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Chapter 1

Background Molecular Motors

Processive molecular motors are proteins that derive their name from the fact that they
facilitate directed motion. This means they can overcome the stochastic forces that cause
Brownian motion. The number of molecular motor proteins in animal and plant cells
known to us today ranges in the hundreds but it can be reduced to three families: ki-
nesin, dynein and myosin. There can be many different molecular motors present in one
organism, for example in the plant Arabidopsis thalina 61 kinesin and 17 myosin motors
have been reported [1]. In order to be able to perform directed motion against the om-
nipresent Brownian forces, motors need to bind to cytoskeletal filaments inside the cell.
Kinesin and dynein are associated with motion along microtubules that are an integral
part of the cytoskeleton and are essential for mitosis (cell division), vesicle transport
and many other processes. Myosin is an actin-related molecular motor: it is mainly
known for driving the contractile motion in muscles [2,3]. Moreover, molecular motors
are important in the perpetual polymerisation and depolymerisation of actin filaments
that gives cells the ability to move on surfaces, and bacteria like Listeria monocytogenes
to move from one cell to another [4].

In this thesis I am interested in the effect of viscous drag on vesicle transport by
processive molecular motors. Therefore, I focus in this chapter only on kinesin and
dynein transporting vesicles along microtubules and myosin that are responsible for
organelle transport along actin filaments. I am interested in the specific situation of
directed transport of organelles and vesicles that is observed in neurons and in cyto-
plasmic streaming, which takes place mainly in plant cells. In such systems, I study the
viscous drag on motors with cargoes and the hydrodynamic interaction with other mo-
tors, their cargoes and suspended objects. In order to address questions about the forces
needed to move any cargo along a filament embedded in a highly viscous solution and
whether the hydrodynamic coupling between motors and the solvent is relevant for fast
transport in cells, I give here a brief review over experimental findings.
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Fast Vesicle Transport - Experimental Facts

Fast vesicle transport was mainly observed and studied in neurons and plant cells. In
neurons or neurites (projections from the neuron, which can be either a dendrite or
axon) vesicle transport is provided by kinesin and dynein motors moving along tubu-
lin filaments. In plant cells, this fast transport is associated with the ”streaming” of
organelles dragged along actin filaments by myosin motors. Organelle is the generic
name of small self-contained objects with specific functions that are found inside the
cells. Examples are the power generating mitochondria in eukaryotic cells and chloro-
plast that provides photosynthesis in plants and algae. Fast streaming of organelles
inside cells is called cytoplasmic streaming [5, 6].

2 heads

Cargo binding groups

2 chained stalk

ADP

protofilament

hetero dimer
a-tubulin

b-tubulin

Kinesin Microtubule

2 necks

Figure 1.1: Schematic illustration of kinesin (3kin) and a microtubule. Left: The kinesin shown here is
composed of two chains. The top part contains the two head groups also known as motor domains (≈10 nm
long). The intertwined chains are called flexible stalk. It differs from one motor group to another and can
also be absent. The stalk is terminated by a group that can bind to vesicles or organelles. Right: Structure
of microtubules. The basic building units are the hetero dimers that are made of an α- and β-tubulin, both
being proteins. These polymerise to form a protofilament. Latter self-assemble into microtubules that can
grow and shrink continuously, depending on the ATP concentration and forces acting on it. Note that
there is only one site per tubulin dimer for a kinesin head to bind to a microtubule [7].
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The Kinesin-Microtubule Complex In In Vitro Experiments
And In Neurites

All molecular motors derive their motion from hydrolysing adenosine triphosphate
(ATP), thereby undergoing a series of conformational changes. How molecular mo-
tors move along a bio-filament, which mechanical and viscous forces are involved, and
whether they work cooperatively has been intensively studied only in the past twenty
years, when optical trap and fibre measurements with nanometre and piconewton sen-
sitivity became available [8, 9]. Svoboda et al. [10] developed an optical-tweezers tool
to show that kinesin moves with 8 nm steps along microtubules, hydrolysing with each
step an ATP. This step distance is independent of ATP-concentration and load [11].
The motors move with a unidirectional bias corresponding to the polarity of the mi-
crotubules, but the underlying physical mechanism has not yet been fully understood
[12]. All bio-filaments have a polarisation because of their asymmetric building units
(Fig.1.1) leading to a (+) and (-) end. Most kinesins walk toward the (+) end that grows
away from the nucleus, while dynein moves to the (-) end. The 8 nm steps kinesin takes
correspond also to the spacing of the dimers forming the protofilaments in microtubules
(Fig.1.2).

cargo

protofilament

2 heads

16 nm

Figure 1.2: Schematic illustration of kinesin pulling a cargo over a microtubule by taking 8 nm steps. It
is believed that the two headed motor domain moves in an asymmetric hand-over-hand fashion [13].
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In contrast to muscle myosin that is known to attach to actin filament, pulling it with
one stroke while consuming an ATP, and then releasing it, kinesin is a processive motor.
This means that, because of kinesin’s double-head structure, it can stay attached to the
microtubule with one head while moving ahead with the other to the next binding site.
In this way it can move along the microtubule many steps before detaching. The dis-
tances a kinesin motor can travel in this way can be as large as 5 ± 2 µm, corresponding
to 200 - 1000 cycles of ATP. [14]

In 1995 Meyhöfer and Howard [15] performed experiments where kinesins are at-
tached to a glass slide such that their head group is pointing into the solution containing
microtubules and ATP. One end of a microtubule was attached to the end of a flexible
glass fibre, whose deflection was detected with optical means, allowing to measure the
forces generated by a single kinesin molecule binding to the microtubule (Fig.1.1). The
force required to stall a single kinesin molecule was 5.4 ± 1.0 pN. Further gliding exper-
iments revealed that a single kinesin molecule can move an attached bead with a speed
of about 800 nm/s when the opposing force is smaller than 1 pN [10, 15–17]. However,
in order to understand organelle transport in cells one needs to address several other
questions. It is known that the size of organelles can vary between tens of nanometres
and a few micrometres (see table 1.1 for a number of identified organelles).

Organelle Size in nm Reference
Lysosomes 100-500 [18]
Peroxisomes 150-300 [19]
Endosomes ≤ 500 [20]
Melanosomes ± 500 [21]
Mitochondria ≤ 800 [22]

Table 1.1: Typical sizes of organelles found in cells.

Hence, one may ask how the load on a single motor varies for such differently sized
cargoes? The main force the motor will have to overcome is the drag force, Fd, it experi-
ences while moving through a viscous medium. Using Stokes’ formula [3], Fd = 6πηav
(η is the viscosity of the surrounding fluid, a the particle radius and v the velocity of
the cargo), the drag force of a vesicle of 1 µm, moving at 800 nm/s, would be 0.02 pN,
assuming the inside of the cell has the viscosity of water (η = 0.001 Pas). This is much
smaller than the 1 pN force applied in Howard’s in vitro gliding assays. Thus one can
conclude that the drag forces on vesicles in pure water is negligible. However, in real
cells the viscosity can be up to three orders of magnitude larger [23–26]. In that case
the load on a single motor molecule can become comparable to the force a single motor
can execute in one ATP hydrolysing step. Indeed, if the calculation is repeated for a
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similar vesicle in a HeLa-cell∗ (η = 0.398 Pas; calculated from data in [26]) a drag force
of 6 pN is found. Hence, when the load becomes larger than the stall force on a single
kinesin molecule, the question arises whether more than one motor will be needed to
pull vesicles. Ashkin et al. [28] and Hirokawa [29] used electron microscopy imaging
on fixed cells to show that some vesicles were attached to the microtubules by 2 - 3 ki-
nesin molecules. Moreover, Tominaga et al. [30] found that 1 µm sized particles can be
dragged by two to three processive myosin XI motors along actin filaments. And also an
in vivo study on organelle transport along microtubules in Xenopus melanophores† sup-
ports the hypothesis that organelle transport involves cooperativity between multiple
motors [31].

Another important question follows from the discussion above, namely whether the
velocity of a kinesin-driven vesicle (or myosin-driven organelle) is independent of the
number of active motors. Several optical trap measurements on single motor interac-
tions with a filament [15, 17, 32] show that their velocity decreases as the opposing load
increases from 1 pN to 10 pN (Fig. 1.3 - Left). For loads of 1-20 pN the vesicle veloc-
ity is expected to increase with the number of motors attaching to the vesicle and the
microtubule [33]. However, gliding-assay experiments with very high force resolution
also show that below a certain load (< 1 pN) the velocity of the transported vesicles
becomes independent of the load [34].

Most motility measurements mentioned so far were based on in vitro measurements.
Already in 1992, Allen et al. [37] measured directly fast transport of vesicles in axons.
They found that particles of 50-100 nm in size moved with about 2.5 µm/s, while the
average velocity of larger vesicles (0.4-2.5 µm) dropped to 1 µm/s. Moreover, they ob-
served that intermediate sized particles moved in an irregular fashion (called saltatory
motion [38–40]): Following a vesicle in time, one can observe that it can move with a
given velocity, then stop for a moment and subsequently continue moving in the same
direction but with a different velocity. Recent experiments in vivo confirm that vesicles
alternate between periods of directional and non-directional movement, suggesting that
there are periods where a vesicle follows a cytoskeletal track and periods where it dif-
fuses freely [24]. Another in vivo study by Hill et al. [23] focused on this random motion
and in particular the effect of viscous drag on the speed of vesicle transport in greater
detail using time-resolved optical microscopy and micro-rheology in vivo. The latter ex-
periment provided a measure for the viscosity that vesicles experience in the cytoplasm
of PC12 neurites‡. Hill and co-workers found that the PC12 cytoplasm is shear thin-
ning but shows a plateau value in viscosity of about 1.1 ± 0.25 Pas at small frequencies,
which is about a thousand times larger than the buffer solutions used in gliding assays.

∗The HeLa-cell line was derived from cervical cancer cells taken from Henrietta Lacks, a patient who
eventually died of her cancer [27].

†Pigmented cells of the African clawed frog.
‡PC12 is a culture of cancer cells from the adrenal gland of rats.
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Figure 1.3: Left - Velocity of vesicles or colloidal probe beads dragged along microtubules by kinesin
motors, reproduced from ref. [25], who extended the original figure from [23]. The dots represent experi-
mental data by [17]. The large closed symbols represent experimental data for 1, 2 and 3 motors attached
to vesicles of 0.40, 0.36 and 0.40 µm respectively, measured in vivo in NT2 cells. The curves for 2 and 3
kinesin motors are estimates extracted from bead assays, assuming that the load is equally shared by the
motors. Two straight lines correspond to Stokes’ law for systems with viscosity of 0.1 Pas and 1.8 Pas
respectively for a vesicle of 0.4 µm. The contribution of multiple motors is negligible at the low viscosity.
For the viscous fluid the force generated by the attached motors is additive. Right - The force-velocity
curves from earlier single motor studies (red [15]; grey [35]; black [17]) are compared with multiple mo-
tor data [25]. To compare data obtained at different temperatures, it was scaled according to a previously
determined Arrhenius equation [36]. Open symbols refer to average vesicle radii of 0.29, 0.29 and 0.26
µm. The black data are the same as in the figure to the left. Note that the smaller vesicles move faster as
the acting hydrodynamic drag force is smaller. Both images are reproduced after [25] with kind permission
from Springer Science and Business Media.

Furthermore, the vesicles (a≈0.35 µm) they studied moved with velocities fluctuat-
ing between 0.45 µm/s and 2.1 µm/s at loads varying between 4-15 pN. These irreg-
ular velocities may be due to the fact that the viscosity may vary throughout the cell
cytoplasm, as it contains many other bio-macromolecules that need not be dispersed
homogeneously. The saltatory motion may also be due to the fact that microtubules are
not continuous throughout the neurites or axons. Thus a vesicle may encounter gaps
in its ”track” that can be viewed as broken bridges that have to be overcome. In order
to continue their way in the same direction one may hypothesise that it would not be
advantageous for motors to reach the other side of the gap purely by diffusion. In this
thesis I show that the hydrodynamic coupling between cooperatively moving molecu-
lar motors and their cargo may provide a mechanism that helps the vesicles to bridge
those gaps (see chapter 4). But also the fast transport of organelles in plants (that is
described in the following paragraph) may be understood better when hydrodynamics
is taken into account.
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Recently it became possible, using quantum dots as markers, to follow the molecular
motors in vivo directly and construct force-velocity curves (Fig.1.3 - Right). Peaks in the
measured velocities suggest that the velocities are constrained to quantised values. A
hypothesis has been proposed that each peak represents a different number of motors
pulling a vesicle through a viscous solution [25, 31, 41, 42]. An alternative hypothesis
is presented by Cai et al. [43] who studied transport in COS-cells∗. They suggest that
the difference in velocity comes from the presence of different members of the kinesin
family with distinct kinetic properties. However, the near integer difference in value
between measured drag forces [23, 25, 31] suggest identical motors (see Fig.1.3 - Right).
Recent in vitro experiments in a medium with a viscosity 1000× that of water showed
that numbers of kinesins cooperate when pulling against a viscoelastic drag [45], sup-
porting the cooperativity hypothesis.

Myosin Driven Organelle Transport in Plant Cells

As the aim of this thesis is to study the influence of hydrodynamic interactions on fast
organelle transport in cells it is interesting to first identify the situations in which hy-
drodynamic interactions may play a role. Fast organelle transport is mainly important
in plant cells, where it is observed as cytoplasmic streaming [6, 46, 47]. The velocities
measured in cytoplasmic streaming exceed those measured for vesicles dragged by ki-
nesins along microtubules in animal cells, and is associated with myosin-actin com-
plexes (Fig.1.4) [48]. Note, however, that kinesin-microtubule assisted organelle trans-
port has also been reported in plants [49]. While many myosins, e.g. the muscle motor
myosin II, are non-processive, processive plant myosins have been identified: myosin
V, VI, VIII, XI, and XIII [50]. Amongst these groups further variations are known that
depend on the species and on the vesicle-binding groups. Myosin walks to the barbed
(plus) end of actin filaments with the exception of myosin VI that walks towards the
pointed (minus) end [50–52]. An example of these processive myosin are the myosins
that are extracted from the alga Chara corallina. In in vitro motility assays these motors
move along actin filaments with a speed of 40-60 µm/s [48, 53] and up to 100 µm/s in
vivo [5].

Tominaga and co-workers [30] were the first to use gliding assays to measure the
motility (movements) of myosin XI extracted from tobacco bright yellow-2 cells of Nico-
tiana tabacum (BY-2 cells). They anchored actin filaments on a glass slide and measured
the velocity of a myosin XI coated colloidal bead attaching to the actin filament under
different loads. The load was controlled by optical tweezers. They observed a maxi-
mum speed of 7 µm/s and determined the step length to be of about 35 nm, a distance
very close to that of a repeat unit along F-actin (Fig.1.4).

∗Cells derived from the kidney cells of the African green monkey with a version of the SV40 genome
that can produce large T antigen but has a defect in genomic replication [44].
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6 X IQ (24 nm)

head (motor domain)3 nm

coiled-coil

globular tail domain

36 nm

+ end

- end

Myosin XI Actin filament

Figure 1.4: Left: Schematic representation of the dimer myosin XI, redrawn from reference [53]. The head
group (heavy chain) binds to the actin filament and contains the ATP binding centre. The head group is
followed by the neck region that contains varying binding sites for light chains. In myosin XI the neck
contains 6 so-called IQ motives, which bind in turn the protein calmodulin (a calcium binding agent).
The neck region is followed here by a α-helical coiled-coil region that carries a cargo binding domain.
Right: Filamentous or F-actin has a helical structure and is made of two protofilaments that are build up
of globular or G-actin. F-actin is about 7 nm thick and has a 36 nm helical repeat structure. Myosin XI
slides processively along F-actin in 35 nm steps, toward the plus end [30].

As mentioned above the hydrodynamic drag on a micron-sized organelle is not
much less than the stall force, which supports previous experimental findings that fast
transport of organelles must relay on cooperative motion of molecular motors. Further-
more, fast organelle transport sets up a hydrodynamic flow. The latter term refers to the
fact that the hydrodynamic flow generated by cytoplasmic streaming also enables the
transport of unbound small-molecule nutrients and building material, thereby enabling
a rapid supply throughout the large cells [54]. Finally, as mentioned before, organelles
move faster in vivo than in vitro. I will show using the simulations described in chap-
ters 4 and 6 that the organelle velocities are increased via the hydrodynamic coupling
between motors. From experiments it is known that when a positive force is exerted on
a motor they start moving faster (Kinesin [11]; Myosin-V [55]), the hydrodynamic cou-
pling gives rise to such a force. The simulation results are supported with experimental
work in chapter 5.
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Chapter 2

Hydrodynamics At Low Reynolds
Numbers

Introduction

In the previous chapter molecular motors and their cargoes were introduced. These
motors are capable of dragging a cargo through a cell by walking along cytoskeletal fil-
aments. The transport takes place through cytosol, the fluid component of cytoplasm.
This fluid has a viscosity a factor 1000 larger than water. Moreover, as their name sug-
gests, the motor proteins are small and their cargoes not much bigger (≤ 2µm) (see
table 1.1), which means that they are subject to thermal forces. As explained in the
previous chapter, transport of cargoes by single motors through water has been stud-
ied intensively in vitro [3, 10, 14–17, 55]. In addition, the first force-velocity curves in
vivo [23–26, 56] have been reported following the recent introduction of quantum dots
as positional markers for molecular motors. None of these studies however, focus on
the situation where multiple cargoes are simultaneously transported in the same direc-
tion as is the case in cytoplasmic streaming and inside neurons. In this thesis, I reason
that this transport is strongly affected by the medium in which it takes place. The larger
the fluid’s resistance against flowing, i.e. the viscosity, the smaller the influence of ther-
mal forces, and thus, the more efficient the directed transport takes place. Moreover,
the actively moving motor-cargo complexes set up a flow field via momentum transfer.
I will show in subsequent chapters that the hydrodynamic interactions via momentum
transfer between motor-cargo complexes moving in the same direction enhances their
transport.

In this chapter the underlying physics will be explained. Firstly, the fluid fric-
tion is introduced via the viscosity. Secondly, the equations of continuity and motion,
which describe respectively the conservation of mass and momentum in a fluid, are
discussed. Next, the interaction of a typical organelle of size 500 nm with the surround-
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ing fluid is studied. This includes quantifying the relevant forces acting upon the sus-
pended organelle and discussing these by means of dimensionless parameters such as
the Reynolds, Péclet and Stokes numbers. In addition, momentum transfer through
the fluid around one organelle, and between many organelles is discussed. Finally, the
Langevin equation, the equation of motion for a suspended organelle, is introduced.

The Viscosity

The concept of viscosity can be understood by means of the two parallel plates experi-
ment (see Fig.2.1). In this experiment a net force is acting on the top plate forcing it to
move forward while the bottom plate remains in position. As explained in the figure,
a linear velocity profile arises for a Newtonian fluid which falls off with the distance, x,
away from the moving plate. Assuming no-slip boundary conditions the fluid velocity,
V , has a maximum value at the moving plate and is zero at the other one. For this linear
velocity profile to arise the flow has to be laminar [57]. In this regime the adjacent fluid
layers slide past one another in an orderly fashion i.e. there is no turbulence. I will now
introduce the viscous stress, τ , which is the force, F , acting on the plate divided by its
area A. In the parallel plates experiment, the viscous stress is a measure for the flux in
x-momentum in the y-direction and is given by [57]:

τ =
F

A
= −ηdVx (y)

dy
. (2.1)

This equation states that the shearing force per unit area is proportional to the ve-
locity gradient. The velocity gradient is the driving force for momentum transport by
viscous forces. The momentum goes downhill from a region of high to low velocity. Vis-
cous forces are only present when velocity gradients are present. The constant of pro-
portionality is called the viscosity, η, which is the internal resistance of a fluid against
flowing. It is fluid dependent and for a Newtonian fluid, it is sensitive to the temperature
and concentration but not to the velocity gradient. For liquids, the viscosity decreases
with increasing temperature. A common deviation from Newtonian behaviour is shear
thinning, the tendency for the viscosity to decrease at high velocity gradients [3].

