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The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended
into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The
latter is implemented in compact analytical form using a qualitative method for the many-body dynamics. The
resulting nonlinear stress-strain (constitutive) relation is very simple, with few fitting parameters, yet contains
all the microscopic physics. The theory is successfully tested against experimental data on metallic glasses, and
it is able to reproduce the ubiquitous feature of stress-strain overshoot upon varying temperature and shear rate.
A clear atomic-level interpretation is provided for the stress overshoot, in terms of the competition between
the elastic instability caused by nonaffine deformation of the glassy cage and the stress buildup due to viscous
dissipation.
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The microscopic mechanism controlling the nonlinear
deformation behavior and plasticity of crystals has been
rationalized in terms of dislocation mobility starting with
the seminal contributions of Orowan [1], Polanyi [2], and
Taylor [3], all in 1934. These were followed by mathematically
more refined treatments and advances in dislocation dynamics,
among others, by Peierls and Nabarro [4]. Jointly with the
atomic theory of linear elasticity developed by Born and
co-workers [5], the understanding of both linear and nonlinear
deformations of crystals has reached an advanced level down
to the atomic scale, with many applications in metallurgy.

In contrast, the deformation behavior of amorphous solids
(e.g., glasses), which lack both orientational and translational
symmetry, has remained more elusive. The lack of local centers
of inversion symmetry makes the Born-Huang affine approx-
imation for downscaling the macroscopic deformation at the
atomic level inapplicable [6]. Only recently has the nonaffine
deformation formalism brought a deeper understanding of
atomic-scale deformation in the linear elastic regime [7–10].
In the absence of a local center of inversion symmetry, as is
the case in glasses, the forces transmitted upon deformation
by the neighbors on any atom do not balance, and so require
additional displacements (called nonaffine) in order to be
locally equilibrated.

In the homogeneous nonlinear deformation regime of
amorphous solids, the transition to plastic behavior is also
problematic. The usual concept of dislocation glide or climb,
which proved so useful in describing the crystal plasticity,
is difficult to apply when no long-range order exists and one
cannot identify defects that could mediate the plastic flow [11].
Instead, the local shear transformation zones (STZs), where
concentrated rearrangements of atoms or particles occur, have
been identified as carriers of the plastic flow in amorphous
solids [12–14]. Such STZs exhibit similar long-range stress
fields as dislocation dipoles [15], and they have been shown
to form preferentially at structurally weak spots of the
material [16].

In spite of these efforts, fundamental points remain unclear,
including the actual topology of STZs, which is not very well

defined, unlike dislocations in crystal. Also, it is not clear
how STZs relate to the underlying nonaffine displacements,
which are intrinsic to disordered solids. They are known to
strongly affect the elastic deformation, and may contribute to
the overall vanishing of shear rigidity. Most importantly, a
simple atomic-scale picture of the transition from the elastic
nonaffine deformation to flow, mediated by the amorphous
structure, is currently lacking.

Here we propose such a microscopic mechanism, following
a different route. Unlike previous approaches, we start from the
nonaffine linear response and then couple it to the irreversible
shear-induced many-body dynamics causing structural rear-
rangements of the glassy cage, and the stress nonlinearity. The
resulting theory has the advantage of being simple and fully
analytical, as opposed to earlier, more involved approaches that
rely on hardly testable assumptions. Despite its simplicity, our
model can accurately reproduce the stress overshoot [17,18]
of metallic glasses in fairly good agreement with experiments.
Further, it provides the fundamental connection between
nonaffine deformation, local cage rearrangements, and plastic
creep, and suggests a more microscopic interpretation of
STZs in terms of local connectivity and microstructural
heterogeneity.

The starting point of our analysis is the free energy of
deformation of disordered solids which can be written as
F = FA(γ ) − FNA(γ ), with two distinct contributions arising
in response to the macroscopic shear deformation γ . The
first, FA, is the standard affine deformation energy as one
finds in the Born-Huang theory of lattice dynamics [5].
Affinity means that every particle follows the macroscopic
shear, and the associated interatomic displacements are simply
proportional to γ . The nonaffine contribution, FNA, lowers
the free energy of deformation due to additional nonaffine
displacements [10,19]. Briefly, if the particles are not local
centers of lattice symmetry, there is an imbalance of forces
on every particle when the deformation is applied, unlike in
crystals with inversion symmetry. This additional net force
acting on every particle in disordered solids has to be relaxed
through additional (nonaffine) motions that occur on top
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of the affine displacements dictated by the macroscopic strain.
The nonaffine displacements perform internal work against
the potential field of the solid, which results in a net negative
contribution to the free energy of deformation, reducing the
effect of the basic affine elastic energy. As shown in earlier
work [19], if the interatomic forces are purely central, with κ

the spring constant of a harmonic bond and R0 the equilibrium
distance between nearest neighbors, and if φ is the atomic
packing fraction in the solid, the shear modulus can be
written as G = 2

