)

= F2(x, y, u, v; q), (5.3)

F2(x, y, u, v; q) − uy−1F2(x, u, y, v; q) = 2F1(x, y, u, v; q). (5.4)

Proof For the proof of (5.3) substitute (5.1) in the left-hand side of (5.3). Then this left-hand
side becomes

θ(xy, x/y, uv, u/v; q2)− xy θ(q2xy, x/y, uv, u/v; q2)

+ θ(−xy,−x/y,−uv,−u/v; q2)− xy θ(−q2xy,−x/y,−uv,−u/v; q2)

− θ(xv, x/v, uy, u/y; q2)− θ(−xv,−x/v,−uy,−u/y; q2)

+ xy
(

θ(qxv, qx/v, quy, q−1u/y; q2) + θ(−qxv,−qx/v,−quy,−q−1u/y; q2)
)

,

which equals the right-hand side of (5.3) because of (2.5) and (5.2).
For the proof of (5.4) substitute (5.2) in the left-hand side of (5.4). Then

2θ(xy, x/y, uv, u/v; q2)− 2uy−1 θ(xu, x/u, yv, y/v; q2)

− θ(xv, x/v, uy, u/y; q2) + uy−1 θ(xv, x/v, uy, y/u; q2)

− θ(−xv,−x/v,−uy,−u/y; q2) + uy−1 θ(−xv,−x/v,−uy,−y/u; q2)

− q−1xu
(

θ(qxv, qx/v, quy, qu/y; q2)− θ(qxv, qx/v, quy, qy/u; q2)
)

+ q−1xu
(

θ(−qxv,−qx/v,−quy,−qu/y; q2)− θ(−qxv,−qx/v,−quy,−qy/u; q2)
)

,

which equals the right-hand side of (5.4) because of (2.4), (2.5) and (5.1).

One half of the equivalence proof, i.e., essentially (5.4), has been given before by R. J.
Chapman [9].
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Remark 5.2. It would be interesting to see if the above equivalence extends to theta functions
in several variables (cf. [50], [52] and [34, §21.6(i)]). Similarly the question arises if for root
systems An−1 and Dn−1 there is not only a first fundamental theta identity [37] but also a
second fundamental identity, equivalent to the first one.

A Appendix: four-term theta identities

Consider the case n = 4 of (3.5):

4
∑

k=1

∏4
j=1 θ(ak/bj)

∏

j 6=k θ(ak/aj)
= 0 (a1 . . . a4 = b1 . . . b4). (A.1)

This can be seen as a four-term identity essentially depending on six free variables with each
term having seven theta factors in the numerator and none in the denominator. Slater [47]
mentions that (A.1) can be rewritten as her formula (3), which is reproduced in [22, Exercise
5.22]. As also mentioned in [47], replacement of b, g, h by ab, ag, ah, respectively, let a disappear
from this formula. We are left with the four-term theta identity

b θ(cb, db, eb, fb, g, h, g/h; q) − b θ(ch, dh, eh, fh, b, g, g/b; q)

= g θ(cg, dg, eg, fg, b, h, b/h; q) − h θ(c, d, e, f, b/h, g/h, g/b; q) (A.2)

under the side condition
bcdefgh = q2. (A.3)

A referee raised the question, to be answered negatively, whether (A.1) is essentially the same
identity as the case n = 1 of the elliptic 12V11 Frenkel-Turaev [21] identity, see [22, (11.2.23)], or
equivalently (as pointed out by the same referee) as the case b = 1 of Bailey’s four-term identity
[22, (2.12.9)] or [22, (III.39)] with side conditions there on p.58 or p.366, respectively.

First consider the case n = 1 of [22, (11.2.23)]. While taking into account the side condition
λ = qa2/(bcd) as well as formulas (11.2.19) and (11.2.5) in [22], and after substitution of θ(q; p) =
−qθ(q−1; p), the mentioned identity becomes the following explicit four-term theta identity:

1−
θ(b, c, d, e, f, (qa)3/(bcdef); p)

θ(qa/b, qa/c, qa/d, qa/e, qa/f, bcdef/(qa)2 ; p)
=
θ(qa, qa/(ef), (qa)2/(bcde), (qa)2/(bcdf); p)

θ(qa/e, qa/f, (qa)2/(bcdef), (qa)2/(bcd); p)

×

(

1−
θ(qa/(cd), qa/(bd), qa/(bc), e, f, (qa)3/(bcdef); p)

θ(qa/b, qa/c, qa/d, (qa)2/(bcde), (qa)2/(bcdf), ef/(qa); p)

)

.

