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We review a methodology to design, implement
and execute multi-scale and multi-science numerical
simulations. We identify important ingredients of
multi-scale modelling and give a precise definition
of them. Our framework assumes that a multi-scale
model can be formulated in terms of a collection of
coupled single-scale submodels. With concepts such
as the scale separation map, the generic submodel
execution loop (SEL) and the coupling templates,
one can define a multi-scale modelling language
which is a bridge between the application design
and the computer implementation. Our approach
has been successfully applied to an increasing
number of applications from different fields of science
and technology.

1. Introduction
Multi-scale models and simulations are an important
challenge for computational science in many domains of
research. Most real-life phenomena involve an extended
range of spatial or temporal scales, as well as the
interaction between various natural processes. When
these interacting processes are modelled by different
scientific disciplines, they are multi-science (or multi-
physics) as well as multi-scale. Biomedical applications,
where biology is coupled to fluid mechanics, are an
illustration of a multi-scale, multi-science problem. For
instance, in the problem of in-stent restenosis [1–4],
blood flow, modelled as a purely physical process, is
coupled to the growth of smooth muscle cells (SMCs).
Haemodynamics is a fast varying process, acting over
spatial scales ranging from micrometres to centimetres.
On the other hand, SMCs evolve at a much slower time
scale of days to weeks.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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Although the term ‘multi-scale modelling’ is commonly used in many research fields, there are
only a few methodological papers [5–8] offering a conceptual framework, or a general theoretical
approach. As a result, in most of the multi-scale applications found in the literature, methodology
is entangled with the specificity of the problem and researchers keep reinventing similar strategies
under different names. A more developed discussion of the status of multi-scale modelling in
various scientific communities is presented in this Theme Issue [9].

It is clear that a well-established methodology is quite important when developing an
interdisciplinary application within a group of researchers with different scientific backgrounds
and different geographical locations. A multi-scale modelling framework and a corresponding
modelling language is an important step in this direction. It allows one to clearly describe multi-
scale, multi-science phenomena, separating the problem-specific components from the strategy
used to deal with a large range of scales.

From a practical aspect, many codebases for single-scale models already exist. Using a
component-based approach is a way to re-use these existing models and codebases. A modelling
language is used to make a blueprint of a complex application, offering a way to co-develop
a global numerical solution within a large team. A good match between the application
design and its implementation on a computer is central for incremental development and its
long-term sustainability.

In this paper, we will review the so-called Multiscale Modelling and Simulation Framework
(MMSF) that we have been developing over the past few years within the European projects
COAST (http://www.complex-automata.org) and MAPPER (http://www.mapper-project.eu).
This framework is a step towards a solution to the problems identified above. Its
main emphasis is in pressing multi-scale modellers to clearly separate single-scale models
and the scale bridging methods needed for them to interact. Within the MAPPER
project (http://www.mapper-project.eu), MMSF has been applied and evaluated on seven
different applications. These applications are described in more detail in another contribution
in this Theme Issue [10].

2. The Multiscale Modelling and Simulation Framework
The MMSF is a theoretical and practical way to model, describe and simulate multi-scale, multi-
science phenomena. By adhering to a single framework, not tied to a specific discipline, groups
of researchers ensure that their respective contributions may cooperate with those of others.
MMSF is described in detail in [11] and references therein. Here, we review the main ideas of
the formalism.

Figure 1 summarizes the entire pipeline implementing MMSF. It reflects the fact that
developing a multi-scale application requires several steps. First, we have to model the
phenomena we want to study by identifying the relevant scales and the relevant processes
(submodels) that are involved. In this framework, we assume that submodels have at least a
temporal and spatial scale and focus on those, but other scales may be used in their place.
Once the components and their scale have been identified, we have to indicate how they are
coupled and which scale bridging techniques are required. This second step is aided by the
Multiscale Modelling Language (MML) [11,12], which describes the architecture of a multi-scale
model. It describes the scales and computational requirements of submodels and scale bridging
components, each with predefined output and input ports used for communicating data. These
ports are associated with a datatype and a communication rate tied to the submodel scales, and
an output port can be coupled to an input port if these data types and rates match.

