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S U M M A R Y
Memory functions occur as temporal convolution operators in governing equations of wave
propagation and generally account for the instantaneous and non-instantaneous responses of
a medium. The specific memory function that is causal and stable, and the inverse of which
is causal and stable as well, is conventionally referred to as a minimum-phase (MP) function.
Its amplitude and phase spectra are not independent, but related through MP-relations; that is,
Kramers–Kronig relations between the amplitude and phase spectra. In this paper, we derive
generalized MP-relations for a memory function that does not necessarily meet the stability
requirements; such functions are often encountered in the geophysical context. We still address
the function as MP because its phase spectrum exhibits minimum group delay, like that of
a conventional MP function. We successfully tested the derived relations for the well-known
Maxwell, Kelvin–Voigt and Zener compressibility models used in acoustics/elastodynamics,
the dynamic permeability used in poroelasticity and the electrokinetic coefficient used in
coupled acoustics and electromagnetics. In these fields, the derived relations can be applied
for the determining the involved memory function using numerical or laboratory experiments;
only the amplitude or the phase spectrum needs to be measured and the other can be calculated.
The relations also have applications in effective-medium theory and for any other wave
phenomenon that employs memory functions.

Key words: Persistence, memory, correlations, clustering; Elasticity and anelasticity; Seis-
mic attenuation; Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

Memory functions show up as temporal convolution operators in the
governing equations of wave propagation in lossy and homogenized
scattering media. They describe the response of a medium due to
certain excitations and can therefore also be addressed as medium-
response functions. For instance, the material density ρ = ρ(t)
and compressibility κ = κ(t) memory functions that occur in the
equations for a homogeneous dissipative fluid (e.g. de Hoop 1995),

ρ ∗ ∂2
t u + ∇ p = 0, (1)

κ ∗ p + ∇ · u = 0, (2)

generally account for both the instantaneous and non-instantaneous
responses of the medium; κ relates pressure (excitation) and strain
(response), and ρ relates acceleration (excitation) and pressure gra-
dient (response). In eqs (1) and (2), u = u(x, t) is the particle-
displacement vector, p = p(x, t) the acoustic pressure, the asterisk
represents temporal convolution, t denotes time, x the Cartesian co-
ordinate vector and ∂2

t = ∂2/∂t2. The notion that memory functions

can be written as temporal convolution operators dates back to
Boltzmann (1876).

Probably the most well-known models for memory functions
in geophysics are the rheological models based on springs and
dashpots that are particularly used to describe creep and relax-
ation phenomena (e.g. Bourbié et al. 1987; Dahlen & Tromp 1998;
Carcione 2007). Memory functions are often employed in poroelas-
ticity: for example, the frequency-dependent viscodynamic function
(Norris 1986), the dynamic permeability (Johnson et al. 1987), the
electrokinetic coefficient for coupled electromagnetic and acoustic
wave propagation (Pride 1994) and effective-medium moduli that
account for energy loss due to the presence of inhomogeneities
(Norris 1993; Johnson 2001; Pride et al. 2004; Müller et al. 2010).
In electromagnetics, memory functions are also widely used: the
frequency-dependent permittivity, conductivity and magnetic per-
meability (e.g. de Hoop 1975, 1995; Landau & Lifshitz 1984; Car-
cione 2007). One can also think of memory functions that account
for scattering losses in inhomogeneous media (e.g. Sheng 1995;
Schubert & Koehler 2004).

A discussion of properties of memory functions is given by
Fabrizio & Morro (1992, 2003) and Carcione (2007). One of the

C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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most important properties of a memory function, which we de-
note as f(t), is its causal character; that is, f(t) = 0 for t < 0,
which is a consequence of the ‘primitive causality condition’, stating
that the response (thus related to the excitation through the mem-
ory function) cannot precede the excitation (Nussenzveig 1972).
The real and imaginary parts of its frequency-domain counterpart
f̂ (ω), where ω denotes angular frequency, are related via the well-
known Plemelj or Kramers–Kronig causality relations (Toll 1956;
Nussenzveig 1972). These can be derived from the causality-
imposed property that the Laplace-transformed function f̂ (s) is
free of singularities (poles, branch points) in the right half of the
s-plane (s denotes the Laplace parameter).

It is obvious that the inverse of a memory function needs to be
causal as well. For instance, the inverse of κ in eq. (2) should re-
late strain (excitation) and pressure (response) in a causal way. The
specific memory function that is also stable (absolutely integrable)
and has a stable inverse possesses the minimum-phase (MP) prop-
erty (Bode 1959; Oppenheim & Schafer 1999). This means that the
phase spectrum has minimum group delay (Oppenheim & Schafer
1999; Aki & Richards 2002), which implies that the phase is the
smallest possible for a given amplitude spectrum so that f(t) remains
causal. It also implies that another pair of relations holds that arises
from the fact that f̂ (s) is free of both singularities and zeros in
the right half-plane [and, in fact, on the imaginary axis/frequency
axis (Oppenheim & Schafer 1999)] so that its logarithm is regular
as well. These ‘MP-relations’ express the interdependence of the
amplitude and phase spectra, and provide a big advantage for the
experimental determination of a memory function; either the am-
plitude or the phase spectrum needs to be determined, and the other
can be calculated. In some cases, it is particularly hard to determine
the phase reliably in an experiment. The relations can be useful
in different kinds of laboratory or numerical experiments, both in
the case of steady-state (harmonic) and transient (pulse) excitations
(e.g. Blair 1996; Reppert & Morgan 2001; Carcione et al. 2003,
2011; Schoemaker et al. 2012). When both the amplitude and phase
spectra are obtained from an experiment, the relations can be used
to validate the measured data (Ehm et al. 2000). We address the
relations as ‘conventional MP-relations’.

