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One version of the membrane paradigm states that, as far as outside observers are concerned, black holes
can be replaced by a dissipative membrane with simple physical properties located at the stretched horizon.
We demonstrate that such a membrane paradigm is incomplete in several aspects. We argue that it
generically fails to capture the massive quasinormal modes, unless we replace the stretched horizon by the
exact event horizon, and illustrate this with a scalar field in a Banados-Teitelboim-Zanelli (BTZ) black hole
background. We also consider as a concrete example linearized metric perturbations of a five-dimensional
AdS-Schwarzschild black brane and show that a spurious excitation appears in the long-wavelength
response that is only removed from the spectrum when the membrane paradigm is replaced by ingoing
boundary conditions at the event horizon. We interpret this excitation in terms of an additional Goldstone
boson that appears due to symmetry breaking by the classical solution ending on the stretched horizon
rather than the event horizon.

DOI: 10.1103/PhysRevD.91.026006 PACS numbers: 11.25.Tq

I. INTRODUCTION

Describing black holes in general relativity is a compli-
cated endeavor and, as a consequence, various approxima-
tion schemes have been developed over the years. One of
them is the membrane paradigm [1], in which the black
hole is replaced by a simple dissipative membrane situated
at the stretched horizon, i.e. a very small distance from the
event horizon [2]. In the astrophysical context, this mem-
brane approximation has been applied to the study of the
magnetosphere of a black hole surrounded by a magnetized
accretion disk [3] and jets [4]; see [5] for many more
applications and further references. More recent interest
in the membrane paradigm has been stimulated by the
discovery of holography [6–8] and what eventually became
known as the fluid-gravity duality [9,10]; see [11] for a
review of the membrane paradigm in this context.
It has, in our opinion, always been somewhat mysterious

as to what extent, and in what sense, this membrane
paradigm is an accurate statement. Does it fail to reproduce
some aspects of the correlation functions measured at
infinity? Are there any undesired effects stemming from
the fact that the membrane lives on the local stretched
horizon (timelike hypersurface), rather than on the null
event horizon, a teleologically defined object? In this paper
we show that the answers to both questions are affirmative.
For concreteness, we mostly work in the context of the
AdS/CFT correspondence [6–8], but our results apply
much more generally.
Following [12,13], the membrane paradigm will be for

us a relation between the radial derivative of the field and
the field itself which would naively encode the ingoing

boundary condition at the event horizon if it were evaluated
there. To derive it, we consider a probe scalar field in the
background of a (dþ 1)-dimensional AdS-Schwarzschild
black brane

ds2 ¼ du2

4u2fðuÞ −
ð4πT=dÞ2

u
fðuÞdt2 þ ð4πT=dÞ2

u
d~x2; ð1Þ

where fðuÞ ¼ 1 − ud=2, the horizon is at u ¼ 1 and we set
the AdS radius to unity. A scalar field ϕ has two possible
solutions near the horizon

ϕ ¼ e−iωtþi~k·~xfcoutð1 − uÞi ~ω=2ð1þ α1ð1 − uÞ þ � � �Þ
þ cinð1 − uÞ−i ~ω=2ð1þ β1ð1 − uÞ þ � � �Þg; ð2Þ

where, to keep the notation simple, we defined ~ω ¼
ω=ð2πTÞ. Let us emphasize that the form of the expansion
(2) is valid near the horizon of any nonextremal black hole.
The universal leading terms ð1 − uÞ�i ~ω=2 follow from the
fact that the near-horizon region of any finite-temperature
black hole is Rindler spacetime. The values of the coef-
ficients αi and βj of the subleading terms are nonuniversal
and depend on the number of dimensions, the mass of the
field, and its momentum.
One typically is interested in imposing ingoing boundary

conditions at the event horizon, i.e. cout ¼ 0 (or cin ¼ 0 for
purely outgoing boundary conditions). A suggestive but not
entirely accurate way of rewriting these boundary con-
ditions is