5π
(κφ/R0)(nb − nc

b). Here nb denotes the
average coordination number of mechanical bonds per atom (a
more precise definition is explored below), while the critical
coordination number nc

b is a result of nonaffine adjustments.
For a purely central bond potential, nc

b = 2d, where d is
the space dimension. The situation is slightly different with
covalently bonded glasses (with noncentral forces) where
typically nc

b ≈ 2.4 is set by the atomic valency, and the
coordination at rest n0

b is much lower than 12. For closely
packed materials such as metals, it is useful to refer to the
effective potential of mean local force Veff . This is a standard
concept in statistical mechanics, defined in equilibrium as
Veff/kT = − ln g(r). The attractive minimum in Veff is located
at the same interatomic distance R0 at which g(r) exhibits its
first peak. In this way, Veff effectively accounts for complex
many-body effects on the pair interaction, and can be described
using the pseudopotential theory of metals. The connectivity
at zero shear can thus be inferred from the knowledge of Veff :
It is reasonable that only those atoms which are permanently
within a distance R0 (i.e., within the attractive minimum) from
the given atom contribute to nb.

Now consider that the number of interatomic bonds may
change during the deformation due to shear-induced distortion
of the “cage” formed by neighbors surrounding a given
particle. This leads to a dependence nb(γ ) in the previous
expression for G, which makes G vary with strain. The
cage dynamics is governed by the many-body Smoluchowski
equation with an added shear-force term ∝ κR0γ [20–22].
The equation can be written for the radial distribution function
g(r) [20], whose first peak then depends on the shear strain
γ , and thus controls the variation of nb with strain [22]. For a
quasistatic deformation, no shear rate and time dependencies
need be considered, and the general spherically averaged
form of the steady-state expression takes the form g(r,γ ) =
exp[−Veff/kT + h(r)γ ], where h(r) is a suitable decaying
function of r (see Ref. [22] for details).

Consider a scheme of local deformation around a given
particle (atom) (Fig. 1). In the extension sectors of a solid
angle under shear, the neighbors are pulled farther apart from
the test atom at the center of the cage. As the neighbors cross
the R0 boundary in the outward direction, under the action of
shear in the extension sectors, they cease to contribute to nb. In
the compression sectors, atoms are pushed inwards by the local
deformation field, which could lead to the formation of new
mechanical contacts with atoms which were previously just
outside the R0 limit. However, this latter effect must be strongly
opposed by the excluded-volume interactions between atoms,
which limit the formation of new contacts, while the soft
attraction for the departing atoms has no such constraint.
Hence, the shear-induced depletion of mechanical bonds in
the extension sectors cannot be exactly compensated by the

FIG. 1. (Color online) A cage-breaking model: Without shear,
the number of particles moving in and out of the cage is equal. In the
presence of shear γ , the number of particles moving out of the cage
in the sectors of the local extension axis is higher than in the sectors
of the compression axis.

formation of new bonds in the compression sectors. This
results in a net decrease of the first peak of the spherically
averaged correlation function g(r,γ ), which implies h(r) < 0
in the solution to the many-body Smoluchowski equation.
Further, if the deformation is applied at a finite rate, as
is the case for a strain ramp γ̇ = γ /t , the solution to the
governing time-dependent Smoluchowski equation for the pair
distribution function is formally identical to the solution to
the time-dependent Schrödinger equation in a transformed
effective potential [23]. The general solution can thus be
written as a superposition of steady-state eigenfuctions φk(r),
where k labels the energy level of the eigenfunction. The time-
dependent part is expressed as usual in terms of the eigenvalues
λk , giving the general form g(r,t) = ∑

k φk(r)e−λkt . At lower
deformation rates, the sum is dominated by the lowest nonzero
eigenvalue, which in this case is the inverse of the cage
relaxation time, λ1 = 1/τc. Hence, g(R0) ∼ e−γ /γ̇ τc .

