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Abstract. Each Boolean function can be computed by a single-pass
instruction sequence that contains only instructions to set and get the
content of Boolean registers, forward jump instructions, and a termina-
tion instruction. Auxiliary Boolean registers are not necessary for this.
In the current paper, we show that, in the case of the parity functions,
shorter instruction sequences are possible with the use of an auxiliary
Boolean register in the presence of instructions to complement the con-
tent of auxiliary Boolean registers. This result supports, in a setting
where programs are instruction sequences acting on Boolean registers, a
basic intuition behind the storage of auxiliary data, namely the intuition
that this makes possible a reduction of the size of a program.

Keywords: Boolean function family, instruction sequence size, non-uni-
form complexity measure, parity function.
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1 Introduction

In [5], we presented an approach to computational complexity in which algo-
rithmic problems are viewed as families of functions that consist of an n-ary
Boolean function for each natural number n and the complexity of such prob-
lems is assessed in terms of the length of finite single-pass instruction sequences
acting on Boolean registers that compute the members of these families. The
instruction sequences concerned contains only instructions to set and get the
content of Boolean registers, forward jump instructions, and a termination in-
struction. Moreover, each Boolean register used serves as either input register,
output register or auxiliary register.

Auxiliary Boolean registers are not needed to compute Boolean functions.
The question whether shorter instruction sequences are possible with the use
of auxiliary Boolean registers was not answered in [5]. In the current paper, we
show that, in the case of the parity functions, shorter instruction sequences are
possible with the use of an auxiliary Boolean register provided the instruction set
is extended with instructions to complement the content of auxiliary Boolean
registers. The parity function of arity n is the function from {0, 1}n to {0, 1}
whose value at b1, . . . , bn is 1 if and only if the number of 1’s in b1, . . . , bn is odd.

In theoretical computer science, the complexity of the parity functions has
been extensively studied in the setting of Boolean circuits (see e.g. [1,7,8,9,10,11]).

http://arxiv.org/abs/1412.6787v1


The parity functions have a well-known practical application as well. If we ap-
pend to a bit string the value of the parity function for this bit string, the
appended bit is called the parity bit. After appending the parity bit, the number
of times that 1 occurs is always even. A test for this property is called a parity
check. Appending parity bits and performing parity checks are used in many
techniques to detect errors in transmission of binary data.

Our result concerning the issue whether shorter instruction sequences are
possible with the use of auxiliary Boolean registers seems not to hold in the ab-
sence of instructions to complement the content of auxiliary Boolean registers.
In [5], instruction sequences that contain these instructions were not considered.
However, all results from that paper, except one, go through if instruction se-
quences may contain these instructions as well. The exception is Proposition 1,
where the number (3n+ 10k − 2)k has to be replaced by (3n+ 13k − 5)k. Note
that more instructions for a Boolean register than instructions to set, get, and
complement its content are not thinkable.

The work presented in this paper is carried out in the setting of PGA (Pro-
Gram Algebra). PGA is an algebraic theory of single-pass instruction sequences
that was taken as the basis of an approach to the semantics of programming lan-
guages introduced in [2]. As a continuation of the work presented in [2], (a) the
notion of an instruction sequence was subjected to systematic and precise analy-
sis, (b) theoretical issues relating to subject areas such as computability, compu-
tational complexity, verification, and performance were rigorously investigated
thinking in terms of instruction sequences, and (c) practical issues such as ef-
ficiency of algorithms expressed by instruction sequences and compactness of
instruction sequences were studied (for a comprehensive survey of a large part
of this work, see [3]).

This paper is organized as follows. First, we present the preliminaries on
instruction sequences and complexity classes based on them that are needed in
the rest of the paper (Section 2). Next, we describe how the parity functions
can be computed by instruction sequences without the use of auxiliary Boolean
registers and with the use of auxiliary Boolean registers (Section 3). Then, we
show that the smaller lengths of the instruction sequences in the latter case
cannot be obtained without the use of auxiliary Boolean registers (Section 4).
Finally, we make some concluding remarks (Section 5).