The full expression for the viscous stress in three dimensions is given by Newton’s
law of viscosity [57]:

τ = −η
[
∇V + (∇V )T

]
+

(
2

3
η − κ

)
(∇ · V ) δ. (2.2)

Here, τ , is the viscous stress tensor, V , the velocity vector and, κ, the bulk viscosity.
The nabla operator ∇ is defined as: ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) and δ is the Kronecker delta
which has the value one for i = j and zero for i 6= j. The right hand term can often
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Figure 2.1: Two parallel plates experiment [3, 57] - A force, Fx, acting on the top plate causes it to move
forward with velocity, Vx, while the bottom plate remains in position. Momentum is transferred into the
fluid in the direction perpendicular to the moving plate. I assume the fluid to be Newtonian and no-slip
boundary conditions at the plates. This yields the characteristic linear velocity distribution, where the
fluid velocity falls off from a maximum value at the top plate to zero velocity at the bottom one. The
constant of proportionality is the viscosity η.

be ignored as κ = 0 for ideal gases and (∇ · V ) = 0 for incompressible fluids (see next
section) [57].

In addition to momentum transfer by the shear forces, there are also hydrostatic
pressure forces acting on the fluid. These are given by pδ. The combining of the mo-
mentum contributions yields the molecular stress tensor Π [57]:

Π = τ + pδ (2.3)

This tensor can be interpreted as the flux of all molecular j-momentum in any posi-
tive i-direction.

Balance Equations In Fluid Dynamics

Two balance equations, which describe fluids, are important for understanding the the-
ory in this thesis. Firstly, the balance equation of mass can be obtained by considering
the change of fluid density, ρl, at a given time, t, in space. The equation of continuity is
given by [57]:

∂ρl
∂t

+∇ · (ρlV ) = 0. (2.4)

For incompressible fluids, i.e. a fluid of constant density, this can be simplified to
[57]:

(∇ · V ) = 0. (2.5)
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Secondly, there is the equation of motion for fluids, which is the fluid’s version of
Newton’s second law. The equation describes the rate of momentum increase for a fluid
at a given place and time. This momentum increase arises from external forces such as
gravity, g, and from the gradient of all momentum transfer. The latter consists of the
molecular stress tensor, Π (see eq.2.3), and convective momentum, ρlV V , which is the
momentum carried by the fluid. The combination yields the Navier-Stokes equation
[57]:

∂ (ρlV )

∂t
= − [∇ · ρlV V ]−∇p− [∇ · τ ] + ρlg. (2.6)

The Reynolds Number

In equation 2.7, the Navier-Stokes equation is rearranged such that all the terms con-
taining inertia are on the left-hand side of the equation.

ρl

(
∂V

∂t
+ V · ∇V

)
= −∇p+ η∇2V + ρlg. (2.7)

The term, ∂V
∂t

, represents changes in inertia in time, whereas, the non-linear term,
V · ∇V , represents the momentum carried by the fluid flow. Inertia is the property of
an object to remain at constant velocity unless an external net force is acting upon it. The
larger the inertia of an object, the more difficult it is to stop its movement. In contrast, an
object of low inertia will instantaneously stop or start when an external force is applied
upon it. Inertia in fluid flows is caused by non-linear interactions within the flow field.
When inertial effects dominate the flow, the non-linear interactions may give rise to
instabilities causing the fluid to become turbulent.

The pressure gradient, ∇p, viscous forces, η∇2V , and the influence of gravity, ρlg (or
other external forces such as centrifugal or electromagnetic forces) are on the right-hand
side of the equation. The viscous term includes the fluid viscosity. As explained in the
moving plate experiment (Fig. 2.1), the viscosity is a fluid dependent variable involved
in momentum transport. Each fluid has a different viscosity depending on how strongly
this fluid resists flow under the influence of an external force. For example, air has low
viscosity (19× 10−6 Pas [57]), water is intermediate (0.01 Pas [57]) and cytosol is high (1
Pas [23]). Furthermore, the viscosity is the source of drag on objects moving through a
fluid. Inertia and viscosity work against each other. While inertia is trying to keep an
object moving, viscosity is trying to stop it [58].

If we introduce a velocity, U , and length, L, time can be represented time as L/U and
the gradient, ∇, as 1/L. Next, it is possible to express inertia and viscosity using these
units. Both terms containing inertia can be expressed as ρU2

L
and the viscosity as ηU

L2 [58].
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If we now take the ratio of the inertial and viscous contributions in the Navier-Stokes
equation, we obtain the Reynolds number [57–60]:

Re =
inertial forces
viscous forces

=
ρUL

η
. (2.8)

This is a dimensionless number that characterises different flow regimes arising
when the fluid medium comes in contact with an interface. Most commonly, this is
a solid interface as is the case for flow through a pipe or channel of any arbitrary shape,
or flow around a suspended object e.g. a sphere. At low Reynolds numbers, viscous
forces are dominant. The flow is laminar and it is characterised by smooth constant
fluid motion. High Reynolds numbers occur when inertial forces dominate, which tend
to give rise to chaotic fluid behaviour like eddies and vortices. When considering flow
around an object, the Reynolds number is an indicator for vortex shedding behind the
particle. In table 2.1 examples of Reynolds numbers are given.

Object Size Speed Fluid density Viscosity Reynolds No.
m m/s kg/m3 Pas

Ocean liner 100 30 1000 10−3 3×109

Swimmer 2 1 1000 10−3 2×106

Bee 10×10−3 0.14 1.3 18×10−6 100
Bacterium 2×10−6 25×10−6 1000 10−3 5×10−5

Melanosome* 5× 10−7 8×10−7 1200 1.1 4.4×10−10

Table 2.1: The flow behaviour of different objects are compared using the Reynolds number, Re. This
number is the ratio between inertial forces working on an object in a fluid and the viscous forces acting
upon it. It is given by: Re=ρV d/η where η, is the viscosity, ρ, the density, V , the velocity and, d, the
diameter of the object. Reynolds numbers larger than one correspond to a turbulent regime while smaller
values refer to laminar flow. This table was reproduced after [3]. *The melanosome, a typical molecular
motor cargo, was added to the original table, for references see table 2.2.

Flow At Low Reynolds Numbers - Why We Need Molecu-
lar Transport Motors?

As can be seen in table 2.1, the Reynolds number of a melanosome, a typical organelle,
is very small. I will use this typical motor cargo for molecular motors as frame of refer-
ence. The properties of this organelle are summarised in table 2.2, where the viscosity of
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cytosol is 1.1 Pas [23]. When Reynolds numbers are this small, friction forces are signifi-
cantly larger than inertial forces and the latter can therefore be neglected. Additionally,
the gravitational force, F g, is given by [3]:

F g = mg. (2.9)

In this equation, m, is the mass of the organelle and, g, the gravitational constant.
Using this equation we can show that for the melanosome (see table 2.2) the gravita-
tional force is small (0.00077 pN) even in comparison to the stall force of a molecular
motor (5-7 pN). Next, we assume that there are no external forces acting on the fluid,
that the influence of gravity can be neglected, the fluid is incompressible and the fluid
viscosity and density are constants. Thus, the Navier-Stokes equation can be simplified
to the Stokes or Creep flow equation given by [57, 59, 60]:

η∇2V −∇p = 0. (2.10)

Unlike the Navier-Stokes equation, this is a linear equation that has no contribu-
tions from inertial forces and it is time reversible. The following example illustrates
the significance of the absence of inertia. In his book, Howard [3] derives an equation
for calculating the coasting distance of an object after the force acting on it has been
removed:

Lc = V0τ. (2.11)

In this equation, Lc, is the coasting distance, V0, the velocity at t = 0 and, τ , the typical
time an object takes to reach its terminal velocity (relaxation time). For an organelle,
without an external force acting upon it, the terminal velocity is zero. The relaxation
time is defined as [3, 63]:

τ =
m

γ
=

2a2ρ

9η
. (2.12)

Moreover, m, is the mass of the object and, γ, is the fluid drag coefficient (See
eq.2.19). For the organelle in table 2.2, this means that it reaches a full stop after coasting
1.94×10−13 m in 1.52×10−11 s. This shows that in a system without inertia, changes in
velocity are instantaneous.

For organelles and molecular motors the time reversibility of the Stokes equation has
nontrivial consequences. To illustrate this, Purcell introduced the Scallop Theorem [64,65].
The theorem states that symmetrical motion cannot generate a net displacement at low
Reynolds numbers. In Purcell’s example a scallop quickly closes its shell, generating
enough momentum to propel itself. However, upon opening of the shell, independent
of the speed of opening, the trajectory is reversed and the scallop is returned to its
original position. This is a direct consequence of the symmetrical path followed by the
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Property Symbol Value Comment
Motor cargo
Diameter d 500 ×10−9 m [21]
Volume* V 6.54 ×10−20 m3

Density ρ 1200 kg/m3 [61]
Mass* m 7.85 ×10−17 kg
Viscosity η 1.1 Pas [23]
Minimum Motor Force* F0 4.15 pN F0 = γV0
Velocity V0 800 nm/s [17, 62]
Temperature T 37 ◦C
Boltzmann Constant kb 1.381 ×10−23 J/K
Thermal Energy* (T in K) kbT 4.2821 ×10−21 J
Acceleration of gravity g 9.81 m/s2

Reynolds Number* Re 4.36 ×10−10 eq. 2.8
Stokes Number* Sk 4.85 ×10−11 eq. 2.27
Drag coefficient* γ 5.18 ×10−6 Ns/m eq. 2.19
Mobility* (=1/γ) µ0 1.93 ×105 m/Ns eq. 2.19
Diffusion Coefficient* D0 8.26 ×10−16 m2/s eq. 2.28
Drag Force Motor*,** Fd 4.15 pN eq. 2.18
Gravitational Force* Fg 0.00077 pN eq. 2.9
Root Mean Squared Velocity* vrms 0.0128 m/s eq. 2.30
Relaxation Time* (=m/γ) τ 1.52 ×10−11 s eq. 2.12
Diffusive Coasting Distance* Lc 1.94 ×10−13 m eq. 2.11

Table 2.2: The above data will be used as a representative model system for an organelle that is transported
through a cell. Where available, follow the equation numbers for an explanation in the text. *Calculated
values. **Note: in water (η = 0.001 Pas [3]) these forces are a factor 1000 smaller.

opening and closing of the scallop. The only way to generate net displacement at low
Reynolds numbers is by means of asymmetrical motion. For example, this type of mo-
tion occurs in a flexible oar on a molecular rowing boat. The oar follows a different
paths during the power and recovery strokes thus creating net displacement. In nature,
molecular swimmers are powered by the asymmetrical motion of cilia and flagella [65]∗.
The organelle in table 2.2 does neither have cilia nor flagella, therefore it needs a con-
centration gradient or an external force to displace through the cell. Molecular motors

∗A swimmer in a pool filled with molasses that is only allowed to move with the speed of the arms of
the clock who after a few weeks has managed to move a few meters, qualifies as a low Re swimmer [64].
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that walk in directed fashion along a cytoskeletal track provide the organelle with just
such a force.

An Organelle Moving In A Fluid

When an organelle moves through a fluid it encounters fluid friction via the viscos-
ity (see section about the Reynolds number). This causes the organelle to disturb the
fluid and set up a flow field around it. We can use streamlines to visualise this flow
field. A streamline (ψ = constant) is a curve that is tangent to the instantaneous velocity
field around the organelle [59]. If we assume that the organelle is a spherical and solid
particle, we can describe the flow field using the following equation [60]:

ψ =
1

4
vr2sin2θ

[(a
r

)3

− 3
(a
r

)]
. (2.13)

This formula yields the following velocity components around the organelle [60]:

vr = − 1

r2sinθ

∂ψ

∂r
= −1

2
vcosθ

(a
r

)2 (a
r
− 3

r

a

)
(2.14)

and

vθ =
1

rsinθ

∂ψ

∂r
= −1

4
vsinθ

(a
r

)[(a
r

)2

+ 3

]
. (2.15)

The streamlines around the organelle that is moving through a fluid are shown
schematically in Fig.2.2A. The flow of fluid around an immobile organelle is shown
in Fig.2.2B.

A

F

B

Figure 2.2: Streamlines around an organelle, which we assume to be a spherical solid object, in a fluid.
Figure A shows the streamlines around a moving organelle (active particle). In Figure B, the frame of
reference is changed. The fluid is now moving around an immobile organelle [60].
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In the following discussion it is assumed that the organelle is an active particle mov-
ing through the fluid driven by an external or internal force. The magnitude of the
friction force can be determined by integrating the normal, Πrr, and tangential, Πrθ,
stress terms of the molecular stress tensor, Π (eq.2.3 represented in spherical coordi-
nates), around the surface of the sphere, which yields (see [57, 59, 60] for details):

F n
d = −2πηaV (2.16)

and

F t
d = −4πηaV . (2.17)

The friction force from the normal stress is called form drag, F n
d, whereas the tangen-

tial force gives rise to a viscous (or skin) drag force, F t
d. Note that the ratio of viscous to

form drag is 2:1. It is believed that it is this asymmetry that allows the lowRe swimmer,
introduced in the previous section, to move via asymmetrical motion [64]. The adding
of both forces yields Stokes’ law, which is the total drag force, F d, around the organelle:

F d = F n
d + F t

d = −6πηaV . (2.18)

This is a linear relation between the force and the velocity as expected from the
linearity of Stokes’ equation (eq.2.10). Note the minus sign as this force works against
the motion of the organelle. This equation allows us to define the fluid dependent drag
coefficient, γ, and self-mobility, µ0, of the organelle to be [3]:

γ =
1

µ0

= 6πηa. (2.19)

For the organelle in table 2.2, the drag force is 4.15 pN, which is large as com-
pared to the motor stall force of 5-7 pN. This shows that one molecular motor generates
enough force to move an organelle, but that multiple motors working in concert might
be favourable.

Many Organelles Moving In A Fluid - Hydrodynamic In-
teractions

Inside the eukaryotic cell there are many organelles moving through the cytosol. Each of
these organelles experiences a negative drag force and, via momentum transfer∗, sets up
a flow field (Fig.2.2A). Even though these flow fields fall off to zero at infinite distance
away from the organelles, they will influence the flow field around nearby organelles
and thereby change their trajectories.

∗See the parallel plates experiment (Fig. 2.1).
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An organelle will thus experience a fluid friction force generated by its own motion
(see eq.2.18), but also from the surrounding flow field that is set up by other organelles
in the system. This flow field, V́ (r), generated by all organelles in the system, will
now be determined (see [59, 60, 63, 66, 67] for more detailed or alternative derivations).
Assuming that the flow field changes gradually with position and using the appropriate
boundary conditions, the hydrodynamic drag force on an organelle becomes:

F h = −6πηa
(
V − V́ (r)

)
. (2.20)

The problem can be simplified by making the following assumptions: (1) At all or-
ganelles we have no-slip boundary conditions, (2) the flow field varies gradually with
position and (3) the distances in the system are large with respect to the organelle radii.
(4) Only active organelles, i.e. those with a net force acting upon them, will influence
the flow field and additionally, (5) we assume that the forces on all organelles are point-
like forces acting on a Newtonian liquid. Under the quasi-static approximation, where
the velocity and pressure fields satisfy the balance equations below, we can solve the
flow field.

∇ · V́ = 0 (2.21)

η∇2V́ −∇p =
∑
j

δ (r −Rj)F j (2.22)

In this equation, Rj, is the position of organelle, j, and the summation runs over all
organelles excluding organelle, i. The force acting on an organelle, j, is given by F j

and it originates from the centre of the organelle. Moreover, δ (r −Rj), is Dirac’s delta
function. The solution of the flow field is given by:

V́ =
∑
j

µ (r −Rj) · F j. (2.23)

The tensor, µ (r), is the Green-function of the system and it gives the inter-organelle
mobilities, µij. As was the case for the self-mobility of a single organelle, µii = µ0Î ,
where Î is an identity matrix, the inter-organelle mobilities are linear functions of the
force and velocity. A simple solution of the mobility tensor is given by the Oseen tensor∗

that is defined as:

µij =

{
µ0Î i = j

1
8πηrij

[Î + r̂ij ⊗ r̂ij] i 6= j.
(2.24)

∗Some authors call this the Oseen-Burgers tensor [59].
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The inter-organelle distance is described by vector rij = ri − rj , rij is its magnitude,
r̂ij = rij/rij a unit vector and r̂ij ⊗ r̂ij a dyadic product. By multiplying the numerator
and denominator by 6a, we can express the Oseen tensor as a function of µ0:

µij =

{
µ0Î i = j
3
4
µ0

a
rij
[Î + r̂ij ⊗ r̂ij] i 6= j.

(2.25)

Note that the hydrodynamic interactions are long-range interactions as they decay
as r−1. It is known that the Oseen tensor becomes inaccurate at short distances because
it does not correctly represent the flow field at short length scales. Moreover, the forces
acting on the active particles are treated as point forces at rij = 0. A more accurate
mobility tensor that includes the organelle size as well as short-range hydrodynamic
interactions is given by Stokes [59, 68]:

µij =

µ0Î i = j

3
4
µ0

a
rij

(
Î + r̂ij ⊗ r̂ij

)
+ 1

4
µ0

(
a
rij

)3 (
Î − 3r̂ij ⊗ r̂ij

)
i 6= j.

(2.26)

The term proportional to a/rij is called the Stokeslet and it describes the viscous
response of the fluid to the no-slip condition at the organelle surface. The term pro-
portional to (a/rij)

3 is called the stresslet. This term contributes to irrotational flow,
which is unrelated to the viscous force on the organelle and is caused by the finite size
of the organelle∗. The latter term influences the flow field on short distances as it falls
off rapidly with r−3

ij , where the Stokeslet’s term is long ranged as it decays with r−1
ij .

At long distances, r−3
ij � a, Stokes’ solution simplifies back to the Oseen tensor [59]†.

Alternative tensors exist that correct for the shape and size of the organelles.

An Organelle’s Sensitivity To Hydrodynamic Interactions

To determine the sensitivity of an organelle to the flow field in a fluid, the Stokes num-
ber, Sk, is used. This dimensionless number is defined as the ratio between the relax-
ation time, τ (eq.2.12), of the suspended organelle and the characteristic time in which
flow, governed by another organelle, changes. At a large Stokes number the moving or-
ganelle is not affected by the surrounding flow field. However, for Sk � 1, the organelle
follows the streamlines closely [59]. The Stokes number is defined below.

∗Note that the Stokeslet and stresslet terms also appear in equations 2.14 and 2.15. These equations
describe the velocity around an organelle.

†The hydrodynamic interactions tensor of Stokes (eq.2.26) reduces to, µij = µ0Î, at the surface of a
spherical organelle (rij = a) [59].
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Sk =
Uτ

L
(2.27)

Next, it is determined how the flow field, which has been set up by an organelle of
size, L, that is moving with velocity, U , affects the motion of the model organelle. If both
organelles are assumed to have equal size and velocity, such that L = a and U = V , we
find: Sk = 4.85× 10−11. Thus, the organelle in table 2.2 is very sensitive to the flow field
coming from the other organelles on which an external force is acting.