When a function and its inverse are causal and stable, both must
consist of an instantaneous part (described by the Dirac delta func-
tion) and a delay part. It implies that both amplitude spectra tend
to a constant value at infinite frequency. In many cases, however,
the function and its inverse are not both stable. For instance, the
function might include a Heaviside step function. For such a func-
tion, the conventional MP-relations do not hold as the logarithm of
its amplitude spectrum becomes unbounded at infinite frequency.
However, as both the function and its inverse are causal functions of
time, its Laplace transform is still free of zeros and singularities in
the right half-plane, and the phase spectrum should therefore also
exhibit minimum group delay (Bode 1959; Aki & Richards 2002).
Hence, it is challenging to see whether any relations can be derived
between the amplitude and phase spectra.

To accomplish that, Bode (1959) suggested using some scaling of
the involved function by frequency to overcome the unboundedness,
depending on its specific behaviour at infinite frequency. Nussen-
zveig (1972) proposed the method of subtractions but only applied
this to the Kramers–Kronig causality relations. Aki & Richards
(2002) suggested more general scaling by frequency but used this for
the MP-property of a propagating pulse (i.e. of a propagation factor
with complex-valued wavenumber in the argument). This property
results in Kramers–Kronig relations between real and imaginary
parts of the wavenumber (e.g. Nussenzveig 1972; Fang & Müller

1991; Aki & Richards 2002), which combines different memory
functions in one quantity [e.g. in acoustics both κ̂(s) and ρ̂(s); cf.
eqs (1) and (2)].

In this paper, we derive ‘generalized MP-relations’ for individual
memory functions without assuming stability of the function and
its inverse. We employ the scaling method as suggested by Aki &
Richards (2002) and, to verify the validity of the relations, we give
particular attention to the presence of poles and zeros on the imag-
inary s-axis. These often occur in the origin due the presence of
time integrals or derivatives in the memory functions. For instance,
in view of eq. (2), depending on whether strain, strain rate or strain
acceleration is measured for applied pressure, different memory
functions κ(t), ∂ tκ(t) or ∂2

t κ(t) can be determined (e.g. in an experi-
ment); all of them possess the MP-property. Furthermore, we show
that the obtained relations capture the conventional MP-relations
and discuss the connection between the MP-property of individual
memory functions and that of a propagating pulse to highlight their
complementary character. Throughout the paper, causality is un-
derstood as primitive causality (Nussenzveig 1972), unless stated
differently.

The paper is organized as follows. First, we review the derivation
of the conventional MP-relations (Section 2). Then, we derive the
generalized MP-relations and discuss their applicability (Section 3).
In Section 4, we show how the MP-relations can be implemented
numerically. The relations are tested for a few well-known models
in Section 5. The discussion is given in Section 6, and we finish
with conclusions in Section 7.

2 C O N V E N T I O NA L M P - R E L AT I O N S

In this section, we review the derivation of the conventional MP-
relations. It is similar to the derivation of the Kramers–Kronig
causality relations between the real and imaginary parts of the
Laplace transform f̂ (s) of a causal function as given by de Hoop
(1995), and it clarifies the particular constraints of the involved
functions. We consider a real-valued function f(t). As f(t) and its in-
verse are both causal, f̂ (s) has no singularities in the right half of the
s-plane (from here onwards abbreviated as ‘RHP’) and, in addition,
no zeros in that part of the s-plane. As a result, ln( f̂ (s)) is also reg-
ular in the RHP. Furthermore, as f(t) is stable as well as its inverse,
the behaviour of both f̂ (s) and f̂ −1(s) is o(s) as |s| → ∞ in the
RHP; that is, lim|s|→∞ | f̂ (s)/s| = 0 and lim|s|→∞ | f̂ −1(s)/s| = 0
(note that o denotes the small Landau order symbol). This implies
that lim|s|→∞ f̂ (s) = f∞ is a real constant, which corresponds to the
instantaneous (Dirac) part of f(t). Poles and zeros on the imaginary
axis are also excluded due to the stability constraint (Oppenheim &
Schafer 1999), but branch points are allowed (as long as they are
not zeros).

To derive MP-relations between the amplitude and phase of f̂ (s),
we consider the ratio (ln( f̂ (s)) − ln( f∞))/(s − i�), where � is real
and denotes (a fixed) frequency. In the numerator, we take ln( f̂ (s))
instead of simply f̂ (s), as in the derivation of the Kramers–Kronig
causality relations; the subtraction is referred to below. We choose
an integration contour C in the s-plane consisting of a vertical line,
a semi-circle C∞ of infinite radius, and a semi-circle C� of infinites-
imal radius around s = i� (see Fig. 1). We consider the limiting
situation in which the vertical line approaches the imaginary axis
from the RHP. Now, by virtue of Cauchy’s theorem (Titchmarsh
1939; Plemelj 1964), it holds that∮

C

ln( f̂ (s)) − ln( f∞)

s − i�
ds = 0. (3)
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Figure 1. Closed contour of integration C in the complex s-plane used
to establish the conventional MP-relations. It consists of a line parallel to
imaginary axis with vanishing real part, an infinitesimal arc C� around the
pole (black dot) s = i� and an arc of infinite radius C∞. The direction of
integration is indicated.