The third step concerns the implementation of the single-scale models (or the reuse of
existing ones), and the implementation of scale bridging techniques. Existing single-scale model
codes will require small changes to enable coupling with other models, while scale bridging
techniques will need to be implemented specifically for the single-scale models that they are
coupled to, in the form of so-called filters or mappers (see below for a definition). The software

 on November 20, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://www.complex-automata.org
http://www.mapper-project.eu
http://www.mapper-project.eu
http://rsta.royalsocietypublishing.org/


3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130378

.........................................................

theoretical framework

modelling

time

space

scale separation map MUSCLE 2
Java code,
Library A

Fortran code, MPI
and Library B

C++ mapper,
remeshing

coupling and configuration
—can be generated from

MML

single cluster

cluster 1

 cross-cluster

MTO MTO
interactive

node
interactive

node

MUSCLE 2

MUSCLE 2

machine 1 machine 2
MUSCLE 2

MUSCLE 2
cluster 2

MML

M

M Mm
m

m

mf2

f

f1

architecture implementation execution

computational framework

Figure 1. The pipeline of actions needed to develop and run a multi-scale application within MMSF. (Online version in colour.)

MUSCLE 2 [13,14] follows this paradigm. To use single-scale model code with MUSCLE 2, simply
insert send and receive calls to local output and input ports. These ports are coupled separately
from the submodel implementation, in MML, so that submodels do not have to know what
code they are coupled to. MUSCLE 2 can couple submodels written in different programming
languages, e.g. Fortran with C++, or a massively parallel MPI code with a multi-thread
Java program.

Finally, in the fourth step of the pipeline shown in figure 1, the different submodels are
executed on a computing infrastructure. In our approach, they can be distributed on different
computers, without extra software development. This is called distributed multi-scale computing
(DMC) [10,15]. It is made possible by the runtime environment of MUSCLE 2, which can exchange
data between computers, whether remote or not.

Steps 3 and 4 above relate to the computational framework. They are described in [14] and will
not be discussed further here. However, a performance study of DMC can be found in another
contribution in this Theme Issue [10]. In what follows we focus on the conceptual and theoretical
ideas of the framework.

(a) The scale separation map
A multi-scale system can be represented on a scale separation map (SSM), i.e. a map that describes
the range of spatial and temporal scales that need to be resolved in order to solve the problem at
hand. This range of scales is shown as a rectangle, as indicated in figure 2a. In order to simulate
such a process on a computer, one has to find a strategy to ‘split’ these scales and keep only
the relevant ones. One aspect of this is choosing which physics to model. Otherwise, a high
computational cost will result, together with an explosion of data and only limited knowledge.
This process amounts to the identification of submodels acting on a reduced range of scales, and
their mutual couplings, as illustrated in figure 2b. Each of these submodels may require different
computing resources. Some may be massively parallel, others may require special hardware and
software, and may run optimally on a different number of cores. This is illustrated in figure 2c.
This figure also shows that the computing resources may exhibit a ‘multi-scale parallelism’ as the
number of cores associated with each submodel may vary across several orders of magnitude.
Thus, the term DMC refers both to the multi-scale nature of the application and to the computing
infrastructure. Note, however, that the degree of parallelism may not scale with the physical
scales. Parallelism may actually be higher for coarse-scale models. For example, in the nano-
materials application described in [10], 64 cores are used for the atomistic scale, whereas 1024
are used for the molecular scales.
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Figure 2. Illustration of the process of ‘scale splitting’: a multi-scale model (a) is decomposed into several ‘single-scale’
coupled submodels (b). Finally, the application is executed on a computing infrastructure with multi-scale degrees of
parallelism (c).

Note that the SSM can give a quick estimate of the CPU time gained by the scale splitting
process when it concerns a mesh-based calculation. The CPU time of a submodel goes as
(L/�x)d(T/�t), where d is the spatial dimension of the model, and (�x, L) and (�t, T) are
the lower-left and upper-right coordinates of the rectangle shown on the SSM. Therefore, the
computational time of the system in figure 2a is likely to be much larger than those in figure 2b.