The preliminaries to the work presented in this paper are almost the same as
the preliminaries to the work presented in [4] and earlier papers. For this reason,
there is some text overlap with those papers. The preliminaries include a brief
summary of PGA. A comprehensive introduction to PGA, including examples,
can among other things be found in [3].

2 Preliminaries: Instruction Sequences and Complexity

In this section, we present a brief outline of PGA (ProGram Algebra), the par-
ticular fragment and instantiation of it that is used in this paper, and the kind of
complexity classes considered in this paper. A mathematically precise treatment
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for the case without instructions to complement the content of Boolean registers
can be found in [5].

The starting-point of PGA is the simple and appealing perception of a se-
quential program as a single-pass instruction sequence, i.e. a finite or infinite
sequence of instructions of which each instruction is executed at most once and
can be dropped after it has been executed or jumped over.

It is assumed that a fixed but arbitrary set A of basic instructions has been
given. The intuition is that the execution of a basic instruction may modify a
state and produces a reply at its completion. The possible replies are 0 and 1.
The actual reply is generally state-dependent. Therefore, successive executions
of the same basic instruction may produce different replies. The set A is the basis
for the set of instructions that may occur in the instruction sequences considered
in PGA. The elements of the latter set are called primitive instructions. There
are five kinds of primitive instructions, which are listed below:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions.
On execution of an instruction sequence, these primitive instructions have

the following effects:

– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if 1
is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
— if there is no primitive instruction to proceed with, inaction occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a, but
execution always proceeds as if 1 is produced;

– the effect of a forward jump instruction #l is that execution proceeds with
the lth next primitive instruction of the instruction sequence concerned —
if l equals 0 or there is no primitive instruction to proceed with, inaction
occurs;

– the effect of the termination instruction ! is that execution terminates.

To build terms, PGA has a constant for each primitive instruction and two
operators. These operators are: the binary concatenation operator ; and the
unary repetition operator ω. We use the notation ;ni=k

Pi, where k ≤ n and
Pk, . . . , Pn are PGA terms, for the PGA term Pk ; . . . ; Pn.

The instruction sequences that concern us in the remainder of this paper
are the finite ones, i.e. the ones that can be denoted by closed PGA terms in
which the repetition operator does not occur. Moreover, the basic instructions
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that concern us are instructions to set and get the content of Boolean registers.
More precisely, we take the set

{in:i.get | i ∈ N1} ∪ {out.set:b | i ∈ N1 ∧ b ∈ {0, 1}}

∪ {aux:i.get | i ∈ N1} ∪ {aux:i.set:b | i ∈ N1 ∧ b ∈ {0, 1}} ∪ {aux:i.com | i ∈ N1}

as the set A of basic instructions.1

Each basic instruction consists of two parts separated by a dot. The part on
the left-hand side of the dot plays the role of the name of a Boolean register and
the part on the right-hand side of the dot plays the role of a command to be
carried out on the named Boolean register. The names are employed as follows:

– for each i ∈ N1, in:i serves as the name of the Boolean register that is used
as ith input register in instruction sequences;

– out serves as the name of the Boolean register that is used as output register
in instruction sequences;

– for each i ∈ N1, aux:i serves as the name of the Boolean register that is used
as ith auxiliary register in instruction sequences.

On execution of a basic instruction, the commands have the following effects:

– the effect of get is that nothing changes and the reply is the content of the
named Boolean register;

– the effect of set:0 is that the content of the named Boolean register becomes
0 and the reply is 0;

– the effect of set:1 is that the content of the named Boolean register becomes
1 and the reply is 1;

– the effect of com is that the content of the named Boolean register is com-
plemented and the reply is the complemented content.

We will write ISbr for the set of all instruction sequences that can be denoted
by a closed PGA term in which the repetition operator does not occur in the
case that A is taken as specified above. For each k ∈ N, we will write ISkbr for
the set of all instruction sequences from ISbr in which primitive instructions of
the forms aux:i.c, +aux:i.c and −aux:i.c with i > k do not occur. Moreover, we
will write length(X), where X ∈ ISbr, for the length of X .