The contribution of C∞ vanishes (Bode 1959; de Hoop 1975):∫
C∞

ln( f̂ (s)) − ln( f∞)

s − i�
ds→ 0, (4)

which is due to the subtraction in the numerator:

ln( f̂ (s)) − ln( f∞)→ 0 as |s| → ∞ in Re(s) > 0. (5)

The vanishing of the numerator is guaranteed by the above-
described stability requirements of f̂ (s) and its inverse [i.e.
f̂ (s) → f∞]. Now, we can establish a relation between the con-
tributions along the imaginary axis and around s = i�. Using a
local Taylor expansion and s = i� + rexp (iθ ) (where θ is the cir-
cumferential coordinate and r the radius), the integration along the
infinitely small semi-circle C� yields∫

C�

ln( f̂ (s)) − ln( f∞)

s − i�
ds

= i lim
r→0

∫ π/2

−π/2

(
ln( f̂ (i�) + ∂s f̂ (s)|s=i�reiθ ) − ln( f∞)

)
dθ

= iπ
(

ln( f̂ (i�)) − ln( f∞)
)

, (6)

where f̂ (i�) is finite [i.e. ln( f̂ (s)) is regular at s = i�]. The contri-
bution of the path along the imaginary s-axis yields, using s → iω,

lim
r→0

(∫ �−r

−∞
+

∫ ∞

�+r

)
ln( f̂ (ω))− ln( f∞)

ω − �
dω

= −
∫ ∞

−∞

ln( f̂ (ω))− ln( f∞)

ω − �
dω. (7)

Here, the −∫ denotes that the principal value of the integral should
be taken. Taking the contributions of C� and the imaginary axis
together according to eq. (3), we get [replacing f̂ (i�) by f̂ (�)]

ln

(
f̂ (�)

f∞

)
= − 1

iπ
−
∫ ∞

−∞

ln( f̂ (ω)/ f∞)

ω − �
dω. (8)

Now, using ln( f̂ (s)) = ln | f̂ (s)| + iϕ(s), where −π < ϕ ≤ π , and
separating between the real and imaginary parts, we obtain

ln

∣∣∣∣∣ f̂ (�)

f∞

∣∣∣∣∣ = − 1

π
−
∫ ∞

−∞

ϕ(ω)

ω − �
dω, (9)

ϕ(�) = + 1

π
−
∫ ∞

−∞

ln | f̂ (ω)/ f∞|
ω − �

dω. (10)

Here, � is real and, without loss of generality, f∞ is assumed positive
so that ϕ∞ = 0. Eqs (9) and (10) form a Hilbert transform pair
and are referred to as the ‘conventional MP-relations’ between the
amplitude and phase spectra. We address the functions for which
eqs (9) and (10) hold as ‘conventional MP-functions’. The phase
can be uniquely determined from the amplitude using eq. (10). The
spectrum as obtained from eq. (9), however, can be a scaled version
of the true one as the phase is insensitive to constant multiplication
factors in f̂ (ω).

In general, any causal function that has a causal inverse and
obeys the constraint in eq. (5) should satisfy the conventional MP-
relations. The opposite is, however, not generally true; once a certain
function satisfies the MP-relations, that function and its inverse are
not necessarily causal. This is because causality of the function and
its inverse is only a necessary (i.e. not a necessary and sufficient)
condition for eq. (3) to be true (Titchmarsh 1939).

It is important to note that, due to the limiting situation s → iω
that we consider (as discussed earlier), f̂ (ω) is understood as the
Laplace transform of f(t) with Re(s) ↓ 0, both in this section and
throughout the entire paper.

3 G E N E R A L I Z E D M P - R E L AT I O N S

In many cases, the memory function does not obey the specific
requirement of f̂ (s) → f∞ as |s| → ∞ in the RHP; cf. eq. (5). For
instance, when an instantaneous part is absent, f̂ (s) goes to zero,
and when time derivatives are involved, it goes to infinity; in both
cases ln( f̂ (s)) becomes unbounded, which thus violates the basic
requirements of conventional MP-functions. However, scaling by
s, as suggested by Aki & Richards (2002) in a slightly different
context, solves the problem of unboundedness (see further). For
this reason, as a starting point we consider (cf. eq. 3)∮

C

ln( f̂ (s))

s(s − i�)
ds = 0, (11)

where C now also includes an infinitesimal semi-circle C0 around
the pole at s = 0 (see Fig. 2). The contribution of C∞ vanishes due
to the scaling:∫

C∞

ln( f̂ (s))

s(s − i�)
ds→ 0, (12)

which is true provided that

ln( f̂ (s))

s
→ 0 as |s| → ∞ in Re(s) > 0. (13)

This is, in turn, guaranteed by any function that can be expanded
in a polynomial having finite powers of s as |s| → ∞ in the RHP,
because lim|s| → ∞ln (sn)/s = lim|s| → ∞nln (s)/s = 0 [here n repre-
sents the leading power of f̂ (s)]. Using local Taylor expansions of
f̂ (s) around s = 0 and s = i�, and assuming ln( f̂ (s)) regular at
these points (cf. eq. 6), the integration along the two infinitely small
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Figure 2. Closed contour of integration C in the complex s-plane used
to establish the generalized MP-relations. It consists of a line parallel to
imaginary axis with vanishing real part, two infinitesimal arcs C� and C0

around the poles (black dots) at s = i� and s = 0, respectively, and an arc
of infinite radius C∞. The direction of integration is indicated.

semi-circles yields (for � 	= 0)∫
C�

ln( f̂ (s))

s(s − i�)
ds = i lim

r→0

∫ π
2

− π
2

ln( f̂ (i�) + ∂s f̂ (s)|s=i�reiθ )

i� + reiθ
dθ

= π
ln( f̂ (i�))

�
, (14)

∫
C0

ln( f̂ (s))

s(s − i�)
ds = i lim

r→0

∫ π
2

− π
2

ln( f̂ (0) + ∂s f̂ (s)|s=0reiθ )

−i� + reiθ
dθ

= −π
ln( f̂ (0))

�
, (15)

where f̂ (0) denotes f̂ (s = 0). Taking now all contributions together
(including that of the imaginary axis, which is similar to eq. 7)
according to eq. (11), we get

ln

(
f̂ (�)

f (0)

)
= − �

iπ
−
∫ ∞

−∞

ln( f̂ (ω))

ω(ω − �)
dω. (16)

Separating the real and imaginary parts again, we finally obtain

ln

∣∣∣∣∣ f̂ (�)

f̂ (0)

∣∣∣∣∣ = −�

π
−
∫ ∞

−∞

ϕ(ω)

ω(ω − �)
dω, (17)

ϕ(�) = +�

π
−
∫ ∞

−∞

ln | f̂ (ω)|
ω(ω − �)

dω, (18)

where � 	= 0 (see eqs 14 and 15); the principal-value integrals are
taken at both ω =� and ω = 0, and ϕ(0) = 0 has been applied [which
is generally true for real-valued f(t), by virtue of ϕ(s) = −ϕ(s∗)]. We
address eqs (17) and (18) as ‘generalized MP-relations’ as they hold
for any memory function that obeys the constraint in eq. (13). This
constraint is less strict than and captures that of the conventional
MP-functions (eq. 5).