The splitting of a problem into several submodels with a reduced range of scales is a difficult
task which requires a good knowledge of the whole system. This separation of scales is likely
to affect the quality of the result, when compared with a fully resolved (yet unaffordable)
computation. The art of multi-scale modelling is then to propose a good compromise between
CPU performance and accuracy by selecting the most relevant parts of the domain at an
appropriate scale. Finding a proper accuracy metrics and the right balance between precision
and CPU requirements is a wide open question [9]. We believe that MMSF will contribute to
exploring these highly relevant issues. An early example is the work we did on finding multi-scale
modelling errors in a reaction–diffusion model [16].

The arrows shown in figure 2 represent the coupling between the submodels that arise due
to the splitting of the scales. They correspond to an exchange of data, often supplemented by a
transformation to match the difference of scales at both extremities. They implement some scale
bridging techniques that depend on the nature of the submodels and the degree of separation of
the scales.

In our methodology, these couplings are implemented as software components, coined smart
conduits that completely take care of the mapping of the data from one submodel to the other.
Therefore, in the MMSF approach, submodels are autonomous solvers that are not aware of the
scales of the other submodels and that can be substituted any time by a better version of the code
or the algorithm. The smart conduits, which are scale-aware, are of three types: plain conduits,
filters and mappers. Plain conduits simply transfer messages, whereas filters modify in-transit
messages, according to the scales of the submodels they connect. Mappers may combine inputs
from multiple conduits and produce multiple outputs. Combined, these constructs are used for
implementing scale bridging methods, but they are not part of the scale separation map since
they are not part of the single-scale models. These constructs are explicitly described in §3. This
section includes more information on the multi-scale model architecture and discusses the MML.

The relation between two submodels can be described through their respective positions on
the SSM. Here, we consider only two axes, space and time, but in general the SSM can include
any relevant dimensions. In the SSM, the scales of the two submodels either overlap or can be
separated. When scale-overlap or scale-separation concerns two quantities, there are five possible
relations in total, as illustrated in figure 3.
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Figure 3. The five possible relations between two submodels in the SSM. Model A is the reference submodel. Submodel B
corresponds to a scale overlap situation. Then, with submodels C, D, E and F, we illustrate scale separation either in time or in
space, or both.

In addition to their respective positions on the SSM, two interacting submodels are
characterized by the relation between their computational domains. Both submodels can share the
same domain, a situation termed sD for single domain. Otherwise, the submodels have different or
slightly overlapping computational domains. This case is termed mD for multi-domain. Figure 4
illustrates the two situations in a specific case. Figure 4a shows a fluid with suspensions. At the
coarser scale, the system is solved by coupling the Navier–Stokes equations with an advection–
diffusion model for the suspension. The viscosity and diffusion coefficients can be computed from
a fully resolved simulation, at a smaller scale, for each shear rate condition [17]. Figure 4b shows a
free surface flow model describing the flow under a gate, coupled with a low-resolution shallow
water model describing the downstream flow. A very small overlap between the two sub-domains
may be needed to implement the coupling.

The above features (respective position in the SSM and domain relation) offer a way to classify
the interactions between two coupled submodels. Figure 5 summarizes this classification in
several regions. An indication of the type of coupling is given. We refer the reader to the next
section for an explanation.

In figure 5, examples are also mentioned. We will elaborate on two of them. The forest–
savannah–fire example uses cellular automata to model grasslands that evolve into forests which
are occasionally affected by forest fires [19]. The model takes a grid as the domain. Grid points
with small herbs are gradually converted to pioneering plants and finally into forest, with a time
scale of years. A forest fire, on the other hand, may start and stop within a day or a few weeks
at the most. If these two processes are decomposed, a vegetation submodel could take a grid
with the vegetation per point and a fire submodel only needs a grid with points marked as able
to burn or not. Clearly, the underlying domain overlaps, making it a single-domain problem.
Conceptually, the vegetation submodel could send its domain at each iteration, the forest fire
submodel may decide to start a fire, and return a list or grid of points that were burnt down.
The vegetation submodel keeps running, while the forest fire submodel is restarted at each
iteration. Practically, the two submodels might modify a shared data structure. However, the
runtime environment will determine whether this is actually possible, or if they have to modify
separate data structures which are combined after each iteration (see figure 6 for a number of

 on November 20, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130378

.........................................................

