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1. Introduction

The notion of cointegration, which has received much attention in recent publications, was
introduced by GRANGER (1981), and further developed in ENGLE AND GRANGER (1987). It captures
the empirical observation that many economic variables seem to fluctuate widely, with increasing
variance, while particular linear combinations of those variables, representing deviations from
economic equilibrium relationships, have finite variance.

Least squares estimation of cointegrating vectors has been studied by PHILLIPS AND DURLAUF
(1986) and STock (1987), who proved that the short run dynamic properties can be neglected for
consistent estimation of the long run parameters. Furthermore, these estimators converge to the
true parameter values at a faster rate than usual, a feature which is known as super consistency.
In both studies it is assumed that the variables have no deterministic trends. However, many
economic variables seem to have some constant drift in the long run. In this paper, the
implications of the presence of such variables for the estimation and testing of cointegrating
relationships are studied. For the asymptotic derivations, we shall utilize and extend the results
obtained by PARK AND PHILLIPS (1988,1989). Since BANERJEE ET AL. (1986) showed that in small
samples, least squares estimators from static regressions can have substantial biases, we shall also
perform some Monte Carlo experiments.

Two alternative procedures are considered, both based on least squares estimation of single
linear regression equations. The first one, proposed by ENGLE AND GRANGER (1987), consists of
estimating a cointegrating vector in a static regression equation, and using the residuals from
this equation in the Dickey-Fuller test or the Durbin-Watson statistic for a test on integration.
The second procedure, a generalization of the one employed by BANERJEE ET AL. (1986), consists
of estimating a single error correction equation, from which both an estimator of the
cointegrating vector and a test for cointegration can be derived. Both procedures only use limited
information; full information procedures, derived in a multivariate setting, have recently been
proposed by PHILLIPS AND OULIARIS (1988b) and JOHANSEN (1988). However, the procedures studied
in this paper are still of interest, because they are easily implemented and interpreted.

In section 2 the model is stated and some alternative representations are considered. The
relationship between cointegrated variables and error correction models, which was established
in ENGLE AND GRANGER (1987), is restated for the present case. In the third section, the estimators
and test statistics are defined. The asymptotic properties are derived in section 4. Next, in section
5 some Monte Carlo simulation results for the small sample properties of the two procedures are
presented and discussed, and finally in section 6 we come to our conclusions.
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2. The model: assumptions and representations

Consider an N dimensional vector stochastic process {z,, t=1,2,...}, with the following
properties:

ASSUMPTIONS :

(i) All components of z, are integrated of order 1, that is, Az, is stationary.

(ii) There exist a linear combination v, = o'z, which is stationary. The vector o is unique up to a
scale factor.

(iii) The joint distribution of {Az,, t=1,...} is Gaussian with finite mean.

(iv) The conditional memory of the process {zt}°1° is restricted to p periods.

The first two assumptions imply that the components of z, are cointegrated. The second part
of condition (ii) is necessary for single-equation methods to be applicable; otherwise
identification problems would arise. Without imposing any exogeneity or causality restrictions,
we can partition z, as (y,, x;)’ and normalize a as (I, -8’)’. Using these definitions, we can
interpret the first two assumptions as follows: they postulate a long run equilibrium relationship
y; = 0'%,, and state that the deviation from the equilibrium v, is a stationary stochastic process.
The third condition allows the process {z,}7 to comprise a linear deterministic trend. The last
two assumptions are used for the following derivations. Letting F, denote the o-field generated
by {zt,zt_l,...}, there are NxN matrices A j=1,...,p, and €, and an Nx! vector m such that we

have:

E [ z, | Fy 4 ] ngjzt_j + m, (1)

V[Zt IFt‘—l]

a, ‘ (2)

g, = Z - E[ z, |Ft‘1:|= z, -ngjz,;_j - m

A(L)z, - m, 3)
where L is the lag or backshift operator, A(L) is an NxN matrix lag polynomial with A(0) = Ig
and {&,}7 is, by construction, an N dimensional Gaussian white noise sequence with covariance

matrix (). Rearranging the terms in (3), the vector autoregressive representation of z, is obtained:

A(L)z, = m + &. (4)
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Because of assumption (i), Az, has the following Wold representation:
[o o]

Az, = p + z(:)Cjet_j = p + C(L)g,, (5)
J:

where C(L) is an NxN matrix lag polynomial, defined by (I—L)A(L)’l, with exponentially
decreasing matrices Cj, and

=
]
agh:

Cm = C(1)m , (6)

which is the drift vector. We can always express C(L) as:

[}
™8
._()

+

S cu (I-L) 5 (- 3 cyLit
j=0 =1

i=j

C(l) + AC'(L), (7)

where C*(L) is a matrix lag polynomial with exponentially decreasing matrices C;. Therefore we
can rewrite (5) as

Az, = p + C(l)e, + A C (L), . (3)

Integrating both sides of this equation, we obtain the common trends representation, introduced
by STOCK AND WATSON (1988):

z, = pt + C(1) _Ztles + C'(L)g, + ¢, ©)

where ¢ is equal to the sum of the initial conditions zg - C*(L)eo, which we consider to be non-
stochastic. This representation clarifies that z, is the sum of a linear deterministic trend, a
stochastic trend (or random walk) and a stationary part. From (9) it is clear that any linear
combination &'z, can only be stationary if a’C(1) = 0 (which implies o’p = 0 because of equation
(6)). Therefore, the existence of a unique cointegrating vector requires that rank C(1) = N-1.
The equilibrium error v, = &'z, is stationary with the following Wold representation:

vp = v + K(L)gy = v + u, (10)

where v = o’c and K(L) = a’C*(L).

The connection between cointegrated systems and error correction mechanisms is stated in
the Granger Representation Theorem (see ENGLE AND GRANGER (1987) ). ENGLE AND Yoo (1987)
extended this theorem to the case where z, has a linear trend. This version is repeated below:



GRANGER REPRESENTATION THEOREM :

If the N dimensional stochastic process {z,}7 satisfies assumptions (i) - (iv) and equations (‘ﬁ)
and (5), then : i

G) A1) has rank 1,
(i)  There exist Nx1 vectors o and v such that

®C(1)=0,  C(l)y1=0, A(l) =1’ ,

(iii) There exists an error correction representation :

p-1
Az, = m - Yo'z, +j_zlA;Azt_j + €. (1)

Proof : See ENGLE AND GRANGER (1987), pp. 256-258, with ¢, replaced by (m + ¢,). o

The error correction representation from this theorem consists of a system of simultaneous
equations. Estimation of the parameters of (11), in particular of «, should be performed under
non-linear cross-equation restrictions, because « appears in all equations. A solution for this
estimation problem is provided by JOHANSEN (1988) for the case of integrated processes with no
drift.

Alternatively, we can derive a single error-correction equation, from which the cointegrating
vector can be identified. First we partition m as (m;, m;)’, and Aj, j=1,...,p, and Q as

Because of the joint normality of y, and x,, we have:

E [ Ve | Xp Feog ] K+ Box, + ji; (P54-5 + BiXy_3) (12)

o2, (13)

V[ytlxt’pt—l ]




W LEre
- » -1 _ -1 _ » -1
£ = my - wy{lym,, By = (Iy3wy; o = Wiy - WayllgaWys
- » -1 L. » -1 . _
(pJ = aj’u - wzlnzzaj'zl N ﬁ.l = aj'lz - w21n22Aj'22 N )= l,2,...,p 1.