ISbr is the set of all instruction sequences that matter to the kind of com-
plexity classes which will be introduced below. IS0

br is the set of all instruction
sequences from ISbr in which no auxiliary registers are used.

Let n ∈ N, let f : {0, 1}n → {0, 1}, and let X ∈ ISbr. Then X computes f if
there exists a k ∈ N such that, for all b1, . . . , bn ∈ {0, 1}, on execution of X in an
environment with input registers in:1, . . . , in:n, output register out, and auxiliary
registers aux:1, . . . , aux:k, if

– for each i ∈ {1, . . . , n}, the content of register in:i is bi when execution starts;
– the content of register out is 0 when execution starts;
– for each i ∈ {1, . . . , k}, the content of register aux:i is 0 when execution starts;

then the content of register out is f(b1, . . . , bn) when execution terminates.

1 We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.
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A Boolean function family is an infinite sequence 〈fn〉n∈N
of functions, where

fn is an n-ary Boolean function for each n ∈ N.
Let IS ⊆ ISbr and F ⊆ {h | h :N → N}. Then IS\F is the class of all Boolean

function families 〈fn〉n∈N
for which there exists an h ∈ F such that, for all

n ∈ N, there exists an X ∈ IS such that X computes fn and length(X) ≤ h(n).
We will use the notation IS\B(f(n)), where IS ⊆ ISbr and f : N → N, for
IS\{h | h : N → N ∧ ∃m ∈ N • (∀n ∈ N • (n ≥ m ⇒ h(n) ≤ f(n)))}.

In [5], it is proved that ISbr\poly coincides with P/poly.2

3 Computing Parity Functions by Instruction Sequences

In this section, we describe how the parity functions can be computed by in-
struction sequences without the use of auxiliary Boolean registers and with the
use of auxiliary Boolean registers.

The n-ary parity function PARn : {0, 1}n → {0, 1} is defined by

PARn(b1, . . . , bn) = 1 iff the number of 1’s in b1, . . . , bn is odd.

We write PAR for the Boolean function family 〈PARn〉n∈N
.

We begin with defining instruction sequences which are intended to compute
the parity functions without the use of auxiliary Boolean registers. We define
instruction sequences PARIS00 and PARIS01 as follows:

PARIS00 = ! , PARIS01 = +in:1.get ; out.set:1 ; !

and we uniformly define instruction sequences PARIS0n for n ≥ 2 as follows:

PARIS0
n
= +in:1.get ; ;ni=2

(

#4 ; +in:i.get ; #3 ; #3 ;−in:i.get
)

; out.set:1 ; ! .

The instruction sequences defined above compute the parity functions.

Proposition 1. For each n ∈ N, PARIS0n computes PARn.

Proof. For n < 2, the proof is trivial. We prove that PARIS0
n
computes PARn

for all n ≥ 2 by induction on n. The basis step consists of proving that PARIS02
computes PAR2. This follows easily by an exhaustive case distinction over the
contents of in:1 and in:2. The inductive step is proved in the following way. It
follows directly from the induction hypothesis that, after the #4 ; +in:i.get ;
#3 ; #3 ;−in:i.get has been executed n times, execution proceeds with the next
instruction if the number of 1’s in b1, . . . , bn is odd and otherwise the next
instruction is skipped and execution proceeds with the instruction following the
skipped one. From this, it follows easily by an exhaustive case distinction over
the content of in:n+1 that PARIS0n+1 computes PARn+1. ⊓⊔

2 As usual, poly stands for {h | h : N → N ∧ h is polynomial}.
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Because the instruction sequences defined above compute the parity functions,
we have a first result about the complexity of PAR.

Theorem 1. PAR ∈ IS0br\B(5 · n− 2).

Proof. By simple calculations, we obtain that length(PARIS00) = 1 and, for each
n > 0, length(PARIS0

n
) = 5 · n − 2. From this and Proposition 1, it follows

immediately that PAR ∈ IS0br\B(5 · n− 2). ⊓⊔

We go on with defining instruction sequences which are intended to compute
the parity functions with the use of a single auxiliary Boolean register. We define
an instruction sequence PARIS10 as follows:

PARIS10 = !

and we uniformly define instruction sequences PARIS1
n
for n ≥ 1 as follows:

PARIS1n = ;ni=1

(

+in:i.get ; aux:1.com
)

; +aux:1.get ; out.set:1 ; ! .