2ð1 − uÞ ∂uϕ

ϕ

����
u¼1

¼ i ~ωσ; ð3Þ
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where σ ¼ 1 corresponds to purely ingoing and σ ¼ −1 to
purely outgoing modes. Equation (3), as a ratio of the
momentum of the field to the field itself, can be reinter-
preted as a universal response function characterizing
nonextremal horizons and yet having a particularly simple
form. By analogy with the electromagnetic case, we will be
referring to σ as the horizon conductivity or the membrane
coupling. Note though that, strictly speaking, for generic
solutions of the field equations the expression (3) is ill
defined at the horizon.
The statement of the membrane paradigm that we are

going to adopt follows [12,13] and earlier work and
amounts to keeping σ fixed and equal to 1 and viewing
Eq. (3) not as the response of the event horizon, a null
surface residing at u ¼ 1, but rather of a timelike membrane
located at u ¼ uδ ¼ 1 − δ with δ very small. One might
have thought that for sufficiently small δ the membrane
paradigm always effectively imposes ingoing boundary
conditions on the event horizon. Surprisingly, this turns
out not to be the case.
To demonstrate this, we follow [14–16] and decompose

the bulk spacetime into a near-horizon region (“IR region”
with 1 ≥ u > uδ) and the rest (“UV region” with 0 ≤
u < uδ). In this approach, Eq. (3) is supposed to model the
dynamics of the “IR region” and the role of the fields living
in the “UV region” is to propagate the membrane paradigm
response to infinity (u ¼ 0), where the correlation func-
tions of the dual field theory are defined. It will be
convenient to impose Eq. (3) in two steps: we first solve
in the Fourier space for the fields in the UV region subject
to Dirichlet boundary conditions for the fields at two
different slices with fixed u, in our case at u ¼ 0 and at
u ¼ uδ. Next, we remove one of the Dirichlet boundary
conditions by fixing the value of the field at u ¼ uδ
requiring Eq. (3). Additional complications are going to
arise when the bulk fields transform nontrivially under
some local symmetry. The solutions in the UV region will
then also depend on certain gapless degrees of freedom,
which arise as the Goldstone bosons of the symmetries
broken by the classical solution and ensure that dual
operators are conserved currents [16].

II. MASSIVE QUASINORMAL MODES

We start by investigating in detail the scalar field case
discussed in the Introduction. In holography, solutions of
the equations of motion for a scalar satisfying ingoing
boundary conditions at the event horizon encode the
retarded two-point function of a dual scalar operator in
the thermal state. Conversely, imposing the outgoing
boundary conditions leads to the advanced two-point
function. We take the frequency ~ω to be a complex number
in order to accommodate for the quasinormal modes, which
are the poles of the retarded two-point function.
In our setup we want to replace the ingoing boundary

conditions at the event horizon by Eq. (3) imposed at the

stretched horizon u ¼ uδ. For the moment, we ignore the
form of ϕ at infinity and focus on its near-horizon behavior,
which is given in full generality by Eq. (2). If we apply the
membrane paradigm relation to Eq. (2), we readily obtain
that

cout=cin ¼ ð1− uδÞ−i ~ω

×
ð1− σÞ ~ωþ β1ð2iþ ð1− σÞ ~ωÞð1− uδÞ þ � � �
ð1þ σÞ ~ωþ α1ð−2iþ ð1þ σÞ ~ωÞð1− uδÞ þ � � � :

ð4Þ
Using σ ¼ 1 and keeping only the leading order terms,
Eq. (4) reduces to

cout=cin ¼ ð1 − uδÞ1−i ~ω ×
iβ1
~ω
: ð5Þ

It is easy to see that for values of ~ω such that ℑð ~ωÞ > −1,
this formula has the desirable effect, i.e. it leads to
jcout=cinj ≪ 1 for uδ → 1, but for ℑð ~ωÞ < −1 it does
not, it effectively leads to outgoing boundary conditions
jcout=cinj ≫ 1 as uδ → 1 instead. Note that this holds no
matter how close to the event horizon the membrane is.
This implies that using the membrane paradigm on the
stretched horizon with σ ¼ 1 only yields a good approxi-
mation to the retarded Green’s function if ℑð ~ωÞ > −1,
whereas for ℑð ~ωÞ < −1 we obtain instead an approxima-
tion to the advanced Green’s function. This, in particular,
means that, at best, the membrane paradigm will reveal
only a few of the lowest lying quasinormal modes if any.
The root of this discrepancy is that σ ¼ �1 is formally