Letting (L) =1 - Z‘J-’:l«ijj and A(L) = Z‘j’=oﬂjL3, we can formulate the following autoregressive-
distributed lag equation:

p(L)y, = £ + BLYx, + ny, (14)

where {n,}7 is a Gaussian white noise sequence with variance o?. Cointegration implies that the
roots of the equation det ¢(z) = 0 all lie outside the unit circle, which is the usual stability
condition and should not be confused with a stationarity condition, which is a condition on the
joint process {(y,, X{)’}7-

Equation (14) can always be rewritten in an error correction form. First, express the lag
polynomials as

p(L) = (1- .ff’j)L + (I-L) + (I-L) 2(.fsoi)v"1 = ()L +(I-Lyp'(L) ,
j= =2 i=j
(15)
AL) = .f{fsh + Bo(I-L) + (I-L).fz( - SeLit - pL+ AL,
= J= 1=)

with <p*(0) =1 and ﬁ'(O) = B,. If we define A = (A}, Ap)’ = (-¢(1), B(1)’) , and substitute these
expressions in (14), we have

Pzl *
Ay, K+ BaAX, + A Yy g + AgXpp + _):i(qojAyt_j + By AX, ) + my
J:

p-1 :
K+ BRAX, + A (Yy_1-0'%.y) + -Z;(tp}Ayt_j + ﬁ;’Axt_j) + o, (16)
= ,

where it remains to be proved that ), = - 6. This follows from the definition of the parameters
p; and B;. Because Ag = Iy, we have ¢y = (3,13 - “’519'2-%30,21) =1 and By = -(ag 5 - "’hngéAo,zz)
= ﬂ;§w21. With these expressions, it is easy to see that

(-p(1), BAYY = - [ (@(l)yy - w3, 0758(1)5) » (@(1)y5 - w3 053A(1)55) ]

- (1, -~wp DA = - (1, -Bgne’, (17)

because of the Granger Representation Theorem, éo we have X = A (1, -8") with A, = (1, -By)7.
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3. Two estimation and testing procedures

1. Static regression

ENGLE AND GRANGER (1987) proposed to estimate # in a static, so-called cointegrating
regression equation. Using the definition v, = &'z, = y, - 6’x, and equation (10), we have:

y, = v+ 0x, +u,. (18)
t t t

However, u, is far from a white noise innovation, since u, is serially correlated and, more
importantly, u, is generally correlated with x;. Nevertheless, PHILLIPS AND DURLAUF (1986) and
STocK (1987) showed that because of the non- stationarity of x,, the ordinary least squares
estimator 0T is consistent and converges to the true value 6 at a rate of O (T'l) instead of the
usual rate O (T'1/ %), where T is the sample size. A similar result has been proved for the case
where Yy, and x, have deterministic trends by PARK AND PHILLIPS (1988).

The residuals ﬁt of regression (18) can be used in the Durbin-Watson (DW) statistic for a test
on integration or in an Augmented Dickey-Fuller (ADF) test, see DICKEY AND FULLER (1979),
which is the t-ratio of 7 in the auxiliary regression equation

'Aﬁt = wﬁt_1+ iajAﬁt_j + €. (19)
‘ j=1 ‘ S ‘

ENGLE AND GRANGER (1987) recommend this test on the basis of Monte Carlo simulation results;
its critical values seem to be less dependent on the parametrization then those of alternative tests
are. The Durbin-Watson statistic, which was proposed for a test on (co-)integration by SARGAN
AND BHARGAVA (1983), seems to have higher power if the process v, has a short conditional
memory. This is a very special case, even if the process z, can be represented by a low order
VAR.

Alternatively, we can use the residuals ﬁ: from the regression equation

yt=y+§‘t+0’xt+u: o (20)

in the auxiliary regression (19) or in the Durbin-Watson statistic, or equivalently, use detrended
data in (18). We shall designate the statistics constructed from these residuals ADF" and DW’,
respectively. Although u, is not trended, so that (20) is actually overparametrized, these test
statistics are of interest because it has often been recommended to use detrended data if
deterministic trends are present (see e.g. ENGLE AND GRANGER (1987, p.255)). Moreover, their
asymptotic properties differ from those of the standard statistics DW and ADF, as we shall see

in section 4.



II. Autoregressive-Distributed lag regression

Least squares estimation of (16) yields 5‘1’1‘ and :\2T- With these, it is obvious to define the
estimator ‘

:\ZT . 21

Although this estimator uses more information than the static regression estimator, it is in general
not a maximum likelihood estimator. To see this, note that the joint density f(y;,x, |F,.,) can
be factorized as f(y, |x,,Fy.y) (X |Fy.y); ¢ enters both the conditional density of y, and the
marginal density of x, (see equation (11)), so x, is generally not weakly exogenous for 0. The
only exception to this is the case where y, is the only ’error correcting’ variable in the system,
that is, when « in (11) is equal to (7, 0’)’. We shall not impose this restriction here. Note that
the presence of the constant term « in (16) is the consequence of the presence of a deterministic
trend in z,. If p=0, it can in principle be removed from the regression equation, but we shall not
investigate the consequences of this restriction.

BEWLEY (1979) and WICKENS AND BREUSCH (1988) show that ?T is identical to the instrumental
variable estimator of ¢ in

* s | 2t S o, *
yt = K + 0 xt + .ZO(PJ Ayt'j + ﬁ) Axt_j) + nt ’ (22)
J:

with {yH,...,yt_p,xt,...,xt_p) as instruments. Equation (22) is called the pseudo-structural form.
Because this equation is exactly identified, the estimator FT has no finite moments (see KINAL
(1980)). This will have special implications for the interpretation of the Monte Carlo results in
section 3.

We can use the Wald test (F) for the joint significance of y,_; and x,_, in (16) as a test for
cointegration. Under the null of no cointegration, ), and ), should be equal to zero, while under
the alternative hypothesis that y, and x; are cointegrated, -2<X;<0 and 2,#0. This test is in line
with the one proposed by BANERJEE ET AL. (1986); they consider only the case where N=2 and
6=1, and use the t-ratio of A,, the coefficient of the error correction term (Vg-1-%g-1)

We shall also consider F", which is the Wald test for the joint significance of y,_; and x,_,
in equation (16) with a linear trend term added to the regressors. The true coefficient of this
regressor is zero both under the null and under the alternative hypothesis, but, as we shall show
in the next section, the use of detrended data has the advantage that the asymptotic distribution
of the Wald test is free of nuisance parameters. ‘



4. Asymptotic properties

' In order to derive the asymptotic results, we shall need the following lemmas, based on the
multivariate invariance principle from PHILLIPS AND DURLAUF (1986), the continuous mapping
theorem (see BILLINGSLEY (1968) ) and a special weak convergence result proved in PHILLIPS (1988).
After that, we shall make extensive use of the results from PARK AND PHILLIPS (1988,1989) and
PHILLIPS AND OULIARIS (1988a).

LEMMA 1 (Multivariate invariance principle) :
Let {xt}°f be an N dimensional process with
Axy = uy = O(L)g, ,

a zero-mean stationary Gaussian MA(oo) process with V(e,) = Q, a positive definite matrix. Next,
define S; = x, - X, and let ‘

T = limg,, E(}SpSp) = e(nely ,
Xg(t) = ZSem = 5Spas (-1)/Tsr<j/T , (j=1,...T , r €[0,1]).
If T positive definite then, as T—oo,

Xp(r) = B@) = 21/2W(r),

where B(r) and W(r) are N dimensional Brownian motions with covariance matrices & and Iy

respectively, and the symbol "=" denotes weak convergence of the associated probability measures.
Proof : Proofs are given in appendix A. O

LEMMA 2 (Continuous Mapping Theorem) :

1/ Xq(r) = B(r) as T—oo and h is a continuous functional, except for a set D for which P{B(r)eD)
= 0, then h(X1(r)) = h(B(r)) as T—oo.




