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Systems/Circuits

Fluctuations in Oscillation Frequency Control Spike Timing
and Coordinate Neural Networks

Michael X Cohen
Psychology Department, University of Amsterdam, 1018 XA Amsterdam, The Netherlands

Neuroscience research spans multiple spatiotemporal scales, from subsecond dynamics of individual neurons to the slow coordination of
billions of neurons during resting state and sleep. Here it is shown that a single functional principle—temporal fluctuations in oscillation
peak frequency (“frequency sliding”)— can be used as a common analysis approach to bridge multiple scales within neuroscience.
Frequency sliding is demonstrated in simulated neural networks and in human EEG data during a visual task. Simulations of biophysi-
cally detailed neuron models show that frequency sliding modulates spike threshold and timing variability, as well as coincidence
detection. Finally, human resting-state EEG data demonstrate that frequency sliding occurs endogenously and can be used to identify
large-scale networks. Frequency sliding appears to be a general principle that regulates brain function on multiple spatial and temporal
scales, from modulating spike timing in individual neurons to coordinating large-scale brain networks during cognition and resting state.
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Introduction
The brain is complex and operates over myriad spatial and tem-
poral scales. Multiscale interactions are a defining characteristic
of the brain, and are thought to underlie aspects of cognition and
consciousness (Varela et al., 2001; Breakspear and Stam, 2005; Le
Van Quyen, 2011). Integration of findings across multiple scales
is limited by the qualitatively distinct data analyses performed at
each scale (e.g., spike rate vs event-related EEG potential vs
BOLD fMRI general linear model). Here a novel neural principle
is considered (termed “frequency sliding,” explained below) that
can bridge findings across multiple spatial and temporal scales of
brain function. This principle is based on a fundamental func-
tional feature of neurons, and yet can be applied to neural ensem-
bles and large-scale network connectivity.

The principle is based on the phenomenon that the firing rate
of a neuron is proportional to the strength of its input (the so-
called “f–I curve”; Schwindt et al., 1997; Hong et al., 2008). In the
living brain, neurons and neural networks are bombarded with
synaptic input that varies over time, and thus their firing rates
also vary over time.

Curiously, this phenomenon is not taken into consideration
in the majority of EEG and local field potential (LFP) data anal-
yses, which instead assume that the frequency of a neural oscilla-
tor is approximately stationary over time, and that power within

specified frequency bands is the primary outcome measure (Co-
hen, 2014). Modifying standard analysis methods allows a time
series of instantaneous frequencies to be computed via the tem-
poral derivative of the phase angle time series (Boashash, 1992).
The method developed here is simple, hypothesis driven, and
robust to noise in the phase angle time series (Fig. 1A).

Using this method, it is shown that both artificial and real
neural networks exhibit exogenously and endogenously driven
temporal fluctuations in peak frequency over time, hereafter
termed frequency sliding. These subtle changes in frequency have
implications for the spike timing dynamics of individual neurons,
such that relatively slower oscillation frequencies decrease spike
threshold and increase spike timing variability. These oscilla-
tion frequency-induced changes in spike threshold have im-
plications for detecting weak synaptic inputs. Furthermore,
co-fluctuations in frequency sliding are shown to be a sensitive
and physiologically interpretable measure of functional connec-
tivity in artificial networks, in human task-related EEG data, and
in human EEG resting-state data. Together, these findings show
that frequency sliding is a useful, novel, and neurophysiologically
interpretable analysis tool that can help integrate findings across
multiple spatial and temporal scales of neuroscience.

Materials and Methods
Identifying time-varying instantaneous oscillation frequencies (frequency slid-
ing). The instantaneous frequency of a dynamical oscillating system can be
defined as the change in the phase per unit time (Boashash, 1992). For EEG
time series, this can be understood as the first temporal derivative of the
phase angle time series. To convert to units of hertz, the derivative can be
multiplied by the data sampling rate in hertz and then divided by 2�, in
other words: Hzt � s(�t � �t-1)/2�, where s indicates the data sampling
rate and �t indicates the phase angle at time t. Note that phase angles must
first be unwrapped. In MATLAB code, this can be implemented as
srate*diff(unwrap(phaseangles))/(2*�), where phase-
angles is the phase angle time series vector with sampling rate srate.
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The procedure is illustrated in Figure 1A. Simulated results shown in Figure
1B illustrate that frequency sliding is not biased toward the center of the
frequency band. Indeed, when frequency sliding is large relative to the back-
ground activity, accurate frequency sliding can be obtained even outside the
filter bands (filter transition widths were set to 15%).

In the literature, there are two methods that have been proposed for
estimating and analyzing changes in instantaneous frequencies in
EEG. One is called empirical model decomposition (Sweeney-Reed and
Nasuto, 2007), which involves repeatedly iterating through the data to
identify intrinsic modes. Empirical mode decomposition has been suc-
cessfully applied to EEG data for, among other applications, brain– com-
puter interfaces (Panoulas et al., 2008) and to identify possible
frequency-varying contributions to the event-related potential (Burgess,
2012). Though a useful approach, three of its drawbacks are the follow-
ing: (1) the frequencies returned by empirical mode decomposition are
influenced by noise and by temporal filtering that is applied to the data
before the analysis; (2) it is less amenable to hypothesis-driven analyses
because each frequency recovered is around one-half of the frequency of
the previous intrinsic mode (thus, if one mode is around 20 Hz, the next
mode is likely to be �10 Hz, thus impeding the ability to examine 15 Hz
activity); and (3) the iterative procedure can be time-consuming, thus
limiting its usefulness for large datasets involving hundreds of trials per
condition, electrode, and subject. Another approach is called frequency-
flows analysis (Amor et al., 2005; Rudrauf et al., 2006), which has been
used to study, for example, hypersynchronization during epileptic sei-
zures. This method involves estimating instantaneous frequencies from

the phase angle time series (similar to empirical mode decomposition
and the method described below) based on the result of wavelet convo-
lution. Next, the number of electrodes exhibiting the same time course of
instantaneous frequency is computed, providing information regarding
large-scale multivariate synchronization over all electrodes. Because the
phase angle time series is computed from wavelet convolution, and be-
cause wavelets have a Gaussian shape in the frequency domain, many
frequency-overlapping wavelets are useful to avoid a potential bias of the
estimation of frequency toward the peak frequency of the wavelet.
Frequency-flows analysis is well suited for large-scale multivariate net-
work analysis, but is less suitable for a priori spatially restricted and
frequency band-limited analyses.