Diffusion

As mentioned in chapter 1, the suspended organelles are small (50-2000 nm, see table
1.1), but they are still large with respect to the molecules of the surrounding medium.
This means that when the molecules of the cytosol collide with the organelles, their
change in momentum transmits an impulsive force on the organelle. These collision
forces are called thermal forces as their magnitude depends on the temperature of the
fluid. The random motion of the molecules is called diffusion, whereas the resulting
diffusive motion of a suspended organelle is referred to as Brownian Motion [3]. The
magnitude of the diffusion of the molecules in a fluid is given by the (self-)diffusion
coefficient, D0, which is the ratio between the thermal energy of the fluid molecules and
the friction factor of the fluid [3]:

D0 =
kbT

6πηa
=
kbT

γ
= kbTµ0. (2.28)

This equation is called the Stokes-Einstein equation or Einstein relation. The equation
states that the value of the diffusion coefficient can be calculated from the response of
the system under external force [63]. The diffusion coefficient will increase with rising
temperature i.e. larger thermal forces, and is inversely proportional with the viscosity.
The latter is the fluid’s internal resistance against motion. The organelle in table 2.2 (in
cytosol at 37 ◦C) has a diffusion coefficient of D0 = 8.26 ×10−16 m2/s. The mean and
variance of the random thermal forces are given by [3]:

〈Fth〉 = 0

σ2 = 〈F 2
th〉 = γ2〈v2〉.

(2.29)

Moreover, the variance depends upon the average velocity of the cytosol molecules
that is given by 〈v〉. The latter can be calculated from the root-mean-square-velocity,
vrms [3], using the following equation [3]:

vrms =
√

〈v2〉 =
√

3kbT

m
. (2.30)
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Using data from table 2.2, this yields vrms = 1.28×10−2 m/s and 〈v2〉 = 1.64 × 10−4

m2/s2 for the reference organelle. Additionally, the variance of the thermal forces and
standard deviation are σ2 = 4.39×10−15 N2 and σ = 6.63 ×10−8 N respectively.

Diffusion Versus Directed Transport

To determine if the external forces working on the model organelle are large enough to
overcome diffusion, the shortest time, td, needed to diffuse a given distance, L, is calcu-
lated (see results in table 2.3). For one-dimensional diffusion, e.g. organelles bound to
the bio-filament in absence of ATP, it is given by [3]:

td =
L2

2D0

. (2.31)

ATP is present in abundance in the eukaryotic cell, therefore the bound motor(s)
will exert an external force upon the organelle. The resulting motion is a combination
of diffusion and directed motion. This combined motion is called biased diffusion. The
biased diffusive time, tbd, of this movement can be calculated via [3]:

tbd = 2

(
L2

2D0

)(
kbT

F0L

)2 [
exp

(
−F0L

kbT

)
− 1 +

F0L

kbT

]
. (2.32)

For long time scales (with respect to τ ) and distances, this equation approaches a
situation where diffusion is absent i.e. the motion becomes ballistic. Table 2.3 shows
that in water this occurs at distances from 10−3, whereas is cytosol this happens at 10−6

m. The (ballistic) motor time, tb, is given by:

tb =
L

V0
. (2.33)

In the above equation, V0, is the motor velocity. In table 2.3, the diffusive, biased
diffusive and ballistic motor times are compared for different length scales. The fluid
medium is cytosol and the motor has a velocity V0 = 800 nm/s (see table 2.2).

The data shows that for length scales shorter than 10−8 m, diffusion is the dominant
process. At larger distances the speed of the motor is faster than diffusion. Moreover,
the biased diffusive motion is sensitive to diffusion up to distances of 10−7 m after which
it equals the (ballistic) motor velocity. For an organelle to cover large distances, e.g. to
cover the full distance of a cell of 1µm, molecular motors are essential for transport as
the table shows that motor transport is 105 times faster than diffusion.

The Péclet number [57, 59, 65], Pe, is another method to determine if diffusion or
directed motion is the dominant process. This dimensionless number is defined as the
ratio between the rate of convection versus the rate of diffusion and is given by:
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L tb td tbd Pe

Water Cell Water Cell Water Cell
m s s s s s

1.25 5.51 6.05 8.81 9.69
10−9 ×10−3 ×10−7 ×10−4 5.50× 10−7 4.49× 10−4 ×10−4 ×10−1

10−8 ×10−2 ×10−5 ×10−2 5.49× 10−5 1.12× 10−2 ×10−3 ×100

10−7 ×10−1 ×10−3 ×100 5.35× 10−3 1.24× 10−1 ×10−2 ×101

10−6 ×100 ×10−1 ×102 4.19× 10−1 1.25× 100 ×10−1 ×102

10−5 ×101 ×101 ×104 1.11× 101 1.25× 101 ×100 ×103

10−4 ×102 ×103 ×106 1.24× 102 1.25× 102 ×101 ×104

10−3 ×103 ×105 ×108 1.25× 103 1.25× 103 ×102 ×105

Table 2.3: Typical transport times over different distances, L, for the reference organelle (See table 2.1)
moving at 800 nm/s in cytosol and water. See table 2.1 for the cytosol data. For water: ηwater = 0.001 Pas,
F0 = 3.8 ×10−15 N, γwater = 4.71×10−9 Ns/m and D0,water = 9.08×10−13 m2/s. The ballistic time, tb, is
the time it will take a molecular motor to walk a given distance (eq.2.33). The time needed to travel this
distance via diffusion is, td (eq.2.31), and, tbd (eq.2.32), is the time for biased diffusion [3]. Finally, the
Péclet number, Pe (eq.2.34), which is the dimensionless ratio between the rate of transport by convection
and diffusion [57, 65] is shown.

Pe =
Rate of convection
Rate of diffusion

=
V0L

D0

=
F0L

kbT
. (2.34)

Inserting for the motor velocity, V0 = µ0F0, together with eq.2.28 yields the last term
on the right hand side. The latter shows that the Pe number can also be interpreted
as a typical length times the ratio of the driving force on the organelle and the thermal
energy of the fluid molecules. This makes the Pe number independent of the fluid
medium. For small values of Pe, diffusive transport dominates. For Pe values of ≈10
and larger, directed transport is the dominant transport mechanism.

The Pe numbers for different length scales are presented in table 2.3. In cytosol,
directed transport dominates over diffusion from length scales of 10−8 m. This confirms
the results already found using eq.2.32.

Note that comparison with the same organelle moving with equal velocity in wa-
ter (ηwater = 0.001 Pas, γwater = 4.71×10−9 Ns/m and, D0,water = 9.08×10−13 m2/s) yields
different results. As the viscosity of water is a factor 1000 smaller than for cytosol, the
required motor force to obtain the same velocity is a factor 1000 smaller. This results in
Pe numbers a factor 1000 smaller at the same length scales. Moreover, since the diffu-
sion coefficient is a factor 1000 larger in water, the diffusive time also becomes a factor
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1000 smaller. Additionally, the larger D0 makes diffusion influence the biased diffusion
up to distances of 10−3 m (eq.2.32), a factor 1000 larger than in cytosol.

In experiments, the same motor shows a similar velocity (or smaller) in vitro and in
vivo (see e.g. table 13.1 in [3]). Whereas in water the motor force easily overcomes the
friction force, in the cell it will only just overcome this force (see example below eq.2.19).
Again this shows that an additional transport mechanism, such as enhanced transport
via hydrodynamic interactions, is essential inside the cell.

Table 2.4 shows how the transport parameters, that were introduced in the previous
sections, compare with experimental data. These results were obtained in vivo using
Quantum Dot experiments. Values denoted with an * are calculated values. The viscos-
ity measured in the different cells is a factor 1000 larger than in water. In addition, the
Pe number shows that convective transport dominates over diffusion.

Cell type Motor a V T η γ D0 Fd Pe

m m/s ◦C Pas kg/s m2/s N -
×10−9 ×10−6 ×10−6 ×10−16 ×10−12

HeLa [26] Myosin-V 30 0.71 20 0.3975* 0.22* 180 0.16* 2*
HeLa [24] Kinesin-1 15 0.57 20 1.7242* 0.49* 83 0.28* 2*
PC12 [23] Kinesin-? 230 1.25 37 1.1 4.77* 8.98* 5.96* 640*
PC12 [23] Dynein 230 1.2 37 1.1 4.77* 8.98* 5.72* 614*
NT2 [25] - 300 - - 1.8 10.18* 4.21* - -
NT2 [56] - - 2.3 - 3.6 2.91* 14.70* 6.7 134*

Table 2.4: Molecular motor properties measured in vivo in different cells. * Calculated values.

Langevin Equation

In the previous sections, the Stokes equation was introduced that was used to analyse
the transport properties of the fluid. The Stokes equation is the equation of motion for
fluids in absence of inertia and with constant density and viscosity. From this equation
followed the hydrodynamic interaction tensor describing the flow fields around many
(active) suspended organelles. As these equations only balance the forces acting on the
fluid, we now need an equation describing the motion of the organelle. This equation
of motion for a suspension of organelles (or any other object in a fluid) is called the
Langevin equation [3, 57, 63, 69]. I will discuss this equation by following an organelle i:
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m
d2ri

dt2
= F friction + F conservative + F thermal

= −γ dri

dt
+ F i + γgi(t).

(2.35)

This equation balances all the forces acting on the organelle, which include the fluid
friction force, F friction, conservative forces, F conservative (e.g. external, coulomb, and elas-
tic forces) and thermal forces, F thermal. Additionally, gi(t), is a random velocity resulting
from thermal forces. The latter is defined as a random variable from a Gaussian distri-
bution with zero mean and its variance is proportional to the diffusion coefficient via
Dii = D0Î :

〈gi(t)〉 = 0

〈gi(t)gi(t
′
)〉 = 2Diiδ(t− t

′
).

(2.36)

The magnitude of the diffusion coefficient is given by the Stokes-Einstein equation
(eq.2.28). The Langevin equation is a stochastic differential equation as it contains a
random term. For solving it, times larger than the relaxation time are assumed (see
eq.2.12). As previously explained, the organelle moves at low Reynolds numbers, i.e.
there is no inertia and velocities are instantaneous. Taking the above into account yields
the following Langevin equation:

dri

dt
=

F i

γ
+ gi(t)

= µ0F i + gi(t).

(2.37)

The equation describes the average speed of an organelle superimposed on the dif-
fusive motion. Subsequently, the time evolution of the probability distribution, pi, of
the organelle’s position can be described using the Fokker-Planck equation [3, 63]. This
equation is equivalent to the Langevin equation as it describes the same dynamics. It is
given by [69]:

∂p

∂t
= D0

∑
i

∇2
ri
p− D0

kbT

∑
i

∇ri ·
(
F jp

)
(2.38)

In this equation, ∇ri , is the derivative with respect to the organelle position. The
solution of the above equation coincides with the Boltzmann distribution when it ap-
proaches steady-state at t→ ∞ [63]:

p (xi) ∝ exp

(
− Ui

kbT

)
(2.39)
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The potential energy of the conservative force is given by Ui. The Fokker-Planck
equation is now extended for interacting particles as is the case for hydrodynamic inter-
actions between the organelles. The resulting N-body Smoluchowski equation is given
by [69, 70]:

∂p

∂t
=

∑
i

∑
j

∇ri ·Dij · ∇rjp−
∑

i

∑
j

∇ri ·
Dij

kbT
· F jp (2.40)

Again, the steady-state solution approximates the Boltzmann distribution. How-
ever, the diffusion coefficient, Dij, is no longer a constant but a 3-dimensional position
dependent tensor given by [71]:

Dij = D0δijÎ + (1− δij)kbTµij. (2.41)

The corresponding Langevin Equation is given by [63, 69, 72]:

dri

dt
= µii · F i +

∑
j,j6=i

µij · F j + gi(t) +∇rj ·Dij. (2.42)

There exist different mobility tensors that can be chosen for µij. Both the Oseen
tensor (eq.2.25) and Rotne-Prager tensor (eq.4.10) have the property that ∇rj · Dij = 0
[69, 72]. This yields:

dri

dt
= µii · F i +

∑
j,j6=i

µij · F j + gi(t). (2.43)

It is this equation that will be solved using simulations in subsequent chapters. The
mean and variance of the random velocity are now given by [63]:

〈gi(t)〉 = 0

〈gi(t)gj(t
′
)〉 = 2Dijδ(t− t

′
).

(2.44)

Note that the random velocities are no longer independent of each other as Dij de-
pends upon the position of the organelles with respect to each other. Consequently,
these are correlated random velocities.

Summary

In this chapter I show that the friction forces acting on the reference organelle (see table
2.2) are much larger than the forces of inertia (Re� 1). The magnitude of these friction
forces are enhanced by the high viscosity of the cytosol (η = 1 Pas, see table 2.4), which
yields a drag coefficient, γ, a factor 1000 larger than in water. At low Reynolds numbers,
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in the absence of external forces and gradients, the organelle will show no net displace-
ment. Therefore it needs an external power source. Molecular motors can provide just
such a force. An organelle bound to the bio-filament via molecular motor(s) is called
an active particle. Any active particle, moving through a fluid, sets up a flow field via
momentum transfer into the fluid medium. This flow field will influence the motion of
other suspended organelles that are sensitive to this flow field as is shown by the small
Stokes number (Sk � 1). Moreover, the organelle is small enough to be subject to Brow-
nian motion. Whereas diffusion is the dominant process at very short time and length
scales, the Péclet number (Pe ≥ 10) shows that in cytosol at distances from 10−6 m (the
size of the organelle) active transport is the dominant transport mechanism. Again this
highlights the importance of molecular motors in intracellular transport.

As for organelles in the cell inertia and gravitational forces can be ignored and the
density and viscosity are assumed constant throughout the fluid, the Navier-Stokes
equation reduces to the Stokes equation. This equation of motion for fluids was used
to derive an expression for the hydrodynamic interaction tensor that describes the flow
field set up by the actively moving organelles in this fluid. Finally, the hydrodynamic
interactions were introduced into the equation of motion for a suspended organelle
yielding the Langevin equation that will be used in the simulations of chapters 4 and 6.
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Chapter 3

Theoretical Models For Molecular
Motor Transport

Introduction

Theoretically, active transport by molecular motors has been studied extensively at
different levels. Some authors take a bottom-up approach trying to describe how the
molecular motors work internally i.e. elucidating the coupling between conformational
changes of the motor to the hydrolysis of ATP [73]. Others used these results to set
up discrete stochastic models [74] where the configurational changes of a stepping motor
are modelled as a series of energy states. Moreover, combination of experimental work
with bottom-up research yielded concepts such as the duty cycle [75] and duty ratio [3,76]
that can predict whether a single motor is processive or needs to work in an assembly
of motors. In addition, different groups tried to understand the stepping of molecu-
lar motors along the cytoskeletal filaments by means of an inchworm mechanism [77],
Hand-over-hand mechanism [78, 79] or a combination of both [80]. Finally, the motion of
the unbound head of an attached motor was studied. Is the next binding site found by
a (stiff) lever mechanism [81] or a diffusive search [80, 82–84]?

In this chapter I give a review of the development of theories describing directed
molecular motor motion (and their cargoes). These theories use simple physical trans-
port processes that do not include the molecular details or the chemistry involved.
These models inspired the computer models presented in this thesis (see chapters 4
and 6).

In order to develop a model, first its desired features should be clear. As in this thesis
we are interested in the collective transport of many organelles by molecular motors, a
theoretical description should include the following features: (1) Directed motion, (2)
thermal fluctuations, (3) description of the dynamics of bound and suspended motor-
organelle complexes, and (4) hydrodynamic interactions. As we deal with very low

27



Reynolds numbers (see chapter 2), asymmetry is the key element to move in a directed
way in such an environment.

Feynman-Smoluchowski ratchet

Since molecular motors and their cargoes are small enough to be subject to thermal
forces, the first attempted model used only these thermal fluctuations as power source
to rectify a net motion. The Feynman-Smoluchowski ratchet, which was first studied by
Smoluchowski [85, 86] and later discussed by Feynman during his lectures on thermo-
dynamics [87], is based upon this principle (see Fig.3.1A).

T
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T
2

A

U1

U1

U2

Particle trapped in well

Particle diffuses

Particle sometimes makes
it to the next well

Particle most likely
returns to the same well

B

a b

Figure 3.1: A) Feynman-Smoluchowski ratchet and pawl device - Two heat baths, 1 and 2, are connected
by an axis. A weight is suspended from the axis. In one heat bath vanes are mounted on the axis, on the
other a ratchet wheel. Asymmetry is introduced by restricting the ratchet wheels’ motion to one direction
by introduction of a pawl. As the system is built at molecular scale it will be subject to thermal collisions.
The molecular bombardments on the vanes makes the axis rotate in one direction only. This results in
lifting the weight and thus violating the second law of thermodynamics. To make the system work it is
essential that both reservoirs are at different temperatures, thus breaking detailed balance. Reproduced
with kind permission from [88]. B) Brownian ratchet mechanism - In the asymmetric periodic potential
U1 a particle is diffusing inside a potential well. When the potential is switched off (U2) the particle can
diffuse freely. When it diffuses far enough before the potential is switched on again, it can get trapped in
the next potential well. The combination of thermal fluctuations, and switching between potential states
rectifies the stochastic thermal motion.

Feynman posed the question whether it is possible to use the thermal fluctuations of
molecules to generate directed motion i.e. is it possible to do mechanical work without
having to spend energy to obtain it? The experiment consists of two isolated heat baths
that are not in contact. The baths are connected by an axis that in one bath is mounted
with vanes and in the other with a ratchet wheel. Additionally, a weight is suspended
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at the centre of the axis between the two heat baths. The whole system is at micro-
scopic scale, thus the system is subject to and will be affected by collisions from the
surrounding gas molecules. The vanes are hit at random from different directions caus-
ing the axis to rotate freely with equal probability in clockwise and counter-clockwise
direction. Next, symmetry is broken by fixing the rotational direction of the ratchet
wheel by addition of a pawl. As a consequence, the unidirectional rotational movement
of the axis is capable of lifting the suspended weight. This suggests that the system
works as a perpetuum mobile, extracting energy out of ’nothing’ i.e. violating the sec-
ond law of thermodynamics∗. However, the system does not work since there are also
gas molecules in the other heat bath. These molecules will collide with the pawl device
and thereby release the ratchet wheel. Feynman showed that as long as both baths are
at equal temperature, the probability for the vanes to rotate by molecular collisions is
equal to the probability for the pawl to be lifted. Therefore, the system will only work
when the baths are at different temperatures i.e. when detailed balance is broken. Thus,
energy from an external source is needed to keep the baths at different temperatures.

Brownian ratchet

As demonstrated by Smoluchowski and Feynman, thermal motion alone is not enough
to drive a mechanical system. A physical model for rectifying directed motion via
molecular motors thus needs an external power source. In a cell this power source
is ATP. Without ATP†, molecular motors will diffuse due to thermal fluctuations along
the bio-filament [89–91] or through the cell. On average no net displacement will take
place. When the external force, generated by hydrolysing ATP, is present, the motors
will start walking along the bio-filament (see chapter 2). A simple model to capture
thermal fluctuations and directed motion is the Brownian ratchet [86, 92–94]. In Fig.3.1B
the simplest version, the flashing ratchet is shown. In this model, a motor-organelle com-
plex, from now on called simply the organelle, is subject to two different potential states.
One state is flat, in this state the organelle diffuses freely along its surface. The other po-
tential state is a periodic asymmetric sawtooth. The asymmetric shape is essential, as to
generate motion detailed balance needs to be broken. This is analogous to the tempera-
ture difference that is required for the Feynman-Smoluchowski ratchet to work. When
this potential is activated, the organelle gets trapped in one of the potential wells where
it moves by thermal fluctuations. Here it is assumed that the temperature is low enough
to prevent barrier crossing due to fluctuations. None of the two potential states indi-
vidually can generate motion along the bio-filament. However, periodically ’switching’
between the two potentials does generate motion. If the sawtooth state is activated,

∗One definition of the second law of thermodynamics states that a process whose only net result is to
take heat from a reservoir and convert it to work is impossible [87].