Recall the definition of coordination number in amor-
phous systems, nb = 4πρ

∫
peak g(r)r2dr , with ρ the mean

density [20,24]. Evidently, nb has roughly the same (time)
dependence on γ , γ̇ , and τc as does g(R0). In the limit
γ � 1, all the mechanical neighbors must have been peeled
off from the extension sectors, while the neighbors of the
compression sectors have remained on average in their original
positions, being pushed inwards continuously by the action
of shear. This implies nb → n0

b/2 as γ � 1, where n0
b = 12

is the equilibrium coordination number of most metallic
glasses at rest [25]. This recovers fluid behavior at large
strain, in accordance with the marginal stability principle [26]
G ∝ [(n0

b/2) − 6] = 0 at γ � 1, in three dimensions (3D).
A simple, general expression for the evolution of nb, which

contains the mechanism depicted in Fig. 1 for the net change in
coordination number due to thermal motion and shear-induced
distortion, is as follows:

nb(γ ) = n0
b

2
(1 + e−Aγ ), with A = 	

kBT
+ 1

γ̇ τc

. (1)

This expression is also consistent with the qualitative behavior
g(R0) ∼ e−γ /γ̇ τc which results from the Smoluchowski dy-
namics (shear-induced exponential depletion of neighbors in
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the extension sector upon increasing strain), and it complies
with the limits expected based on a marginal stability analysis.
The latter means that Eq. (1) explicitly recovers G = 0 in the
limit γ � γ̇ τc, when the cage is emptied in the two extension
sectors. 	 represents an energy barrier for the shear-induced
breaking of the cage, which is related to the energetics of
thermal cage breaking, hence to the glass transition. Assuming
that the cage melts at the glass transition temperature Tg ,
we then have the approximate relation 	 = kBTg . Inserting
the expression for nb(γ ) in the free energy of deformation
Fel = 1

2K[nb(γ ) − nc
b]γ 2, and differentiating, we obtain the

nonlinear elastic stress-strain relationship for the metallic
glass,

σel(γ ) = 1

4
n0

bKγ e
−γ (

Tg

T
+ 1

γ̇ τc
)
[

2 − γ

(
Tg

T
+ 1

γ̇ τc

)]
, (2)

with the shorthand K = 2
5π

(κφ/R0). As one can easily check,
this expression features an elastic instability corresponding to
a point of maximum stress in the stress-strain curve (see Fig. 2
below). At this point G(γ ) = 0 because the elastic energy
associated with the bonds that survived the shear-induced cage-
breaking process is no longer enough to compensate the lattice
deformation energy lost to nonaffine motions [in other words,
nb(γ ) − nc

b = 0].
To complete the picture, it is necessary to also consider

the viscous contribution to the total stress. It is known
that for deformations that are not quasistatic, i.e., with
γ̇ > 0, microscopic friction induces a resistance to the
atomic displacements, even in perfect crystals [27]. The
microscopic friction is associated with a viscosity η, and a
viscous (Maxwell) relaxation time τv . For a constant rate
of strain, this stress contribution can be written in terms of
the relaxation modulus as σ (t) = γ̇

∫ t

0 G(s)ds. For the linear
viscoelastic solid (Zener solid), the relaxation modulus is
given as G(t) = G + GR exp[−t/τv] [28], where τv = η/GR
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FIG. 2. (Color online) Comparison between theoretical predic-
tions and experimental data from Ref. [18]: Equation (3) with
γ̇ = 0.1 s−1 and Tg = 625 K for all curves. K and τv were chosen to
match the experimental data in the elastic and viscous-flow regimes,
respectively. List of all parameter values is given in Table I. The
curves are artificially shifted to the right to avoid overlapping.

and GR = G0 − G, where G0 is the instantaneous (infinite-
frequency) shear modulus. The total stress follows upon
integration as σtot = σel + σ ′, where the viscous addition is
σ ′ = γ̇ GRτv(1 − e−γ /γ̇ τv ), while the elastic part is given by
the Eq. (2), leading to

σtot = σel(γ ) + ηγ̇ (1 − e−γ /γ̇ τv ). (3)