In the case that � = 0, the semi-circles C� and C0 merge to one
semi-circle, the contribution of which can be shown to be propor-

Figure 3. Closed contour of integration in the complex s-plane used to
establish the generalized MP-relations for a function having poles or zeros
at s = ±i�s. These constitute logarithmic branch points (∗) of ln( f̂ (s))
from which branch cuts (dashed lines) depart. The contour consists of a line
parallel to imaginary axis with vanishing real part, two infinitesimal arcs C�

and C0 around the poles (black dots) at s = i� and s = 0, respectively, two
infinitesimal arcs C± around the branch points, and an arc of infinite radius
C∞. The direction of integration is indicated.

tional to ln( f̂ (0))r−1|r→0 = ∞. Hence, the above-described scaling
of f̂ (s) does not give meaningful relations for � = 0.

In the situation that f̂ (s) has zeros or poles on the imaginary
s-axis, logarithmic singularities/branch points are present at
s = ±i�s, where �s ≥ 0 [poles or zeros always appear in pairs
for real-valued f(t), except when �s = 0]. The case that �s 	= 0 cor-
responds to some resonance in the medium response, and �s = 0
simply indicates the presence of time derivative(s) or integral(s).
To account for the singularities, additional semi-circles C± around
s = ±i�s have to be incorporated in the contour integration (see
eq. 11), and branch cuts need to be introduced (see Fig. 3). Dis-
tinguishing between four different cases, the integrations along the
infinitely small semi-circles yield∫

C±

ln( f̂ (s))

s(s − i�)
ds

= i lim
r→0

∫ π
2

− π
2

ln( f̂ (±i�s + reiθ ))reiθ

(±i�s + reiθ )(i(±�s − �) + reiθ )
dθ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, � 	= ±�s, �s 	= 0, (I, C±)

− π

�
ln( f̂ (0)), � 	= 0, �s = 0, (II, C±)

+ π

�s
ln( f̂ (+i�s)), � = +�s, �s 	= 0, (III, C+)

0, � = +�s, �s 	= 0, (III, C−)

0, � = −�s, �s 	= 0, (IV, C+)

− π

�s
ln( f̂ (−i�s)), � = −�s, �s 	= 0, (IV, C−)

(19)

where local Laurent [for poles in f̂ (s)] and Taylor [for zeros in
f̂ (s)] series expansions of f̂ (s) around s = ±i�s have been applied;
obviously, ln( f̂ (0)) and ln( f̂ (±i�s)) are unbounded. The results are
0 for case I, provided that the leading power of r in the Laurent and
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Taylor series expansions of f̂ (s) is not infinite; thus f̂ (s) should
only have poles and zeros of finite order.

We can verify that in most cases the generalized MP-relations
(eqs 17 and 18) are still obtained when all contributions along the
contour C are taken together as in eq. (16) (i.e. now including the
contribution of eq. 19). In case I of eq. (19), the integrations along
C± obviously do not add anything. Both eqs (17) and (18) thus
remain valid. In case II, C± merge with C0 to one semi-circle, the
contribution of which should be taken only once. The logarithm
in the left-hand side of eq. (17) becomes unbounded, making this
relation inapplicable for all �. In cases III and IV, either C+ or C−
has a non-zero contribution (depending on whether � = +�s or
� = −�s), and � is replaced by ±�s in eqs (17) and (18). The left-
hand side of the former equation thus becomes ln | f̂ (±�s)/ f̂ (0)|,
which is unbounded. However, the relation is still applicable for � 	=
±�s (which is case I). In the cases II–IV, eq. (18), which is probably
the most important relation in view of geophysical applications,
remains valid. In general, it is important to note that, when f̂ (s) has
zeros or poles at s = ±i�s, the integrals in eqs (17) and (18) should
be taken in the principal-value sense at these points.

In eq. (19), we left out the cases that � = �s = 0 and � = 0 and
�s 	= 0, because we knew beforehand that no meaningful relations
can be obtained for � = 0, as explained above (cf. eqs 14 and 15).

The derivation in this section shows that MP-relations can thus
also be obtained for any (not necessarily stable) causal memory
function that has a causal inverse, and the Laplace transform of
which can be written as a polynomial with finite powers of s when
|s| → ∞ in the RHP; the latter constraint covers most of the mem-
ory functions of physical interest. This confirms our expectation; a
function without zeros and singularities in the RHP does possess
the MP-property, and it should therefore be possible to find relations
between its interdependent amplitude and phase spectra. The gen-
eralized MP-relations also capture memory functions that include
distributions/generalized functions. We note that not all captured
functions can be directly measured in a physical experiment, but
given the excitation and the response, they can be extracted from
measured data in band-limited sense [cf. Section 1, and eqs (1) and
(2) in particular].