The method developed here follows from these previous approaches,
but is more suitable for hypothesis-driven task- or resting-state investi-
gations, is robust to low-pass filtering and noise (including phase slips
and other phase impurities, as described below), is computationally effi-
cient and thus quite fast, and can be used to link findings across multiple
spatial scales in neuroscience such as human EEG and computational
network models. The procedure is to filter the data in an a priori specified
band (transition zones of 15% of the lower and upper frequency bounds
were used here), apply the Hilbert transform to obtain the analytic rep-
resentation, extract the phase angle time series, and then convert the
phase angle time series to frequencies in hertz as described above. Due to
bandpass filtering, the frequency sliding time series is bound by the pass-
bands, which prevents the results from being dominated by the frequency
with the largest power (for real EEG/LFP data, this is typically lower
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Figure 1. A, Six-step method to compute frequency sliding—temporal fluctuations in the peak oscillation frequency of a neural network. Step 1: Start with raw (unfiltered) time series data. Step
2: Create a plateau-shaped bandpass filter. Such a filter is preferred over, e.g., a Gaussian-shaped filter such as a Morlet wavelet to prevent a potential peak frequency bias toward the peak frequency.
Bandpass filtering is useful to constrain frequency sliding to a specific frequency range of a priori interest. Step 3: Apply the filter to the raw data. Step 4: Obtain the analytic signal by applying the
Hilbert transform to the filtered signal. Step 5: Extract the phase angle time series. Step 6: Frequency sliding is defined as the temporal derivative of the phase angle time series (using the sampling
rate s and 2� to scale the result to frequencies in hertz). Small noise-driven jumps in the phase angle time series can produce sharp nonphysiological frequency jumps (gray line), which are
successfully removed after applying a median filter (black line). The result of this procedure is a time series of estimated instantaneous peak oscillation frequencies within the range specified by the
bandpass filter. B, Simulated data show that bandpass filtering does not bias frequency sliding toward the center of the frequency window. A sine wave with time-varying frequency was created,
summed with real EEG data (from one subject, electrode Oz), and bandpass filtered (8 –12 Hz). Thereafter, frequency sliding was computed (y-axis) and compared against the “true” frequency sliding
(x-axis). Left panel shows results without adding EEG data and the middle panel shows results with amplitude scaling the sine wave to be 2 SDs of the EEG data amplitude. Right panel shows results
with amplitude scaling the sine wave to be 0.75 SDs of the EEG data amplitude. The gray box indicates where the boundaries of the bandpass filter match the true frequency sliding; results outside
this range reflect attenuated data and should be interpreted cautiously.
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frequencies) and thus facilitates hypothesis-driven analyses. A plateau-
shaped filter should be used to prevent a frequency bias toward the peak
frequency of the filter (this could be the case, for example, with Morlet
wavelet convolution, because Morlet wavelets have a Gaussian frequency
shape). To measure functional connectivity, the frequency sliding time
series from two electrodes can be correlated time point by time point.
Spearman correlations are preferred because the distribution of fre-
quency sliding is not necessarily Gaussian.

Frequency sliding can also be used as a method of measuring station-
arity, which is important for many time series analyses including
Granger-based connectivity and autoregressive modeling. Furthermore,
phase lag-based connectivity analyses (PLI or dwPLI; Stam et al., 2007;
Vinck et al., 2011) are valid only if the frequencies of the two electrodes
are approximately matched (otherwise, time-varying phase lags will bias
connectivity estimates). Frequency stationarity is achieved for the dura-
tion that frequency sliding maintains a relatively stable trajectory.

Median filter to attenuate nonphysiological noise spikes. One signal pro-
cessing issue that arises when computing frequency sliding is that a small
amount of noise or a brief slip in the phase angle time series can result in
a large “blip” in the frequency sliding time series due to jumps in the
unwrapped phase angle time series, and, in some cases, a briefly negative
derivative. An example of the effect of such noise is shown in Figure 1A,
step 6. This can produce nonphysiological frequency jumps, e.g., from 40
to 500 Hz for only a few milliseconds, or brief negative frequency jumps
(e.g., to �500 Hz) in the case of a transient negative derivative. The
problem of phase noise becomes worse with frequencies that have rela-
tively low power or when there is a power suppression, leading to de-
creased signal-to-noise ratio when estimating the phase angle time series.

A good solution to this problem is the median filter. The median filter
is a nonparametric signal-processing approach for dealing with noise
spikes in images or time series. The idea is to reassign each time point to
be the median of a distribution made from surrounding time points.
Because the median has low sensitivity to outliers compared with the
mean, a median filter will strongly attenuate noise spikes, and will thus
outperform a mean-based or convolution-based smoothing filter when
the noise spikes are extreme. It is beneficial to apply the median filter
several times using different window widths, and then to take the median
of the median filters. For EEG time series data, an order of 10 and a
maximum window size of 400 ms are recommended.

MATLAB code to implement frequency sliding and the median filter,
including more comments on its functioning and parameters, is available
online (mikexcohen.com/book).

Computational models. Four computational models were used to ex-
amine simulated network dynamics at multiple spatial scales and with
varying degrees of biological realism, and using two different network-
level mechanisms of producing oscillations.