†In absence of other external forces and/or gradients.
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the motor is trapped in the closest potential well, corresponding to its current position.
When the sawtooth potential is switched off, the motor will diffuse freely. Next, the
organelle is given enough time to, on average, diffuse a distance larger than the short-
est distance (a in Fig.3.1B) between well and barrier, but not enough time to cross the
other barrier (b in Fig.3.1B)∗. After reactivation of the sawtooth potential, the organelle
will either remain in the same potential well or end up in the next. Repetition of this
procedure rectifies net motion, and can even oppose an external force [94] such as the
viscous friction force of the cytosol. The flashing ratchet model is sensitive to many pa-
rameters, including the shape of the potential, the barrier height, the temperature, the
motor diffusion coefficient and the switching frequency between the different states.
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Figure 3.2: A) A Brownian ratchet model for a two headed kinesin motor. Top - The hand-over-hand
motion of a kinesin motor along a microtubule where the two heads are colour coded. Bottom - The two
heads of the kinesin motor are modelled using two identical but shifted potentials. Shifting between the
potentials is governed by the hydrolysis of ATP. Reproduced after [95] with kind permission from Springer
Science and Business Media. B) Two different chemical states of a molecular motor bound to a bio-filament
are shown as two different asymmetrical and periodic potentials, U1(x) and U2(x). The vertical arrow
represents the input of chemical energy (hydrolysis of ATP), making the motor switch potential states.
Stochastically switching between potentials yields a biased diffusive motion. The positions of the potential
wells are indexed, li, along a potential with length x. Reproduced after [74] with kind permission from
ANNUAL REVIEWS.

∗This time can be estimated using eq.2.31 introduced in chapter 2.
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Ratchet Models Of Molecular Motors

Jülicher and co-workers [95] used the Brownian Ratchet to map the motion of the two
heads of a processive kinesin motor on two asymmetrical energy landscapes, that are
equal in size and shape, but shifted less then a period with respect to each other (see
Fig.3.2A). The heads take turns in hydrolysing ATP and step along the microtubule
while each head shifts from one energy landscape to another. A different approach is
to view the bio-filament bound motor as diffusing on two or more spatially parallel,
periodic and asymmetric coarse-grained potentials (see Fig.3.2B) [74]. Each potential
corresponds to a different biochemical state of the motor. Driven by chemical energy,
the motor switches stochastically from one potential to another and the resulting system
evolves according to a set of coupled Fokker-Planck equations. This yields a biased dif-
fusive motion. Finally, Jülicher et al [92] studied many motors moving simultaneously
along a two-state Brownian ratchet, which could be used to describe systems where
many motors work in concert such as in muscle contraction.

Brownian Ratchets Featuring Hydrodynamic Interactions

In 2003, Curtis and Grier [96] showed, using a toroidal optical trap, that small parti-
cles (800 nm polystyrene beads) can move around in a circular fashion. The motion is
driven by angular momentum transfer coming from a tilted sinusoidal potential acting
on the particles. By means of simulations Reichert and Stark [97] demonstrated that this
transport could in a viscous fluid be enhanced by means of hydrodynamic interactions.
In particular they noticed that pairs of particles moved faster than single particles. As a
follow up, the same group confirmed this result in real experiments [98]. Additionally,
they presented experiments with charged particles trapped in a static asymmetric po-
tential. In this system a positive force is acting on the particles, additionally to the saw-
tooth potential, effectively yielding a tilted potential (Fig.3.3). If a particle 1 is trapped
in the well and another particle 2 enters this well from above, the electrostatic repulsion
will push particle 1 over the next barrier. Next, the hydrodynamic interactions between
the particles makes particle 2 follow particle 1 over the barrier. This procedure is re-
peated and effectively the two particles move via a ’caterpillar like’ motion. Recently,
Polson et al. [99] performed Brownian Dynamics simulations of a flashing ratchet po-
tential where they report that the driven motion of a polymer in a ratchet potential is
enhanced by hydrodynamic interactions. Moreover, Fornés [71] presented simulation
results of two elastically coupled particles, representing the two heads of a molecular
motor, in a flashing ratchet. He showed that not only do the hydrodynamic interac-
tions enhance the transport but additionally can overcome an opposing load. Finally,
the group of Stark repeated their experiments with the toroidal trap, but this time every
particle was subject to an individual ratchet potential. Again hydrodynamic interac-
tions enhanced the transport [100].
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Figure 3.3: Two charged particles in a tilted asymmetrical potential. (A) Particle 1 is trapped in a
potential well, particle 2 enters this well. (B) Due to electrostatic interactions particle 2 pushes particle
1 over the barrier. (C) The hydrodynamic interactions between the particles cause particle 2 to follow
over the barrier (D). In the next well this behaviour will be repeated yielding an inchworm type motion.
Reproduced after [98] with kind permission from Europhysics letters (https://www.epletters.net)

(Totally) Asymmetric Simple Exclusion Process With Lang-
muir Kinetics

The Brownian ratchet gives a good description of how a molecular motor or a motor-
cargo complex can move processively along a cytoskeletal filament. However, it does
not account for the processivity of molecular motors as, binding to, and detaching from,
the bio-filament is not included. Parmeggiani et al. [101, 102] adapted the Totally Asym-
metric Simple Exclusion Process (TASEP) to capture both the biased diffusion and motor
processivity in one model. The basic TASEP is an extension of stochastic lattice gas
models and was first introduced in 1968 as a theoretical model for describing the kinet-
ics of biopolymerisation [103]. Whereas the TASEP only allows for forward stepping,
there exists also an ASEP (Asymmetric Simple Exclusion Process). The latter model cap-
tures a biased diffusion that does allow for back stepping. Both TASEP and ASEP are
non-equilibrium steady-state models that require a constant gain or loss of energy. The
models have many applications, including modelling of car traffic and ant trails (see
reviews [104, 105]).

In the adapted TASEP of Parmeggiani et al. (Fig.3.4A), the bio-filament is mapped
on a lattice of nodes and molecular motors are entering the filament from the left side
with a probability α. The motors ’walk’ unidirectionally along the filament from left
to right. The model incorporates excluded volume thus the adjacent lattice node has
to be vacant before a motor can make its move. Motors that reach the end of the fila-
ment can leave the filament with the probability β. As mentioned before, in the TASEP
model back stepping is forbidden, even though molecular motors are know to step both
forward and backwards (see chapter 1). The motor concentration (number density) in
the bulk is determined by the choice of the boundary conditions α and β. If β < α,
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then a traffic jam of molecular motors can appear at the end of the filament increasing
in length with decreasing β. Parmeggiani et al. combine this TASEP model with Lang-
muir Kinetics (LK), a model that was originally developed to describe the attachment
and detachment of gas molecules on a substrate [106]. In LK, motors can detach from
the filament with rate ωD and attach with rate ωA. The filament is submerged in a virtual
particle (motor) bath from where, at random positions along the filament, motors can
attach. Unlike TASEP, LK is in thermal equilibrium and obeys detailed balance. The
ratio between the rates of attachment and detachment is called the binding constant,
K = ωA/ωD. The concentration in the bulk of the system can be predicted using the
Langmuir equilibrium density defined as: K/(1 +K)∗.

We are interested in the situation where the dynamics of LK and TASEP compete.
However, these dynamics are dependent on the system length, N . As a motor typically
spends a time τ ∼ 1/ωD on the lattice, it will visit a number of sites n in the order of
τ ∼ n. This means that the fraction of sites visited along the filament is n/N ∼ 1/ωDN .
In the thermodynamic limit (N → ∞), this fraction of sites would go to zero i.e. the
system would be completely dominated by LK. Thus, to enable competition between
both models, it is important that the motors spend enough time on the lattice to interact
with each other. For this purpose the total detachment (ΩD) and attachment (ΩA) rates
are introduced to make them independent of the filament length via:

ΩA = ωAN and ΩD = ωDN. (3.1)

In Fig.3.4B it is shown that the dynamics of both TASEP and LK can be recovered
by the model by tuning the detachment rate. For small values of ΩD (and constant α,
β, K and N ), the TASEP mechanism dominates the system. Here the detachment and
attachment rates are very small such that the motors spend most of their time along
the bio-filament. For large ΩD the dynamics are determined completely by the Lang-
muir kinetics. Motors continuously appear on and disappear from the filament. How-
ever, when the TASEP and LK processes compete i.e. when motors spend enough time
‘walking‘ along the filament to interact, different dynamics are found. There is competi-
tion between bulk and boundary dynamics resulting in a non-monotonic concentration
profile on the filament. For ΩD = 0.1 in Fig.3.4B regions of low and high motor con-
centration are shown separated by a steep rise in concentration. At the beginning of
the filament TASEP dominates, followed by a domain wall after which the Langmuir
dynamics rule. Finally there is a depletion effect at the end of the filament. The width
of this domain wall decreases with increasing filament length (see Fig.3.4C)†.

∗Parmeggiani et al. [101, 102] assume a constant motor concentration of unity in the bulk during
attachment and detachment.

†For constant values of α, β and K.
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Figure 3.4: TASEP model with Langmuir Kinetics. A) The different moves on the one-dimensional
lattice. Two different mechanisms are shown. First there is the hopping mechanism (TASEP) governed by
the difference in ingoing and outgoing rates, α = 0.2 and β = 0.6 respectively. The second mechanism
(Langmuir Kinetics) is bulk attachment and detachment with rates ωA and ωD. The ratio between these
values is K, and is fixed to a value of 3. Excluded volume interactions are accounted for. B) Three different
curves are shown for different ΩD, where N = 103 is the number of binding sites, i, the index of a binding
site and x ≡ i/N . For small ΩD (and small ΩA), the TASEP mechanism dominates the dynamics. For
large ΩD (and small ΩA) the Langmuir kinetics dominate. The intermediate ΩD (and intermediate ΩA)
shows a behaviour that depends on both mechanisms, yielding a low and high density region separated
by a domain wall. C) The width of the domain wall in Fig.B decreases with increasing system length (at
constant ΩD). The system length is given by N = 10k. Reprinted figure with permission from [101].
Copyright 2013 by the American Physical Society.
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Extensions Of The TASEP/LK Model

The model of Parmeggiani et al. [101, 102] was extended after experimental work by
Mallik et al. [107] showed that dynein motors can walk with steps of 8, 16, 24 or 32 nm
along a microtubule depending on the free space available along the filament. To model
this hindrance-dependent stepping behaviour of a dynein protein, Kunwar et al. [108]
combined the TASEP with the Aggressive Driving Model (ADM) that allows for motors
to walk between 1 and 4 lattice nodes per time step depending on the number of vacant
lattice nodes.

Other authors focus on different types of interaction between the motors and the
filamentous track they walk on. Among these applications are the burned-bridge model,
where part of the filament becomes unavailable after a molecular motor has walked
upon it [109–111]. In addition, Klumpp et al. [112] reported an ASEP where the filament
consists of active compartments, where processive motion takes place, and diffusive
compartments where an unbiased random walk takes place. Moreover, the influence
of defects on the bio-filament in the form of road blocks [113] that obstruct the motion,
have been studied. Also, the dynamics at junctions of multiple filaments have been
reported [114, 115].

Another line of research takes advantage of the stochastic lattice gas models to un-
derstand the behaviour of different species of motors on a filament. Chai et al. [116]
modelled motors with different stepping rates and detachment probabilities along the
same filament. Similarly, motors of opposite polarities sharing the same filament have
been studied [117, 118]. The latter could occur on a microtubule where kinesin and
dynein motors walk in opposite directions or could apply to actin filaments where plus
and minus end myosin motors exist (see chapter 1). In addition, motion of molecular
motors via occupancy facilitation has been studied [119]. In the latter model a motor
only steps when the next site is vacant and the previous site is occupied. Furthermore,
Goldman et al. presented an ASEP of molecular motors with cargoes [120] and followed
this work with a model that allows for ’cargo-hopping’ from one motor to another. The
latter occurs when a cargo carrying motors’ path is blocked by another motor [121].

Two Lane Exclusion Processes

The exclusion process models discussed so far did not include interactions between
lanes nor were the number of motors conserved in the system. To study this, models
have been developed where two lanes of lattice nodes exist parallel to each other. The
lanes can be identical in properties or different. Interaction between both lanes takes
place via Langmuir kinetics.

Evans et al. [122] introduced a two lane model consisting of a TASEP lane (biased
diffusion) and a diffusive lane where motors experience a one-dimensional random
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walk. A motor can thus detach from a filament, diffuse and rebind to the filament
again, thus conserving mass in the system. In the approach of Ebbinghaus et al. [123]
the model consists of a TASEP lane and a diffusional lane where no excluded volume
is taken into account. Two kinds of motors exist that move in opposite directions. This
way, the authors model a microtubule occupied by both kinesin and dynein and study
their dynamics. They followed this work [124] for different properties of the diffusive
lane and by introducing (temporary) defects along the TASEP lane.

Furthermore, different situations of two parallel TASEP have been studied. Shi et
al. [125] studied the dynamics of two TASEP with lane changing via Langmuir kinetics.
Additionally, Melbinger et al. [126] (building on a model by Popkov et al. [127]) pre-
sented a two lane TASEP without Langmuir kinetics. However, the motion of motors
on one TASEP is restricted by the position of motors along the other filament thereby
including mutual excluded volume effects. This situation can occur in a cell when cy-
toskeletal tracks are in close approximation or when multiple tracks along a microtubule
are followed by different motors. Finally, the two lane ASEP of Juhász et al. [128] con-
sists of two lanes of opposite polarity permitting lane changes.

Motor Interactions With The Environment

The model presented by Parmeggiani et al. [101,102] and its extensions incorporates the
processivity of molecular motors in combination with their directed motion. However,
it fails to describe the interaction of the active motors with the environment. In the cell,
the molecular motors alternate between periods where they are bound to the cytoskele-
ton and periods where the diffuse freely through the cell’s cytosol [24]. Therefore, a
more realistic model should incorporate motor interactions with the environment.

Exclusion Processes With Solution

The first molecular motor model that built upon exclusion processes and incorporated
interaction with the surrounding medium was presented by Lipowsky et al. [129, 130].
The model consists of a system where both the bio-filament(s) and the solution are
mapped upon a lattice with lattice spacing, l, equal to the diameter of the molecular
motor with cargo. In the solution, suspended motors or motor-organelle complexes,
perform a random walk. In one simulation time step a motor is restricted to a move
of ±1, in all x, y and z-directions with probability p (see Fig.3.5A). The probability de-
pends on the number of dimensions, s, in which the random walk takes place and is
given by: p = 1/2s. The sum of these probabilities is unity. The diffusion in ’solution’ is
purely a random walk which is independent of the motor’s location in the solution and
on the motor concentration. The diffusion constant is chosen to be a constant for each
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suspended object, therefore, hydrodynamic interactions are neglected in this model. In
addition, excluded volume interactions are taken into account by allowing only one
motor at a lattice node at given moment in time. Furthermore, the filament is modelled
as an ASEP with LK dynamics, allowing for forward and backward steps as well as in-
cluding the motor processivity. Hence, the bound motors are subject to a biased random
walk. The motors are driven along the lattice according to the following probabilities:
α (forward), β (backward), γ (detachment) or δ (dwelling) (see Fig.3.5B). As it was the
case in solution, the sum of these probabilities is unity. The velocity of the bound mo-
tors is imposed by the degree of bias: V = (ᾱ − β̄)l/τ in which ᾱ ≡ α/(α + β + γ),
β̄ ≡ β/(α + β + γ) and τ a time constant. As mentioned above, the suspended motors
can move to any of the adjacent lattice nodes with equal probability. Therefore, a motor
in a lattice node adjacent to the bio-filament can attach to the filament with finite prob-
ability provided that the lattice node is not occupied. This move will next be accepted
with probability π. A more detailed description of the dynamics on the bio-filament
and the detachment and attachment of motors can be found in appendix A.

Lipowsky et al. used this model to study the relevance of the fluid on the motor
dynamics in different geometries for both open and closed systems. For example, they
studied motor transport in a closed tube in which one filament is present that is posi-
tioned in axial direction along the tube wall [129]. The filament is treated as a TASEP
with LK, thus bound motors are only allowed to step forwards towards the plus-end
(β = 0) or detach. Motors are not allowed to cross the confining walls that close off the
tube. Even at small motor concentrations self-organisation will take place in the system.
As can be seen for N = 40 in Fig.3.5C, the unidirectional motion of the motors results in
a ‘traffic jam‘ or area of high motor concentration at the end of the filament. This bound
motor concentration drops off rapidly after the beginning of the jam is reached. Since
the bound motors accumulate at the end of the filament, there will be more motors de-
taching in that region. This results in a motor gradient in solution which yields a flux
of motors in opposite direction. The unbound motor flux balances the bound motor
flux establishing a stationary non-equilibrium state. Fig.3.5C shows that the length of
the traffic jam increase with the number of motors (N = 150) in the system, until the
filament becomes almost saturated (N = 250).

This flexible model was easily adapted to study collective effects in different geome-
tries. For example, the random walks of molecular motors in a system of immobilised
bio-filaments in two and three dimensions have been studied in more detail [131], as
is transport in systems with different filament arrangements, including uni-axial and
aster-like configurations [132,133]. Additionally, the tug-of-war between different types
of competing molecular motors attached to a cargo has been considered [134–136].
Moreover, the motor stepping behaviour and in particular the binding and unbinding
dynamics with changing motor traffic density [137] has been investigated. In addition,
defects in the filaments and the presence of microtubule associated proteins have been
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Figure 3.5: Lipowsky model. A) In solution the motor can diffuse freely with equal probability to any
of the four adjacent lattice nodes on a 2d lattice. The model can be adapted to be used in one, two or
three dimensions. B) The dynamics of a bound motor protein. The protein moves with the following
probabilities: forward (α), backward (β), detachment from the filament (γ) or dwelling (δ). C) Normalised
steady-state concentration profile, ρbl3, of molecular motors bound to a single filament in a closed tube.
The filament is located at the bottom of the tube. The position on the filament is given by, X , in units
of the lattice spacing, l, and the filament diameter D = l. The motors move towards the positive end
of the filament that is located at X = 200l. The tube has length, L = 200l, and width, W = 25l,
N indicates the total number of motors and Nb, the bound motors. The bound density is given by:
ρb = Nb/D

2L = Nb/200l
3. Reprinted figure with permission from [129]. Copyright 2013 by the

American Physical Society.

studied [138]. Similarly, one of these proteins, the tau protein was the topic for an-
other group (Grzeschik et al. [139]). The tau protein may reduce the tubulin affinity of
the motors [140, 141]. This could be important for understanding Alzheimer’s disease,
which is linked to an altered tau metabolism, resulting in neuronal disorders known as
tauopathies [142].

Continuum Models

The importance of the interaction of the motors with the surrounding medium has
also been studied in an off-lattice or continuum environment. For example, Surrey
et al. [143, 144] presented experimental work and simulations of active polymer solu-
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tions where solutions of molecular motors (both plus and minus end) and bio-filaments
give rise spontaneously to different filament geometries. The shape of these geometries
depends upon the motor concentration, motor type and motor processivity. The simu-
lations make use of a set of coupled kinetic equations that describe both the bound and
unbound motors respectively.