model 1Dh (x)

Dxy
v

f (x
M
)

g. (x
M
)

(a)

(b)

Figure 4. Relation between the computational domains of two submodels. (a) The two submodels share the same domain,
but at different scales. This situation is called single domain (sD). (b) The full computational domain is distributed over two
submodels, with possibly an overlap for coupling them. This situation is calledmulti-domain (mD). (Online version in colour.)
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relation between their computational domain (see [18] for more details). As discussed in the next section, only a few couplings
seem to occur in these examples.

execution options). The latter option is necessary if the submodels are executed on different
machines, or if the forest fire and vegetation submodels use different resolutions. If they have
different resolutions, a mapper may run between the vegetation and forest fire submodel to map
a grid of one resolution to another. Alternatively, multiple vegetation submodels might be run
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Figure 6. Runtime options for the forest–savannah–fire model. On the left, a single data structure is used for simulating fire
and vegetation; in the middle separate data structures are used; and on the right, the vegetation is decomposed into multiple
domains, where the fan-in and fan-outmappersmake the right conversion between the domains. Themiddle- and right-hand-
side figures may be run with largely the same code. (Online version in colour.)

concurrently, and a single forest fire submodel might run on the combined domain. The vegetation
submodels would have mD interactions, exchanging only boundary information, but they would
have sD interactions with the fire submodel. A mapper would be placed between the vegetation
and forest fire submodels to stitch the grids of the vegetation submodels together, so that it would
not have to be aware whether the vegetation is simulated by a single or by multiple domains. In
this scenario, the vegetation submodels must be designed to allow boundary interaction, but they
may be simulated in isolation by letting a mapper provide specially made boundary data. There
is probably a performance benefit to using a single data structure, but separating the submodels
provides more clarity and provides a path to directing parallelization efforts towards only parts
of a code.

The second application we briefly discuss here is the suspension fluid example. It is
characterized by temporal and spatial scale separation. A hard sphere suspension model is used
on the fine scale, an advection–diffusion model on the meso-scale, and a non-Newtonian fluid
dynamics model on the coarse-scale [20]. The fine-scale model is needed to get accurate dynamics,
whereas the coarse-scale model is able to simulate large domains. The scale bridging between the
scales is far from trivial and determines how well the coarse-scale simulation eventually describes
the system. It relies on simulating many fine-scale suspensions at each coarse-scale time step. A
mapper is in charge of a strategy to simulate the submodels, so the coarse-scale model may simply
provide and retrieve values at its grid points.

To further illustrate the fact that the SSM is a powerful way to describe a multi-scale, multi-
science problem, let us consider the SSM corresponding to a real problem with more than two
submodels. Figure 7 describes the case of in-stent restenosis [1,4,21]. After the stenting of a
coronary artery, the SMCs are likely to proliferate into the lumen, causing again a stenosis.
Drug-eluting stents can be used to slow down the SMC growth. Note that, here, the couplings
have been annotated with the quantities that are exchanged between each pair of submodels.
The scale bridging will take place in the coupling, and this will be described by the multi-scale
modelling language.

From this picture we see that, contrary to many situations reported in the literature, multi-scale
modelling is more than the coupling of just two submodels, one at a microscopic scale and the
other at a macroscopic scale.

(b) Submodel execution loop and coupling templates
A second ingredient of the MMSF methodology is to express the models with a generic, abstract
execution temporal loop. We term this algorithmic structure the SEL. It reflects the fact that,
during the time iterations of the submodels, a reduced set of generic operations have to be
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Figure 7. SSM of the in-stent restenosis application described in [1,21].
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Figure 8. The generic SEL and two examples of coupling templates.

performed over and over again. The most important one is the S operation, where S refers to
Solver. A second important step of the SEL is the B operation, where B means Boundary. The
execution of B amounts to specifying the boundary conditions for the computation. The repetition
of S and B is the core of the submodel time loop. Separating S and B is conceptually useful but
if separation is not possible or practical, all functionality can be incorporated in the S operation
directly. In each iteration of the loop, the simulated time is increased based on the temporal scale
of the submodel. Operations that are finer than this temporal scale and operations that are not
time dependent may be placed inside the S or B operations instead of being represented explicitly
in the SEL.