The first model was based on simplified single-compartment neurons
that are defined by the differential equations provided by Izhikevich
(2003). Parameters were set to standard values for regular spiking (excit-
atory) and fast-spiking (inhibitory) neurons (Izhikevich, 2003). There
were 800 excitatory neurons and 200 inhibitory neurons, and the model
is referred to as the “E–I” (excitatory–inhibitory) model. Population
activity was estimated by the average membrane voltage of all spiking
excitatory cells. Results are averaged over 100 simulations. The model
was programmed and run in MATLAB (simulation code is available on
the modelDB website, Accession number 154770).

The second model was also based on simplified single-compartment
neurons but using the adaptive exponential equations as detailed by
Brette and Gerstner, (2005). Standard model parameters were used to
simulate regular spiking, fast-spiking, and bursting neurons. The archi-
tecture of this model was more complex and more anatomically realistic
compared with the E–I model. The model contained two “columns,”
each comprising three layers that simulated cortical layers 2/3, 4, and 5/6.
Layer 2/3 contained 500 regular spiking neurons and 125 fast-spiking
neurons, and layers 4 and 5/6 each contained 400 regular spiking neu-
rons, 100 bursting neurons, and 125 fast-spiking neurons. All regular
spiking and bursting neurons were excitatory, and all fast-spiking neu-
rons were inhibitory. Connectivity patterns among layers followed pub-
lished patterns of canonical columnar cortical connectivity (Thomson et

al., 2003; Bannister, 2005), and are illustrated in Figure 3D. Intracolum-
nar connectivity probability was set to 2.5% for E3E and E3I, and 10%
for I3E and I3I connections. Fifteen percent of neurons within each
layer were considered an ensemble and had a connection probability of
30%. All neurons received background noise generated by 200 Poisson-
spiking cells ranging in time-varying firing rates from 0 to 50 Hz. External
(“thalamic”) input was simulated by stimulating layer 4 cells in the first
column. There was connectivity from bursting and from regular spiking
neurons in layer 5/6 of the first column to fast-spiking neurons of layer
2/3 in the second column, thus simulating one expression of feedback
connectivity (Thomson et al., 2003).

The LFP was estimated as the sum of all excitatory and inhibitory
postsynaptic potentials across all excitatory cells in each layer. The model
was simulated using the Brian toolbox in python 2.7 (Goodman and
Brette, 2008). Data from 100 simulations were exported to and analyzed
in MATLAB using custom-written scripts. Because this network simu-
lated laminar organization and interactions, it is termed the “Layer”
model. The purpose of including this model in addition to the E–I model
was to demonstrate that the relationship between input strength and
peak oscillation frequency, and the use of frequency sliding to measure
connectivity, is robust to the type of network simulation and to the
mechanism of generating oscillations. Python code for this model is
available on the modelDB website.

Initial testing of the E–I and Layer networks revealed that the main
findings reported here (relationship between stimulation intensity and
peak oscillation frequency, and measuring connectivity via correlated
frequency sliding) were robust to parameter settings.

The third and fourth models were biophysically realistic conductance-
based models of single neurons. Unlike the E–I and Layer models, which
demonstrate that frequency sliding can be used as a mechanism of en-
coding incoming information, the purpose of the biophysically detailed
model neurons was to test whether frequency sliding would have conse-
quences for a neuron receiving synaptic inputs from such networks as the
E–I or Layer models. The two model neurons were taken from a neocor-
tical layer 5 bursting pyramidal cell (Hay et al., 2011) and a neocortical
fast-spiking interneuron (Golomb et al., 2007). The morphology and
biophysical parameters were kept from the original code downloaded
from modelDB (accession numbers 139653 and 97747). Simulations
were performed in NEURON 7.3 (Hines and Carnevale, 1997). The orig-
inal code was not modified except for the dendritic input, which was a
sinusoidal current of varying frequencies.

The model neurons were tested on two measures of functioning: spike
timing and coincidence detection. For spike timing, the onset of the first
action potential, and the variability of action potentials, on each sine
wave peak was measured. “Coincidence detection” is a neural computa-
tion that can be conceptualized as an action potential in response to two
but not one synaptic inputs. Synaptic inputs to the layer 5 pyramidal cell
were modeled as an EPSP-like current injected into two apical dendrites,
one 5 ms after the first. The EPSP kinetics were the same as those used by
Hay et al. (2011). In separate simulation runs, these two inputs were
provided at different phases of the simultaneous sine wave input. The
amplitude of the input sine wave was decreased to prevent action poten-
tials resulting from the sinusoidal stimulation, and to provide variability
in whether the synaptic inputs could elicit an action potential (that is,
action potentials resulted from the combination of two synaptic inputs
and a near-peak phase of the input sine wave). To quantify the changes in
sensitivity to coincidence detection as a function of the sinusoidal input,
the average sinusoid input phase angle from the first action potential, or
the number of action potentials elicited, following the two synaptic in-
puts was computed. Statistical evaluations were performed via linear fits
in MATLAB (function regstats).

EEG task and resting state. The human EEG task was designed to mimic
input strength in a manner similar to the direct-current and alternating-
current inputs in the E–I and Layer models. In the EEG task, nine subjects
(six male) recruited from the University of Amsterdam community
viewed a large gray square on a black background. The square was shown
in the left or in the right lower visual hemifield, remained on screen for
4 s, and was followed by a 2 s intertrial interval (only the first 2 s of the
stimulus was used for Fig. 6B, because the frequency structure became
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less stable toward the end of the trial). There were four levels of lumi-
nance ranging from 31 to 100% of monitor maximum brightness in
equal steps (pixel values 80, 138, 197, and 255). In a fifth condition, the
luminance oscillated at 1 Hz, with a random phase on each trial. The purpose
of having a random phase on each trial was to prevent any potential con-
found between frequency sliding induced by the oscillating stimulus, and
possible task-evoked and stimulus phase-locked frequency sliding.