The phase spectrum can be uniquely calculated from the ampli-
tude spectrum using eq. (18). To calculate the amplitude spectrum
from the phase spectrum, one obviously also needs f̂ (0), which is
unknown beforehand. Hence, the amplitude spectrum can only be
found relative to a constant (the dc-component). In addition, the
integral in eq. (17) might give a scaled version of the left-hand side
as the phase is insensitive to multiplication factors (see Section 2).
Sometimes the low- or high-frequency limit of f̂ (ω) is known from
theoretical considerations, or additional measurements are avail-
able. In any case, the value of f̂ at only one (fixed) ω is needed to
determine the amplitude spectrum unambiguously. In the case that
f̂ (0) is zero or infinite, the amplitude spectrum cannot be calculated
from the phase spectrum (as discussed earlier).

Like for the conventional MP-relations, we note that any causal
function that has a causal inverse and obeys the constraint in eq. (13)
should satisfy the generalized MP-relations. However, once a certain
function satisfies the generalized MP-relations, that function and its
inverse are not necessarily causal; causality of the function and its
inverse is only a necessary condition for eq. (11) (Titchmarsh 1939).

Similar relations to eqs (17) and (18) were found by Papoulis
(1962). These relations were derived separately, using different
starting points, while our derivation shows that the relations can
be derived from a joint basis (eq. 11). Furthermore, our derivation
unambiguously reveals the broad class of functions for which the re-

lations hold true (cf. eq. 13). It also clarifies that the relations remain
valid when there are singularities on the imaginary s-axis, depend-
ing on their specific locations and the order of the singularities
(cf. eq. 19).

4 I M P L E M E N TAT I O N

For application of the derived MP-relations, it is convenient to
rewrite the principal-value integrals to proper integrals. Using sym-
metry properties and a standard integral, eqs (9) and (10) can be
written as (see Appendix A)

ln

∣∣∣∣∣ f̂ (�)

f∞

∣∣∣∣∣ = − 2

π

∫ ∞

0

ϕ(ω)ω − ϕ(�)�

ω2 − �2
dω, (20)

ϕ(�) = 2�

π

∫ ∞

0

ln | f̂ (ω)/ f̂ (�)|
ω2 − �2

dω, (21)

with 0 < � < ∞, and where the integrals around ω = � are
no longer principal-value integrals. The integrands are integrable,
which allows straightforward numerical evaluation. The relations
are known as the ‘Bode relations’ (Bode 1959; de Hoop 1995).

The generalized MP-relations (eqs 17 and 18) can be rewritten
in a similar way (Appendix A). The result is

ln

∣∣∣∣∣ f̂ (�)

f̂ (0)

∣∣∣∣∣ = −2�

π
−
∫ ∞

0

ϕ(ω)� − ϕ(�)ω

ω(ω2 − �2)
dω, (22)

ϕ(�) = 2�

π
−
∫ ∞

0

ln | f̂ (ω)/ f̂ (�)|
ω2 − �2

dω, (23)

with 0 < � < ∞. The integrals are now proper ones at both ω = 0
and at ω = �, but still their principal values should be taken when a
singularity is present at ω = �s. There are various methods available
to accomplish this (e.g. Criscuolo & Scuderi 1998). It should be
noted that the integral in eq. (22) is only finite when ϕ(ω) → 0
when ω↓0. If this is not the case, the integral is divergent. This
is to be expected because, in that case, the left-hand side is also
infinite due to the presence of a zero or a pole in f̂ (s) at s = 0 (cf.
case II of eq. 19); for example, see the Maxwell model in Section 5.
Furthermore, eqs (21) and (23) are very similar, but the assumed
properties of the integrands are different [in particular, the behaviour
of ln | f̂ (ω)| as ω → ∞, and the possible singularities].

Limited bandwidth data can be dealt with using a method pro-
posed by Ehm et al. (2000).

5 N U M E R I C A L E X A M P L E S

In this section, we test the derived generalized MP-relations for a
few well-known memory functions from acoustics/elastodynamics,
poroelasticity, and coupled acoustics and electromagnetics. In re-
ality, one applies the relations to compute either the phase or the
amplitude spectrum when one of them is unknown. For the mod-
els that we consider, we know both of them, but in all examples,
we used either the amplitude or the phase spectrum to simulate a
measurement. We computed the other spectrum using eq. (23) or
(22), respectively, using an adaptive eight-point Legendre-Gauss al-
gorithm (Abramowitz & Stegun 1972; Davis & Rabinowitz 1975)
and compare it with the known result (other standard numerical-
integration algorithms can be used as well).

We first consider the Maxwell, Kelvin–Voigt and Zener mod-
els that are associated with viscoacoustic or viscoelastic behaviour
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of materials (e.g. Bourbié et al. 1987; Dahlen & Tromp 1998;
Carcione 2007). These rheological models are particularly related
to the compressibility κ(t), as introduced in eq. (2). The specific
expressions for the three models are known (see Appendix B); here,
we only show their Laplace transforms:

κ̂(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ∞ + 1
ηs , (Maxwell)

1
K∞+ηs , (Kelvin−Voigt)

1
K∞

(
1 + τ1−τ2

τ1τ2

1
s+τ−1

1

)
. (Zener)

(24)

Here, η denotes the dynamic fluid viscosity, κ∞ and K∞ are the
instantaneous parts of κ(t) and its inverse K(t), respectively, where
the latter is the compression-modulus memory function; τ 1 and τ 2

are timescales related to strain and stress, respectively, with τ 1 > τ 2

(Carcione 2007). Note that K∞ 	= lim|s|→∞ K̂ (s) (in the RHP) for
the Kelvin–Voigt model; this limit is unbounded. Yet, the constant
K∞ is meaningful as K(t) does have an instantaneous part.