LEMMA 3 :

Make the assumptions of lemma I, and let
) T
L= hmT_’ootZzE(ulu;)
Then, as T—oo, we have:

T 1
(@ T32 ¥ x, = [B()dr,
t=1 0

(b) T2 tilxtx; = f B(r)B(r)’ dr ,

T 1
() T! tz,lxt_lu; = be(r) dB(r) + I,

T 1
(d T2 Ytx, = [rB(r)dr,
t=1 0

e) T3/? %tut = zfrdB(r).
t=1

The results of lemma 3 form the building blocks of the asymptotic theory for regressions
with integrated processes. All estimators and test statistics can be expressed as products of second
moment matrices, and with the continuous mapping theorem we can link these separate
convergence results together, yielding the required asymptotic expressions.

Estimation

In theorem 1, we state some asymptotic results for the estimators 67 and . For the static
regression estimator, these results have been proved by PHILLIPS AND DURLAUF (1986) and PARK
AND PHILLIPS (1988); they are repeated below for comparison. For ?)'T, we use theorems 3.1 and
3.2 from PARK AND PHILLIPS (1989). In order to derive the asymptotic results for this estimator,
it is convenient to premultiply the partial regressor vector z,_; and its coefficient vector A with
an orthogonal matrix G’ = (g;, G,)’, where g, is the normalized cointegrating vector and

1
o 2

G, = | Iy, +08 |, 23)
Ina
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so the columns of G, span the orthogonal complement of the cointegrating vector. The matrix G
in effect decomposes z,_, into a stationary variable and an integrated (N-1)-vector.

. We provide the asymptotic distributions only for a special case, because the other asymptotic:
distributions involve quite complicated functionals of Brownian motions and depend on some-
nuisance parameters, so they are not well suited for efficiency assessment or specification testing.
However, those results are available from the author on request.

THEOREM 1 :

Let {zt}"f ={(y,.X})}T satisfy assumptions (i)-(iv). Next, let u=(uy,p,;()’, and define aﬁ=K(l)ﬂK( 1y,
where the lag polynomial K(L) is defined in equation (10). Furthermore, let the (N-1)x1 vector pg
be defined by Gyu. Then we have. as T—oo :

(b) If N=2and p +0, then
T32%(6p - 0) = N(0,120%/42),
TG -6) = N(0,120%/(\u)) .

(c) IfN>2oru=0, then

bp-6 = OyTY,
bp-6 = 04T,

(d) If p#0, then
wbr -0 = o T3,
pilp -6 = O (T3,
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The results of theorem 1 indicate that the presence of deterministic trends can only improve the
convergence of the estimator g5, and fy. Note that if the cointegrating relationship involves only
two variables, both x; and Gyz, asymptotically behave as linear trends, so the convergence rate
is even faster. In that case the limiting distribution of both é’r and 9'.1, is normal, which is quite
exceptional for regressions with integrated processes. If N > 2 and u # 0, the distributions of
T(éT - 6) and T(fy - 6) lie in (N-2) dimensional subspaces of RN"1; thérefore the results of part
(d) apply.

Testing

In order to derive the asymptotic distributions of the test statistics under the null hypothesis
of no cointegration, we shall replace assumption (ii) with

(ii)’ There are no stationary linear combinations of the components of z,, so C(1) is non-singular.

For the asymptotic divtributions of the residual based tests DW and ADF we need the distribution
of the static regression estimator 3T. This will be given in lemma 4, but first we make the
following definitions. We define the N dimensional zero-mean stationary process v and its

partial sum process S; as

v, = Azg-p = C(L)y, (24)

v, = 2y - Bt - Zg. (25)

S, =

8

finge

Next, we shall be using the following moment matrices:

o0
£, = Evw] = Y CAC], (26)
j=0
. T co oo
B, = limp,,, ) Evyp = ) c,ac; (27)
t=2 j=0 i=j)+1
% = limg,, EGh S{Sp) = C(AC(Y = Zo+ I+ 51, (28)

Next, define 7 = uy(u;ux)'lux and h, = (,u;ux)'l/zux. Furthermore, let H = (h;, H,) be an
orthogonal (N-1)x(N-1) matrix, so that the columns of H, span the orthogonal complement of
Py We define the (N-1)xN matrix R as !

R = ' . (29)
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Let Wy(r) = (Wy,(r), Wy,(r)’) denote the standard N dimensional Brownian motion (with
covariance matrix Iy), and let Wy(r) = (W,,(r), W,,(r)’)’ denote the standard (N-1) dimensional

Brownian motion. We define B,(r) and B,(r) as follows:
: Cme

B,(r) = ( B,(r),B,(r) ) = ZY2w(r) , (30)
By(r) = ( Byy(r),By,(r) )

R By(r) . (31)

For any process X(r) on [0,1] we let X*(r) and X**(r) denote the demeaned and detrended
processes, respectively:

1
X'() = X@) - b[X(s)ds, (32)
o 1 1 1 1
X (r) = X(r) - 4( [X(s)ds - %JsX(s)ds) + 61( {X(s)ds -2 i;'sX(s)cis). (33)
0
Finally, we shall use the following scalar process:

1 * 1 * % *
Pr) = r-3 - JsBzz(s)’ds ( bezz(s)Bzz(s)’ds)'l B,,(r) . (34)

With these definitions, we can state the asymptotic properties of ?)T under the null hypothesis
of no cointegration.

LEMMA 4 :
Let (2,}7 satisfy assumptions (i), (ii)’, (iii) and (iv). Then, as T—oo,

(@) If N=2and p+0, then
2 12 4
VIGr-m = br(nr—zif)la;fl(r)dr =&,
X
(b If N>2and up+#0, then

- 1 * - 1 *ok * ok
by - =  Hy( g B,,(r)By,(r)dr) ™ g B,,(r)By ()dr = ¢,

- ' 1 1 N
VTugbp -m = ( bf P(r)%dr)! bfp(r)BZI(r)dr = &,
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(¢) If p=0, then

1 _ 1 *
brp = J B},(r)B},(r)dr ) g Bl,(r)B,(Ndr = ¢,,
(d) For 9;, the static estimator with a trend term included in the regression, we have

% 1 *k * % _ 1 * % %
O = g B,(r)B ,(r)dr ) JBlz(r)Bn(r)dr = ¢ .

The results of lemma 3 are similar to the ’spurious regression’ results of PHILLIPS (1986);
statement (c) is in fact part of his theorem 2. If k > 1 and the variables are trended, the estimator
@T converges to a non-degenerate random variable; with only one regressor however, it converges
to the ratio of the drift parameters. In both cases the residuals ﬁt do not have linear trends,
because &T = (1, —@.})’ converges to a (random) variable that is orthogonal to the drift vector p.

In theorem 2, we state the asymptotic distributions of the static regression residual based tests
ADF and DW. We let ¢;, i=1,..,4, denote the limits of the estimator &T = (1, —(},})’ for the separate
cases considered in lemma 4. Thus,

¢y =1, -n), Co= (1, -(m+£,)) . $3=(1, =€), Ca=(1,-65°) . (35)

Although the process z, can be represented by a finite vector autoregression, this is generally not
the case for u,. Therefore, we need the following condition:

CONDITION 1| : For q, the order of the autoregression in (18), we require that gq—oo as T—o0
and q = o (T/%).

SAID AND DICKEY (1984) have shown that under this condition the asymptotic distribution of the
ADF test, applied to original data, is free of nuisance parameters, even if these data follow
general ARIMA(p,1,q) processes. PHILLIPS AND OULIARIS (1988a) extended this result to the case
where residuals instead of original data are used. We reiterate and generalize their results in
theorem 2.