In a random 25% of trials, the fixation turned purple at trial onset. In
these trials, subjects were instructed to count to three in their head slowly
and then press a button with their left or right hand, depending on
whether the stimulus appeared in the left or right hemifield. The purpose
of this manipulation was to engage a visual parietal-motor network in-
volved in time-coordinated manual responses. This was used to test for
modulations in functional connectivity between visual and motor areas.
Sinusoidal luminance trials were not included in connectivity analyses,
because the oscillating luminance may have naturally induced counting
(with the “beats” of light). There were 100 trials per condition, and
subjects received self-paced rest breaks every 3– 4 min.

After the task recording, subjects completed an eyes-closed and an
eyes-open rest recording (order was counterbalanced over subjects).
Each recording was 2 min long, and subjects were instructed simply to
relax and to try not to think about anything in particular.

EEG data were collected from 64 scalp channels and additional elec-
trodes to monitor horizontal eye movements, using BioSemi equipment
(see www.biosemi.com for hardware details). The sampling rate was
1024 Hz. The study was approved by the local ethics committee at the
University of Amsterdam. The entire experiment lasted around 100 min,
which included setup, task, and resting state.

EEG data processing and analyses. EEG data were first high-pass filtered
at 0.5 Hz. Task data were cut into epochs of �2 to �5 s peristimulus

onset, and resting-state data were cut into non-
overlapping epochs of 2 s. Data were visually
inspected, and any epochs containing excessive
noise or other artifacts were rejected. Trials
with horizontal eye movements were also re-
jected. Further cleaning was done through in-
dependent components analysis using the
eeglab toolbox (Delorme and Makeig, 2004).
Components reflecting eye blinks or muscle ar-
tifacts were visually identified and removed
(one to five components were removed per
subject).

Statistical thresholding was done through
standard procedures for nonparametric per-
mutation testing (Maris and Oostenveld,
2007), in which the mappings between condi-
tion label and data were randomly permuted
1000 times, and a p value was computed rela-
tive to this null distribution. Electrodes show-
ing a monotonic effect of stimulus luminance
on peak frequency, or connectivity via corre-
lated frequency sliding, were considered signif-
icant if the p value was smaller than 0.05. In
addition to single-electrode statistical thresh-
olding, a cluster-based threshold ( p � 0.05,
distance of 10 cm) was applied to correct for
multiple comparisons over the topography.

For the relationship between frequency slid-
ing and stimulus luminance phase, statistics
developed for phase-amplitude coupling were
applied (Canolty et al., 2006). Specifically, the
following equation was evaluated: �n � 1�aeip .�,
where n is the number of time points, a is the
peak frequency at each time point, and p is the
phase of the 1 Hz stimulus luminance. The re-
sult of this equation reflects the extent to which
peak frequency values are modulated by stim-
ulus luminance phase. Next, this result was
compared against a distribution of null hy-
pothesis values, generated by shuffling the peak

frequency values, thus generating a z value corresponding to the likelihood of
observing a modulation value at least that extreme under the null hypothesis.
This procedure was done for each subject individually. Finally, for group-
level statistical evaluations, a t test was performed on the z values.

Time-frequency power plots were obtained via convolution with a
family of complex Morlet wavelets (Cohen, 2014). Power was converted
to a decibel scale relative to a �500 to �200 ms prestimulus period.

Resting-state EEG data involved source reconstruction via linearly
constrained minimum variance beamforming (Dalal et al., 2008), using
analysis procedures and parameters that we have previously found to be
appropriate for 64-channel scalp EEG (Cohen and Ridderinkhof, 2013).
The idea of beamforming is to create frequency-specific spatial filters that
allow estimation of activity in different brain voxels based on weighted
combinations of the scalp-recorded electrode activity. The frequency
band-specific time series was projected into 2004 brain-space voxels, and
frequency sliding was subsequently computed at each voxel as described
above. The standard MNI brain and standard electrode locations were
used to compute a single leadfield that was applied to all subjects; for low
spatial-resolution EEG, the MNI template brain provides reasonable lo-
calization accuracy (Fuchs et al., 2002), although the spatial precision is
blurry compared with higher density recordings and subject-specific
leadfield models. Large-scale networks were identified by first computing
a voxel-by-voxel covariance matrix (separately for each 2 s epoch, then
averaged together to increase signal-to-noise ratio), and then applying a
principal components analysis via eigenvalue decomposition of that co-
variance matrix. The principal component weights for each voxel were
then projected back to brain space.

Thresholding of principal components maps was done via permuta-
tion testing. At each of 200 iterations, the time series from each voxel was
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Figure 2. Frequency sliding and its extension to measure functional connectivity are demonstrated in simulated neural net-
works that produce alpha-gamma oscillations based on excitatory–inhibitory cell interactions (the E–I network). A, Power spectra
show that peak frequencies in the alpha and gamma bands increase with increasing input drive. B, With increasing input strength,
gamma frequency increases monotonically and alpha frequency increases until �14 Hz. In contrast, power shows a non-
monotonic relationship with input strength, measured either as power only at the peak frequency or as power averaged over a
wider frequency band. C, Peak frequency can change rapidly over time to match time-varying changes in sinusoidal input strength.
Results are pooled across 100 simulations with a 1 Hz sinusoidal input. D, Illustration of connectivity among three networks. E,
Correlated frequency sliding was evaluated among all pairs of networks; results show that correlated frequency sliding can be used
to identify patterns of connectivity, even in the presence of noise (each dot is a separate simulation; “1,2” refers to the correlated
frequency sliding between network 1 and network 2); a.u., arbitrary units.
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cut once at a random time point, and the sec-
ond half was placed before the first half. There-
after another principal components analysis
was performed. From the distribution of prin-
cipal component loadings at each voxel, the
loading of the true principal components anal-
ysis (without permuted time series) was set to
zero if it was smaller than 99% of the permuta-
tion distribution (thus, p � 0.01). Although
with principal components analysis the load-
ing at each voxel contributes to the total com-
ponent structure, thresholding is useful to help
visualize the spatial distribution of the compo-
nents. Results were visualized using MRIcro
software.