The instruction sequences defined above compute the parity functions as well.

Proposition 2. For each n ∈ N, PARIS1
n
computes PARn.

Proof. For n < 1, the proof is trivial. We prove that PARIS1n computes PARn

for all n ≥ 1 by induction on n. The basis step consists of proving that PARIS11
computes PAR1. This follows easily by an exhaustive case distinction over the
content of in:1. The inductive step is proved in the following way. It follows
directly from the induction hypothesis that, after the +in:i.get ; aux:1.com has
been executed n times, the content of aux:1 is 1 if the number of 1’s in b1, . . . , bn
is odd and otherwise the content of aux:1 is 0. From this, it follows easily by an
exhaustive case distinction over the content of in:n+1 that PARIS1

n+1 computes
PARn+1. ⊓⊔

Because the instruction sequences defined above compute the parity functions
as well, we have a second result about the complexity of PAR.

Theorem 2. PAR ∈ IS1br\B(2 · n+ 3).

Proof. By simple calculations, we obtain that length(PARIS10) = 1 and, for each
n > 0, length(PARIS1

n
) = 2 · n + 3. From this and Proposition 2, it follows

immediately that PAR ∈ IS1br\B(2 · n+ 3). ⊓⊔

Theorems 1 and 2 give rise to the question whether PAR /∈ IS0
br\B(2 · n+ 3).

In Section 4, this question will be answered in the affirmative. It is still an open
question whether there exist a k ≥ 1 and an f :N → N with f(n) < 2 · n+ 3 for
all n > 0 such that PAR ∈ ISkbr\B(f(n)).

According to the view taken in [6], differences in the number of auxiliary
Boolean registers whose use contributes to computing the function at hand al-
ways go with algorithmic differences. This view is supported by the instruction
sequences PARIS0n and PARIS1n: in addition to having different lengths, they
express undeniably quite different algorithms to compute PARn (for n > 1).
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4 Shorter Instruction Sequences with Auxiliary Registers

In Section 3, we have described how the parity functions can be computed by
instruction sequences without the use of auxiliary Boolean registers and with
the use of auxiliary Boolean registers. In the current section, we show that the
smaller lengths of the instruction sequences in the latter case cannot be obtained
without the use of auxiliary Boolean registers. In other words, we show that
PAR /∈ IS0

br\B(2 · n+ 3).
First, we introduce some notation that will be used in this section. We write

b, where b ∈ {0, 1}, for the complement of b, i.e. 0 = 1 and 1 = 0; we write f ,
where f is an n-ary Boolean function, for the unique n-ary Boolean function g
such that g(b1, . . . , bn) = f(b1, . . . , bn); and we write F , where F is a Boolean
function family 〈fn〉n∈N

, for the Boolean function family
〈

fn
〉

n∈N
.

We know the following about the complexity of PAR.

Proposition 3. For each k ∈ N, PAR ∈ IS0br\B(k) implies PAR ∈ IS0br\B(k).

Proof. It is sufficient to prove for an arbitrary n ∈ N1 that any instruction
sequence from IS0br that computes PARn can be transformed into one with the
same length that computes PARn. So let n ∈ N1, and let X ∈ IS0br be such that
X computes PARn. We distinguish two cases: n is odd and n is even.

If n is odd, then PARn(b1, . . . , bn) = PARn(b1, . . . , bn). This implies that
PARn is computed by the instruction sequence from IS0br obtained from X by
replacing, for each i ∈ {1, . . . , n}, +in:i.get by −in:i.get and vice versa.

If n is even, then PARn(b1, . . . , bn) = PARn(b1, b2, . . . , bn). This implies that
PARn is computed by the instruction sequence from IS0br obtained from X by
replacing +in:1.get by −in:1.get and vice versa. ⊓⊔

The following three lemmas bring us step by step to the main result of this
section, namely PAR /∈ IS0br\B(2 · n+ 3).