The influence of a more realistic medium by including hydrodynamic interactions
has also been studied in the continuum. Korn et al. [145] studied the binding of a motor-
cargo complex to a receptor on the filament. In addition, they studied how the transport
of a cargo along a cytoskeletal element is influenced when there are multiple molecular
motors present on the cargo [146]. In these simulations hydrodynamic interactions be-
tween the cargo and wall (filament) are taken into account. The motor motion is mod-
elled via numerical integration of the Langevin Equation. The simulations show that
the mean transport length increases exponentially with the amount of motors attached.
This result is in agreement with earlier simulations presented by the same group [134]
and with experimental work [147, 148].
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Chapter 4

Cell Transport Enhanced By
Hydrodynamic Interactions

In the following 3 chapters, the effect of the solvent on the transport of bound and
suspended molecular motors with cargoes will be analysed. The simulation models
described in this chapter, and those in chapter 6, were developed in close collabo-
ration with Ignacio Pagonabarraga (Departament de Fı́sica Fonamental, Universitat
de Barcelona, Spain). The experimental work was performed by Agnieszka Esseling-
Ozdoba in the group of Anne-Mie Emons (Wageningen University, Laboratory of Plant
Cell Biology, the Netherlands). In this chapter results are presented that were obtained
via simulation studies using a lattice model. Most of these results have been pub-
lished [149]. Experimental work done in the group of Prof. Emons is discussed in
chapter 5 and in [150]. In chapter 6, results obtained using a subsequently developed
continuum model, are presented.

This chapter is an extended version of the original publication: D. Houtman et
al., ”Hydrodynamic flow caused by active transport along cytoskeletal elements” EPL,
2007, 78 [149] and has been reproduced with kind permission from EPL (Europhysics
Letters) - IOPscience. In addition, it features a section where the effect of the choice of
the mobility tensor is discussed. Moreover, the simulations are repeated for a system
with two filaments of opposite polarities. Finally, the motor-cargo transport is studied
for the situation where there are gaps in the cytoskeleton.

Introduction

In chapter 2 it was shown by means of the Stokes number (eq.2.27) that small suspended
organelles and other suspended cytoplasmic objects are sensitive to momentum trans-
port via each other’s flow field. Thus, the motion of these organelles will be affected
through hydrodynamic interactions. However, this effect alone will not necessarily give
rise to enhanced transport inside the cell. In most situations it has a negligible effect as
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the cell’s cytosol is a crowded environment consisting of a multitude of cytoskeletal el-
ements with small mesh size [151]. Moreover, organelles are dragged towards both the
plus and minus ends of the individual bio-filaments (see chapter 1) mostly cancelling
out the hydrodynamic effects. Therefore, for the momentum transfer via the fluid to
have a positive effect on the transport, a number of conditions need to be met. Firstly,
many cargoes have to be actively transported simultaneously along the same or along
different bio-filaments. This is a key requirement as the hydrodynamic drag is additive.
Secondly, the bulk of this transport has to take place in unidirectional fashion as motion
in opposite direction will counteract the effect. Thirdly, to maximise the effect, the cy-
toskeletal elements have to be oriented more or less parallel to each other. Finally, the
fluid friction force acting upon an organelle is larger in a viscous fluid, such as cytosol,
than in water. Thus, the effect of the additional positive force on the organelle via hy-
drodynamic interactions is desirable in a viscous fluid. See Fig.1.3 in chapter 1, where
it is shown that adding molecular motors (i.e. a positive force) to an organelle has only
a small effect on its velocity in water. However, it yields a substantial velocity increase
in the cell. Different systems exist that abide to the above. We will limit ourselves to
two situations, cytoplasmic streaming in plant cells [30] and axoplasmic streaming in
neurons [152]. In cytoplasmic streaming the bound and suspended organelles follow
a given trajectory through the entire cell (e.g. see Fig.4.1 for cytoplasmic streaming in
Tradescantia virginiana). In neurons organelles can be transported from one extreme of
the neuron to another∗. In both systems, the transport takes place on very long length
scales with respect to the size of the cargoes (≈500 nm†). It is this transport that will be
analysed using computer simulations. For the remainder of the chapter, motor-cargo
complexes will be referred to as motors, unless specified otherwise.

Expanding The Exclusion Process With a Solution

As discussed in chapter 3, Lipowsky et al. [129, 130] were the first to present an exclu-
sion process that captures the dynamics of molecular motors (with or without cargoes)
along a bio-filament as well as the diffusion of the motors in solution. Both the driven
motion along the bio-filament and the diffusion in solution are mapped on a lattice.
Furthermore, the motor positions are confined to the lattice nodes with spacing, l. The
mesh size is proportional to the motor diameter. In addition, excluded volume is taken
into account by treating the motors as hard spheres. Thus, allowing for only one motor
on a lattice site at a given moment in time.

∗The length of the recurring laryngeal nerve of a Giraffe can be up to 5 meter and the nerve cells in a
Blue Whale are estimated to be 30 m long [153].

†See table 1.1.
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Figure 4.1: Tradescantia virginiana (spiderwort) stamen hair cell. The cytoplasmic strands (CS) contain
organelles (O) (white arrow); n- nucleus, v- vacuole, cc- cortical cytoplasm, cw- cell wall. Bar = 20 µm.
Inserts: A. Flower of (T. virginiana), B. Magnification of stamens, arrowheads indicate stamen hairs, C.
Single stamen hair.

During one simulation time step, a motor is allowed to move to an adjacent lattice
node in x, y and z-direction or dwell in its position. This yields a maximum displace-
ment, x, per time step of x =

√
sl where, s, is the number of dimensions in the system.

The bio-filament(s) are modelled as a linear array of lattice nodes with properties dif-
ferent from those in solution (see Fig.3.5) accounting for the dynamics of bound and
suspended motors. We define the motor concentration in the solution, φs, and on the
bio-filament, φµ, as the fraction of lattice nodes occupied by motors. This model will be
expanded and adapted in the next sections to analyse the importance of hydrodynamic
interactions in intra-cellular transport. A more detailed description of the dynamics
of the bound motors and the detaching from and attaching to the bio-filament can be
found in appendix A.

Moving Along The Lattice

The dynamics of the ASEP-type bio-filaments and the solution are adapted to model
the influence of the fluid on the motor transport. Rather than performing costly simu-
lations where the motors, bio-filaments and the very large number of cytosol molecules
are modelled individually, an approximate method is used [69]. This method involves
omitting the cytosol molecules and introducing the influence of the solution on the so-
lutes as a combination of random forces and frictional terms. For this purpose the equa-
tion of motion for suspended objects, the Langevin equation, will be mapped on the
lattice. This equation depends upon the physical parameters of the motors and takes
the friction of the cytosol into account. More importantly, via this equation the momen-
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tum transfer giving rise to hydrodynamic interactions between the different motors can
be studied (see chapter 2). The Langevin equation that describes the motion of an or-
ganelle i in a solution of organelles j is given by:

dri

dt
= V i = µii · F i +

∑
j,j6=i

µij · F j + gi(t) = V i,0 + V i,d + V i,r. (4.1)

In this equation, V i,0 = µii · F i = (V0, 0, 0), is the ballistic self-velocity of the or-
ganelle that depends on the organelle’s mobility and the molecular motor force acting
upon it. The hydrodynamic interactions of organelles j on organelle i are given by:
V i,d =

∑
j,j6=i µij · F j. This additive effect depends upon the force on each organelle

as well as the position dependent inter-organelle mobilities µij. Note that the forces
depend upon the motor’s position in the system. The force generated by bound molec-
ular motors through hydrolysing ATP is non-zero F i = (F0, 0, 0). However, motors
suspended in solution are not attached to a bio-filament and therefore cannot propel
themselves, hence the driving force is zero for these organelles F i = (0, 0, 0). Finally,
the random velocities from thermal fluctuations are accounted for via, V i,r(t), which
have the following properties [63]:

〈V i,r(t)〉 = 0

〈V i,r(t)V j,r(t
′
)〉 = 2Dijδ(t− t

′
).

(4.2)

As mentioned in chapter 2, these random velocities are not statistically independent
as they rely on the motor positions, via Dij, in the system. In order to calculate the
time evolution of the system, the tensor Dij needs to be calculated at the beginning of
each time step. Where, Dij, a set of 3 × 3 matrices for each pair of motors, represents
the diffusive and frictional effects in a dilute system [69]. The generation of correlated
random numbers is described in the section on the Ermak and McCammon Algorithm
below.

Ermak and McCammon Algorithm

Ermak and McCammon [72] presented an algorithm that uses normal random devi-
ates∗, ζ , to generate the correlated random numbers needed for simulating the Langevin
equation. The algorithm consists of four steps: Firstly, at the beginning of a simulation
time step, a matrix is generated consisting of elements C ij = 2Dij. Here, the indices,
ij, refer either to one motor (for i = j) or to a pair of motors (i 6= j). Secondly, since C
is a square, symmetrical and positive definite matrix [154, 155] a Cholesky Decomposi-
tion (C = LLT) [155] can be used where, L, is a lower triangular matrix and, LT, its

∗{ζi}; 〈ζi〉 = 0; 〈ζiζj〉 = 2δij∆t [72].
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transpose. The elements of the matrix, Lij, are constructed using the following recursive
algorithm:

Lii =

[
C ii −

i−1∑
k=1

L2
ik

]0.5

Lij =
C ij −

∑j−1
k=1 LikLjk

Ljj

(4.3)

Thirdly, a set of uncorrelated random numbers, ζj, is generated for each motor in
each dimension. Finally, the values Lij are used as weighing factors to yield the corre-
lated random velocities, gi(t), using:

gi(t) = V i,r =
i∑

j=1

Lijζj. (4.4)

In other words this means that motor 1 diffuses freely (not statistically correlated)
through the solution. The diffusion of motor 2 however cannot be chosen at random
as motor 1 has generated a flow field in solution via momentum transfer. Therefore, its
random velocity needs to be correlated to correct for the hydrodynamic interactions via
the flow field of motor 1. Subsequently, the diffusive motion of the third motor needs
to be correlated to correct for the flow fields set up by the first two motors, etc.

Allowing For Larger Displacements

The Lipowsky model is further extended by allowing for moves of magnitudes ±2l
additionally to the original ±1l and dwell steps in x, y, and z-directions. This increases
the maximum displacement per time step to x = 2

√
sl. The calculated velocities are

translated into displacements per simulation time step using the following recipe: for
small displacements, ≤ 0.25l, the motors are forced to dwell in their current position;
Intermediate displacements, 0.25l < |∆x| < 1.5l, causes the motor to displace one lattice
node. Displacements larger then 1.5l are restricted to a move of two lattice nodes. Note
that excluded volume always has to be accounted for and thus moves of ±2l are only
permitted if the whole path is free. If the second node is occupied the motor will only
displace one node. The displacement recipe is shown in Fig.4.2 below. Note that this
description gives rise to spurious lattice effects. The latter is discussed in appendix B.
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Figure 4.2: Mapping of calculated motor displacements on the lattice. Small displacements, −0.25l <
∆x < 0.25l will cause the motor to dwell in its current position. Intermediate displacements, 0.25l ≤
|∆x| ≤ 1.5l, will be mapped on the adjacent lattice node. Large steps, |∆x| ≥ 1.5l will be mapped on the
second neighbour node.

Langmuir-type Kinetics

Next, the motor processivity is accounted for by allowing the motors to detach from
the bio-filament with a given probability γd. Motors in solution close to the filament, in
turn, can attach to the bio-filament with probability γa. Motor interchange between the
bio-filament and the solution determines the ratio between the solution and filament
volume fractions, φs and φµ respectively. Assuming uniform concentrations along the
microtubule and in the solution, the mass flux balance that predicts the steady state
relationship between solution concentration and bio-filament occupation is given by:

Particle flux out = Particle flux in

φµ (1− φs) γd = p1φs (1− φµ) γa + p2φs (1− φs) (1− φµ) γa

φµ =
1

1 + γd(1−φs)
γaφs[p1+p2(1−φs)]

. (4.5)

Here, p1, is the probability the motors diffuse towards the bio-filament from a lattice
node adjacent to the bio-filament. Moreover, p2, is the probability to attach from the
second neighbouring row of nodes. These probabilities are a direct consequence of the
magnitude of the diffusion coefficient. For the simulations in the result sections, we
have chosen values of γd to ensure the required filament and solution concentrations.
We have found that using γa =

√
2D0, p1=0.4 and p2=0.2 for desired values φs and φµ

yields the following estimate for γd:
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γd =
√
2D0φs

(
0.4

(1− φs)
+ 0.2

)(
1

φµ

− 1

)
. (4.6)

Conversion Of Units

We will use the experimental data from the reference system presented in chapter 2
(table 2.2) for the motor-organelle complexes in the simulations. However, these values
are very small (e.g. F0=4.15×10−12 N) and could cause inaccurate results, via round-up
errors, due to the computer’s finite numerical accuracy. Therefore, similar to the method
of reduced units [69,156], the relevant simulation parameters need to be of order one. To
translate the experimental data to the simulations it is necessary to fix three simulation
parameters from which all other values can be calculated. Using the experimental data
for the radius, force and velocity and by fixing these values in the simulation model we
obtain the following conversion factors for length L, time T and mass M. The conversion
between lattice units and the experimental data is given in table 4.1.

Property Unit Experiments Model Factor Calculated
a m 2.5 ×10−7 0.1 L 2.5 ×10−7

V0 m/s 8.0 ×10−7 0.4 L/T 8.0 ×10−7

F0 N 4.15 ×10−12 1.061 ML/T2 4.15 ×10−12

µ0 m/Ns 1.93 ×105 0.3769 T/M 1.93 ×105

η Pas 1.1 1.407 M/LT 1.1
ρ kg/m3 1200 7.67 ×10−9 M/L3 1200
D0 m2/s 8.26 ×10−16 0.3769 L2/T 1.89 ×10−12

kbT J 4.28 ×10−21 1 ML2/T2 9.78 ×10−18

m kg 7.85 ×10−17 3.21 ×10−11 M 7.85 ×10−17

τ s 1.52 ×10−11 1.21 ×10−11 T 1.51 ×10−11

Table 4.1: Conversion table between lattice units and experimental data (See table 2.2 in chapter 2).
The conversion factors are: L=2.5×10−6, T=1.25, M=2.4446×10−6 and were determined by fixing the
radius (a), velocity (V0) and force (F0) in the simulation model∗. The column ’calculated’ is obtained
by multiplication of the columns ’model’ and ’factor’ and it reflects how well the simulation parameters
represent the experimental data.

The table shows that the found conversion factors can be used to retrieve the experi-
mental values from the simulation settings. However, the moves of the motor-organelle
complexes in the simulations are mapped on a lattice using the method described in

∗For a=0.2 the conversion factors become: L=1.25×10−6, T=0.625, M=1.2223×10−6.
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Fig.4.2. To recover the bound motor velocities in the system, the motor diffusion has
to be large enough to span the range of moves described in the mapping algorithm. To
ensure this the thermal energy (kbT ) had to be increased in the system, thus effectively
performing the simulations at a higher temperature. The consequences are a larger dif-
fusion coefficient as can be seen in the column labelled calculated of table 4.1. In this the-
sis we are interested in studying the quantitative effect of hydrodynamic interactions on
intra-cellular motor transport. As these interactions depend upon the motor’s position,
mobility and forces, the larger diffusion coefficient will not modify this behaviour.

Flow Sheet Of Simulation

The simulations are performed according to the flow sheet shown in Fig.4.3. The flow
sheet consists of a number of consecutive steps where one step needs to be completed
before going to the next. Computer experiments are not that different from real ex-
periments. As Frenkel and Smit [156] point out in their book the basic steps are the
same. Firstly, a sample needs to be prepared. This happens in the initialisation step.
Here, motors are distributed randomly along the bio-filament and in solution until the
desired occupation fractions are reached. Secondly, the system is allowed to reach a
steady-state∗ situation during a predetermined number of simulation steps. At the start
of each simulation time step, the inter-organelle forces, mobilities, and velocities are
calculated after which the motors are displaced along the lattice. The size of the moves
is determined via calculation of the different motor velocity components (eq.4.1). The
resulting velocity is subsequently mapped on the lattice using the procedure shown in
Fig.4.2. Next, the motors are moved one-by-one to their destinations followed by either
rejection or acceptance of the new position by taking excluded volume into account. In
the case of organelle collisions, the motors will not be moved. The driving force on these
motors is subsequently set to zero to ensure proper calculation of the flow field in the
next time step. As the drag velocity on a motor is calculated via, V i,d =

∑
j,j6=i µij ·F j, at

the beginning of each time step this is necessary. After the steady-state is reached, the
velocities, occupation fractions and fluxes will be sampled until the end of the simula-
tions is reached.

Hydrodynamic Interactions in Cytoplasmic Streaming

To quantify the momentum transfer between motors via the fluid, a liquid is embedded
between two slabs. These slabs are covered by bio-filaments that have a given polarity.
Both the solution and the cytoskeletal elements are mapped on a 3d lattice. We now

∗In steady-state the bio-filament and solution concentrations are, on average, constant in time.
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Figure 4.3: Flow sheet of model. At the initialisation motors are placed in the system. Next, the system
is brought in steady-state situation after which velocities, concentrations and fluxes are sampled until the
end of the simulation is reached.

take a 2d cut from our system in the direction perpendicular to the slabs. The resulting
2d system is shown in Fig.4.4.

As a test case we studied cytoplasmic streaming in plant cells (see Fig.4.1). In these
cells, cytoplasmic strands are found. These are long, channel-like, structures with a
length ranging up to tens of micrometers. In the strands bio-filaments are found that
span its entire length or a part of it. The model captures a section of a cytoplasmic
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Figure 4.4: Schematic view of the model system, i.e. a cytoplasmic strand in a plant cell. A solution is
embedded between two bio-filaments and mapped on a lattice. Moreover, the bio-filaments have a given
polarity which determines the walking direction of the motor-cargo complexes. All possible moves of the
motor-cargo complexes are shown. Excluded volume and the processivity of the motors are accounted for.
To mimic the dynamics of a infinite system, periodic boundary conditions are used in axial direction.

strand in which many motors a present along the bio-filament and in solution. To study
the dynamics of a large strand periodic boundary conditions (PBC) [69,156] are used in
axial direction i.e. in the direction of transport. Using PBC is a computational trick to
model an infinitely large system with a minimum of computational expense and was
originally developed to minimise boundary effects when modelling bulk-phases. Con-
sequently, the model in Fig.4.4 is treated as a primitive cell in an infinite periodic lattice
of identical cells. In each cell the number density of motor-cargo complexes is kept con-
stant. If a particle leaves the system, its periodic image will enter. It is unclear what
the effect of PBC is on the long-range hydrodynamic interactions as these interactions
fall off with 1/r, which is typically longer than half the box size [69]∗. We will limit the
hydrodynamic interactions to the nearest images.

∗In the section on different hydrodynamic interaction tensors we correct for this effect by presenting
data for a truncated and shifted tensor.
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Effect Of Hydrodynamic Interactions On Transport

We have considered the simplest geometry in which motors move in the two dimen-
sional plane confined between two bio-filaments, although the hydrodynamic interac-
tions correspond to those of a 3d fluid (we presume that the structure of the motors in
the transverse direction can be neglected). Such a case can be regarded as a suspen-
sion of motors between substrates covered by a parallel set of bio-filaments. Such an
idealised example contains the basic dynamic couplings and facilitates the analysis. In
order to analyse the interplay between activity, excluded volume and hydrodynamic
forces, we fix the solution concentration to a small value, φs = 0.05 and analyse the col-
lective behaviour of the suspension+bio-filament complex at different degrees of bio-
filament’s occupation. In units of the lattice spacing, l, and simulation time step, ∆t, for
motors of unit mass we vary the force exerted by the filament between 1/2 and 2 to con-
trol the single motor velocity, which should take values of the order (but smaller than) a
lattice spacing. Simulations are run for systems size L, containing around 1000 motors
and for a few thousand time steps after thermalisation. Within the Oseen description
(eq.2.25) it is known that values of A close to the motor radius may lead to numerical
instabilities in configurations where motors are close to each other. To avoid such prob-
lems, and making use of the linearity of the system, we keep A/l smaller than 1/5∗. For
these parameters the motor Péclet number (eq.2.34) is of order one†. Nevertheless, the
results we will discuss should not be severely affected by this fact, since we focus on
mean collective motor velocities.