The relationship between frequency sliding
and the power time series during resting state
was tested by computing the Spearman corre-
lation coefficient between power and the
Gaussian transform of the frequency sliding,

e�(f�f� )
2
/4 where f refers to frequency sliding. The

Gaussian transform was selected based on vi-
sual inspection of the nonlinear relationship
between resting-state band-specific power and
frequency sliding (Fig. 8 A, B).

Results
Frequency sliding in artificial
neural networks
Figures 2 and 3 illustrate the relationship
between input strength and peak oscilla-
tion frequency, as well as the principle of
frequency sliding, in artificial neural net-
works. Two networks were simulated us-
ing two distinct architectures for generating oscillations: one
network relies on interactions between excitatory and inhibitory
cells (Tiesinga and Sejnowski, 2009) to generate alpha-band and
gamma-band oscillations (E–I model; Fig. 2) while the other net-
work generates a theta-alpha-beta oscillation complex, typical of
EEG data, due to its laminar organization (Thomson et al., 2003;
Layer model; Fig. 3). Both networks generate endogenous fre-
quency band-limited oscillations, even without oscillatory input.
Despite their divergent neuron types, architectures, sizes, and
intrinsic dynamics, both networks responded similarly to mono-
tonic increases in input strength, by monotonically increasing
their peak oscillation frequencies (Figs. 2A,B, 3A,B). In contrast
to the close correspondence between peak oscillation frequency
and input strength, oscillation power did not show a consistent
monotonic relationship with input strength (Jia et al., 2013; Figs. 2B,
3B). Both networks quickly modulated their peak frequencies in
response to time-varying input strength (Figs. 2C, 3C; input os-
cillations were well below the network oscillation frequencies,
ruling out the possibility that the network oscillations were sim-
ply entrained to the input frequency).

These two networks were expanded to test whether correlated
fluctuations in frequency sliding reflected functional connectiv-
ity. Three E–I networks received common input and independent
noise, and network “1” provided input to network “2” (Fig. 2D);
correlated frequency sliding correctly identified the simulated
pattern of connectivity (Fig. 2E). In the Layer model, two col-
umns were simulated with synaptic connections from excitatory
neurons of layer 5/6 in column 1 to inhibitory neurons of layer
2/3 in column 2 (Fig. 3D; this simulates one type of “feedback”
connection; Thomson et al., 2003). Again, correlated frequency
sliding correctly identified both the intracolumnar connectivity

as well as the layer-specific connectivity from column 1 to col-
umn 2 (Fig. 3E). The correlation coefficient between frequency
sliding in layer 5/6 of column 1 (L51) and frequency sliding in
layer 2/3 of column 2 (L32) was highly significant (average corre-
lation coefficient across 100 simulations: 0.39, t(99) � 15.84, p �
0.001). Furthermore, correlated frequency sliding between L51

and L32 was significantly stronger than correlated frequency slid-
ing between L51 and L42 or L52 (average correlation coefficients:
0.18 and 0.19, t(99) � 8.30 and 7.37, ps � 0.001), and was also
significantly stronger than correlated frequency sliding be-
tween L32 and L31 or L41 (average correlation coefficients:
0.33 and 0.31, t(99) � 2.05 and 3.89, ps � 0.0428 and �0.001).
The simulations and analyses thus far validate that frequency
sliding is a sensitive measure of input strength with high tempo-
ral precision, and that correlated frequency sliding can be used
to measure functional connectivity between networks.

Consequences of frequency sliding for single neurons
The next set of simulations was designed to understand what the
implications of subtle changes in oscillation frequency might be
for individual neurons. Two different biophysically detailed
conductance-based neurons were simulated, a morphologically
accurate neocortical layer 5 pyramidal cell (Hay et al., 2011), and
a neocortical fast-spiking interneuron (Golomb et al., 2007). In
the experiment, the neurons received oscillatory input on a den-
drite while the somatic membrane voltage potential was recorded
(Fig. 4A,D).

Relatively lower frequency input reduced the neurons’ spike
threshold, allowing the neurons to fire with weaker synaptic in-
put. In both neurons, the decrease in spike threshold with lower
input frequency was highly significant (Fig. 4B,E; see Fig. 4 for
statistics from a linear model). Furthermore, relatively lower fre-

1.5

2.0

2.5

3.0

3.5

4.0

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Frequency (Hz)
P

o
w

er
 (a

.u
.)

A 

Alpha-band

In
p

u
t 

st
re

n
g

th

Theta-band

18

1 2 3 4 51.0

1.5

2.0

2.5

3.0

3.5

Time (s)

Fr
eq

u
en

cy
 (H

z)

L3 

L3 

Col. 1 
L4 

L4 

L5 

L5 

.0

.2

Freq
u

en
cy slid

e co
rrelatio

n

.4

.6

.8

1.

L3 
Col. 2 

L4 L5 

C
o

l. 
1 

L3 

L4 

L5 

C
o

l. 
2 

i

i

i e

e

e

L2/3

“T
ha

la
m

us
” L4

L5/6

Column 1

i

i

i e

e

e

L2/3

L4

L5/6

Column 2

.45

.40

.33

.12 .10 .18 .33

.28 .25.19.11.16

.31 .39

.48

C D E 

102

101

102

101

2 3 4
10.0

10.5

11.0

11.5

4.0

4.5

5.5

5.0

2 3 4

2 3 4 2 3 4

Fr
eq

u
en

cy
 (H

z)
Fr

eq
u

en
cy

 (H
z)

P
o

w
er

 (a
.u

.)

Input strength (arb. units)

Theta powerTheta frequency

Alpha powerAlpha frequency

B   

P
o

w
er

 (a
.u

.)