In addition, in order to initialize the process, another operation has to be specified. In our
approach, we term it finit to reflect that the variables of the model need to be given an initial value.
This initialization phase also specifies the computational domain and possibly some termination
condition for the time loop.

Finally, we define two observation operators, Oi and Of, which compute some desired
quantities from the model variables. The subscript i and f are for intermediate and final
observations, respectively.

Imposing the above generic structure on the evolution loop limits the ways to couple two
submodels. A coupling amounts to an exchange of data between a pair of operators belonging to
the SEL of the two submodels. According to our definitions, the sender of information is either Oi
or Of. And the receiving operators can only be S, B or finit. This is illustrated in figure 8.
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Table 1. Relation between coupling templates and position in the SSM for two submodels X and Y sharing the same
computational domain.

name coupling temporal scale relation

interact OXi → SY overlap
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

call OXi → f Yinit X larger than Y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

release OYf → SX Y smaller than X
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dispatch OXf → f Yinit any
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We call coupling templates the different possible pairs of input/output operators in a coupling.
Therefore, the coupling templates are Oi → S, Oi → B, Oi → finit and Of → S, Of → B, Of → finit.
These coupling templates can be named as in table 1.

It is quite interesting to note that these coupling templates reflect very closely the relative
position of the two submodels in the SSM and the relation between their computational domains.
From analysing several multi-scale systems and the way their submodels are mutually coupled,
we reach the conclusion that the relations shown in table 1 hold between any two coupled
submodels X and Y with a single-domain relation. In cases where X and Y have a multi-domain
relation, the same table holds but the operator S is replaced by B.

To illustrate the meaning of table 1, we can consider a system of particles transported in a fluid
flow. Submodel X is the fluid solver and submodel Y is an advection–diffusion solver. This is a
typical single-domain situation with overlapping temporal scales. The observation OX

i of the flow
velocity is needed to compute the advection process. So OY

i → SX. In return, OX
i → SY because the

density of transported particles may affect the viscosity of the fluid.
In the example of the growth of biological cells subjected to the blood flow shear stress, there

is a clear time-scale separation between the two processes (see figure 7 and [22]). Therefore, the
converged flow field is first sent from the physical model BF to the biological one, in order to
define the SMC proliferation rate in SMC (OBF

f → SSMC). Then, the new geometry of the cells
induces a new boundary condition for the flow, which must be recomputed (OSMC

i → f BF
init).

3. Multiscale Modelling Language
The underlying execution model assumed for MMSF is typically data-driven. Submodels run
independently, requiring and producing messages at a scale-dependent rate. A message contains
data on the submodel state, the simulation time that the data were obtained, and the time that the
submodel will send the next message, if any.

Figure 9 describes typical workflows that couple submodels. Depending on the detail of the
model, the interaction between two submodels may have feedback or not, signified by a one- or
two-way coupling. In general, the coupling topology of the submodels may be cyclic or acyclic. In
acyclic coupling topologies, each submodel is started once and thus has a single synchronization
point, while in cyclic coupling topologies, submodels may get new inputs a number of times,
equating to multiple synchronization points. The number of synchronization points may be
known in advance (static), in which case they may be scheduled, or the number may depend
on the dynamics of the submodels (dynamic), in which case the number of synchronization
points will be known only at runtime. Likewise, the number of submodel instances may be
known in advance (single or static) or be determined at runtime (dynamic). This last option
means a runtime environment will need to instantiate, couple and execute submodels based on
runtime information.