In Fig.4.5A we show the velocity at which motors move along a filament divided by
the measured single motor velocity, 〈V0〉, as a function of the filament occupation, φµ.
In the absence of hydrodynamic interactions (HI) the velocity decreases linearly with
increasing occupation fraction due to excluded volume interactions. Note that, due
to spurious lattice effects, the measured single motor velocity, 〈V0〉, deviates from the
nominal single motor velocity that was given by: V0=µ0F0. For example, for F0=1.061
and µ0=0.3769 the nominal velocity is V0=0.4 while the measured value is 〈V0〉=0.43. See
appendix B for an explanation of this effect. Therefore, all normalisations in this chapter
are performed using the measured single motor velocities.

When HI are considered, the drag first increases the overall bound motor velocity.
At higher concentrations a second regime is achieved, where hindering due to excluded
volume effects causes this velocity to decrease. Nevertheless, for all occupations the
motor’s velocity is larger than the corresponding one in the absence of HI. A second,

∗Kirby [59] mentions in his book that the isolated sphere relation is accurate as long as particle-
particle separations exceed x=10A. For a hydrodynamic radius A=0.1l, the minimum particle separation
xmin = l − 2A = 0.8l = 8A which suggests that the simulation results are less accurate at high φµ.

†For organelles of typical size l ∼ 1µm that move along a bio-filament with a velocity u ∼ 1µm/s and
assuming a diffusion coefficient of 10−12m2/s we find a Péclet number of order Pe ∼ 1.
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Figure 4.5: A) The normalised velocity for different degrees of bio-filament occupation, φµ. B) Effective
force (in pN) acting on motors for different filament occupations. The open triangles represent the hy-
drodynamic force acting on the motors. The open circles refer to the bio-filament, the open squares to the
solution, the filled squares show data without hydrodynamic interactions. The simulation settings were:
F0=1.061, µ0=0.3769, 〈V0〉=0.43, Npart≈1000, Tmax=7000 (HI) and 10000 (no HI).

qualitative, effect of the cooperativity induced by the solvent is displayed in the same
figure where we show the average velocity of motors in solution. In the absence of
HI motors can only display a net displacement along the bio-filament. However, in
the case with HI, there clearly exists a well defined solution velocity which increases
with φµ until it reaches a maximum after which it decreases. Note that with increasing
bio-filament concentration the average distance between suspended and bound motors
decreases. This results in a larger hydrodynamic coupling i.e. the velocity difference
between bound and suspended motors becomes smaller. The position of the maximum
depends on the specific parameters considered. There seems to be an optimum bio-
filament occupation which is different for both the bio-filament (φµ≈0.2) and the solu-
tion (φµ≈0.5). The position of these maxima seems to be insensitive for all simulation
parameters explored (data not shown).

Using table 4.1 the simulation data can be converted into real units. The resulting
forces are shown in Fig.4.5B. The largest effective force acting on a bound motor was
measured at φµ=0.2 and equals 5.2 pN, 25% larger than the single motor force needed
to move the model organelle through the fluid. This force lies within the stall force
of the kinesin motor (5.4±1.0 pN [15]) and shows that the added hydrodynamic force
compensates for the drag force acting upon the motors. Moreover, experiments have
shown that a positive force exerted upon a bound molecular motor increase its velocity
(Kinesin [11]; Myosin-V [55]). The hydrodynamic coupling gives rise to such a force.
Interestingly, the maximum hydrodynamic force on bound motors is found to be 1.9
pN at φµ=0.4. For suspended motors this value can be as large as 2.7 pN (at φµ=0.5).
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At large bio-filament occupations, the average particle separations are small and the
Oseen approximation become less accurate∗. This in combination with using periodic
boundary conditions and spurious lattice effects yields unrealistically large forces.
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Figure 4.6: A) Bound motor velocity for different bio-filament occupation, φµ. 〈V 〉, is the motor velocity,
〈V0〉, the measured single motor velocity, a, the hydrodynamic radius and, l, the lattice spacing. The line
shows the theoretical expected increase in velocity due to HI (see text and eq.4.8). B) Mean velocity 〈V 〉
in solution for different degrees of filament occupation φµ, hydrodynamic radius a, and single motor ve-
locity 〈V0〉. Open symbols a=0.1l, Filled symbols a=0.2l, µ0=0.3769, Npart≈1000, Tmax=7000; Squares
V0=0.2, 〈V0〉=0.22; Triangles V0=0.4, 〈V0〉=0.43; Inverted triangles V0=0.6, 〈V0〉=0.63; Circles V0=0.8,
〈V0〉=0.83

In Fig.4.6A, we show the increase of the motors’ velocity with respect to their biased
velocity. Due to the linearity of the hydrodynamic coupling, in the regime where ex-
cluded volume interactions are negligible, the profiles are linear in a. Hence, different
systems collapse in a single curve as a function of filament occupation. We can then
use eq.4.1 to estimate the initial increase in motors’ velocity. By inserting eq.2.25 and by
using, V 0=µjj · F j, the equation can be rewritten as:

(〈V 〉 − 〈V 0〉)l
〈V 0〉a

=
3

4

∑ l

rij
[Î + r̂ijr̂ij], i 6= j. (4.7)

Next, the right hand side can be approximated assuming a continuous and uniform
distribution of motors

(〈V 〉 − 〈V 0〉)l
〈V 0〉a

=
3

2
lφµ ln

L

2a
r̂ij, (4.8)

which agrees quantitatively with the simulation results. For total filament occupation,
φµ=1, motors cannot move along the filament, 〈V 〉=0.

∗See the section ’Different Hydrodynamic Interaction Tensors’ below.
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In Fig.4.6B we display the mean velocity of unbound motors; these two plots show
how the hydrodynamic coupling can be tuned by controlling the motors’ size and bi-
ased velocity. When using a more realistic choice for the mobility tensor for motors at
small separations (Brenner [157], Rotne-Prager [158,159]) this data does not change (see
the section on different tensors), indicating that the mechanism described is generic and
comes from the algebraic correlations induced by the embedding solvent.

Fig.4.7A shows the concentration of unbound motors across the width, D, of the
system. It shows that the interactions between the attached and suspended motors
induce a uniform distribution of suspended motors, independently of bio-filament oc-
cupation. The hydrodynamic interactions have no effect on the concentration profile
between the bio-filaments as the increased concentration near the bio-filament is caused
by the Langmuir-type dynamics alone (compare with the black triangles). Also the ve-
locity profile, as displayed in Fig.4.7B, shows that the velocity in solution is modified
only in the bio-filaments’ neighbourhood, which is more pronounced at higher occupa-
tion fractions.
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Figure 4.7: A) Concentration profiles for unbound motors. D is the distance between bio-filaments, and
X the distance to the lower bio-filament. Error bars are shown for φµ=0.2. Closed triangles are for φµ=0.4
in the absence of hydrodynamic interactions. B) Normalised velocity over the distance, D, between the
bio-filaments for a distance, X , from the lower bio-filament for different bio-filament occupation, φµ.
Error bars are shown for φµ=0.4. For both figures: Open squares φµ=0.2; open triangles φµ=0.4; open
circles φµ=0.6. Simulation parameters: F0=1.061, µ0=0.3769, Npart≈1000, Tmax=7000, V0=0.4 and
〈V0〉=0.43.

Increased Motor Concentration In Solution

The simulations are repeated for a higher motor concentration in solution (φs=0.1) for
two different values for the biased velocity (〈V0〉=0.43 and 〈V0〉=0.63). The normalised
velocity for bound motors and suspended motors are presented in Fig.4.8A. The data
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confirms the robustness of the earlier results both in shape as well as the position of the
maxima. However, the velocities are slightly smaller. The latter is a direct result from
the increased motor concentration in solution. The larger number of motors increases
the probability for detaching motors to collide with motors in solution and thus effec-
tively increasing the motors processivity. This effect is compensated for by choosing the
proper detachment probability, γd, in the simulations (via eq.4.5) and therefore does not
lead to large changes in bio-filament concentration.
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Figure 4.8: A) The normalised velocity for different degrees of bio-filament occupation, φµ. Closed trian-
gles: φs=0.05, V0=0.4 and 〈V0〉=0.43. The open symbols represent data for φs=0.1 (open squares V0=0.4,
〈V0〉=0.43, F0=1.061; open triangles V0=0.6, 〈V0〉=0.63, F0=1.592). B) Concentration profiles for un-
bound motors. D is the distance between bio-filaments, and X the distance to the lower bio-filament for
φs=0.1, V0=0.4 and 〈V0〉=0.43. C) Normalised velocity over the distance D for V0=0.4 and 〈V0〉=0.43.
D) Normalised velocity over the distance D for V0=0.6 and 〈V0〉=0.63. For all figures: µ0=0.3769;
Npart≈1000 (φs=0.05) and ≈1200 (φs=0.1); Tmax=7000

The motor concentration profile between the bio-filaments is shown in Fig.4.8B (see
Fig.4.7A for comparison with φs=0.05). The profile shows that the profile is shifted to the
new value of φs=0.1 and 〈V0〉=0.43, retaining its overall uniform shape with increased
values near the bio-filament due to the interaction of bound and suspended motors.
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The solution concentration is not sensitive to the filament occupation. Moreover, the
data is robust to the choice of V0 (data not shown).

The velocity profile for 〈V0〉=0.43 and 0.63 in Fig.4.8C and D respectively. The solu-
tion velocities are presented for different bio-filament occupation fractions. The shape
of the profile is not modified with increasing suspended motor concentration (compare
with Fig.4.7B). Consistently with Fig. 4.8A, the velocity in solution lies below the veloc-
ity measured for φs=0.05. Here the error bars are smaller as the statistics are improved
with the larger number of suspended motors. These simulations again confirm that
hydrodynamic interactions give rise to a non-negligible flow in solution.

Note that the simulations for both values of 〈V0〉 are performed in identical systems
for the same number of time steps. However, the error bars for 〈V0〉=0.63 are smaller.
This is understood from the calculation of the standard deviation, σ〈V 〉/〈V0〉, given by
[160]:

σ 〈V 〉
〈V0〉

=
〈V 〉
〈V0〉

√(
σ〈V 〉

〈V 〉

)2

+

(
σ〈V0〉

〈V0〉

)2

. (4.9)

In the above equation, σ〈V 〉 is the measured standard deviation for the suspended
motors which is ∼0.1 for both 〈V0〉 and σ〈V0〉 is the standard deviation for 〈V0〉. The
latter is found to be 0.002 (not shown). Insertion of a larger value for 〈V0〉 in eq.4.9 thus
improves the statistics.

Different Hydrodynamic Interaction Tensors

In the above sections hydrodynamic interactions were introduced using the Oseen ten-
sor (see eq.2.25), a hydrodynamic interaction tensor that gives a possible solution for
the flow field around spherical objects. This tensor has its limitations. Studying the
effect of this choice is the topic of this section. Firstly, there is a short discussion on
the different tensors, followed by a comparison of the simulation results. Note that for
all hydrodynamic interaction tensors holds that µii=µ0Î , thus only the inter-organelle
components µij will be discussed.

µij =
3

4
µ0

a

rij
[Î + r̂ij ⊗ r̂ij]. i 6= j (2.25)

As explained in chapter 2, the Oseen tensor only takes the long-range interactions
between suspended objects into account and ignores the short-range interactions. As
long as the organelle separation exceeds x=10A, the values are accurate [59] since long-
range-interactions dominate at this length scale. At shorter separations a tensor taking
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short-range interactions into account, such as the Rotne-Prager tensor (see eq.4.10 [158,
159]) given below, would be more accurate.

µij =
3

4
µ0

a

rij

(
Î + r̂ij ⊗ r̂ij

)
+

1

2
µ0

(
a

rij

)3 (
Î − 3r̂ij ⊗ r̂ij

)
, i 6= j. (4.10)

One known issue of the Oseen tensor is that it has a singularity at rij=0 i.e. when
motors overlap. This could result in unrealistically large velocities induced by one mo-
tor on the other. In simulations this can yield spurious effects on on velocity fluctua-
tions [157]. To remove this singularity Brenner [157] introduced the following equation
for the particle separation, řij, which can be used in any hydrodynamic interaction ten-
sor:

řij =
√
x2ij + y2ij + z2ij + 1. (4.11)

Finally, Allen and Tildesley [69], mention in their chapter on Brownian Dynamics
that because of the long-range character of the hydrodynamic interaction tensors it is
not clear if they can be used in combination with periodic boundary conditions. This
includes solutions with and without Ewald summations. We will introduce a both trun-
cated and shifted version of the Oseen tensor in which we ignore interactions beyond
half the simulation box size, rbox/2. The new tensor, µTS

ij (rij) is given by:

µTS
ij (rij) =

{
µij (r)− µij

(
rbox/2

)
rij ≤ rbox/2,

0 rij > rbox/2.
(4.12)

Fig.4.9A, shows the normalised velocity data for both bound and suspended motors
for different hydrodynamic interaction tensors. The data for the Oseen tensor, with or
without Brenner extension, and the Rotne-Prager all collapses. This suggests that the
hydrodynamic motor radius a was chosen small enough for the data presented in this
chapter till now. Moreover, this justifies the choice for the computationally cheapest
Oseen tensor as the data does not change by choosing a more advanced version of the
tensor. The truncated and shifted potential data deviates from the other tensors as both
the bound and suspended motors move at slower velocity. However, even for this ten-
sor, hydrodynamic interactions give rise to a non-negligible flow of motors in solution,
again showing the robustness of the phenomenon. The shape of the concentrations pro-
file is independent of the hydrodynamic interactions (Fig.4.9B), thus purely an effect of
the Langmuir-type interactions. Fig.4.9C, confirms that the choice of the tensor does not
affect the shape of the velocity profile between the bio-filaments. In line with Fig.4.9A,
the velocity of suspended motors of the truncated and shifted tensor lies below the
other tensors, but still shows a non-negligible effect increase in velocity. Fig.4.9D shows
the effective forces acting on bound and suspended motors. Interestingly, using the
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Figure 4.9: A) The normalised velocity for different degrees of bio-filament occupation, φµ. Upper series
(starting at value one) refers to bound motor velocities, lower series (starting at value zero) to average
velocity of suspended motors. B) Concentration profiles for unbound motors. D is the bio-filament sepa-
ration, and X the distance to the lower bio-filament (φµ=0.4). C) Normalised velocity over the distance
D (φµ=0.4). For figures A-C: Filled squares - Oseen tensor (eq.2.25); Open squares - Oseen tensor with
Brenner modification (eq.4.11); open triangles - Rotne-Prager tensor (eq.4.10); Open diamonds - Trun-
cated and shifted Oseen tensor (eq.4.12). D) Effective force (in pN) acting on motors for different filament
occupations. The filled data points - Oseen tensor (see Fig.4.5B), open points - truncated and shifted
Oseen tensor. The squares refer to forces acting on the bound motors, the circles show the force from
hydrodynamic interactions and the triangles show the data in solution. Simulation settings: F0=1.061,
µ0=0.3769, V0=0.4, 〈V0〉=0.43, Npart≈1000, φs=0.05 and, Tmax=7000.

truncated and shifted tensor improves the force calculation at large bio-filament oc-
cupations. Using this tensor raises the maximum physically plausible hydrodynamic
force on suspended motors from an occupation of 75% to 85%. This shows that using
hydrodynamic interaction tensors with periodic boundary conditions gives rise to an
enhanced hydrodynamic coupling, this effect is largest at large bio-filament occupation
fractions.
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Opposing Filaments

The bio-filaments in cells are not always aligned with matching polarities. In the case
of rotational streaming (e.g. Chara or Nitella [6, 161]), the bio-filaments can be found
having opposite polarities at the different cell boundaries. For these cells sigmoidal
velocity profiles between the bio-filaments have been reported [6, 161]. To study this
type of situation, our model will now be adapted by reversing the polarity of the upper
bio-filament as shown in Fig.4.10.

-

+

+

-

Figure 4.10: Schematic view of the model system, i.e. a cytoplasmic strand in a plant cell. A solution is
embedded between two bio-filaments and mapped on a lattice. Moreover, both bio-filaments have opposite
polarities, thus the walking distance of bound motors depends on the bio-filament. Motors on the bottom
bio-filament walk to the right and motors at the upper bio-filament move in the opposite direction. All
possible moves of the motor-cargo complexes are shown. Excluded volume and the processivity of the
motors are accounted for. To mimic the dynamics of a infinite system, periodic boundary conditions are
used in axial direction.

The results in Fig.4.11A show that the absolute values of the normalised velocities on
both bio-filaments are equal as expected. Moreover, the opposing microtubules influ-
ence each others bound motor velocities via hydrodynamic momentum transfer. This
results in motors on one bio-filament slowing down the motors on the opposite one and
vice versa. Contrary to the parallel bio-filaments with equal polarity, the bound veloc-
ity does not surpass the single motor velocity at any value of φµ. However, comparison
with the theoretical ASEP velocity (line in figure, see eq.A.2 in appendix A) shows that
there still is a non-negligible increased motor velocity caused via hydrodynamic inter-
actions. The maximum velocity difference, ∆V =0.06, between the measured and ASEP
velocity is found at φµ=0.4 and corresponds to a hydrodynamic force of 0.6 pN.
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Figure 4.11: A) The (absolute) normalised velocity for different degrees of bio-filament occupation, φµ.
The closed squares represent the reference system with parallel bio-filaments with equal polarities. The
open squares and triangles refer to a system with opposing polarities (〈V0,µ1〉=0.43 and 〈V0,µ2〉=-0.43).
The line shows the theoretical velocity (ASEP) in the absence of hydrodynamic interactions. B) Concen-
tration profiles for unbound motors. D is the bio-filament separation, and X the distance to the lower
bio-filament. C) Normalised velocity profile over the distance D. Figures B-D: Open squares - φµ=0.2;
Open triangles - φµ=0.4; Open circles - φµ=0.6; Open diamonds - φµ=0.8. D) Effective force (in pN)
acting on motors for different filament occupations. The open and closed symbols represent data for op-
posing and parallel bio-filaments respectively. Squares - bound motor-forces; circles - hydrodynamic force
on bound motors; triangles - suspended motors. The simulation settings for all figures were: µ0=0.3769,
F0,µ1=1.061, F0,µ2=-1.061, V0,µ1=0.4, V0,µ2=-0.4, Npart≈1000, φs=0.05, and, Tmax=7000.

Consistently with earlier findings, the hydrodynamic interactions have no effect on
the shape nor the magnitude of the concentration profile between the bio-filaments
(Fig.4.11B). The velocity profile shown in Fig.4.11C, presents a new situation. The sus-
pended motors move in the direction corresponding to the polarity of the nearest bio-
filament. The closer to the bio-filament the faster the motors. The motor velocity drops
with the distance away from the bio-filament until a velocity of zero is reached at the
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centre of the system. Here the hydrodynamic drag forces are balanced. Further away,
the velocity reverses direction creating an inverted mirror image. The shape of the full
profile differs from the sigmoidal velocity profiles presented in literature [6, 161]. The
aforementioned profiles show a small drop in velocity near the bio-filament followed
by a large drop near the centre of the system followed by inversion of the velocity.
There are two differences between both measurements. Unlike the data from literature,
we present the suspended motor velocity and not the fluid velocity. Moreover, we as-
sumed the cytosol to be a Newtonian fluid which is an approximation. Fig.4.11D shows
that the hydrodynamic interactions acting upon bound motors gives rise to a small but
relevant hydrodynamic forces.