Peak

Peak

2-8 Hz

8-12 Hz
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neuron equations. A–E can be interpreted in the same way as A–E in Figure 2; a.u., arbitrary units.
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quency input oscillations increased the temporal variability of
action potentials (Fig. 4C,F). In addition to changes in the spike
threshold, both neurons emitted action potentials in bursts coin-
ciding with the positive phase of the input sine wave. Slower
oscillations resulted in more spikes per burst (data not shown),
consistent with previous studies (Kepecs et al., 2002). Spike count
per burst is a discrete integer-based information coding scheme,
whereas spike timing and variability provide a larger analog space
for coding information with millisecond precision, particularly
when this information is pooled over an ensemble of neurons
(Havenith et al., 2011).

Figure 4 also shows that these two simulated cells were sensi-
tive to different input frequency ranges, suggesting that neuronal
morphology and biophysical characteristics result in maximal
sensitivity (“tuning”) to particular ranges of input frequencies.
This tuning appears to be more subtle than previously suggested
(e.g., low vs high frequency; Nowak et al., 1997). This phenome-
non would allow different neurons to be modulated by frequency
sliding on different timescales.

The layer 5 model neuron was next tested in an experiment
on coincidence detection, defined here as an action potential
in response to two synaptic inputs when neither input is
strong enough to elicit an action potential on its own. Synaptic
inputs were given to different synapses (one delayed by 5 ms
from the other) at various phases of the sinusoidal current (the
current intensity was reduced such that the neuron did not
produce somatic action potentials in response to the current
alone; see Fig. 5A for an overview of this experiment). The
results in Figure 5B confirm that lower frequency oscillations
increased sensitivity to weak input. Specifically, action poten-
tials in response to synaptic input were produced during ear-
lier phases of input current oscillations with lower frequencies
(see Fig. 5B for statistics). This relationship depended to some
extent on synaptic input strength, with the relationship be-
tween oscillatory current and coincidence detection being
stronger for stronger synaptic inputs (Fig. 5B).

This result was complemented by a
moderate increase in the average number
of action potentials elicited by the two
synaptic inputs during lower frequency
oscillations (Fig. 5C). Thus, two weak syn-
aptic inputs will produce earlier and
stronger neural responses when those in-
puts are embedded in a background of a
relatively slower oscillatory current, al-
though this effect depends in part on the
strength of the synaptic inputs.

Frequency sliding in human EEG
task data
Having demonstrated that frequency slid-
ing can be encoded in artificial neural net-
works, functionally group multiple
networks, and modulate spike threshold
and timing variability of biophysically
plausible model neurons, the next step
was to test whether frequency sliding oc-
curs in real data and at a spatial scale larger
than that of neural ensembles. Scalp EEG
data were thus acquired from nine human
volunteers performing a simple visual
perceptual task, and a subsequent resting
state. Subjects passively viewed large gray

boxes in the left or right hemifield that varied in luminance (Fig.
6A). As expected based on the model results, EEG data demon-
strated a monotonic relationship between input strength (stimu-
lus luminance) and EEG peak oscillation frequency, a finding that
was observed over stimulus-contralateral posterior electrodes
(Fig. 6B). Although the task induced an alpha power suppression
(Fig. 6C), there remained a strong peak in the alpha band during
stimulus presentation (Fig. 6D).

In one condition, luminance varied sinusoidally over time to
mimic the sinusoidal input provided to the E–I and Layer models.
As expected based on the simulated neural networks, peak fre-
quency in the human EEG was also modulated as a function of the
phase of the sinusoidal stimulus luminance (Fig. 6E). The size of
the peak frequency modulations was relatively small in magni-
tude compared with that during the static conditions, but the
modulation of stimulus-contralateral frequency sliding by stim-
ulus phase was significant across subjects for both hemifields (t(8)

� 5.59 and 5.5 for left and right hemifields; ps � 0.001; Fig. 6E,
blue lines). This modulation was not significant in the static con-
ditions, which for this analysis acted as a control (t(8) � 0.79 and
0.49 for left and right hemifields).

In 25% of trials, the central fixation spot turned purple, and
subjects counted to three and then pressed a button (“target tri-
als”). Correlated frequency sliding, seeded from the electrodes
identified in Figure 6B, revealed increased connectivity in a dis-
tributed parietal-motor network in target compared with nontar-
get trials (Fig. 6F). This pattern was observed for both left- and
right-hemifield trials in the beta band (20 –30 Hz). Qualitatively
similar patterns of results were observed in the theta and alpha
bands but were not statistically significant.

Frequency sliding in human EEG resting-state data
The final experiment was to investigate whether endogenous fre-
quency sliding in absence of experimentally induced input could
be used to identify large-scale networks. Subjects rested quietly
after the task, and frequency band-specific time series were esti-
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Figure 4. Consequences of oscillating input for spike timing illustrated with morphologically detailed and biophysically accu-
rate models of a neocortical layer 5 pyramidal neuron and of a neocortical fast-spiking inhibitory interneuron. A, D, In this in silica
experiment, a dendrite of the neuron was stimulated with oscillatory inputs of varying frequency. Shown here are a few seconds of
the experiment with the dendritic input (top) and the somatic voltage response (bottom; MP; membrane potential). B, E, Rela-
tively lower input strength was sufficient to elicit the first action potential (AP) of a burst when the input oscillated at lower
frequencies. Furthermore, (C, F ) temporal variability of action potential timings increased with relatively lower input oscillation
frequencies. Statistics in B, C, E, and F are from a linear model of the fit between the input frequency and outcome variable (spike
timing or spike variability).
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mated for 2004 brain voxels via beam-
forming (Dalal et al., 2008; Cohen and
Ridderinkhof, 2013). Frequency sliding
was then computed at each voxel, and
principal components analysis was per-
formed to identify “modes” of large-scale
correlated frequency sliding (Fig. 7A). Ax-
ial and sagittal slices from modes 2– 6 are
shown in Figure 7B. This analysis used
alpha-band frequency sliding, but the
procedure could be applied to any fre-
quency band.