THEOREM 2 :

Let {zt}°1° satisfy the assumptions of lemma 4, and assume that condition 1 holds. Then, as T—oo,



14

(@) IfN=1and u+0, then
) 1 *k (2
1 ¥k 2 _1/2 1 %k ook
ADF = ( g W, (r)%dr ) g W, (r) dW, (1),
(b) If N>2and u +0, then
1 %ok 2
TDW = {58, / b[ B,4o(r)dr

**’ %

1 *k _ 1 T * ok
ADF = [(r,°1y) i!wn,z(r)?'dr] 1/2 J W 1aa(r) AWop5(1)
() If u=0, then

1 *®
TDW = S, / b[Bn.z(r)zdr,

* K | - - b *
ADF =  [(r'1) t{wn,z(r)zdr] 1/2 b[wn,z(r) AW7,.5(1) ,
(d) For DW" and ADF*, we have
* 1 * % 2
TDW. = {50 / g B ea(r)%dr ,

**’ *%

* . _ | S * ok

ADF' = [(r;"1]) J Wiieg(n)?dr 174/2 me(r) AW} .s(0)
where

* * 1 * * 1 * * -1 p*

Bi1ea(r) = Byy(r) - gBil(s)Biz(s)’ds (gBiz(s)Biz(s)’ds) B,(r),
for i=1,2, with B’;:.z(r), W:I,Z(r) and W:;.Z(r) defined analogously, and

* 1 . * 1 . * , -1

=11, - J W, (r)W(r)dr ( g' Wip(DW ,(rydr )™ 1,

* ok *ok . . . R *ok
with 7, and 1, defined in the same way from the detrended standard Brownian motions W (r)

and W;*(r).
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In all cases, the Durbin-Watson statistic converges to zero, and the asymptotic distribution
of the normalized DW test statistic depends on unknown parameters. The reason for this is that
W does not correct for the serial correlation of Az It can be proved that if the system can be
represented by a first order VAR, so that & = %¢» the asymptotic distribution of T DW is free of
nuisance parameters. This is however a very restrictive case.

The asymptotic distribution of the Augmented Dickey-Fuller test statistic is in all cases free
of nuisance parameters. The asymptotic expressions are all examples of the functional

( Jl X(r)2dr ) 1/2 f X(r) dX(r) , ‘ (36)

where X(r) is a univariate process on [0,1]. If X(r) is Wi(r), W*(r) or W“(r), then (36) gives the
distribution of the Dickey-Fuller statistics 7, 7, and 7, tabulated in FULLER (1976, p.373). For a
multivariate process X(r) = (X,(r),Xy(r)"), the process X,,q(r) can be interpreted as X,(r),
>corrected for’ X,(r); it is the projection of X,(r) on the orthogonal complement of X,(r).

Part (c) and (d) of theorem 2 have been proved in PHILLIPS AND QULIARIS (1988a). The effect
of the deterministic trends in (a) and (b) is a reduction of the dimension of the Brownian motion.
Therefore, if N=2 and u#0, ADF is asymptotically distributed as 7,, the ADF statistic for a
detrended univariate process. In this case, the ADF test (and also the DW test) actually checks
whether the linear combination that eliminates the deterministic trends is stationary. Similarly,
when N>2 it is tested whether one of the N-1 linear combinations, orthogonal to the drift vector,
is stationary. Note that although no unknown parameters enter the asymptotic expressions for
ADF, it still depends on whether or not u=0. The *detrended’ version ADEFE" does not have this
disadvantage. Asymptotic critical values for ADFand ADF" are tabulated in PHILLIPS AND OULIARIS
(1988a, table 2a-2c).

We now derive the asymptotic distribution of F and F' under the null of no cointegration.

“THEOREM 3 :

Let (2,)% satisfy assumptions (i), (ii)’, (iii) and (iv). Next, let K, be an Nx(N-1) matrix such that
Kju = 0 and K3K, = Iy_y. Define the following process on [0,1]

wm? (r-3)
M(r) =
KB (r)

Finally, lets =0 a2, ~w3053). Then, as T—oo,
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(@) If p#0, then

F oo ¢ [de’;(r) M(r)’('bflM<r)M(r)’ dr ) bflM(r) dwir) Js
(b) If u=0, then

Foo fawio wior( wiowie a0 fwie avio |

(¢) For F*, the Wald test in a regression with a trend term included, we have

*

1 %%k *k 1 ok &% 1 %% * %k
F o= den(r) W,y () ( { W, (W, (r) dr )-11{ Wy (r) dWyy(n) .

From part (a) of theorem 3, it is clear that the asymptotic distribution of F depend on unknown
parameters if the process z, has a deterministic trend. Therefore, in that case F' is to be
preferred. Critical values for the asymptotic distributions of (b) and (c) have been obtained for
various values of N by Monte Carlo simulation (using 10000 replications and T=500) and are
tabulated in tables B1-B3 in appendix B. The expressions are equal to the first diagonal element
of the matrix valued mapping

gldX(r) X(r) ( gIX(r)X(r)’ dr)? ble(r) dX(ry , (37)

where X(r) is a demeaned or detrended Brownian motion. Note that this is the quadratic form
of a multivariate version of the functional given by (36). Full information tests such as the
multivariate unit root test of PHILLIPS AND DURLAUF (1986) or the cointegration test of JOHANSEN
(1988) are asymptotically distributed as the trace of this functional, because they are derived
from a vector autoregression instead of a single autoregressive-distributed lag equation.

In the next theorem we analyze the asymptotic behavior of all test statistics under the
alternative hypothesis that z, is cointegrated.

THEOREM 4 ;

Let {zt}°1° satisfy assumptions (1)-(iv). Then we have

(@) DW=041),
DW" = 0,(1),
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(b) ADF = O(T'/%),
ADF" = O(T'/?),

(c) F=04T),
F' =0y (T).

From the results in theorem 4 we deduce that all tests are consistent. The normalized Durbin-
Watson statistic T DW and the Wald test diverge more rapidly than the ADF test. This suggest
that the latter is less powerful in moderate samples; however, this may be misleading, because
in the classical case with a single restriction, the F-test also diverges more rapidly that the t-
test, but it is well known that their rejection frequencies are identical.

On the basis of the asymptotic results of this section we cannot make a clear choice between
the two procedures. Both estimators are *super’-consistent and have the same convergence rate.
As for the test statistics, all tests are consistent, but one of them, the Durbin-Watson test, has the
disadvantage that its asymptotic distribution cannot be used for critical values, because it depends
on unknown parameters. The detrended test F " is to be preferred over the standard version F,
because its asymptotic distribution does not depend on nuisance parameters. For the ADF test,
both versions are independent of unknown parameters. In this case, the standard version may be
preferable, because it tests whether a linear combination that eliminates the deterministic trend
also eliminates the stochastic trend. Because the asymptotic distribution of this test depends on
whether or not p=0, this should be investigated before the cointegration test is carried out.
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5. Small sample properties : some Monte Carlo experiments

Before presenting our own results, we shall review the findings of some earlier Monte Carlo
studies. BANERJEE ET AL. (1986) compared the static and dynamic regression procedure for a
bivariate system of cointegrated variables with no deterministic trends. They found that the
dynamic regression estimator has a substantially lower bias than the static estimator. They also
compared the powers of the Durbin-Watson test and a t-test on the significance of the restricted
error correction term and concluded that in this respect the dynamic regression procedure also
performs better. STOCK (1987) presented some Monte Carlo results on the small sample behavior
of the static regression estimator (again, for variables with no deterministic trends) and found
quite large biases. ENGLE AND GRANGER (1987) compared various tests on cointegration. They
concluded that residual based tests preform better than tests based on a vector autoregression;
whether the ADF-test or the DW-test is more powerful depends on the presence of serial
correlation in Az,

In order to investigate the small sample performance of the two estimation and testing
procedures for trended data, we use simulated data from the following bivariate error correction
system:

Ayty = /M.xt = MYyop - 0%pp) + &gy (36)
Axy = p + WYey - 0%yy) + €y, (37)
with
e | iid N(o, [ O],
€at 0 2
B=05, A€ {0,0.1,0.5),
h=1, 7€{0,0.1},
p=001, o, € {0.01, 0.05} ,
o, =0.02, T € {24, 48, 100, 200} .