Crossing Gaps In The Cytoskeletal Tracks

In the introduction of this chapter axoplasmic streaming was mentioned. This is di-
rected transport of organelles and molecules along nerve cell axons [2] and can take
place over long distances (e.g. up to several meters in the Giraffe [153]) with respect
to the cargo size. For axoplasmic streaming these neurons rely on active motor trans-
port which is more efficient than passive diffusion∗, for transport of organelles. The
molecular motors walk along the axonal cytoskeleton that lines the inside of the axon
in axial direction. For the stability of the axon as well as for enabling active transport it
is important for the cytoskeleton to span the whole length of the axon. However, what
happens to the axonal streaming if, due to decease or trauma, the cytoskeletal tracks are
interrupted? To study this situation, the following simulation model, shown in Fig.4.12,
is used.

In the model, there is a gap in both of the parallel bio-filaments where the motor’s
cytoskeleton track is missing. Walking motors that reach the end of the track will leave
the cytoskeleton with unit probability and diffuse away from the filament. Similar to
the original model (see Fig.4.4), the motors can hydrolyse ATP only when attached to
the cytoskeleton. Thus, in the gap, there is no net force generated by the motors. Sus-
pended motors along the cell wall or in the bulk can attach to the cytoskeleton with
unit probability taking excluded volume into account. The gap is chosen to be large in
comparison to the organelle size (20l or 60l wide, where l is the lattice spacing) but short
with respect to the length, L, of the system (L=750l). The width of the system is 12l.

As the system makes use of periodic boundary conditions in axial direction, the dy-
namics of an infinitely large system, with a gap every given number of lattice nodes, is
studied. The system was initialised from a uniformly distributed configuration† for a
period of 100,000 simulation steps in the absence of hydrodynamic interactions. From

∗See table 2.3 in chapter 2.
†The final configuration from an earlier simulation with φs=0.05 and φµ=0.4 (no gap).
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Figure 4.12: Schematic view of the model system, i.e. an axon of a neuron. A solution is embedded
between two bio-filaments and mapped on a lattice. The bio-filaments have a given polarity which de-
termines the walking direction of the motor-cargo complexes. There is a gap in both bio-filaments where
the motor-cargo complexes diffuse freely along the cell wall without directional preference. All possible
moves of the motor-cargo complexes are shown. Excluded volume and the processivity of the motors are
accounted for. To mimic the dynamics of a infinite system, periodic boundary conditions are used in axial
direction.

this starting configuration, simulations were performed for 25,000 time steps, a period
long enough for the system to reach a steady-state, with or without hydrodynamic inter-
actions. In the previous sections, the axial velocity and radial concentration profiles did
not change in axial direction i.e. in the direction of the active transport. As now there
is a gap in the filaments, these values will vary depending on the axial position in the
system. To show the local concentrations and velocities, the system has been divided
into sections (bins). In each bin, the motor concentration and velocities are measured
for each row of lattice nodes i.e. on a bio-filament or in any row parallel to it and subse-
quently the average values are taken. Since the system is mirrored in the radial direction
the statistics are improved by taking the average value (concentration or velocity) over
a row of nodes and its mirror image. For example, the average values were taken for
the row of lattice nodes directly below the upper filament and the row directly above
the lower filament. The bins are chosen such that the spatial resolution can qualitatively
show the local dynamics. For this purpose the system has been divided into 10 bins, 8
of equal length to describe the filaments (+solution) and 2 describing the gap.

In Fig.4.13A is shown that, in the absence of hydrodynamic interactions, the gap
causes a traffic jam along the filament. This is as expected since motors are actively
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Figure 4.13: A) and B) Concentration profiles per row of lattice nodes. L is the length of the system,
W the width, and X the horizontal coordinate. The system is divided into bins for which the average
concentrations are shown. The gap size is 20 lattice nodes. Filled symbols with hydrodynamic interactions
(HI), Open symbols no HI; Squares - Filament; Circles - 1st row of lattice nodes neighbouring the bio-
filament; Triangles - 2nd row; Inverted triangles - 3rd; Diamonds - 4th; Pentagon - 5th i.e. centre row.
The vertical lines represent the beginning and end of the gap respectively. C) and D) Idem for a gap of
60 lattice nodes. The simulation settings: L=750l, W=12l, µ0=0.3769, F0=1.061, V0=0.4, Npart≈1000,
and, Tmax=25,000.

transported towards the gap and can leave only by diffusion, a much slower process∗.
In addition, the motor concentration in solution strongly increases, before and at the
begin of, the gap after which the concentration decreases again. At a sufficient dis-
tance from the gap (before or after) the system reaches a constant filament and solu-
tion concentration as observed in the absence of the gap (See e.g. Fig.4.7A). The latter
steady-state is reached by the Langmuir Kinetics in the system (see eq.4.5 and 4.6). In-

∗Similarly, the combination of active transport towards a wall and diffusion away from it causes a
traffic jam and motor accumulation in solution (Fig.3.5C).
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creasing the size of the gap further increases the accumulation of organelles at the gap
(Fig.4.13C) and thereby further depletes the motor concentration in the rest of the sys-
tem. When hydrodynamic interactions are included (Fig.4.13B) a small concentration
increase is observed in the gap, albeit much smaller than without hydrodynamic inter-
actions. The momentum transfer, via the fluid, helps the motors to cross the gap, thus
preventing a large local organelle accumulation. In addition, the traffic jam around the
gap is much smaller. Most importantly, the organelle transport is not impaired, as the
average motor concentration over the whole system is close to that observed in a refer-
ence system without a gap (see Fig.4.7A, φs=0.05 and φµ=0.4). Increasing the gap size
(Fig.4.13D) enhances the organelle accumulation around the gap but does not impair
organelle transport.

The normalised velocity profile in the absence of hydrodynamic interactions (see
Fig.4.14A) clearly shows the effect of the traffic jam before the gap. Here the velocity
decreases when the bound organelle concentration near the gap increases. In solution,
the average velocity is zero as there are no external forces acting upon the organelles.
However, in the gap, there is a small positive motor velocity. This is a result from the net
motor flux that compensates for the concentration gradient. When the gap is increased
(Fig.4.14C), the average bound organelle velocity increases. This can be understood
from the larger accumulation of organelles at the gap, that effectively yields a smaller
bound organelle concentration (Fig.4.13C). When hydrodynamic effects are included,
the bound motor-organelle velocity is larger than for a single motor. Moreover, in so-
lution the organelles move at a non-negligible velocity. The found velocities are in line
with the reference system without gap (Fig.4.5). In the gap the velocity of all organelles
decreases but stays significant. The velocity of the motors at the cell wall drops down
to a velocity slightly above the one measured in the bulk. Increasing the size of the
gap (Fig.4.14D) shows a slightly higher velocity at the filament and a smaller value in
solution.

Discussion

We have shown that long range collective hydrodynamic interactions lead to a substan-
tial increase in the effective velocity of motors attached to a filament. Moreover, their
motion leads also to a net transport of the nearby unbound particles. This mechanism is
not captured by models that consider only the activity and steric interactions of motors
attached to bio-filaments. Such an additional transport mechanism may be numerically
as relevant as the mass transport obtained by direct motion of attached motors.

The additive hydrodynamic force, as induced by the processivity of the filament,
might not be large compared with the driving force which generates the motion of the
attached motors but the cumulative effect can give rise to a net significant mass trans-
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Figure 4.14: A) and B) The normalised velocity per row of lattice nodes. L is the length of the system,
W the width, and X the horizontal coordinate. The system is divided into bins for which the average
velocities are shown. The gap size is 20 lattice nodes. Filled symbols with hydrodynamic interactions
(HI), Open symbols no HI; Squares - Filament; Circles - 1st row of lattice nodes neighbouring the bio-
filament; Triangles - 2nd row; Inverted triangles - 3rd; Diamonds - 4th; Pentagon - 5th i.e. centre row.
The vertical lines represent the beginning and end of the gap respectively. C) and D) Idem for a gap of
60 lattice nodes. The simulation settings: L=750l, W=12l, µ0=0.3769, F0=1.061, V0=0.4, Npart≈1000,
and, Tmax=25,000.

port of the system. Obviously, such a constructive mechanism will be more prominent
the more ordered the environment. However, the mechanism is maintained even when
bio-filaments of opposite polarities are present. Moreover, when there are gaps in the
cytoskeletal tracks, the hydrodynamic interactions help organelles cross the gap and, in
addition, maintain a homogeneous organelle concentration in the system.

In this sense, such a mechanism can be envisioned to be more important in situa-
tions as found in neurons or in cytoplasmic strands in plant cells. The outcome of our
simulations suggests that this mechanism is indeed a plausible explanation for how
cytoplasmic and axoplasmic streaming really takes place.
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Chapter 5

Hydrodynamic Flow in the Cytoplasm
of Plant Cells
In this thesis we test our hypothesis for explaining how transport takes place in cells
by means of computer simulations. Our simulations show that the momentum transfer
via hydrodynamic interactions between the active bound organelles and the suspended
objects gives rise to a non-negligible flow in solution. In order to test these results in a
real biological system Agnieszka Esseling-Ozdoba performed experiments in the group
of Anne Mie C. Emons (Department of Plant sciences) at Wageningen Universiteit. This
work was a close collaboration between both our groups and was published [150, 162].
The text below is an adapted version of the publication. Copyright 2013 Wiley. Used
with permission from Esseling-Ozdoba et al., Hydrodynamic flow in the cytoplasm of
plant cells, Journal of Microscopy, Blackwell Publishing Ltd, 2008, 231, 274-283 [150]. The
original section on materials and methods can be found in appendix C.

Introduction

The cytoplasm of eukaryotic cells consists of all cell material between the nucleus and
the plasma membrane and contains membrane-bounded structures, organelles, which
are embedded in the cytosol consisting of water, salts and organic molecules, includ-
ing sugars, proteins, and many enzymes that catalyse reactions. The cytoskeleton of
microtubules and actin filaments in the cytosol structures the cell by localising and
transporting the organelles bound to these tubules and filaments. The plasma mem-
brane, enveloping the cytoplasm physically, separates the cell content from the extra-
cellular environment, which in plant cells is the cell wall. The latter consists of cellulose
micro-fibrils embedded in a matrix of polysaccharides, glycoproteins and phenolics.
The largest organelle in the plant cell is the vacuole [163–165], which functions as waste
managing factory and also to maintain the hydrostatic pressure in the cell. Cytoplas-
mic strands of cytoplasm (also called transvacuolar strands) that are bounded by the
vacuolar membrane traverse the central vacuole in mature plant cells. They connect
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the peripheral cytoplasm to the cytoplasm that surrounds the cell nucleus [164, 166]. In
Fig.5.1-Left, a stamen hair cell of Tradescantia virginiana is shown and the main compo-
nents of the cell are highlighted.

Figure 5.1: Left - Cytoplasmic streaming in Tradescantia virginiana. Right - Confocal laser scanning mi-
croscope (CLSM) images of young tobacco BY-2 suspension cells transformed with GFP:FABD (fimbrin
actin-binding domain) to visualise actin filaments (A and A1) and GFP:TUA6 (α-tubulin) (B and B1)
to visualise microtubules. Actin filaments (A) but not microtubules (B) are present in the cytoplasmic
strands. Both microtubules and actin filaments are present in the cell cortex (Figures A1 and B1). The
fluorescence in cytoplasmic strands in B is possibly free GFP- tubulin, bar = 20 µm.

Under a differential interference contrast (DIC) microscope, the rapid transport of
organelles in the cytoplasmic strands can be observed. This rapid transport is called
cytoplasmic streaming (e.g. pollen tubes: [167]; root hairs: [168]; review: [169]). The
organelle movement is driven by the molecular myosin motors that walk along actin
filaments [5, 170–173]. In interphase plant cells, microtubules are not present in the
cytoplasmic strands (this chapter) but radiate only from the nucleus during the tran-
sitions from interphase into mitosis [163, 174, 175], and just after cytokinesis [176]. In
cytoplasmic strands, actin filaments are mainly present in bundles [169, 177–179] and
can be considered to be cellular highways, on which organelle-associated myosin mo-
tors move their cargo [5, 48, 170, 171, 180]. The energy necessary for the movement of
the myosin motors is generated by hydrolysis of ATP. In vitro, the maximum measured
speed of the higher plant myosin XI is 7 µm/s [30]. Organelle movement in different
plant cells can reach various velocities, see table 5.1.

The bulk of soluble molecules such as metabolites do not move with motor proteins
in the cytoplasm. In a system in which particles, organelles here, move actively in-
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Cell type Plant Speed Reference
µm/s

Pollen tubes Nicotiana tabacum, Arabidopsis ± 2 [181, 182]
Root hairs Medicago truncatula 8-14* [168]

Equisetum hyemale 3.5-7* [177]
Hypocotyl Arabidopsis 4.8 [183]
Stamen hairs Tradescantia virginiana 1.4-5* **

Table 5.1: Motor velocities in different plant cells. *Organelle velocity dependent on the developmental
stage of the cell. **Own observations, unpublished.

side an aqueous environment with suspended molecules, it is expected that the actively
moving particles induce a flow in the surrounding medium, dragging along other parti-
cles and molecules. For this intra-cellular movement the term hydrodynamic flow may
be used. In general, the term hydrodynamic flow is used when a fluid stream exerts a
drag force on any obstacle placed in its wake, and the same force arises if the obstacle
moves and the fluid is stationary [184].

A recent simulation study [149] showed that active transport of organelles gives rise
to a hydrodynamic flow in the cytosol, which may be important for the fast distribution
of proteins and nutrients in large cells. Here we show for the first time that actively
transported organelles produce hydrodynamic flow in plant cells, which significantly
contributes to the movement of the molecules in the cytosol. We show that in the cyto-
plasm of tobacco BY-2 suspension cells, constitutively expressing cytoplasmic GFP, free
GFP molecules move faster in cells with active organelle transport than in cells where
this transport has been inhibited. Furthermore, we show that the direction of the GFP
movement is the same as that of the organelle movement. We conclude that hydrody-
namic flow is a faster way than diffusion in distributing molecules inside plant cells.

Results

Choice of inhibitors of organelle movement

Our aim was to study whether actively moving organelles influence the movement of
molecules in the cytosol. The cells of choice were tobacco BY-2 suspension cells ex-
pressing cytoplasmic GFP. In the cytoplasmic strands of those cells, actin filaments are
present (Fig.5.1A), but microtubules are not (Fig.5.1B) showing that actin filaments are
the highways for organelle movement in plant cells. Actin depolymerising agents stop
streaming while microtubule depolymerising drugs do not influence organelle move-
ment (data not shown). For this study we used Fluorescence Recovery After Photo-
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bleaching (FRAP). In such experiments a cytoplasmic area is photobleached and the
time of re-appearance of the bleached fluorescence molecule is measured. FRAP was
measured in 2.2 µm×2.2 µm areas of cytoplasmic strands. Fig.5.2A shows the recovery
of GFP fluorescence in a bleached area of a cytoplasmic strand of a young BY-2 tobacco
suspension cell.
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Figure 5.2: Recovery of GFP fluorescence after photobleaching in untreated control-cells (A), cells treated
50 mM BDM (B) and fixative: 2% paraformaldehyde (PA) and 0.2% glutaraldehyde (GA) (C). In cells
treated with BDM fluorescence recovery of GFP was observed. In cells treated with fixatives no fluores-
cence recovery was observed. The recovery was measured in young BY-2 suspension cells.

We used 2,3 butanedione monoxime (BDM) as an inhibitor of active organelle trans-
port in the cytoplasm of BY-2 suspension cells expressing cytoplasmic GFP. Our pur-
pose was to inhibit organelle movement, but not the Brownian movement of GFP. BDM
is a general myosin ATPase inhibitor [185–187]. BDM at a concentration of 50 mM
stopped organelle transport, but recovery of GFP occurred (Fig.5.2B), similarly like in
the control cells (Fig.5.2A). The recovery of GFP ceases in cells chemically fixed with 2%
paraformaldehyde (PA) and 0.2% glutaraldehyde (GA). In those cells no GFP recovery
occurred during a typical FRAP experiment (Fig.5.2C).
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Free GFP molecules move faster in cells with active transport than in
those treated with BDM

To test whether the moving organelles induce hydrodynamic flow in the cytoplasm,
we used cells with active transport and compared the GFP recovery after photobleach-
ing in control cells with cells in which this movement is inhibited with BDM. With
this, we test if hydrodynamic flow is produced by moving organelles and to what ex-
tent this contributes to the movement of molecules in the cytoplasm. If our hypoth-
esis is correct, then the recovery of GFP molecules in the cytoplasm of control cells
should be faster than in the cells in which this movement is inhibited. Instead of using
young small cells that hardly have visible organelle movement (Fig.5.3A) and conse-
quently hardly any hydrodynamic flow, we used large elongated cells (Fig.5.3B) from
10-day-old subcultures of tobacco BY-2 suspension cells, expressing cytoplasmic GFP.
Like in young cells from 3 to 4-day-old subcultures (Fig.5.1A), actin filaments but not
microtubules are present in the cytoplasmic strands (Fig.5.4) and are responsible for
active movement of organelles, since treatment with the actin depolymerising drug la-
trunculin stops cytoplasmic streaming (data not shown; [172, 188, 189]). In comparison
with young small cells, 10-day-old cells have visible, vigorous cytoplasmic streaming
(0.78 ± 0.17 µm/s). We measured the half time of GFP recovery after photobleaching in
a cytoplasmic strand region of 2.2 µm×2.2 µm. GFP recovers faster (within 0.31 ± 0.07 s)
in untreated cells with active organelle transport, than in cells treated with 50 mM BDM
(within 0.48 ± 0.12 s) (Fig.5.5). This shows that actively transported organelles con-
tribute significantly to the movement of GFP in the cytoplasm of BY-2 cells. In theory,
one would expect to see movement of the bleached area, since omnidirectional diffu-
sion will be superimposed on the hydrodynamic flow, resulting in a distorted diffusion
pattern. However, the speed of recovery, combined with the theoretical unevenness of
the speed distribution of flow, being faster nearer the actin filament bundles than fur-
ther away from them, is such that this cannot be observed. From our experiments we
conclude that organelle movement causes a hydrodynamic flow that contributes signif-
icantly to the movement of free GFP in the cytoplasm.

Hydrodynamic flow is higher in cells in which the velocity of organelle
movement is faster

If motor-driven organelle movement causes the hydrodynamic flow of cytoplasmic
molecules, then the speed of GFP movement in the cytoplasm should positively re-
late to the speed of organelle movement. To show this, we measured the GFP recovery
after photobleaching in cells with different velocities of organelle movement (Fig.5.6).
In cells in which organelles moved with an average velocity of 0.21 ± 0.02 µm/s, the
recovery of GFP fluorescence took 0.73 ± 0.19 s, which was slower than in cells hav-
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Figure 5.3: BY-2 cells from a suspension culture: A. Typical cell from a 3 to 4-day-old culture, B. Typical
cell from a 10-day-old culture. The cells in a 10-day-old culture show vigorous cytoplasmic streaming
with easily visible moving organelles. Insert in B shows a cytoplasmic strand with organelles indicated
by arrowheads. Bars in A and B correspond to 10 µm and in the insert to 5 µm.