Lemma 1. Let X ∈ IS0br be such that X computes PAR2. Then length(X) ≥ 6.

Proof. Let X ∈ IS0br be such that X computes PAR2. The following observations
can be made about X :

(1) for one i ∈ {1, 2}, there must be at least one instruction of the form +in:i.get
or the form −in:i.get in X and, for the other i ∈ {1, 2}, there must be at least
two instructions of the form +in:i.get or the form −in:i.get in X — because
otherwise the final content of out will not in all cases be dependent on the
content of both in:1 and in:2;

(2) there must be at least one occurrence of out.set:1 inX and the last occurrence
of out.set:1 in X must precede an occurrence of ! — because otherwise the
final content of out will never be 1;

(3) there must be at least two occurrences of ! in X unless there occurs an
instruction of the form #l in X whose effect is that the last occurrence of
out.set:1 in X is skipped — because otherwise the final content of out will
never be 0;
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It follows immediately from these observations that length(X) ≥ 6. ⊓⊔

In the proofs of the next two lemmas, we use the term test on in:i to refer to
an instruction of the form +in:i.get or the form −in:i.get, and we use the term
test to refer to an instruction that is a test on in:1 or a test on in:2.

Lemma 2. Let X ∈ IS0br be such that X computes PAR2. Then length(X) ≥ 7.

Proof. Let X ∈ IS0br be such that X computes PAR2. Then, by Lemma 1,
length(X) ≥ 6. It remains to be proved that length(X) 6= 6. Below this is proved
by contradiction, using the following assumption with respect to X :

– there does not occur an instruction of the form #l in X whose effect is that
the last occurrence of out.set:1 in X is skipped.

This assumption can be made without loss of generality because, if it is not met,
X can be replaced by an instruction sequence from IS0br of the same or smaller
length by which it is met.

Assume that length(X) = 6, and suppose that X = u1 ; . . . ; u6. The first
occurrence of ! must be preceded by at least one test on in:1 and one test on in:2,
because otherwise the final content of out will in some cases not be dependent
on the content of both in:1 and in:2. From this and observations (1), (2), and
(3) from the proof of Lemma 1, it follows that either u3 or u4 must be ! and
that u5 must be out.set:1 and u6 must be !. However, if u3 ≡ !, then termination
can take place after performing only one test. Because this means that the final
content of out will still in some cases not be dependent on the content of both
in:1 and in:2, it is impossible that u3 ≡ !. So, X = u1 ; u2 ; u3 ; ! ; out.set:1 ; !. Let
Y = u1 ;u2 ;u3 ;out.set:1 ; !. Then length(Y ) = 5 and, because X computes PAR2

and u3 is a test by observation (1) from the proof of Lemma 1, Y computes
PAR2. Hence, by Proposition 3, there exists a Z ∈ IS0br that computes PAR2

such that length(Z) ≤ 5. This contradicts Lemma 1. ⊓⊔

Lemma 1 is used in the proof of Lemma 2. Lemma 2, in its turn, is used in
a similar way below in the proof of Lemma 3.

A remark in advance about the proof of Lemma 3 is perhaps in order. A
proof of this lemma needs basically an extremely extensive case distinction.3 In
the proof given below, the extent of the case distinction is strongly reduced by
using various apposite properties of the instruction sequences concerned. The
reduction, which is practically necessary, has led to a proof that might make the
impression to be unstructured.

Lemma 3. Let X ∈ IS0br be such that X computes PAR2. Then length(X) > 7.

Proof. Let X ∈ IS0br be such that X computes PAR2. Then, by Lemma 2,
length(X) ≥ 7. It remains to be proved that length(X) 6= 7. Below this is proved
by contradiction, using the following assumptions with respect to X :

3 At bottom, there are in the order of 107 different instruction sequences to consider.
By the assumptions made at the beginning of the proof of the lemma this number
can be reduced by a factor of 10.
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– the first instruction of X is a test;
– the instructions #0 and #1 do not occur in X ;
– there does not occur an instruction of the form #l in X whose effect is that

the last occurrence of out.set:1 in X is skipped.