The language is part of MMSF and provides a formalization of the concepts introduced
previously. In addition to describing the coupling architecture of a multi-scale model, it also
contains information about its computational requirements. This information does not impose
a unique implementation, but rather forms a specification of what behaviour should be expected
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Figure 9. The different workflows identified in our framework, and corresponding to the coupling of two submodels.
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undefined

Figure 10. The components of MML in a graphical form. Conduits are shown on the left and mappers on the right.

from each element of the system. A submodel may be described as having a number of inputs
and outputs at given SEL operators, and be associated with an executable to run the simulation
of that submodel. MML does not specify what algorithms are computed in a submodel, nor what
their implementation will be, but it can describe its functionality and computational details like
parallelism, programming language and memory requirements.

The components of MML are depicted graphically in figure 10. MML can also be expressed
as an XML file [11,12] for automatic processing. This file format contains additional meta-
data about the submodels and their couplings. They represent the data transfer channels that
couple submodels together. Conduits implement one-way, point-to-point communications. Filters
are state-full conduits, performing data transformation (e.g. scale bridging operations). Finally,
mappers are multi-port data-transformation devices.

Mappers are useful to optimize a coupling, for instance to avoid repeating twice the same data
transformation for two different recipients. They are also needed to build complex couplings, and
to implement synchronization operations when more than two submodels are coupled. The fan-in
and fan-out mappers, whose behaviour is explained in figure 10, are sufficient to model complex
situations. The output of a mapper is produced when all inputs are present.

As shown in figure 10, the extremities of conduits carry some symbols. These symbols indicate
which coupling template they correspond to, or which operator of the SEL they have for source
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Figure 11. The Lego-based approach made possible by MML and the MAD tool. Predefined software components (submodels,
filters andmappers) visible on the left-hand side of the screen can bemoved to the designwindow and connected through their
input and output ports. These ports corresponds to the SEL operators and are represented with different symbols and colours.
(Online version in colour.)

BF

DD
in

outaddvoxel

Blob
SMCIC

end

submodel
start

mapper

Figure 12. TheMML description of the in-stent restenosismodel (see also figure 7). Here, BF stand for the blood flow submodel,
SMC for the biological growth of smooth muscle cells, DD for drug diffusion and IC for injury score (the initial condition).

or for destination. The XML file format contains information about the data type and contents of
couplings, while the operators in the SEL and the conduits implement the proper algorithms.

In MMSF, submodels, filters and mappers can be parametrized and stored in a repository to be
re-used for other applications. A tool [15,23] is available to compose new applications by a drag
and drop operation, using previously defined components. This is illustrated in figure 11.

Finally, figure 12 shows the full MML diagram corresponding to the application described
in figure 7.
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4. Conclusion
In this paper, we have formalized the process of multi-scale modelling and simulation in terms of
several well-defined steps. This formalization is important in order to give precise definitions of
the concepts and to disentangle implementation issues from the modelling ones.

Our MMSF approach contains several distinguishing and original features. It is not linked
to a specific application domain. It is based on new generic theoretical concepts describing the
entire process, from design to execution. It facilitates the communication between scientists of
different fields, provides a unified vision of multi-scale modelling and simulation, and offers
a common framework for consistent new developments. Beyond its methodological contents,
MMSF is operational and supported by a full implementation and execution framework, based
on MUSCLE 2 and the idea of DMC and multi-scale parallelism. The MUSCLE 2 middleware
offers a powerful, flexible and easy way to couple new or legacy submodels, independently of the
programming language used to code them.

Focusing on the splitting and single-scale models gives the benefit of using proven models
(and code) for each part of a multi-scale model. It allows the user to build a multi-scale application
referring to the existing theoretical knowledge about the phenomena at each identified scale.

The full approach has been applied successfully within the MAPPER project to design and/or
implement and run seven applications belonging to various fields of engineering and science
(see [10] for a description). The experience with applying the MMSF to these applications is that it
saved a lot of development time, was portable (in terms of both software and hardware), allowed
new challenging problems to be addressed, and let users concentrate their efforts on science
rather than on implementation issues. Compartmentalizing a model as proposed in MMSF means
having fewer within-code dependencies, thereby reducing the code complexity and increasing
its flexibility.

Funding statement. The research presented in this contribution is partially supported by the MAPPER project,
which receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. RI-261507.
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