The resting-state data also provided an
opportunity to further investigate fre-
quency sliding dynamics in absence of
task effects (Fig. 8). First, frequency slid-
ing showed a nonlinear relationship with
simultaneous band-limited power, which
was due to increased power variability
near the center of each frequency band
(Fig. 8A,B). This relationship was quanti-
fied by testing a fit between power and
Gaussian-transformed frequency sliding
for each subject, and then comparing the
coefficients against zero at the group level.
The Gaussian relationship was significant
for theta-band (t(8) � 9.77, p � 0.001) and
alpha-band (t(8) � 5.70, p � 0.001) fre-
quency sliding, but not for beta-band (t(8)

� 1.13, p � 0.291) frequency sliding. Sec-
ond, frequency sliding did not result from
broadband shifts in the power spectrum,
because frequency sliding in different fre-
quency bands was weakly negative though
significantly correlated (theta-alpha fre-
quency sliding average correlation coeffi-
cient over subjects � �0.04, t(8) � �2.89,
p � 0.01; theta-beta frequency sliding aver-
age correlation coefficient � �0.015, t(8) �
�0.89, p � 0.199; alpha-beta frequency slid-
ing average correlation coefficient � �0.09,
t(8) � �4.04, p � 0.001). Small negative
correlations can be expected between
neighboring frequency bands due to mi-
nor spectral leakage across the frequency boundaries. Finally,
frequency sliding was compared with intersite phase clustering, a
commonly used metric of frequency band-specific functional
connectivity (Cohen, 2014). Correlated frequency sliding was
significantly but not perfectly correlated with phase clustering
(average correlation coefficients in theta/alpha band: 0.431/
0.495, ps � 10�5; Fig. 8C). This is not a surprising result: Perfect
phase synchronization can occur only if there is perfect frequency
locking (Amor et al., 2005).

There are many other methods of estimating brain functional
connectivity from neural time series data, including power envelope
correlations, Granger-based directional coupling methods, cross-
frequency coupling, and mutual information. It would be inter-
esting but beyond the scope of this paper to compare correlated
frequency sliding with other measures of connectivity. However,
given that frequency sliding is defined by the phase angle time
series, and that its relationship with frequency band-specific
power is tenuous, it is likely that correlated frequency sliding will
correspond most closely with other phase-based connectivity

methods and less strongly with connectivity methods that are
independent of phase.

Discussion
The present findings confirm previous observations that brain
oscillation frequencies can change according to external stimuli
and internal behavioral states (Lopes da Silva and Kamp, 1969;
Arnolds et al., 1980; Ardid et al., 2010; Ray and Maunsell, 2010;
Burns et al., 2011; Roberts et al., 2013), and extend these findings
by providing putative neuronal consequences of subtle changes
in oscillation frequency, and by demonstrating that frequency
sliding is a sensitive measure of functional connectivity. In fact,
these observations show that neural time series data violate one
assumption of the analyses commonly used to analyze those data
(such as Fourier- and wavelet-based methods), which is that that
the frequency structure of an oscillator does not change over
time, or at least changes more slowly than the time window of
analyses (typically, several hundreds of milliseconds; Cohen,
2014). Frequency sliding represents a form of signal nonstation-
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In this experiment, the input oscillation frequency was dampened to prevent spontaneous action potentials, and a pair of synaptic
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provided per trial) are shown here, with the timing of the synaptic inputs shown as vertical dotted lines. B, The input sine wave
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performed for four different input strengths. These results show that slower oscillations allowed for coincidence detection earlier
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arity that is often overlooked, but may prove important for char-
acterizing brain function and communication.

Implications of frequency sliding for physiology and
neural computation
The biophysically detailed models suggest at least two implica-
tions of small shifts in peak frequency within a frequency band for
neurophysiological mechanisms of computation. First, neural
networks may encode input intensity (both tonic as well as time
varying) as changes in peak frequency of their oscillation, rather
than in the power of those oscillations. Second, the modeling
results suggest that neurons will emit somatic action potentials
with lower levels of dendritic input when that input arrives with a
relatively lower frequency oscillation. This results in part from
slower input having a longer voltage integration time, and in part
from voltage-gated Na� and K� currents (Azouz and Gray, 2000).
Similar findings have been linked to the slope of an input (Azouz and
Gray, 2000); the present results suggest that such input slopes may
reflect oscillations (indeed, the slope of part of an oscillation simply
reflects its frequency). The implications of this change in spike
threshold are evident in detecting temporally coincidental synaptic
inputs (Fig. 5), which is one of the key computational functions of
pyramidal cells (London and Häusser, 2005).

Furthermore, relatively lower frequencies allow a longer time
window in which action potentials can occur, thus increasing
spike timing variability. The present findings show that the range

of frequencies that shape spike timing variability is smaller than
previously suspected (Nowak et al., 1997). Together, these find-
ings suggest a novel hypothesis: frequency sliding can be a means
of modulating neural excitability—a gain-control mechanism.
Specifically, if increasing peak frequency causes neurons to re-
quire stronger input before firing, relatively faster oscillations
thus facilitate cautious but accurate responding. In contrast, if
decreasing peak frequency causes neurons to respond to weaker
input, relatively slower oscillations facilitate fast but potentially
noise-driven responding. This novel prediction could be empir-
ically tested in humans and nonhuman animals, for example,
during perceptual discrimination tasks with luminance-
oscillating stimuli, or by varying the frequency of a transcranial
alternating current stimulation.