These assumptions can be made without loss of generality because, for each of
them, if it is not met, X can be replaced by an instruction sequence from IS0br
of the same or smaller length by which it is met.

Assume that length(X) = 7, and suppose that X = u1 ; . . . ; u7. From ob-
servations (1), (2), and (3) from the proof of Lemma 1, it follows that either u5

must be out.set:1 and u6 must be ! or u6 must be out.set:1 and u7 must be !.
However, in the former case X can be replaced by a shorter instruction sequence
from IS0br. Because this contradicts Lemma 2, it is impossible that u5 ≡ out.set:1
and u6 ≡ !. So X = u1 ; . . . ; u5 ; out.set:1 ; !.

Consider the case that u1 ≡ +in:1.get. Because the first occurrence of ! must
be preceded by at least one test on in:1 and one test on in:2, u2 must be either
#2, #3, #4 or a test. If u2 ≡ #2, then X can be replaced by an instruction
sequence whose length is 6, to wit −in:1.get ;u3 ;u4 ;u5 ;out.set:1 ; !. Because this
contradicts Lemma 2, it is impossible that u2 ≡ #2. If u2 ≡ #4 and moreover
in:1 contains 1, then the final content of out will not be dependent on the content
of in:2. Therefore, it is also impossible that u2 ≡ #4. The cases that u2 ≡ #3
and u2 is a test need more extensive investigation.

Because the first occurrence of ! must be preceded by at least one test on
in:1 and one test on in:1, u3 must be either #2, #3 or a test if u2 ≡ #3. If
u2 ≡ #3 and u3 ≡ #2, then X can be replaced by an instruction sequence
whose length is 4, to wit u4 ; u5 ; out.set:1 ; !. Because this contradicts Lemma 2,
it is impossible that u3 ≡ #2 if u2 ≡ #3. If u2 ≡ #3 and u3 ≡ #3 and moreover
in:1 contains 0, then the final content of out will not be dependent on the content
of in:2. Therefore, it is impossible that u3 ≡ #3 if u2 ≡ #3. So u3 must be a
test if u2 ≡ #3. Because out.set:1 has to be executed if in:1 contains 1 and in:2
contains 0, u5 ≡ −in:2.get if u2 ≡ #3. Moreover, because there must be at least
two occurrences of ! in X and u3 must be a test if u2 ≡ #3, u4 must be ! if
u2 ≡ #3. So X = +in:1.get ; #3 ; u3 ; ! ;−in:2.get ; out.set:1 ; ! and u3 must be a
test if u2 ≡ #3. In the case that u2 ≡ #3, the subcase that u3 is a test needs
more extensive investigation.

If u3 is a test, it is either +in:1.get, −in:1.get, +in:2.get or −in:2.get. If u2 ≡
#3 and u3 ≡ +in:1.get, then the final content of out will be independent of the
content of in:1. If u2 ≡ #3 and u3 ≡ −in:1.get, then the final content of out will
be independent of the content of in:2 if in:1 contains 0. If u2 ≡ #3 and either
u3 ≡ +in:2.get or u3 ≡ −in:2.get, then the final content of out will be wrong if
in:1 contains 0 and in:2 contains 1. Therefore, it is impossible that u3 is a test
if u2 ≡ #3. Because there are no more alternatives left for u3 if u2 ≡ #3, it is
impossible that u2 ≡ #3. The left-over case for u2 is the case that u2 is a test.
This case needs very extensive investigation.

If u2 is a test, it is either +in:1.get, −in:1.get, +in:2.get or −in:2.get. If u2 ≡
+in:1.get, then X can be replaced by an instruction sequence whose length is 5,
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to wit u3 ;u4 ;u5 ; out.set:1 ; !. Because this contradicts Lemma 2, it is impossible
that u2 ≡ +in:1.get. If u2 ≡ −in:1.get, then X can be replaced by an instruction
sequence whose length is 6, to wit −in:1.get ;u3 ;u4 ;u5 ;out.set:1 ; !. Because this
contradicts Lemma 2, it is impossible that u2 ≡ −in:1.get. The specific cases
that u2 ≡ +in:2.get and u2 ≡ −in:2.get need more extensive investigation.