correct only at the event horizon and away from it is slightly
different. This “flow” of the membrane conductivity can be
constructed perturbatively in the 1 − uδ expansion for uδ
sufficiently close to 1. The form of Eq. (4) implies that we
may be able to cover a somewhat wider range of imaginary
parts of the frequency if we include a finite number of these
corrections in σ. It is clear though that in order to cover the
whole complex frequency plane the value of the exact
membrane conductivity at any uδ ≠ 1 is required, which is
equivalent to knowing the whole solution with the ingoing
boundary conditions at the event horizon. However, this
defies the purpose of introducing the membrane paradigm.
Wewould like to emphasize that the above analysis relies

only on the universal near-horizon region and hence is
widely applicable, also to gravitational perturbations and
asymptotically flat black holes.
Let us now demonstrate our findings for the exactly

soluble case of a massless scalar field in 2þ 1 dimensions
[17] (the BTZ black brane background) in Einstein gravity
with a negative cosmological constant [18,19]. For sim-
plicity, we will set the momentum k to 0 and write the bulk
field as ϕðuÞe−iωt. The scalar is dual to an operator O
of conformal dimension Δ ¼ 2 in the dual ð1þ 1Þ-
dimensional conformal field theory. Its retarded/advanced
Green’s function is given by
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GR=A=

�
πT2

4GN

�
¼ ~GR=A ¼ ϕ1

ϕ0

−
1

2
~ω2; ð6Þ

where ϕ0;1 denote the (non)normalizable behavior of ϕ near
the AdS boundary

ϕðuÞ ¼ ϕ0 þ
�
ϕ1 −

1

4
~ω2ϕ0 log u

�
uþ � � � ð7Þ

and the solutions obey ingoing/outgoing boundary con-
ditions at the event horizon. The quasinormal modes appear
as the poles of GR and have frequencies

~ω ¼ −2in for n ¼ 1; 2;…: ð8Þ
In order to test the membrane paradigm, we solve the scalar
field equation of motion for the configuration obeying
Dirichlet boundary conditions [20] at u ¼ 0 and u ¼ uδ,

ϕðu ¼ 0Þ ¼ ϕ0 and ϕðu ¼ uδÞ ¼ ϕδ; ð9Þ
and subsequently use Eq. (3) evaluated at uδ to express ϕδ

in terms of ϕ0. This, in turn, determines ϕ1, which is
enough to evaluate Eq. (6). The results are summarized in
Fig. 1 and nicely confirm the general result obtained above,
as we indeed see that the retarded Green’s function is not
well approximated for ℑð ~ωÞ < −1 and the advanced
Green’s function is not well approximated for ℑð ~ωÞ > 1.
This, in particular, implies that none of the quasinormal
modes in this setup are captured by the membrane
paradigm.

III. SOUND WAVES

Let us now reconsider long-wavelength gravitational
perturbations of a ð4þ 1Þ-dimensional AdS black brane in
Einstein gravity from the point of view of the membrane
paradigm. Earlier approaches to this problem include

[13,14,16,21–24]. For definiteness, we will focus on the
sound channel perturbations with momentum in the x
direction for which the nonvanishing metric variations are

δhtt; δhtx; δhxx and δhaa ¼
1

2
ðδhyy þ δhzzÞ:

ð10Þ

In fact, demanding that δhμu ¼ 0 is just a convenient gauge
choice. It will also be useful to redefine (10) in the
following way:

HμνðuÞe−iωtþikx≔jgμρjδhρν; ð11Þ

where gμν is the black brane metric (1).
The standard approach [25] in dealing with the gravi-

tational perturbations (10) is to introduce the gauge-
invariant variable

ZðuÞ ¼ 2k2fðuÞHttðuÞ þ 4ωkHtxðuÞ þ 2ω2HxxðuÞ
þHaaðuÞðk2ð1þ u2Þ − ω2Þ: ð12Þ

Using all linearized Einstein equations, one obtains a
decoupled second-order ordinary differential equation for
Z, and therefore the problem of finding the retarded stress
tensor correlator in the sound channel is completely
analogous to the scalar field case studied in the previous
section. Hence, to test the membrane paradigm we once
more impose the universal relation (3) on a stretched
horizon uδ with ϕ simply replaced by Z.
A generic solution for Z can be found analytically order

by order in a hydrodynamic expansion

ZðuÞ ¼ cinð1 − u2Þ−i ~ω=2ðX0ðuÞ þ λX1ðuÞ þ � � �Þ
þ coutð1 − u2Þi ~ω=2ðY0ðuÞ þ λY1ðuÞ þ � � �Þ; ð13Þ