Although the parameter values are entirely imaginary, they may be associated with a system
of logarithms of quarterly time series, such as aggregate consumer’s expenditure and income; in
that case standard errors are fractions of the dependent variables and the drift parameters
represent mean quarterly growth rates. The parameter g is called the impact multiplier, and 0 the
long run multiplier; in a preliminary Monte Carlo study we also tried a value of $=0.1, but this
did not change the performance significantly, Which parameter values are the most relevant
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depends on the variables being modelled; inspecting the consumption function of DAVIDSON ET AL.
(1978) and the money demand equation of HENDRY AND RICHARD (1983) suggests that a standard
error o, of 0.01 and an adjustment rate A of 0.1 may be considered realistic for those models.
Note that if 4#0, x, is not weakly exogenous for 6 in equation (16); therefore, in that case GT is
not a full information estimator. Whether this is a relevant case for the forenamed relationships
is hard to establish; usually weak exogeneity is assumed instead of tested.

From all possible parameter value combinations, we exclude those with (3,7) = (0, 0.1).
Although this case is feasible, it is difficult to interpret because y, and x; then are cointegrated,
but it does not show up in a conditional model of y, given x,. We use the parameter values A=0
and 7=0 to compare the empirical with the nominal significance levels. The lag length p in (16)
is set to its true value 1. The lag length q in the auxiliary regression is set to 0 for all sample
sizes, which may seem to be in conflict with condition 1, which requires q to be a slowly
increasing function of T. However, under the null hypothesis u, follows a first order
autoregressive process, so no inclusion of extra lags is necessary. In both regression equations a
constant term is included. For all experiments we use 1000 replications.

Estimation

In table 1 and 2, the bias and root mean squared error of the estimators 9’1‘ and (TT are
compared for various parameter values. In table 1, A = 0.1, indicating that 10 percent of the
equilibrium error is corrected in the next period. In this case therefore, cointegration of y, and
x, will show up weakly in the data relative to the case where X=0.5. The results for the sample
sizes 24 and 48 are quite bad for both procedures: in all cases, either the bias or RMSE (or both)
is larger than 0.1, which is 10% of the true value of 4.

On average, EfT seems to have a smaller bias, but a larger RMSE. Closer examination reveals
that this is the consequence of the estimator being defined as the ratio of two estimators. Because
the true value of the denominator is relatively close to zero, there are quite some outliers, giving
rise to very large variances. As argued in section 3, (7'1‘ can be interpreted as an exactly identified
instrumental variable estimator, and consequently it has no finite moments. Therefore the bias
and RMSE of this estimator actually do not exist, and their Monte Carlo estimators will do a poor
job in measuring the location and dispersion of 'O“T. For the larger sample sizes and for A=0.5 ,
this problem does not seem to be very serious, which is the reason why we still use the bias and
root mean squared error for comparison of the two estimators.

In table 2, A = 0.5. Now the true value of the denominator of the dynamic regression
estimator is sufficiently far from zero, so there is no problem of outliers. The adjustment speed
of the system is higher, which leads to better performance of both estimators, but the dynamic
regression estimator seems to be superior in this case.
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TABLE 1 : Bias and RMSE of 4 and 0, A = 0.1

-

bp 2

T bias RMSE bias RMSE

=0, 24 -0.2091  0.2609 -0.0793 0.6403
0,=001 48 -0.0935  0.1327 -0.0229 0.1644

100 -0.0305  0.0502 -0.0056 0.0402

200 -0.0088  0.0184 -0.0013 0.0130

y=0.1, 24 -0.2220  0.2837 0.0284 3.2461

0, =001 48 -0.0981  0.1479 -0.0294 0.5399

100 -0.0309  0.0545 -0.0110 0.0598

200 -0.0088  0.0196 -0.0035 0.0197

=0, 24 -0.1680  0.6877 -0.0622 2.8112

0, =005 48 -0.0814  0.3716 -0.0560 1.5305

100 -0.0343  0.1549 -0.0110 0.1774

200 -0.0105  0.0605 -0.0034 0.0632

y=01, 24 -0.1972  0.6460 -0.9150 2.8315

0, =005 48 -0.1032  0.3633 ~ -0.5376 6.0746

100 -0.0415  0.1583 -0.5663 0.7566

200 -0.0168  0.0691 -0.4817 0.6715

The standard error o, has an asymmetric effect on the estimators: the RMSE of @T
approximately triples when o, is multiplied by 5, whereas the RMSE of the second estimator
seems to be proportional with o,. The presence of an error correction term in the equation for
x, does not have a large effect on the performance of @T; on the dynamic regression estimator,
the effect is negative, especially if o, = 0.05. The case {3=0.1, 7=0.1, ¢,=0.05} is quite disastrous
for F’rf even with the larger sample sizes, the bias and RMSE hardly show any decrease. As noted
before, whether this is relevant depends on the model and the data being modelled; however, the
value of the standard error does seem to be quite large for log-linear models. Apart from this
case, the convergence rate of OP(T'?’/ %) is reasonably reflected in the RMSE of both estimators:
doubling of the sample size leads to a decrease with a factor approximately equal to 2°8/2 (~0.35).
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TABLE 2 : Bias and RMSE of 85 and 0, X = 0.5

~ ~

fr Op

T bias RMSE bias RMSE

=0, 24 -0.0497 0.1065 -0.0015 0.0774
o, = 0.01 48 -0.0132 0.0376 -0.0004 0.0244
100 -0.0033 0.0108 -0.0003 0.0077

200 -0.0008 0.0036 -0.0001 0.0027

~v=0.1, 24 -0.0553 0.1108 -0.0053 0.0833
o, = 0.01 48 -0.0150 0.0384 -0.0007 0.0268
100 -0.0037 0.0109 -0.0006 0.0084

200 -0.0009 0.0037 -0.0002 0.0024

v=0, 24 -0.0306 0.3265 0.0131 0.3857
o, = 0.05 48 -0.0090 0.1143 0.0052 0.1193
100 -0.0044 0.0375 -0.0011 0.0378

200 -0.0012 0.0130 -0.0004 0.0128

v=0.1, 24 -0.0778 0.3242 -0.0626 0.7927
oy = 0.05 48 -0.0229 0.1222 -0.0257 0.1425
100 -0.0071 0.0389 -0.0080 0.0433

200 -0.0020 0.0135 -0.0023 0.0145

To base a recommendation on these results is not easy. On the one hand, 8y has a smaller
bias in most cases. However, if the adjustment speed of the system is low, and only a small
sample is available, there is a serious risk of obtaining a nonsensical value. Nevertheless, in this
case cointegration will show up very weakly in the data, so an inaccurate estimate is to be
expected with both procedures; moreover, the estimated bias and mean squared error may be
especially unfavorable for ?’T, because this estimator has no finite moments; other measures of
location and dispersion may be more opportune.
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Testing

In order to obtain 5% critical values for the Durbin-Watson statistic, we interpolate the upper
and lower values from SARGAN AND BHARGAVA (1983) linearly in k (the number of regressors except
for the constant term) and with a quadratic in 1/T. Note that for DW" the number of regressors
is inclus_ive of the trend term. With these, we construct critical values as:

d = 025d;, + 0.75dy + k/2T, (38)

which is suggested by the authors as a crude approximation. For the ADF test, we use the 5%
critical value for }, from FULLER (1976, p.373), which is appropriate because of theorem 2(a). For
ADF*, the 5% critical value of table 2¢ of PHILLIPS AND OULIARIS (1988a) is applicable, with n(=N-
I)=1.