The following will be used in both these cases. If both u2 and u3 are tests,
then either u4 or u5 must be ! by observation (3) from the proof of Lemma 1. If
u5 ≡ !, then (a) it is impossible that u4 ≡ !, because otherwise the final content
of out will be independent of the content of in:2 if in:1 contains 0, and (b) it is
impossible that u4 ≡ #2 or u4 is a test, because otherwise X can be replaced
by an instruction sequence whose length is 6 and this contradicts Lemma 2. So
it is impossible that u5 ≡ ! if both u2 and u3 are tests and u4 must be ! if both
u2 and u3 are tests. Moreover, if u2 is a test, then it is impossible that u3 ≡ !,
because otherwise the final content of out will be independent of the content of
in:2 if in:1 contains 0.

Because it is impossible that u3 ≡ ! if u2 is a test, u3 must be either #2,
#3 or a test if u2 ≡ +in:2.get. If u2 ≡ +in:2.get and u3 ≡ #2, then the final
content of out will be wrong if in:1 contains 0 unless u5 ≡ +in:2.get. However,
then u4 must be ! by observation (3) from the proof of Lemma 1 and the final
content of out will be wrong if in:1 contains 1 and in:2 contains 1. Therefore, it
is impossible that u3 ≡ #2 if u2 ≡ +in:2.get. If u2 ≡ +in:2.get and u3 ≡ #3,
then the final content of out will be independent of the content of in:2 if in:1
contains 0. Therefore, it is impossible that u3 ≡ #3 if u2 ≡ +in:2.get. So u3

must be a test if u2 ≡ +in:2.get. We know that u4 must be ! and it is impossible
that u5 ≡ ! if both u2 and u3 are tests. This implies that, if u2 ≡ +in:2.get and
u3 is a test, the final content of out will be wrong if in:1 contains 1 and in:2
contains 0. Therefore, it is impossible that u3 is a test if u2 ≡ +in:2.get. Because
there are no more alternatives left for u3 if u2 ≡ +in:2.get, it is impossible that
u2 ≡ +in:2.get.

Because it is impossible that u3 ≡ ! if u2 is a test, u3 must be either #2, #3
or a test if u2 ≡ −in:2.get. If u2 ≡ −in:2.get and u3 ≡ #2, then the final content
of out will be wrong if in:1 contains 1 and in:2 contains 0 unless u5 ≡ −in:2.get.
However, then u4 must be ! by observation (3) from the proof of Lemma 1 and
the final content of out will be wrong if in:1 contains 0 and in:2 contains 1.
Therefore, it is impossible that u3 ≡ #2 if u2 ≡ −in:2.get. If u2 ≡ −in:2.get and
u3 ≡ #3, then the final content of out will be independent of the content of in:2
if in:1 contains 0. Therefore, it is impossible that u3 ≡ #3 if u2 ≡ −in:2.get. So
u3 must be a test if u2 ≡ −in:2.get. In the case that u2 ≡ −in:2.get, the subcase
that u3 is a test needs more extensive investigation.

If u3 is a test, it is either +in:1.get, −in:1.get, +in:2.get or −in:2.get. We know
that u4 must be ! and it is impossible that u5 ≡ ! if both u2 and u3 are tests. This
implies that (a) if u2 ≡ −in:2.get and either u3 ≡ +in:1.get or u3 ≡ −in:2.get,
then the final content of out will be wrong if in:1 contains 1 and in:2 contains 0
and (b) if u2 ≡ −in:2.get and either u3 ≡ −in:1.get or u3 ≡ +in:2.get, then the
final content of out will be wrong if in:1 contains 0 and in:2 contains 1. Because
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there are no more alternatives left for u3 if u2 ≡ −in:2.get, it is impossible that
u2 ≡ −in:2.get.