FIG. 1 (color online). Absolute value of the inverse of the retarded/advanced Green’s function (green/red) and the membrane paradigm
approximations of the former at uδ ¼ 0.9 (blue) and uδ ¼ 0.999 (magenta) as a function of ℑð ~ωÞ for ℜð ~ωÞ ¼ 0 (left) and ℜð ~ωÞ ¼ 5
(right). One can clearly see that the stretched horizon approximation works for ℑð ~ωÞ > −1, whereas for ℑð ~ωÞ < −1 it leads to the
advanced Green’s function, in line with the approximation in Eq. (5). Zeros of the green curve correspond to the locations of the
quasinormal modes, as given by Eq. (8), and lie beyond the range of applicability of the membrane paradigm.
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where λ is a bookkeeping parameter counting powers of
~ω ≪ 1 and ~k ¼ k=ð2πTÞ ≪ 1. Requiring cout ¼ 0 selects
the ingoing mode at the horizon. To leading order in λ the
solution reads

X0ðuÞ ¼ Y0ðuÞ ¼
k2ð1þ u2Þ − 3ω2

5k2 − 3ω2
; ð14Þ

which, together with the membrane paradigm (3), give a
relation between the outgoing and ingoing coefficients cout
and cin on the stretched horizon. By direct computation in a
near horizon expansion the analog of Eq. (4) now takes the
form

cout=cin ¼ ð1 − uδÞ−i ~ω
ð1 − σÞ

2i ~ωðσ þ 1Þ

þ ð1 − uδÞ1−i ~ω
gð ~ω; ~k; σÞ

ðσ þ 1Þ2 ~ωð3 ~ω2 − 2~k2Þ þ � � � ;

ð15Þ

where g is an analytic function of ~ω, ~k and the membrane
coupling σ. One can clearly see that for small ~ω and ~k one
indeed obtains from (15) a very small ratio of cout=cin
unless ~ω ¼ � ffiffiffiffiffiffiffiffi

2=3
p

~k. With some work, one can also
determine the approximate retarded Green’s function,
and from its poles one obtains two branches of solutions,
which for small enough δ read

~ω ¼ �
ffiffiffi
1

3

r
~kþOð~k2Þ ð16Þ

and

~ω ¼ �
ffiffiffi
2

3

r
~kþOð~k2Þ: ð17Þ

The mode (16) is just the standard hydrodynamic sound
wave, whereas the second one is spurious, as it does not
solve the linearized equations of hydrodynamics of the
underlying microscopic theory and ceases to exist when
one imposes the ingoing boundary condition at the event
horizon. Moreover, the presence of a pole in the second
term in Eq. (15) implies that the solution with the
membrane paradigm boundary condition on a stretched
horizon and with ingoing boundary conditions on the event
horizon are not smoothly connected to each other for
~ω ¼ � ffiffiffiffiffiffiffiffi

2=3
p

~k. Hence, the mode (17) has to be discarded.
This yields one more model-dependent restriction on the
allowed frequencies.
In calculating the above leading-order dispersion rela-

tions, we kept σ arbitrary and the result did not depend on the
value of σ. This suggests that we can interpret both modes as
arising from the UV region of the spacetime rather than
being an intrinsic property of the membrane. Indeed, the

emergence of hydrodynamical modes in the holographic
context can be thought of as arising due to spontaneous
symmetry breaking by the classical solution ending on the
second boundary, i.e. the stretched or event horizon [16]. To
see this in our context, consider a double Dirichlet problem
in the most general metric ansatz compatible with the
symmetries of the sound mode, i.e. besides the modes in
(10) we also allow nonzeroHut,Hux, andHuu. These modes
are defined as in (11) except that it will turn out to be
convenient to define ∂uHuu ¼ u

ffiffiffiffiffiffiffiffiffi
fðuÞp

δhuu.
It is easy to see that it is impossible to completely gauge

away Hut, Hux, and Huu without modifying the metric
perturbations Hμν at the two boundaries u ¼ 0 and u ¼ uδ.
In fact, one can gauge away Hut, Hux, and Huu up to the
nonlocal “Wilson-line” like variables