~ For the Wald test statistics F and F*, we take critical values from tables B2 and B3,
respectively. Because u#0, it follows from theorem 3 that the asymptotic distribution of F depends
upon nuisance parameters; because of this problem we use table B2, which would be applicable
"if there were no deterministic trends. Note that for both cases, the critical values are larger than
the 5% critical value of the x2(2) distribution, which is (asymptotically) appropriate for a Wald
test on the significance of two stationary variables.

Next, we establish the actual rejection frequency under the null hypothesis A=0 and ~y=0.

Because p, the order of the system is equal to 1, the distributions of all test statistics do not
depend on o,.

TABLE 3 : Rejection frequencies of the DW, ADF and F tests under H,

DW DW" ADF  ADF F F'
T
24 0.068  0.060 0.094  0.104 0.107  0.088
48 0.075  0.088 0.083  0.095 0.091  0.065
100 0.064  0.049 0.061  0.057 0.082  0.052
200 0.058  0.048 0.062  0.067 0.081  0.052

For the Durbin-Watson test, the critical values for the detrended version seem to perform a little
better: with the Dickey-Fuller test the converse is true. However, in both cases the difference
is not large. The standard version of the Wald test has a rejection frequency which fails to come
near the nominal significance level of 5%. This should come as no surprise, because the critical
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values used in this case are actually only applicable if the variables have no deterministic trends.
The detrended test F performs much better. Note that for the ADF and F tests, the empirical
significance level approaches the nominal size from above; this indicates that ’classical’ critical
values for these tests, taken from the N(0,1) and x%(2) distributions respectively, would perform
even worse in small samples than asymptotically.

On the basis of these results, we recommend the use of the standard versions of the residual
based tests DW and ADF, because they have an empirical significance level that is not too far
from the nominal size. Furthermore, as we have shown in the previous section, the standard
versions have the advantage that they test simultaneously whether there is a cointegrating vector
and whether this vector also eliminates the deterministic trend form the variables.

TABLE 4 : Test rejection frequencies of the DW, ADF and F’ tests under H, (cointegration)

*

DW ADF F
Case T A=0.1 A=0.5 A=01 Xx=05 A=0.1 A=0.5
A 24 0.074 0.412 0.068 0.387 0.094 0.635
48 0.090 0.950 0.105 0.907 0.131 0.989
100 0.229 1.000 0.258 1.000 0.411 1.000
200 0.675 1.000 0.702 1.000 0916  1.000
B 24 0.080 0.485 0.087 0.459 0.095 0.592
48 0.183 0.980 0.131 0.947 0.112 0.982
100 0.529 1.000 0.413 1.000 0.259 1.000
200 0.977 1.000 0.952 1.000 0.722 1.000
C 24 0.089 0.475 0.112 0.457 0.093 0.345
48 0.152 0.954 0.120 0.915 0.083 0.813
100 0.305 1.000 0.223 1.000 0.156 1.000
200 0.733 1.000 0.649 1.000 0.497 1.000
D 24 0.094 0.549 0.112 0.530 0.115 0.312
48 0.211 0.981 0.156 0.956 0.108 0.731
100 0.533 1.000 0.396 1.000 0.183 0.997
200 0.977 1.000 0.946 1.000 0.389 1.000
Cases: A: =0, 0,=0.01, B: 4=0.1,0;=0.01,
C 1=0,0,=005, D: 4=0.1,0,=0.05.
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For the Wald test, we recommend the detrended version F*, because the standard version does
not have asymptotically appropriate critical values, independent of nuisance parameters, a
problem which is also reflected in the small sample significance levels. 1

Next, we compare the power of the DW, ADF and F" test for the same cases that rwe
considered for comparison of the estimators, listed in table 4. First the two residual based tests
are compared. Although the DW test on average has higher power than the ADF test, in most
cases the difference between them is not very large. The higher divergence rate of T DW (see
theorem 4) does not lead to a sharper increase in power of this test.

An increase in ) has a positive effect on the power of all tests. This could be expected,
because a faster adjustment rate implies that y, and x, move together more closely. In this case,
a sample size of 100 is sufficient for all testing procedures to attain a 100% rejection frequency.
The parameters 4 and o, again have an asymmetrical effect on the performance of the static and
the dynamic regression procedure. First, the presence of an error correction term in the equation
for Ax, raises the power the DW and ADF tests, whereas it lowers the power of the F test.
Second, an increase of the standard error o, doesn’t effect the residual based tests very much, but
again leads to a worse performance of the Wald test.

Because of these effects, the F test only has higher power than the other tests if 0,=0.01 and
4=0; in the other cases the residual based tests are superior. We argued before that the lower
value of the standard error may be more relevant for log-linear models; whether or not x, may
be considered weakly exogenous (so that 4=0) depends entirely on the variables being modelled.
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6. Conclusions

In this paper we have compared the asymptotic and small sample behavior of two long run
multiplier estimators and three tests on cointegration. The asymptotic properties of the two
estimators do not differ very much; both are consistent and have the same convergence rate. In
small samples, the static regression estimator often has a higher bias; in terms of root mean
squared error however, it often is superior to the dynamic regression estimator. This measure may
be especially unfavorable for the latter estimator because it has no finite moments.

For the test statistics, we have argued that the use of detrended data is appropriate for the
Wald test in the dynamic regression equation, because it leads to a parameter-free asymptotic
distribution; for the residual based tests it is not recommended. In a small sample power
comparison the DW and ADF tests generally perform better. If we restrict ourselves to the cases
that are regarded most relevant, the decision which one of the testing procedures is superior
depend on the question whether or not the regressor x, is weakly exogenous for the long run
parameter. If it isn’t, the static regression procedure generally performs better. However, in this
case full information procedures seem to be more appropriate.
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Appendix A

Proof‘of lemma 1 :

Follows from corollary 2.2 of PHILLIPS AND DURLAUF (1986). Because u, is a stationary Gaussian
process, the condition on the higher Vmoments is satisfied; moreover, for such a process the
autocovariances decrease exponentially, which implies that the condition on the mixing numbers
is satisfied.

Proof of lemma 2 :
See BILLINGSLEY (1968), Corollary 1, p.31 .

Proof of lemma 3 :

Statements (a), (b) and (c) are given in Lemma 3.1 of PHILLIPS AND DURLAUF (1986); part (c) is
proved more rigorously in PHILLIPS (1988). Parts (d) and (e) are given in Lemma 2.1 in PHILLIPS
AND PARK (1988).

Proof of theorem 1 :

The results for the static regression estimator é, follow from theorems 3.2 and 3.6 of PARK AND
PHILLIPS (1988).

We shall now prove the results for the dynamic regression estimator. Let q, = (Ayt_l,...,Ayt_p R
DX}y AX,_1 1) a0d § = (P1,00sPp 1, By, By'senesBy.y’)'- Because GG’ = g g + G,Gj = Iy, we can
write equation (16) as

Ay,

K+ XNzgy + Paq + 1,

K + (A’gl)(gizt_l) + (A’Gz)(GéZt-l) + d”qt + 0. (A1)

We shall first derive the asymptotic properties of the transformed estimators giiT and GéiT.
Because g, is the normalized cointegrating vector, the transformed regressor variable 81Z;.; 18
stationary. The regressor vector q, is also stationary, because its components are all first
differences of I(1) processes. The regressor G3z,_, however is an N-1 dimensional integrated
process (with drift if ug#0). In such a regression we can apply theorems 3.1 and 3.2 of PARK AND
PHILLIPS (1989), which tell us that for 815"1‘ and 'Z’T’ the classical properties apply. In particular,
we have:

gy B, g, (A2)
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From these theorems it also follows that the estimator Géf\T has asymptotic properties, similar to
9T: if p#0 and N=2, then G,z,_, asymptotically behaves as the linear trend pgt, where pg is in
this case equal to (1+6%)*/2u, because cointegration requires p, = 6’4,; this implies

- 1
T2Gy(hp - 3) = % [ G-paw) ~ N(0,120%/(1+6%)u2) . (A3)
If u=0 or N>2, then
Gyhp -2 = O (T™). (A4)

In both cases G;iT converges in probability to G); combining this with (A2), and applying the
continuous mapping theorem, we have

ip = G|BPT L, X, (AS)
GiAr

With these results, we can derive the asymptotic properties of 0~T as follows:

bp-0 = (Fdgp/hp -0
= -(yp + 00/ App
= -(0: Iy DSy = - Oy + 802G / A (A6)
which leads, by substitution of the limits of Gé;\T and :\1'1" to the required results. ]

Proof of lemma 4 :

Statement (c) is given by PHILLIPS (1986), theorem 2(a). Statement (d) is a straightforward
extension of this result; the main effect of a trend term included in the regression is the
elimination of possible trends in the regressor x,; as a side effect, it leads to expressions in terms
of detrended Brownian motions.