Because there are no more alternatives left for u2, it is impossible that u1 ≡
+in:1.get. Analogously, we find that it is impossible that u1 ≡ −in:1.get, it is
impossible that u1 ≡ +in:2.get, and it is impossible that u1 ≡ −in:2.get. Hence,
it is impossible that length(X) = 7. ⊓⊔

Lemma 2 is used in the proof of Lemma 3. The latter lemma, in its turn, is
used below in the proof of the main result of this section.

Theorem 3. PAR /∈ IS0br\B(2 · n+ 3).

Proof. It is sufficient to prove that there exists an m ∈ N1 such that, for all
n ≥ m, for all instruction sequences X ∈ IS0br that compute PARn, length(X) >
2 · n + 3. We take m = 2 because of Lemma 3 and prove the property to be
proved for all n ≥ 2 by induction on n. The basis step consists of proving that,
for all instruction sequences X ∈ IS0br that compute PAR2, length(X) > 7.
This follows trivially from Lemma 3. The inductive step is proved below by
contradiction.

Suppose that X ∈ IS0br, X computes PARn+1, and length(X) ≤ 2 ·(n+1)+3.
Without loss of generality, we may assume that there does not exist an X ′ ∈ IS0br
that computes PARn+1 such that length(X ′) ≤ length(X). Therefore, we may
assume that X = u1 ; . . . ; uk (k ≤ 2 · (n + 1) + 3) where u1 ≡ +in:n+1.get or
u1 ≡ −in:n+1.get. We distinguish these two cases.

In the case that u1 ≡ −in:n+1.get, we consider the case that in:n+1 contains
1. In this case, after execution of u1, execution proceeds with u3. Let Y ∈ IS0br be
obtained from u3 ; . . . ; uk by first replacing +in:n+1.get by #1 and −in:n+1.get
by #2 and then removing the #1’s. Then, we have that Y computes PARn and
length(Y ) ≤ length(X) − 2 ≤ 2 · n + 3. Hence, by Proposition 3, there exists a
Z ∈ IS0br that computes PARn such that length(Z) ≤ 2 · n+ 3. This contradicts
the induction hypothesis.

In the case that u1 ≡ +in:n+1.get, we consider the case that in:n+1 contains
0. This case leads to a contradiction in the same way as above, but without the
use of Proposition 3. ⊓⊔

The following is a corollary of Theorems 2 and 3.

Corollary 1. IS0br\B(2 · n+ 3) ⊂ IS1br\B(2 · n+ 3).

5 Concluding Remarks

We have shown, in a setting where programs are instruction sequences acting
on Boolean registers, that, in the case of the parity functions, smaller programs
are possible with the use of one auxiliary Boolean register than without the use
of an auxiliary Boolean register. This result supports a basic intuition behind
the storage of auxiliary data, namely the intuition that this makes possible a
reduction of the size of a program.
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Of course, more results supporting this intuition would be nice. Adversely,
we do not even know at the present time how to prove, for example, that there
exists a Boolean function family for which smaller instruction sequences are
possible with the use of two auxiliary Boolean registers than with the use of
one auxiliary Boolean register. Moreover, we do not know of results in other
theoretical settings that support the intuition that the storage of auxiliary data
makes possible a reduction of the size of a program.

It is still an open question whether smaller programs are possible with the use
of one auxiliary Boolean register than without the use of an auxiliary Boolean
register in the absence of instructions to complement the content of auxiliary
Boolean registers. We conjecture that this question can be answered in the af-
firmative, but the practical problem is that the number of different instruction
sequences to be considered in the proof is increased by a factor of 104.

It is intuitively clear that the instructions sequences PARIS0
n
and PARIS1

n

from Section 3 express parameterized algorithms. However, it is very difficult
to develop a precise viewpoint on what is a parameterized algorithm. In [6], we
looked for an equivalence relation on instruction sequences that captures to a
reasonable degree the intuitive notion that two instruction sequences express the
same algorithm. In that paper, we considered non-parameterized algorithms only
because it turned out to be already very difficult to develop a precise viewpoint
on what is a non-parameterized algorithm.
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