Replace a by q−1a. This will eliminate q. Next replace p by q. We get:

1−
θ(b, c, d, e, f, a3/(bcdef); q)

θ(a/b, a/c, a/d, a/e, a/f, bcdef/a2 ; q)
=
θ(a, a/(ef), a2/(bcde), a2/(bcdf); q)

θ(a/e, a/f, a2/(bcdef), a2/(bcd); q)

×

(

1−
θ(a/(cd), a/(bd), a/(bc), e, f, a3/(bcdef); q)

θ(a/b, a/c, a/d, a2/(bcde), a2/(bcdf), ef/a; q)

)

.
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Now multiply both sides by θ(a/b, a/c, a/d, a/e, a/f, bcdef/a2 , a2/(bcd); q) and simplify by using
(2.4). We obtain:

θ(a/b, a/c, a/d, a/e, a/f, bcdef/a2 , a2/(bcd); q) − θ(b, c, d, e, f, a3/(bcdef), a2/(bcd); q)

= −a−2bcdef θ(a, a/(ef), a2/(bcde), a2/(bcdf), a/b, a/c, a/d; q)

− a−1bcd θ(a, a/(cd), a/(bd), a/(bc), e, f, a3/(bcdef); q). (A.4)

Next consider [22, (III.39)] with side conditions given there on p.366. Its case b = 1 takes
by use of (2.1) and (2.4) the form

1− a−1 θ(c, d, e, f, g, h; q)

θ(c/a, d/a, e/a, f/a, g/a, h/a; q)
= −λ

θ(a−1, f/λ, g/λ, h/λ; q)

θ(λ, f/a, g/a, h/a; q)

+
θ(a−1, f, g, h, λc/a, λd/a, λe/a; q)

θ(λ, c/a, d/a, e/a, f/a, g/a, h/a; q)
,

or equivalently

θ(c/a, d/a, e/a, f/a, g/a, h/a, λ; q) − a−1 θ(c, d, e, f, g, h, λ; q)

= −λ θ(a−1, f/λ, g/λ, h/λ, c/a, d/a, e/a; q) + θ(a−1, f, g, h, λc/a, λd/a, λe/a; q).

The side conditions take for b = 1 the form

λ =
qa2

cde
, h =

a3q2

cdefg
.

By substitution of these in the identity, the variables λ and h disappear from the identity. Now
replace e, b, g by b, g, e (cyclic permutation) and use (2.4) and (2.6). We arrive at (A.4).

Both (A.4) and (A.2) (with side condition) have six free variables and seven theta factors
in each term. However, in (A.2) each term has three theta factors with the property that the
product of the arguments of two of them is equal to the argument of the third. On the other
hand, in none of the terms of (A.4) there is such a simple relation between the arguments of the
theta factors. Of course, they must satisfy a relation, but this is a more complicated polynomial
relation involving the arguments of more than three of the theta factors. Therefore, (A.4) and
(A.2) cannot be matched with each other.

Let us finally consider some other four-term theta identities. The case n = 4 of the Dn−1

identity is a four-term identity depending on six free variables with each term having ten theta
factors. A special case of both [28, Theorem 1.3] and [30, Theorem 1.1] is the four-term theta
identity [30, (1.4)] with four free variables and each term having six theta factors. As pointed
out to me by Michael Schlosser, a further specialization of this identity to two free variables
yields identity (3.5) in Bouttier et al. [7] (take w = z, x = v = 1/α and t = α3 in [30, (1.4)]).
The identity in [7] was obtained in a statistical mechanical context and it was proved in a way
quite similar to Baxter’s proof of (2.7) (see Section 4). As Hjalmar Rosengren pointed out to
me, the m = 2 cases of Pfaffian evaluations in [39, Remark 2.1] yield four-term identities of
theta products as well.
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intégral, Gauthier-Villars, Paris, 1898.

[50] K. Weierstrass, Zur Theorie der Jacobischen Funktionen von mehreren Veränderlichen,
Sitzungsber. Königl. Preuss. Akad. Wiss. (1882), 505–508; Werke, Band 3, pp. 155–159.

[51] K. Weierstrass, Vorlesungen über die Theorie der Abelschen Transcendenten (bearbeitet
von G. Hettner und J. Knoblauch), Mayer & Müller, Berlin, 1902.

[52] K. Weierstrass, Verallgemeinerung einer Jacobischen Thetaformel, in: Mathematische
Werke, Band 3, Mayer & Müller, Berlin, 1903, pp. 123-137.

[53] E. T. Whittaker and G. N. Watson, A course of modern analysis, fourth ed., Cambridge
University Press, 1927.

T. H. Koornwinder, Korteweg-de Vries Institute, University of Amsterdam,

P.O. Box 94248, 1090 GE Amsterdam, The Netherlands;

email: T.H.Koornwinder@uva.nl

15

http://arxiv.org/abs/0704.3099

	1 Introduction
	2 Preliminaries
	3 Variants and applications of the two fundamental formulas
	4 Proofs of the fundamental theta relations
	5 Equivalence of the two fundamental theta relations
	A Appendix: four-term theta identities