In a compact form, this equation contains all the relevant
atomic-level physics: interatomic pseudopotential (contained
in K), nonaffine displacements (showing in the negative −nc

b),
shear-induced changes in local atomic connectivity nb(γ )
also including the thermally activated cage distortion, and
the viscous dissipation due to the microscopic friction. The
expression recovers the elastic limit at small strain, where
σtot ≈ n0

bKγ , and in the opposite limit of γ � 1 it recovers
plastic flow, σtot → ηγ̇ . By taking the first derivative of Eq. (3)
with respect to γ and setting it to zero, the yield strain
γy (or the strain at which the stress is maximum, at the
top of the overshoot—see Figs. 2 and 3) can be evaluated.
Two nondimensional parameters control the outcome: H =
4η/(12Kτv) and B = Aγ̇ τv . A general solution of the resulting
transcendent equation cannot be found, but an approximate
analysis is possible. Whenever the condition H � B is
satisfied (which is mostly the case in practice), the following
relation for the yield strain holds:

γy ≈ 0.6

Tg/T + 1/γ̇ τc

. (4)

The yield strain is thus an increasing function of both T

and γ̇ .
We shall now test how this theory performs in comparison

with experimental data. The mechanical response of metallic
glasses has been studied extensively. When the response is
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FIG. 3. (Color online) Comparison between theoretical predic-
tions and experimental data from Ref. [18]: Equation (3) with a
constant T = 643 K and Tg = 625 K for all curves. K and τv were
chosen to match the experimental data in the elastic and viscous-flow
regimes, respectively. A list of all parameter values is given in Table I.
The curves are artificially shifted to the right to avoid overlapping.
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not affected by shear banding, i.e., at not too high shear
rates, the stress-strain relation typically features an overshoot
with a maximum in the stress beyond which the yielding
regime sets in. This eventually transforms into the viscous
Newtonian flow in the large strain limit. This overshoot
behavior provides a benchmark for theories of deformation:
The extent of the overshoot is modulated in a nontrivial manner
by temperature and shear rate. Here for our comparison we use
the classical experiments done by the Johnson group [18] on
the commercial amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5.
In these experiments, the tensile stress was measured. This is
directly proportional to and controlled by the total shear stress
given by our theory, since the Poisson ratio does not vary much
over the strain window under consideration. This is of course
an uncontrolled approximation, but it certainly cannot change
the qualitative comparison appreciably, given the very narrow
range within which the Poisson ratio is allowed to vary.

The comparison between predictions of the theory and
experimental data [18] is shown in Figs. 2 and 3. The nontrivial
fitting parameters required by our theory are the two relaxation
times: the cage relaxation time τc and the viscous relaxation
time τv . The theory is able to reproduce the experimental data
rather accurately, in spite of the mathematical simplicity of
Eqs. (2) and (3). In particular, the theory captures the effects
of varying the temperature and the shear rate on the emergence
and extent of the overshoot.

The existence and the amplitude of the overshoot are due
to the competition between the elastic instability driven by
nonaffine shear-induced cage breakup and the buildup of
viscous stress, respectively. In particular, when the elastic
instability sets in, it causes the stress to go through a
maximum value σmax and to subsequently decrease with
further increasing strain, whereas the viscous contribution σ ′
increases monotonically up to the final Newtonian plateau.
This is evident from Eq. (3). The maximum stress is directly
controlled by the local atomic connectivity nb decreasing with
γ , a process controlled by the cage-breaking relaxation time τc

and the activation energy represented as Tg/T . Both of them, in
turn, control the critical strain γy (yield point) associated with
the maximum stress. Hence they also control the magnitude of
the maximum stress at the yield point.

Increasing T at fixed γ̇ has the effect of making the cage
more easily breakable, equivalent to a lower activation energy
	, leading to a lower yield strain γy . Therefore, the maximum
stress which can be reached must decrease upon increasing T

(at fixed strain rate γ̇ ).
When the temperature is fixed, the increasing overshoot

with increasing γ̇ (Fig. 3) is dominated by the exponential in
the viscous stress term. For fixed material composition (fixed
cage parameters), γ̇ controls the value of strain γ at which
the Newtonian plateau is reached. For high rates of strain
γ̇ , the Newtonian plateau is shifted to the large strains, and
the viscous contribution to the total stress is negligible near
the yield point γy . Since the viscous stress builds up with
increasing γ , it effectively opposes the decrease of nonlinear
elastic stress due to the cage breakup nb(γ ). Therefore, the
stronger the viscous stress buildup near the yield point, the
less significant is the nonaffinity-induced stress decrease
associated with the overshoot, and the overshoot itself. If
the viscous stress buildup is shifted to large strain, which

TABLE I. The values of the elastic constant K (n0
b = 12), the

viscous constant η, temperatures, and the strain rates are fixed by
the characterization of the experimental system for different curves
and data sets. The decreases of K and η with temperature are as
appropriate for metallic glass, while the decrease η(γ̇ ) reflects the
thinning effect in a random packing at a high shear rate. The values
of τc and τv are chosen to fit the curves in Figs. 2 and 3, the latter
changing with η, as discussed in the text. The two data sets intersect
at the point T = 643 K, γ̇ = 0.1, K = 3.6, η = 12, τv = 0.16.