We can observe that the functions in eq. (24) do not have singular-
ities and zeros in the RHP. Hence, in all models κ(t) and its inverse
are causal functions of time. However, not all models provide con-
ventional MP-functions (cf. eq. 5); only the Zener model does. We
applied the generalized MP-relations and the results for the phase
(using eq. 23) are displayed in Fig. 4 for all three models. The results
for the amplitude (using eq. 22) are displayed in Fig. 5, for the Zener
and Kelvin–Voigt models only; here, the Maxwell model is absent
as there is a pole at s = 0 and hence eq. (22) (or eq. 17) cannot
be used (see Section 3). The involved parameter values are taken
from Carcione (2007, p. 75). The computed spectra coincide with
the analytical ones, which confirms the validity of the generalized
MP-relations. We emphasize that the Zener model could have been
handled with the conventional MP-relations, but the current result
verifies that the generalized MP-relations also capture conventional
MP-functions, as argued in Section 3.

Now, we consider two memory functions that occur in poroelas-
ticity. Incorporating the coupling of acoustic and electromagnetic
fields (Pride 1994; Schoemaker et al. 2012), Biot’s equation of

Figure 4. Phase spectra of the Maxwell, Kelvin–Voigt and Zener models:
analytical (solid black line) and computed using eq. (23) (dashed grey lines);
for each of the models, the lines coincide. � denotes angular frequency. For
K∞, κ∞ = 1/K∞, η, τ 1 and τ 2, the same parameter values have been used
as in Carcione (2007, p. 75).

Figure 5. Normalized amplitude spectra of the Kelvin–Voigt and Zener
models: analytical (solid black line) and computed using eq. (22) (dashed
grey lines); for both models, the lines coincide. � denotes angular frequency.
For K∞, κ∞ = 1/K∞, η, τ 1 and τ 2, the same parameter values have been
used as in Carcione (2007, p. 75).

motion of the fluid phase can be written in the Laplace domain as

sŵ = − k̂(s)

η

(∇ p̂ + s2ρf û
) + L̂(s)Ê, (25)

where ŵ = φ(Û − û) denotes the displacement of the fluid Û rel-
ative to that of the porous frame û [multiplied by the porosity φ],
p̂ the fluid pressure, Ê the electric field, ρf the fluid density and η

the dynamic fluid viscosity [the fields û, Û, ŵ, p̂ and Ê are depen-
dent on x and s]; k̂(s) and L̂(s) are memory functions that denote
the dynamic permeability and the electrokinetic coupling factor, re-
spectively. Johnson et al. (1987) postulated the following function
for the dynamic permeability [based on rigid-porous frame (û = 0)
considerations]:

k̂(s) = k0√
1 + sτc + 2

M sτc

. (26)

Here, Re(
√

1 + sτc) ≥ 0 in the entire s-plane, k0 denotes the Darcy
permeability, τ c = M/(2ωc) and M denotes a pore shape factor; ωc =
ηφ/(αρf k0) is Biot’s transition frequency in which α denotes the
tortuosity of the porous frame. An expression for the electrokinetic
coupling factor was postulated by Pride (1994):

L̂(s) = L0√
1 + sτd

(
1 − 2 d

�

)2
(

1 + d
√

s
ρf

η

)2
, (27)

where Re(
√

s) ≥ 0 in the entire s-plane, L0 is the static electrokinetic
coupling coefficient, τ d = 2/(Mωc), d is the Debye length and � a
characteristic pore size parameter.

We can verify that the functions in eqs (26) and (27) are not con-
ventional MP-functions (eq. 5). The calculated phase and amplitude
spectra are displayed in Figs 6 and 7, respectively, and coincide with
the analytical results (see Table 1 for the involved parameter values).
In fact, it is not a surprise that the generalized MP-relations hold
true for the dynamic permeability and the electrokinetic coupling
factor. These functions were postulated, exactly based on causality
arguments of the functions themselves and their inverses (Johnson
et al. 1987; Pride 1994); hence, the generalized MP-relations must
be satisfied.
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Figure 6. Phase spectra of the dynamic permeability (Johnson et al. 1987)
[ψ̂(�) = k̂(�)] and the electrokinetic coupling factor (Pride 1994): analyti-
cal (solid black line) and computed using MP-relation (eq. 23) (dashed grey
lines); for both models, the lines coincide. � denotes angular frequency. The
used parameter values are given in Table 1; results are independent of L0.

Figure 7. Normalized amplitude spectra of the dynamic permeability
(Johnson et al. 1987) [ψ̂(�) = k̂(�)] and the electrokinetic coupling factor
(Pride 1994) [ψ̂(�) = L̂(�)]: analytical (solid black line) and computed
using MP-relation (eq. 22) (dashed grey lines); for both models, the lines
coincide. � denotes angular frequency. For the used parameter values, see
Table 1.

For a model in which the involved memory function has not been
postulated based on explicit causality considerations, the general-
ized MP-relations can offer a sanity check (e.g. for the alternative
expression for the dynamic permeability derived by Müller & Sahay
2011). Violation of the relations indicates that the function and/or
its inverse are not causal. However, we emphasize that causality is
not necessarily guaranteed when the MP-relations are satisfied (see
Sections 2 and 3).

6 D I S C U S S I O N

In many studies, the MP-property of a propagating pulse is consid-
ered (i.e. of a propagation factor with complex-valued wavenum-
ber in the argument). This results in Kramers–Kronig relations

Table 1. Material parameters as used for the dy-
namic permeability and the electrokinetic cou-
pling factor (see Figs 6 and 7).

Fluid density ρf (kg m−3) 1000
Porosity φ 0.35
Darcy permeability k0 (m2) 8 × 10−12

Tortuosity α 1.93
Dynamic fluid viscosity η (Pa·s) 0.001
Pore shape factor M 1
Debye length d (m) 9.6 × 10−9

Length scale pores � (m) 1.88 × 10−5

between the real and imaginary parts of the wavenumber, or equiv-
alently, between the phase velocity and the attenuation factor (e.g.
Nussenzveig 1972; Fang & Müller 1991; Blair 1996; Aki &
Richards 2002). Here, we discuss the connection between the MP-
property of an individual memory function, as considered in the
main part of this paper, and the MP-property of a propagation factor,
which combines different memory functions in the wavenumber.