Does the brain use frequency sliding to encode/decode infor-
mation? This is an attractive possibility because frequency sliding
is a property of networks and of individual neurons, changes
dynamically over hundreds of milliseconds (corresponding to
the time frame of many cognitive and perceptual processes), is
maintained within canonical frequency bands (that is, frequency
sliding can occur independently in theta, alpha, gamma, etc.),
and correlates with external stimulus properties. On the other
hand, it is also possible that frequency sliding does not contain
any unique information beyond that already available in average
spike rate. In this case, frequency sliding is a useful index of the
input to a neural network and a novel measure of functional
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connectivity that is particularly useful when spike rate informa-
tion is not available, such as in LFP or magnetoencephalogra-
phy(MEG)/EEG. Additional empirical research is required to
determine whether frequency sliding itself directly contributes to
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shown on the x-axis, and simultaneous amplitude is shown on the y-axis. The color values indicate
probabilities, and are scaled for visibility for each map. The vertical dashed line is drawn at 6 Hz for
comparability across subjects. B, Same as A but for the alpha band. C, Correlated frequency sliding
(x-axis) and phase clustering (y-axis) for each pair of electrodes.
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neural computation, or whether it is useful mainly as an analysis
tool that can bridge research findings across computational mod-
els, in vivo and in vitro animal physiology, and human cognitive
and clinical electrophysiology.

Implications of frequency sliding for EEG/LFP
It is important to develop and use EEG data analysis techniques
that are inspired by and can be linked to known neurophysiolog-
ical properties of neurons and networks of neurons (Cohen and
Gulbinaite, 2014). The well known relationship between input
intensity and neuron firing rate provides a solid foundation for
developing data analysis approaches that can be used and mean-
ingfully interpreted across multiple spatial and temporal scales,
ranging from individual neurons to large-scale networks of mil-
lions or billions of neurons spanning tens of centimeters. At pres-
ent, power within a frequency band is the most commonly
interpreted feature of EEG time-frequency results (Cohen, 2014).
Though clearly a useful and widely used measure of neural activ-
ity, it has an unclear relationship with network input strength
(Figs. 2, 3, 8; Jia et al., 2013), and may be more related to across-
network coherence rather than within-network activity (Musall
et al., 2014). Furthermore, the lack of stationarity in peak oscillation
frequencies over time suggests that what previously may have been
considered noise or uncertainty in the frequency precision of time-
frequency results may instead reflect frequency sliding, which is not
easily detected by standard time-frequency analysis approaches and
which would thus decrease frequency precision in wavelet- or short-
time FFT-based analyses.

The EEG task data confirmed predictions of the computa-
tional models: alpha-band peak frequency tracked the strength of
the visual input, both in the static and in the dynamic conditions.
It is unclear why the sinusoidal modulations in the dynamic con-
dition were of smaller magnitude compared with the static con-
ditions. It is possible that the luminance modulation was too
weak or too easy to ignore (it was a task-irrelevant manipulation),
or that the neural subnetworks most strongly affected by this
manipulation were relatively small compared with the overall
task-responsive networks. The EEG task data also confirmed that
correlated frequency sliding can be used as a measure of task-
related functional connectivity. The physiological mechanisms
that produce such precise long-range co-modulations of peak
frequency may be driven in part by pyramidal cell long-range
inputs onto inhibitory interneurons, which in turn can precisely
set the timing of network oscillations (Bush and Sejnowski, 1996;
Chow et al., 1998; Maex and De Schutter, 2003).

The resting-state data showed that frequency sliding is an en-
dogenous property of neural networks and does not require ex-
ogenous experimental manipulation. Resting-state networks are
typically defined by correlated fluctuations over a slower time-
scale (seconds to minutes; Cabral et al., 2014), using the fMRI
BOLD response or slow fluctuations in MEG frequency band-
specific power fluctuations. As such, it is difficult to directly
compare frequency sliding-defined resting-state networks
with fMRI- or MEG-defined resting-state networks. Nonethe-
less, the networks shown in Figure 7B show some similarities to
fMRI-defined resting-state networks, including positive and neg-
ative component loadings in the same network (respectively, red
and blue colors), and networks with a spatial distribution at an-
terior and posterior medial areas. Although the BOLD response
exhibits slow oscillations (Bluhm et al., 2007), it is unclear
whether frequency sliding in hemodynamics (if it occurs) can be
interpreted in a similar fashion as frequency sliding in neuro-
physiological data.

Limitations
First, the precise relationship between frequency sliding and spik-
ing activity is not fully understood, and may depend on neuron
type (as was shown for two example neurons studied here) and
additional factors such as background activity and synaptic
strengths. Second, additional biophysical features of neurons
may be modulated by frequency sliding but were not investigated
here. For example, dendritic calcium waves propagate with a
speed proportional to the input (Loewenstein and Sompolinsky,
2003). Voltage-gated synaptic dynamics including NMDA recep-
tors or Na� and K� conductances may also be modulated by
frequency sliding (Azouz and Gray, 2000, 2003). Third, source
reconstruction of low-dimensional (�100 electrodes) EEG data
involves spatial blurring that limits the spatial precision of the
results. Furthermore, correlated frequency sliding does not ad-
dress potential issues of volume conduction (although spatial
filters such as beamforming or the scalp Laplacian, and condition
comparisons, attenuate volume conduction artifacts). It is there-
fore likely that smaller subnetworks of correlated frequency slid-
ing would be observed with high spatial resolution recordings,
such as 300� sensor MEG/EEG, or intracranial EEG in epilepsy
patients.

Conclusions
In conclusion, frequency sliding appears to be a fundamental
principle of neural function that modulates spike threshold of
individual neurons, encodes input strength in neural ensembles,
indexes connectivity between neural populations, and groups
large-scale networks during cognition and rest. Additional work
is required to better understand the mechanisms of endogenous
frequency sliding and its implications for neural computation,
but it stands out as one of the few data analysis approaches that
can be used to translate findings across myriad spatiotemporal
scales of brain function (Varela et al., 2001; Le Van Quyen, 2011;
Cohen and Gulbinaite, 2014; Pesenson, 2013).
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