K[18] (GPa) η[18] (GPa s) τc (s) τv (s) T [18] (K)

12 80 1.6 2.13 523
3.6 12 1.6 0.32 643
1.2 4 0.6 0.12 663
0.6 2 0.01 0.053 685

K[18] (GPa) η[18] (GPa s) τc (s) τv (s) γ̇ [18] (s−1)
3.6 80 12 9.0 2 × 10−4

3.6 80 12 7.3 5 × 10−3

3.6 22 1.8 0.32 0.032
3.6 12 1.6 0.12 0.10

happens at high γ̇ , there is no mechanism to compensate the
elastic stress decrease and the overshoot is stronger, which
explains why the amplitude of the overshoot increases with
increasing γ̇ .

In Table I we report the values of the physical parameters
used for plotting the curves. Almost all of these parameters,
with the exception of τc, are fixed by the experimental
conditions and system, or at least highly constrained. All the
values of the spring constant K , of the viscosity η, and of T and
γ̇ are fixed by the experiment and are taken from Ref. [18]. We
used the calorimetric glass transition temperature, Tg = 625 K,
determined experimentally for this system [29]. In reality,
there is no such sharp transition temperature, even in the
calorimetric data, but rather a crossover range which goes
from the lower limit of 625 K up to about 660 K, and the
transition temperature also depends sensitively on the cooling
rate. We checked that our results do not change significantly
in the above mentioned temperature transition range. The
plateau viscosity decreases with increasing temperature, an
effect common to all dissipating systems, due to the Arrhenius
activation factor always present in η(T ). The viscous relaxation
time also decreases with T , since τv = η/GR , and with shear
rate, because the system is shear thinning [18]. Hence, the
rheophysics of the material imposes constraints on τv and its
dependence on T and γ̇ . The spring constant K also decreases
with T as it is well known that thermal vibrations reduce
the restoring force of the bond [5], whereas its behavior as
a function of shear rate is of a less trivial interpretation.
Hence the only nontrivial fitting parameter which can be freely
adjusted in our analysis is the cage relaxation time τc.

The fact that the cage relaxation time τc is constant with
T but decreases with increasing γ̇ is also meaningful. The
system is below the glass transition temperature and the
cage parameters should not vary much with temperature in
the narrow temperature range under consideration. The strain
rate, instead, which acts as an effective temperature, is varied
within a much broader range. In this case we find a much
better fitting if we let the cage relaxation time τc decrease
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significantly upon increasing the strain rate. This is another
meaningful outcome of our model, because the cage dynamics
becomes faster upon increasing the strain rate.

In summary, based on a fundamental atomic-scale sta-
bility argument, we derived a theory for the onset of flow
in amorphous materials that requires no ad hoc structural
assumption. We believe that this mean-field theory captures
the essential microscopic ingredients underlying the transition
from elastic response to flow: It relates shear-induced con-
figurational nearest-neighbor changes directly to mechanical
material properties and stress-strain relations. This coupling
leads to an elastic instability at a critical strain γy , when
the decreasing local atomic connectivity no longer allows the
lattice free energy to compensate the energy lost to nonaffine
motions. We showed that this concept provides an atomic-level
understanding of the effect of temperature and shear rate on
the emergence and extent of the stress overshoot in metallic
glasses. The presented constitutive stress-strain relation is
compact, yet contains all the relevant microscopic physics.

It is explicitly presented in the combined Eqs. (2) and (3). A
more elaborate theory, in the future, could explicitly account
for the structural heterogeneity of the amorphous structure
to induce flow at preferred “weak” locations that—in our
framework—have lower coordination. We believe, however,
that the simplicity of our mean-field theory is also its strength.
It allows for a clear microscopic interpretation of all the
involved parameters, and can be more easily implemented for
the quantitative analysis of experimental results.
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