The basic assumption from which the MP-property of a propaga-
tion factor originates is the consideration that a pulse needs a finite
time to travel over a finite distance. For the infinite-space Green’s
function G(x, t), this comes down to the fact that G(x, t) = 0
for t < |x|/c∞, where c∞ denotes a finite maximum propagation
velocity. Using this condition, and taking the Laplace transform
Ĝ(x, s) = exp(−γ̂ (s)|x|)/(4π |x|), with Re(γ̂ (s)) ≥ 0 in the RHP
(de Hoop 1995), one can find that the function

ŵ(s) = exp(−γ̂ (s)|x|) exp(+s|x|/c∞), (28)

is free of singularities and zeros in the RHP (Nussenzveig 1972; Aki
& Richards 2002); γ̂ (s) is in general complex-valued and related to
the wavenumber: q̂(s) = −iγ̂ (s). The function ŵ(s) is sometimes
referred to as the attenuation operator (Fang & Müller 1991). It is
found by disregarding the factor 4π |x| of Ĝ(x, s) and removing the
linear phase that is related to the finite traveltime |x|/c∞ of the pulse.
Starting with ln(ŵ(s)), which is thus regular in the RHP, the contour
integration can be performed in a similar way as in Section 2. Taking
s → iω along the imaginary s-axis, one finds that

�

(
1

c(�)
− 1

c∞

)
= − 1

π
−
∫ ∞

−∞

α(ω)

ω − �
dω, (29)

α(�) = + 1

π
−
∫ ∞

−∞

ω
(

1
c(ω) − 1

c∞

)
ω − �

dω, (30)

where c(ω) denotes the phase velocity and α(ω) is the attenuation
factor (imaginary part of the wavenumber). Eqs (29) and (30) are ob-
tained, provided that γ̂ (s) → s/c∞ as |s| → ∞ in the RHP (to let the
contribution of the infinite semi-circle vanish; cf. Fig. 1); this corre-
sponds to the finite-propagation-velocity requirement. For example,
in acoustic wave propagation (cf. eqs 1 and 2), this requirement im-
plies that s

√
κ̂(s)ρ̂(s) → s/c∞, which comes down to the fact that

c(ω) = 1/Re
√

κ̂(ω)ρ̂(ω) → c∞ and α(ω) = ωIm
√

κ̂(ω)ρ̂(ω) → 0
as |ω| → ∞. Hence, the phase velocity should be bounded at in-
finite frequency to guarantee the finite propagation velocity of the
pulse. Note that for situations in which α(ω) behaves differently at
infinite frequency, modified versions of eqs (29) and (30) exist (e.g.
Aki & Richards 2002).

In Section 3, we derived MP-relations for individual memory
functions that are not necessarily finite as |s| → ∞ in the RHP, but
to get a realistic model, the combination of the memory functions
apparently needs to yield a finite phase velocity in this limit. The
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MP-property of a propagation factor is thus more strict in the sense
that it relates to the so-called ‘macroscopic causality condition’
or ‘relativistic causality condition’, stating that there is a limiting
velocity for the propagation of signals (Nussenzveig 1972).

On the other hand, the MP-property of a propagation factor re-
lates to the constraint that the combination of memory functions is
only free of singularities in the RHP. Zeros in γ̂ (s) are permitted
as ln(ŵ(s)) remains regular when γ̂ (s) is zero. In many cases, this
comes down to the fact that all involved memory functions should
only be free of singularities in the RHP, as γ̂ (s) simply contains
products of memory functions, like in acoustics and electromag-
netics; in poroelasticity, this constraint also applies to an individual
memory function (the viscodynamic operator). The MP-property of
an individual memory function, however, relates to the constraint
that its Laplace transform is free of both singularities and zeros in
the RHP. Hence, we argue that the MP-property of an individual
memory function is complementary to (and in a way more strict
than) that of a propagation factor because it also incorporates prim-
itive causality of the inverse of the considered memory function.

As an example, consider the application of the Kelvin–Voigt
model for the Lamé parameters λ(t) and μ(t) to model viscoelastic
wave propagation (e.g. Carcione et al. 2004). The memory func-
tion associated with this model possesses the MP-property of an
individual memory function (see Section 5). The fact that λ̂(s) and
μ̂(s) become unbounded as |s| → ∞ (cf. eq. 24), however, re-
quires the material density to be s-dependent as well to ensure that

Re
√

ρ̂(s)/(λ̂(s) + 2μ̂(s)) is finite in this limit (i.e. to satisfy the
macroscopic causality condition). Otherwise, errors are introduced
especially at the onset of the arriving pulse. One can avoid these er-
rors by band-limiting the pulse (i.e. by suppressing the infinitely
fast propagating high-frequency harmonics, as it was done by
Carcione et al. 2004), but strictly speaking, the model is physically
inadmissible.

7 C O N C LU S I O N S

Memory functions occur as temporal convolution operators in the
governing equations of wave propagation in lossy and homogenized
scattering media, and capture the medium response due to certain
excitations. Based on the requirement of primitive causality of such
a memory function and its inverse, and assuming that the memory
function and its inverse are both stable (absolutely integrable in
time), relations can be derived between its amplitude and phase
spectra. These relations express that both spectra are interdependent
and are addressed as ‘conventional MP-relations’.