For part (a), note that y, and x, are scalar processes, consisting of a linear trend, a random walk
and a stationary part. Because the linear trend dominates the rest we have

T
L) (x-%)? = pZ/12 + o (1), (A7)

T
T 2 xRy = gty /12 4 0g(1)., (A8)
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SO B‘T converges to uy/ux (=m). Now let y: =y, - T'Xx,, a driftless I(1) process. For this process,
the assumptions of lemma 1 apply, so that
-3/2 g 3o -3/2 L 1y *
T tEl(Xt—X)yt = T By t;(t—fT)yt + Op(l)

1
= Ig'(r—-%)le(r)dr , (A9)

which leads, together with (A7), to part (a).
For statement (b), we rewrite the static regression as

y: v + (6-m)x, + u,

Il

v + (0-m)HHx, + u,

v + ((6-7yhy)(h}x,) + ((O-7VH)(H)x,) + u,. (A10)

Now (y:, xtH,)’ = R’z is an (N-1) dimensional integrated process with no trend, satisfying the
assumptions of lemma 1. For the regressor hix,, the linear trend dominates the other elements.
Using the techniques of partitioned regression and the continuous mapping theorem, it is not hard
to show that

VT h}(bp-7) = (usp) % ( flP(r)zdr)'l 0[lp(r)}z;“l(r)dr, (All)
0

and

*

-~ 1 * %k * % 1 * * %
Hj(8p-) = ( g B,,(r)By,(r)dr) ™ g B,,(r)B, (r)dr , (A12)

where P(r) is the limiting process for hix,, corrected for Hyx; and the constant term, and B;;(r)
is the limiting process for Hjx,, corrected for hix; and the constant term. The second part of
statement (b) is just (A11) with both sides multiplied by (u;ux)l/z, and the first part follows

from

hyh}(8p-1) + H,Hy(8p-7)

0T"7r

L]

H Hj(bp-m) + oy(1), (A13)

which concludes the proof. o
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Proof of theorem 2 :

The first part of (c), concerning the Durbin-Watson statistic, is from PHILLIPS (1986), theorem
2(f). The first part of statement (d) follows directly from (c); the only difference is that the
functional is now in terms of a detrended vector Brownian motion, as a consequence of the trend
term included in the regression.

The second part of (c) and (d), concerning the Augmented Dickey-Fuller test statistic, has been
proved by PHILLIPS AND OULIARIS (1988a). Note that the asymptotic distribution is free of
nuisance parameters, because the lag length q is asymptotically sufficient to correct for the serial
correlation of Aﬁt.

The results of part (a) and (b) are not straightforward extensions, because the linear trend forces
certain moment matrices to be singular, which leads to the reduction of the dimension of the
relevant vector Brownian motions. We define the partial regressor vector w, = (AU, _j,....,AU,_o),
and the following sequences (summations are over the relevant sample sizes):

ap = T'lztAﬁf = &,}(T'I‘L;(Azt-A'i)(Azt—Ai)’)&T, (A14)
byp = T‘zgﬁf = &%(T'zgtj(zt-z)(zt-z)’)&T, (A15)
Cp = T’1§;ﬁt_1Aﬁt - T‘lzt:ﬁt_lw;(%:wtw;)'lzt:wtz&ﬁt, (A16)
dp = T'2}_t,"ﬁ§_1 - T“lztﬁt_lw;(zt:wtw;)‘lZt:wtﬁt_l, (A17)

With these, we can express the test statistics as:
TDW = ap/bp, (A18)
ADF = cp/(0pvdy) . (A19)
where 5e'r is the square root of the residual variance of the auxiliary regression (19). For the limit

of ap, we use the law of large numbers for mixing sequences (see e.g. WHITE AND DOMOWITZ
(1984)) to establish that

T Y (Az-AZ)(Az,-AZY 2 g, (A20)
t

which leads, by application of the continuous mapping theorem, to

ap = 058 (A21)
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where i=1 for case (a) and i=2 for (b). In order to establish the limits for the sequences by, ¢,
and dp, we consider the asymptotic behavior of the following process on [0,1]:

Ug(r) = :}Tﬁm . (A22)
Because z; = z;, + p, + S, (see equation (25)), we have

U, = apz,-2) = epu(t-3T) + aps, - 9) . (A23)
Next, note that p'ap = py - p6p = -p(6p-7), and that T-Y/ 2S[rT] = B,(r). Therefore, we have

Upt) = -&(r-3) + B =  U@). (A24)

Because of the definition of &5 and ¢,, this is equal to

U(r) (1,-7yBi(r) - (0, &)Bi(r) - £4(r-3)

i

* * 1 * % Kok 1 ok % %
B,,(r) - By,(r) ( bezz(s)Bzz(s)’ds)'l JBzz(s)Bm(s)ds
- (r-3) bflp(s)zds bflP(s)le(s)ds. (A25)

If N=2, then the dimension of B,,(r) is zero, so that the second term vanishes and P(r) simplifies
to (r—%). In that case U(r) is equal to the Brownian motion B,,(r), corrected for a mean and a
trend, or B;I(r). If N>2, U(r) is equal to By,(r), corrected for a mean, a trend, and for B,,(r),
which we call B;;,Z(r). Having established this, we can follow the line of the argument in PHILLIPS
AND OULIARIS (1988a) to prove the results of theorem 2. First, we have

by = Jl U(r)%dr (A26)

where U(r) is either B;;(r) (in case (a)) or B;;.z(r) (in case (b)); together with (A21) this gives us
the required results for the DW statistic. Next, note that 7 in the auxiliary regression (19) is equal
10 0, so that

Cp = T! Zt u,_.e, - T'IXt: ﬁt_lw; ( }:t: w,‘w;;)'1 Zt w,.e, , ’ (A27)
where e, is a white noise process, provided that q is sufficiently large:

e, = Au, - j_ﬁ; 50, = SL)AG,. (A28)
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Therefore we have
Cp = Z[U(r)dU(r)S(l), (A29)
op = (=M1, (A30)

where ¢15¢;, i=1,2, is the variance of U(r), conditional upon {; (PHILLIPS AND OULIARIS (1988a)
discuss the conditions under which such conditioning is possible). Finally note that

dp = bp+o,(l) = flU(r)zdr, (A3D)
0

and the rest of the proof is analogous to PHILLIPS AND OULIARIS (1988a). i

Proof of theorem 3 :

We define the partial regressor vectors q: = (1, q¢)’ and q:* = (1, t, q)’. Next, we use the
observations matrices Q, = (q:,...q;‘)’, Q,= (q;*,...q,;*)’, Z,= (zg--r2p_y) and n = (Nyse-onp)’- We
also define the projection matrices M, = (IT—QI(Q'IQI)'IQi) and M, = (IT—Qz(QéQZ)'lQ,’Z). Then
we can express the Wald test statistics (under the null hypothesis) as:

F = n’MIZ_l(Z_;MIZ_I)'IZ_;Mln/52, (A32)
F' = ?M,Z_(Z_M,Z_)'Z {Mpn /o2, (A33)

where ¢? and o*2 are the estimated variances of n, in (16) and (16) with a trend term added,

respectively.
For part (a), we use the matrix K = (T 1k, T 1/2K,), where k, is the normalized drift vector

(u’u)'l/zu and K, is orthogonal to u. Note that K is non-singular, so that we can express F as
F = n’M1Z_1K(K’Z_1MIZ_1K)'1K’Z_;Mln / o’ . (A34)

Now kjz, is a scalar integrated process with drift, divided by T :

Kiz, = WwYH/T + KiS/T + Kizo/T, (A35)

so that the trend term dominates the stochastic part. Kjz, on the other hand is an (N-1)
dimensional integrated process with no drift, devided by +/T, satisfying the assumptions of lemma

1, so
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Zp(r) = Kyzpy = K;jBy(r). (A36)

Now it can be shown, using the convergence rates of lemma 3, that, asymptotically, the only
effect of M; on Z _, is that the limiting processes will be in deviations from their mean, while the
asymptotical effect of M, is that the limiting process will be demeaned and detrended. If we
define z;_; as the t-th row of M,Z_,, we have

My(r) = K'gpgy = M(). (A37)

Next, we consider the partial sum process P,, defined by

t t
P, = Yn, = (L-w;lﬂgé)sgles, (A38)

s=1

where the second equality follows from the definition of 7, :
n o=y - E [ Ye | X Foy :l > (A39)

together with the definition of ¢, (see equation (3)) and the normality of z.. If we compare P,
with S, the stochastic part of z, (see (9)):

S, = C(1) ztes + C'(L)e, , (A40)
s=1

it is clear that the limiting processes of P, and S, will be defined from the same vector Brownian
motion B,(r) = £/2W,(r). In particular, we have

Hyr) = TPy = (1,-w},033) C(1)™1B,(r)
= (1,-wy, QD0 2W () = o s'W(r) (A41)
where the vector s is defined in theorem 3.
Finally, it is easily seen that
P = Tlyp + o, (1) e, 2, (A42)

o2 2, 2. (A43)
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With these results, we can apply the continuous mapping theorem to show that, if u#0,

T'K'ZMZ K = b(l M(r)M(r)ydr , (A44)

T2 KZ My > t{l M(r) dW,(r)’s o . (A45)
If =0, then

T2ZM,Z_, = f B)(r)B;(r)'dr , (A46)

T Z_;Mn = {1 By(r) dW,(1)’s o, (A47)

whereas, irrespective of u, we have
-2 . - LI
T?Z.M,Z_, = [ By (1)B] (rydr , (A48)
0
: 1
T Z M, = g B, (r) dW,(r)’s 0 . (A49)
Part (a) is now easily proved, using (A34), (A42), (A44) and (A45). For part (b), we now have

1 * * 1 * % 1 * *
F = ¢ JdWl(r) Wi(ryst/2 ( g1/ ng(r)Wl(r)’dr pt/2 )1 gl/2 gwl(r) dwi(r)’s

il

1 * ® 1 . * 1o« *
s bf dW,(r) W,(r) ( J W, (r)W(r)dr ) b( Wi(r) dW,(r)’s , (A50)

because £ is non-singular. From the definition of s and o, it is clear that s’s = 1. We define an
orthogonal matrix S which has s as its first column, so s = Se,, where e; is an N-vector with N-
1 components equal to 0 and the j-th component equal to 1. We also define the vector Brownian
motion V(r) = S'W,(r) and note that its covariance matrix is equal to SIS = Iy, because S is
orthogonal. From (AS50), we can now proceed to obtain

1 * * Lo« * bt *
Foo> e [aWim) WSS [ WimWirdrS )l [ Wilr) dW(r)'Se,

= e} brldv*(r) VY ( tfv"'(r)v*(r)’dr ! f Vi) dvia) e, . (A51)
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Because V(r) is an N dimensional Brownian motion with covariance matrix Iy, it has the same
distributional properties as W,(r), so as far as the distribution of F is concerned we can replace
V*(r) in (A51) by W;(r), which results in statement (b). '

The proof of part (c) is entirely analogous, with demeaned Brownian motion replaced by thelir"
detrended versions. i

Proof of theorem 4 .
For part (a) and (b), we use: the superconsistency of @T to establish that

m; = T-lztﬁtﬁt_j = T'lztutut_j + ol(1), (A52)
* - Ak A K -
m; = T 1}; U = letutut_j + o (1), (A53)

for j=0,1,... . Because u; is a stationary process, all sample moments m; and m’; are Op(l) and
converge in probability to Euu,_; . For the Durbin-Watson statistic, we have

DW = 2(1-m;/mg) 2, 2(1-p) , (A54)

where p = (Eutut_l)/(Eu%); for DW*, the same convergence applies.

The divergence rate of the ADF statistic is proved in PHILLIPS AND OULIARIS (1988a), theorem

5.1. The proof for the ADE" statistic is completely analogous.

For the Wald test statistic, we use the same notation as in the proof of theorem 3 to express F and
*

F as

F = AMZIMZ_)i/d, (AS5)
F' = Ap(ZMZ_)ip/o 2. (A56)
In theorem 1 we proved that ‘S‘T/S‘l'r = —(l,-@})’ is a superconsistent estimator of the

cointegrating vector. Using the same methods this can be proved for the detrended version 5‘;.
Therefore i,}zt_l and i;.’zt_ ; are asymptotically proportional to u_;. The consistency of o and
o2 is also straightforward to prove. If we let U_; denote (ug,...,up_;)’ then we have, because u,
is stationary,

F = U MU_DYe® + o) = OyT), (A57)

Fo = U MU _M/6® + o (1) = OyT), (A58)

which ends the proof. (]
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Appendix B

In tables B1-B3 the estimated critical values for the Wald test on cointegration are reported.
Table Bl corresponds to a Wald test in a regression without a constant term; tables B2 and B3
apply to the test statistics F and F*, respectively. The critical values of Bl and B2 can only be
used if the integrated processes do not have deterministic trends. The tables allow for 2 to 5
variables in the cointegrating relationship. N denotes the number of variables in the system, and
a is the significance level. For N=1, the distribution of the square of ;, 1:,‘ and ;, is tabulated, see
FULLER (1976, p.373). Critical values were estimated using the Monte Carlo method, with 10000
replications and a sample size (T) of 500.

Table Bl : Asymptotic critical values for the Wald (F) test; standard

a 0.15 0.10 0.075 0.05 0.025 0.01
N
1 2.35 3.00 3.42 4.09 5.24 7.03
2 5.44 6.38 7.04 7.93 9.60 11.67
3 8.22 9.32 10.17 11.41 13.17 15.23
4 10.84 12.16 12.95 14.12 16.04 18.63
5 13.30 14.72 15.68 16.93 19.03 21.52

Table B2 : Asvmptotic critical values for the Wald (F) test; demeaned

a 0.15 0.10 0.075 0.05 0.025 0.01
N
1 5.56 6.49 7.20 8.09 9.44 11.53
2 8.30 9.38 10.10 11.20 12.85 15.24
3 10.82 12.19 13.15 14.24 16.07 18.31
4 13.37 14.83 15.73 16.92 18.98 21.48
5 15.79 17.25 18.18 19.53 21.68 24.14
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Table B3 : Asvmptotic critical values for the Wal

F) test: demeaned and detrended

o 0.15 0.10 0.075 0.05 0.025 0.01
N
1 8.58 9.73 10.55 11.57 13.29 15.55
2 11.12 12.36 13.22 14.45 16.39 18.51
3 13.49 14.91 16.01 17.28 19.07 21.39
4 15.88 17.39 18.45 19.67 21.60 24 .40
5 18.18 19.65 20.67 22.15 24.53 27.54
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