ψ tð ~ω; ~kÞ ¼
Z

uδ

0

HtuðuÞduþ i ~ω
Z

uδ

0

HuuðuÞ
2fðuÞ3=2 du; ð18aÞ

ψxð ~ω; ~kÞ ¼
Z

uδ

0

HxuðuÞdu − i~k
Z

uδ

0

HuuðuÞ
2

ffiffiffiffiffiffiffiffiffi
fðuÞp du; ð18bÞ

which we interpret, in line with [16,26], as the Goldstone
bosons associated with the global symmetries broken by
the classical solution [27]. In addition, the constraint
equations of general relativity are the equations of motion
for the Goldstone bosons given by Eq. (18) and for Huu.
The membrane paradigm couples the radial derivative of

the metric to the metric itself with coupling strength σ.
However, to the order we have been working at, the
dispersion relations (16) and (17) do not depend on this
coupling, suggesting that these modes arise from the
Goldstone modes. To examine whether this is indeed the
case, we take arbitrary Hut, Hux, and Huu with all other
metric perturbations equal to zero, and then make a gauge
transformation to the radial gauge Hut ¼ Hux ¼ Huu ¼ 0.
This will turn on a nontrivial metric perturbation on the
stretched horizon given by

HttðuδÞ ¼ 2i ~ωψ t −
ð1þ u2δÞ
2fðuδÞ

HuuðuδÞ; ð19aÞ

HtxðuδÞ ¼ i ~ωψx − i~kfðuδÞψ t; ð19bÞ

HxxðuδÞ ¼ −2i~kψx þ
1

2

ffiffiffiffiffiffiffiffiffiffiffi
fðuδÞ

p
HuuðuδÞ; ð19cÞ

HaaðuδÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
fðuδÞ

p
HuuðuδÞ: ð19dÞ

Strictly speaking, the solutions of the Einstein equation in
the radial gauge with these boundary conditions and
vanishing at infinity make sense only in the leading order
of the derivative expansion. As the μν components of the
Einstein equations completely determine the bulk metric in
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the radial gauge, the remaining uν and uu components
yield then nontrivial equations for the Goldstone modes ψx
and ψ t, and forHuu. In the limit where the stretched horizon
is very close to the event horizon, at leading order in ~k and
~ω and after solving for HuuðuδÞ, we arrive at the following
two equations:

ð3 ~ω2 − ~k2Þψx −
3

2
~ω ~k

ffiffiffiffiffiffiffiffiffiffiffi
fðuδÞ

p
ψ̂ t ¼ 0; ð20aÞ

ð3 ~ω2 − 2~k2Þψ̂ t þ ~ω ~k
ffiffiffiffiffiffiffiffiffiffiffi
fðuδÞ

p
ψx ¼ 0; ð20bÞ

where ψ̂ t ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðuδÞ

p
ψ t. This near-horizon redefinition

would be natural if Eqs. (20a) and (20b) would follow
from an action principle in which the Goldstone bosons
appear quadratically. The Eqs. (20a) and (20b), to leading
order in δ, directly lead to the sound waves (16) and the
spurious mode (17). Note that in the strict horizon limit the
ψ t Goldstone decouples from the dynamics and one is only
left with the hydrodynamic sound wave excitation. The
decoupling of a Goldstone mode in this limit is related to
the fact that the metric on the horizon is degenerate and
hence causes a change in the symmetry breaking pattern.

IV. CONCLUSIONS

In this paper we have studied the range of validity and
applicability of the membrane paradigm, which we took to
be a particular boundary condition Eq. (3) imposed at the
stretched horizon, and which is supposed to represent the
response of the black hole to external perturbations.
Though we mostly worked in the context of the AdS/
CFT correspondence, we expect our results to hold in more

general gravitational setups as they rely on generic proper-
ties of horizons. Surprisingly, we found that the membrane
paradigm cannot be used to find the spectrum of quasi-
normal modes, and that it leads to a spurious gapless
soundlike modewhich we interpreted in terms of Goldstone
modes associated with the symmetries broken by the
classical solution ending on the stretched horizon. Both
issues can in principle be resolved by an infinite fine-tuning
of the membrane coupling or conductivity σ, but this is
equivalent to imposing ingoing boundary conditions
directly at the horizon, and the main purpose of the
membrane paradigm was to not do that. Alternatively, in
the case of sound modes, one can try to remove the problem
by making the cutoff uδ ~k and ~ω dependent, but super-
ficially this once more requires significant fine-tuning.
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