In many cases, the stability requirements associated with the
conventional MP-relations are not met, and the relations therefore
do not hold. However, for any memory function encountered in
wave phenomena, the causality requirements are satisfied, and its
phase spectrum therefore still exhibits minimum group delay, like
in the conventional case. In this paper, we derived ‘generalized MP-
relations’ between the amplitude and phase spectra of a memory
function that does not necessarily meet the stability requirements.
The relations capture any memory function for which the Laplace
Transform can be expanded in a polynomial of the Laplace pa-
rameter as long as the involved powers are finite; this covers most
functions of physical interest. The memory function can have finite-
order poles and zeros on the imaginary axis in the Laplace domain
(i.e. the frequency axis). In specific cases, their presence makes
one of the relations inapplicable, but the relation to compute the
phase from the amplitude spectrum, being the most important one in

geophysical applications, remains valid. The derived relations (both
conventional and generalized) are complementary to the widely
used relations between the phase velocity and attenuation factor
that express the MP-property of a propagating pulse.

We successfully tested the generalized MP-relations for the well-
known Maxwell, Kelvin–Voigt and Zener compressibility models
used in acoustics/elastodynamics, the dynamic permeability used
in poroelasticity and the electrokinetic coefficient used in cou-
pled acoustics and electromagnetics. The relations can also be
used in effective-medium theory and for any other wave phe-
nomenon that involves memory functions; either the amplitude or
the phase spectrum needs to be measured, and the other can be
calculated.
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A P P E N D I X A : R E W R I T I N G O F
I N T E G R A L S

In this appendix, we rewrite the derived minimum phase (MP)-
relations to the more convenient forms given in eqs (20)–(23).
First, we address the conventional MP-relations. Using ω̄ = −ω and
ϕ(−ω) = −ϕ(ω), eq. (9) can be rewritten as

ln

∣∣∣∣∣ f̂ (�)

f∞

∣∣∣∣∣ = − 1

π
−
∫ ∞

−∞

ϕ(ω)

ω − �
dω

= − 1

π

(
−−

∫ ∞

0

ϕ(−ω̄)

ω̄ + �
dω̄ + −

∫ ∞

0

ϕ(ω)

ω − �
dω

)

= − 2

π

(
−
∫ ∞

0

ϕ(ω)ω

ω2 − �2
dω

)
. (A1)

Now, using the following standard integral (de Hoop 1975)

−
∫ ∞

0

1

ω2 − �2
dω = 0, (A2)

where 0 < � < ∞, we get

ln
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π

(
−
∫ ∞

0

ϕ(ω)ω

ω2 − �2
dω − −

∫ ∞

0

ϕ(�)�

ω2 − �2
dω

)

= − 2

π

∫ ∞

0

ϕ(ω)ω − ϕ(�)�

ω2 − �2
dω. (A3)

Note that the integrand in the final expression is not singular at
ω = �; the integral is therefore a proper one. In a similar way, using
| f̂ (ω)| = | f̂ (−ω)| and eq. (A2), eq. (10) can be rewritten as

ϕ(�) = 1

π
−
∫ ∞

−∞

ln | f̂ (ω)/ f∞|
ω − �

dω

= 2�

π
−
∫ ∞

0

ln | f̂ (ω)/ f∞|
ω2 − �2

dω

= 2�

π

(
−
∫ ∞

0

ln | f̂ (ω)/ f∞|
ω2 − �2

dω − −
∫ ∞

0

ln | f̂ (�)/ f∞|
ω2 − �2

dω

)

= 2�

π

∫ ∞

0

ln | f̂ (ω)/ f̂ (�)|
ω2 − �2

dω. (A4)

Now, we rewrite the generalized MP-relations. Eq. (17) becomes

ln

∣∣∣∣∣ f̂ (�)

f̂ (0)

∣∣∣∣∣ = −�

π
−
∫ ∞

−∞

ϕ(ω)

ω(ω − �)
dω

= −2�

π
−
∫ ∞

0

ϕ(ω)�

ω(ω2 − �2)
dω

= −2�

π

(
−
∫ ∞

0

ϕ(ω)�

ω(ω2 − �2)
dω − −

∫ ∞

0

ϕ(�)ω

ω(ω2 − �2)
dω

)

= −2�

π
−
∫ ∞

0

ϕ(ω)� − ϕ(�)ω

ω(ω2 − �2)
dω, (A5)

and eq. (18) can be rewritten as

ϕ(�) = �

π
−
∫ ∞

−∞

ln | f̂ (ω)|
ω(ω − �)

dω

= 2�

π
−
∫ ∞

0

ln | f̂ (ω)|
ω2 − �2

dω

= 2�

π

(
−
∫ ∞

0

ln | f̂ (ω)|
ω2 − �2

dω − −
∫ ∞

0

ln | f̂ (�)|
ω2 − �2

dω

)

= 2�

π
−
∫ ∞

0

ln | f̂ (ω)/ f̂ (�)|
ω2 − �2

dω. (A6)

Here, the remaining principal-value integrals relate to a possi-
ble singularity in f̂ (ω) at ω = �s. Eqs (A3)–(A6) only hold for
0 < � < ∞.
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A P P E N D I X B : T I M E - D O M A I N
E X P R E S S I O N S O F R H E O L O G I C A L
M O D E L S

Here, we give the time-domain expressions of the Maxwell, Kelvin–
Voigt and Zener models, whose Laplace transforms are used in Sec-
tion 5. The expressions are known in the literature, but we include
them for clarity; in particular, the Zener model is sometimes ad-
dressed differently. The expressions read (e.g. Bourbié et al. 1987;
Dahlen & Tromp 1998; Carcione 2007)

κ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ∞δ(t) + 1
η

H (t), (Maxwell)

1
K∞ e− η

K∞ t H (t), (Kelvin−Voigt)

1
K∞

(
δ(t) + τ1−τ2

τ1τ2
e− t

τ1 H (t)
)

, (Zener)

(B1)

where δ(t) and H(t) denote the Dirac and Heaviside step func-
tions, respectively. The involved parameters are explained in
Section 5.