Figure 5.4: CLSM images of 10-day old tobacco BY-2 suspension cells labelled with GFP:FABD (fimbrin
actin-binding domain) to visualise actin filaments (A) and GFP:TUA6 (α-tubulin) to visualise micro-
tubules (B). Actin filaments (A) but not microtubules (B) are present in the cytoplasmic strands; fluores-
cence in the cytoplasmic strands in B is due to free GFP-tubulin. Bar = 10 µm. A1 and B1 are images of
cell cortex.

ing faster organelle movement of 0.75± 0.10 µm/s. In those cells, GFP recovery was
0.14± 0.04 s. This shows that the fluorescence recovery of GFP increases with the in-
creasing velocity of organelles in the cytoplasm, and confirms that organelle transport
induced hydrodynamic flow occurs in plant cells.

With FRAP we measured that GFP recovery, in a 10-day-old BY-2 cell, in an area
of 2.2 µm×2.2 µm, is on average 0.31 s without BDM and on average 0.48 s with BDM
(Fig.5.5). If we consider the half time of GFP recovery as a time that GFP moves trough
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organelles in the cytoplasm of BY-2 suspension cells. GFP recovery after photobleaching is faster in
cells with faster organelle movement. Half time of GFP recovery is shown, measured in regions of
2.2µm×2.2 µm, data presented from 8-10 measurements and shown with SD.

a distance of 2.2 µm, then we could calculate that GFP needs 16.9 s without BDM (with
speeding up by organelles) and 26.2 s with BDM (without speeding up by organelles)
to travel a distance of 120 µm, which is on average a length of 10-day-old BY-2 cells. For
this calculation, we also considered only one cytoplasmic strand that connects two ends
of a cell. In young BY-2 cells, GFP recovery did not differ in cells treated or not treated
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with BDM. Without BDM, half time of GFP-recovery was on average 0.51 s and with
BDM 0.56 s. Therefore we exclude that the difference in GFP mobility between BDM-
treated and control 10-day-old cells was caused by a change in cytoplasmic viscosity.
Taking into consideration that the length of young cells is 40 µm, GFP needs 11.8 s
without BDM and 12.7 s with BDM to travel from one side of the cell to the other. We
conclude that in large cells organelle movement is faster than in a small cells and that it
is responsible for an efficient distribution of GFP molecules.

Direction of GFP movement in a cytoplasmic strand is the same as that
of moving organelles

If moving organelles cause hydrodynamic flow of molecules, then the direction of flow
should be the same as that of the organelle transport. To check this, GFP was photo-
bleached in a region of 2.2 µm×2.2 µm and its fluorescence recovery was followed in
time. After photobleaching we checked the direction in which organelles move in the
strand. We observed that after photobleaching GFP moves in the direction of the mov-
ing organelles (N = 4) (Fig.5.7). This confirms that hydrodynamic flow occurs in plant
cells with moving organelles, which drag molecules, in this case GFP, in their wake, as
theoretically predicted [149].

Figure 5.7: After photobleaching, cytoplasmic GFP (white arrowheads) moved in the same direction
(black arrow) as organelles (black arrowheads). GFP is visible as fluorescent speckles and an organelle
as a black spot of about 1 m. For this experiment we used 10-day-old elongated cells with an average
organelle velocity of 0.78 µm/s (± 0.17); time is indicated in seconds after photobleaching; bar = 1 µm.

Synthetic lipid and stealth vesicles move in cytoplasmic strands

To test if hydrodynamic flow could contribute to the movement of larger structures such
as vesicles we injected synthetic lipid vesicles of size of 80 nm in diameter into Trades-
cantia virginiana stamen hair cells and observed if they moved inside the cytoplasm. The
vesicles were made only of phospholipids without any proteins and their membrane
contained 98% of 1,2-Dioleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DOPG) and 2%
of fluorescent phosphocholine Bodipy FC12-HPC. Injected vesicles distributed in the
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cytoplasm of the whole cell within 10-15 min after the injection (Fig.5.8A). This result
would suggest that these vesicles moved by hydrodynamic flow produced by moving
organelles in the cytoplasm. We could not exclude that vesicles were coated with cy-
toplasmic motor proteins upon the injection and moved along the actin cytoskeleton.
Therefore we injected so called stealth vesicles to which proteins cannot be attached.
Stealth vesicles are phospholipid vesicles with addition of PEG (polyethylene glycol)
phospholipids. The presence of PEG phospholipids prevents the attachment of pro-
teins to the surface of vesicles. Stealth vesicles are often used in drugs therapy to pre-
vent the attachment of proteins and lysis of vesicles that carry the drugs [190]. The
concentration of PEG phospholipids used in those studies was 5-10%. The concentra-
tions of PEG phospholipids that we used to make stealth vesicles varied from 2% up
to 30% in combination with DOPG. All injected stealth vesicles distributed in the cy-
toplasm (Fig.5.8B) similar to DOPG vesicles without PEG and moved in the cytoplasm
but slower (0.8± 0.13 µm/s than 1-2 microns organelles (1.4± 0.25 µm/s, Fig.5.8C). The
fast distribution of stealth vesicles and their movement in the cytoplasm could be an
indication that structures larger than molecules and possibly organelles move by hy-
drodynamic flow in the cytoplasm of plant cells.
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Figure 5.8: Synthetic lipid (DOPG) vesicles (A) and stealth vesicles (B) of 80 nm in diameter distribute
in the cytoplasm of T. virginiana stamen hair cells after injection. Stealth vesicles moved slower than cell
organelles of 1-2 µm in diameter (C). Stealth vesicles were made of 15 % of PEG phospholipids, 83 % of
DOPG and 2% of Bodipy FC12-HPC. Images were taken 15 minutes after injection, bar = 10 µm.
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Discussion

Transport in cytoplasmic strands

A major characteristic of mature plant cells is that they have large vacuoles that expand
considerably during cell elongation and together become one central vacuole that takes
up most of the cell volume. The vacuole confines the cytoplasm to a thin layer in the pe-
riphery of the cell and an area around the nucleus. The cytoplasm of these two regions
is connected to each other by a few thin tunnels of cytoplasm: the cytoplasmic strands,
also called transvacuolar strands [165, 166]. These cytoplasmic strands are essential
transport routes for the distribution of organelles and metabolites [169,172]. The mech-
anism of this transport is organelle movement, caused by an ATP-driven movement
of myosin motors attached to the organelles along the actin cytoskeleton [5, 169, 191].
Unbound structures move via diffusion, a passive process of molecule distribution. We
raised the question whether what we see as cytoplasmic streaming includes a passive
component of organelle drag induced by the actively moving organelles. Our experi-
mental work indeed is in agreement with our theoretical considerations that the active
transport induces hydrodynamic flow in the cytoplasm that surrounds the organelles,
speeding up the transport of otherwise only diffusing molecules.

Difference between young and mature cells in organelle transport

The velocities of cytoplasmic streaming vary between different cell types, the devel-
opmental stage of the cell and the species. This is interesting, because these cells have
similar myosins that belong to plant specific subfamilies of Myosin VIII and XI. Myosins
XI are more abundantly expressed in plant cells than Myosin VIII. Myosin XI has been
shown to be present on peroxisomes [192] and fragments of the tail may localise to
Golgi and mitochondria [193]. Myosin VIII appears to be restricted to the plasma mem-
brane and plasmodesmata [194]. This makes Myosin XI the candidate motor molecule
involved in organelle transport [1]. We observed differences in velocities of organelle
movement through cytoplasmic strands between small elongating and large fully elon-
gated cells of a tobacco BY-2 suspension culture. This phenomenon is not specific for
cells from this suspension culture. Also in other fully elongated plant cells, of for in-
stance T. virginiana stamen hairs, the velocity of organelle movement increases during
cell elongation and is maximal in fully elongated large mature cells (own observation,
unpublished). The most obvious visible difference between these cells, besides their dif-
ference in size, is the larger volume that is taken up by the vacuole in the fully elongated
cells. Molecules move faster for longer distances through thinner tubes. Differences in
speed of cytoplasmic streaming have been observed within different parts of one and
the same cell, namely, in root hairs and pollen tubes, that grow at the cell tip that con-
tains only vesicles, which show little movement [168]. In the sub-apical cytoplasmic
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dense region of these growing hairs the net speed of organelles is low up to 2 µm/s
(Equisetum hyemale [177], Vicia sativa [178], Medicago truncatula [168]). In the shank of tip
growing root hairs where the central vacuole is present, the net speed of organelles is
8-14 µm/s (Equisetum hyemale [177], Vicia sativa [178], Medicago truncatula [168]). In these
cells, these differences can be linked to the configuration of the actin cytoskeleton, which
consists of thick bundles in the hair tube but of thin bundles in the subapex (Equisetum
hyemale [177], Vicia sativa [178], Arabidopsis thaliana [195]; Eucalyptus globulus [196]). In
the sub-apex, organelles often stop for a short time and jump for a short distance from
one place to the other [168]. Also the possible differences in the configuration of the
actin cytoskeleton between the elongating and fully elongated BY-2 suspension cells
are expected to be the underlying mechanism of the measured differences in velocities
of organelle movement. If indeed the myosin type is the same in both cell structures, it
cannot be the step size that determines organelle velocity, but the number of steps made
per time unit.

Need for hydrodynamic flow in large cells

Molecules in the cytosol that are not attached to the cytoskeleton do not posses an active
driving force for transport. They move by Brownian motion only. If a concentration gra-
dient is produced for instance by the consumption of molecules at one side of the cell,
such as the high rate of sugar use at the cell cortex to produce the cell wall, directional
movement governed by Brownian motion is the result. Here we show that movement
of molecules in a cell, and maybe also ribosomes, vesicles and small organelles, is faster
than mere diffusion, and that the cause for this speeding up is the active transport of
organelles along bundles of actin filaments, as theoretically predicted [149]. If the ve-
locity of organelles in the cytosol of tobacco BY-2 suspension cells is three times faster,
the GFP molecules move also three times faster (Fig.5.6). Why would this be useful
for cells? Signalling and other proteins have to find a partner to bind to for their ac-
tivity, and these activities have to be carried out at the right sites in the cell. If all of
these molecules had to be produced at the site where needed, this would require pre-
cise targeting of ribosomes, including the free ribosomes and polysomes not attached to
the endoplasmic reticulum. Now we show that random molecule movement inside the
cytoplasm, can be speeded up by myosin-driven organelle movement along the actin
cytoskeleton, increasing the chance for finding a partner. In the cells that have fast cy-
toplasmic streaming, hydrodynamic coupling between actively transported organelles
and the surrounding solvent causes molecules to spread faster, with the result that those
molecules will reach their target with greater efficiency.

The mature BY-2 suspension cells that we studied have velocities of cytoplasmic
streaming 10-15 times lower than for instance some of the root hairs studied, or than
mature Tradescantia stamen hair cells. We expect that in those cells also organelles, or at
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least vesicles, could be dragged along with the actively moved motor-driven organelles.
Also lipid droplets injected into hyphal extensions of Neurospora crassa moved without
motor proteins [197]. The movement of fluorescent stealth vesicles injected into T. vir-
giniana stamen hair cells in the cytoplasmic strands indicates that these vesicles and
possibly organelles can also move by hydrodynamic flow in the cytoplasm of plant
cells.
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Chapter 6

Hydrodynamic Interactions In A
Continuum Model

Introduction

In chapter 4 it was shown by means of computer simulations, that momentum transfer
via the fluid medium can give rise to a non-negligible flow of suspended organelles. The
simulations were performed using an extended exclusion model that included Lang-
muir Kinetics and hydrodynamic interactions. In stead of simulating all the molecules
that make up the surrounding fluid, the influence of the solution on the solutes was
introduced as a combination of random forces and frictional terms [69]. The organelle
velocities were calculated using a Langevin equation (eq.4.1) that included the hydrody-
namic organelle-organelle interactions and the resulting velocity was translated into a
trial move using the algorithm described in Fig.4.2. Taking hard-core excluded volume
interactions into account, this trial move was subsequently, accepted, partially accepted
or rejected. In the latter case the motor-organelle complex simply dwells in its current
position. In spite of its simplicity, the lattice model sufficed to show the effect of hy-
drodynamic interactions in the system. Moreover, the model could be easily modified
to study different systems and conditions. However, performing the simulations on a
lattice had a few disadvantages. These include:

• Excluded volume effects affect lattice velocities (see appendix A).

• Spurious effects affect the measured motor velocities (see Appendix B).

• Spatial and temporal resolution of the simulations are large with respect to the
organelle size (see table 4.1).

• The magnitude of thermal energy and the diffusion coefficient in the simulation
model are larger than in experiments. (see the discussion below table 4.1).
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The consequences of the above points are understood and discussed. To rule out
that the directed suspended organelle transport in solution is not a lattice artefact, a
simulation model is developed in which the motor positions are no longer mapped on a
lattice. In stead, the motor displacements will be directly calculated using the Langevin
equation. The continuum model and the obtained results are described in the sections
below. Note, in this chapter, motor-cargo complexes will be referred to as motors or
organelles, unless specified otherwise.

Finally, at the end of this chapter the results obtained using the both simulation
models will be compared to each other and to experimental data. This includes a dis-
cussion of the magnitude of the observed velocities, forces and the implications for the
underlying bio-mechanical system.

The Simulation Model

The system that is modelled is similar to the one that is shown in Fig.4.4 in chapter 4.
The difference is that the motor positions are not mapped on a lattice but move through
a continuum. As was the case with the lattice model, the motors alternate between
periods of diffusive and directed transport depending on their position in the system.
In addition, the motors have a finite processivity and the filament occupation fraction
of motors is determined by Langmuir Kinetics. Moreover, the system makes use of
Periodic Boundary Conditions in axial direction to simulate the dynamics of an infinite
system. However, for the simulations to be performed on a continuum environment, a
number of changes need to be made with respect to the lattice model. These changes
are described in this section.

Solving The Langevin Equation

Since the motors will now be moving in a continuum (without the mapping algorithm)
the spatial and temporal resolution of the simulations must be improved. To allow for
small displacements and time steps the Langevin Equation (eq.4.1) is integrated from
time t to t+∆t and discretized with respect to time. This yields [63]:

ri (t+∆t) = ri (t) + µii · F i∆t+
∑
j,j6=i

µij · F j∆t+∆Gi(t). (6.1)

The mean and variance of the random displacement are given by [63]:

〈∆Gi(t)〉 = 0

〈∆Gi(t)∆Gj(t
′
)〉 = 2Dijδt,t′∆t.

(6.2)
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As described in chapters 2 and 4, the organelle mobilities, µij=Dij/kbT , depend on
the positions of all the organelles in the system and are calculated using the Oseen
tensor (eq.2.25). The correlated thermal displacements are determined using the Ermak
and McCammon algorithm [72] described in chapter 4 (see eq.4.4)∗. The theoretical
single motor velocity is given by V 0 = (V0, 0, 0) for a filament bound to the cytoskeleton
and V 0 = (0, 0, 0) for bound motors. For bound motors V 0 can be calculated via V 0 =
µii · F 0 where F 0 = (F0, 0, 0). For suspended organelles F 0 = (0, 0, 0).

Yukawa Potential

In the lattice model the motor-organelle complexes were treated as hard spheres. This
was enforced by only allowing one motor on a lattice node at a given moment in time.
In addition, the lattice spacing was larger than the motor diameter. Thus, there was no
overlap possible between motors in adjacent lattice nodes. In a continuum model the
displacements of the motors are no longer limited to fixed positions. To avoid overlap,
the motors will be treated as hard spheres surrounded by a soft repulsive potential,
V (rij). In the simulations the Yukawa potential is used, which has the following form:

V (rij) = W
e−

rij
rc

rij
. (6.3)

In this equation, W , is a pre-factor that determines the strength of the repulsion. The
distance between two organelles is, rij, and the cut-off range of the potential is given by,
rc. The potential gives rise to a conservative repulsive force†:

F (rij) = W
e−

rij
rc

rij

[
1

rij
+

1

rc

]
r̂ij. (6.4)

Next, the force is truncated and shifted [156], F T−S (rij), by subtracting the force, F c,
which is the force at the cut-off distance, rij=Rc=rc. The resulting force decreases with
increasing organelle distance and reduces to zero at Rc. In this equation, r̂ij=rij/rij, is a
unit vector along the vector rij that points from organelles i to j. The force is given by:

F T−S (rij) = F (rij)− F c = r̂ij

W
e−

rij
rc

rij

[
1

rij
+

1

rc

]
− 2We−1

r2c
rij ≤ Rc

0 rij > Rc.

(6.5)

∗In the section ’Ermak and McCammon Algorithm’
†For a conservative force holds: F (rij)=−∇V (rij).
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Note that, F T−S (rij)= − F T−S (rji). The repulsive forces need to be calculated for
each pair of organelles for the organelle configuration at the start of a simulation time
step. Finally, the repulsive forces are introduced in the Langevin equation (eq.6.1) via:

F i = F 0 +
∑
j,j6=i

F T−S (rij) . (6.6)

Conversion Of Units

The conversion between simulation units and the experimental data can be found in
table 6.1∗. Analogous to table 4.1, the conversion factors for length L, time T, and mass
M, are found by fixing the radius, velocity and force in the simulation model. Note
that, unlike in the lattice model, all the simulation settings can be converted back into
experimental values.

Property Unit Experiments Model Factor Calculated
a m 2.5 ×10−7 0.25 L 2.5 ×10−7

V0 m/s 8 ×10−7 0.4 L/T 8.0 ×10−7

F0 N 4.15 ×10−12 1.0 ML/T2 4.15 ×10−12

µ0 m/Ns 1.93 ×105 0.4 T/M 1.93 ×105

η Pas 1.1 0.53 M/LT 1.1
ρ kg/m3 1200 1.16 ×10−9 M/L3 1200
D0 m2/s 8.26 ×10−16 4.13 L2/T 8.26 ×10−16

kbT J 4.28 ×10−21 1.03 ×10−3 ML2/T2 4.28 ×10−21

m kg 7.85 ×10−17 7.57 ×10−11 M 7.85 ×10−17

τ s 1.52 ×10−11 3.03 ×10−11 T 1.52 ×10−11

Table 6.1: Conversion table from experimental data (see table 2.2 in chapter 2) to simulation parameters.
The conversion factors are: L=1.0 × 10−6, T=5.0 × 10−1, M=1.0375 × 10−6 and were determined by
fixing the radius (a), and the single motor velocity (V0) and force (F0) in the simulation model. The
column ’calculated’ is obtained by multiplication of the columns ’model’ and ’factor’ and it reflects how
well the simulation parameters represent the experimental data.

Results

To compare both types of models, the same geometry is used in the simulations. This
means that motors move in a two dimensional plane that is confined between two fil-

∗See the explanation in chapter 4 with table 4.1
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aments (see Fig.4.4) while the hydrodynamic interactions between the organelles are
treated as in a three dimensional fluid. In the continuum a different definition will be
used for the concentration. For the lattice model the concentration was defined as the
fraction of lattice nodes that are occupied along the filament or in solution (φµ and φs).
In this chapter, the concentration is defined as the fraction of space that the motors oc-
cupy and will be denoted by: φ′

µ or φ′
s. The following equation can be used to switch

from one definition to the other:

φ′ =
〈Np〉d
L

= φd. (6.7)

In the above equation, d, is the organelle diameter and, 〈Np〉, the average number
of organelles in the system. In the section below, the results obtained with the contin-
uum model will be discussed. Subsequently, in the next section, these results will be
compared to the lattice model.

Continuum Model

In Fig.6.1A, the normalised motor velocity is shown for both bound and suspended
organelles. The data shows that, in the absence of hydrodynamic interactions, the ve-
locity is not affected by excluded volume effects. For all tested filament concentrations
the measured velocities, on average, were equal to the single motor velocity V0. In ad-
dition, there is no directed organelle motion in solution. Inclusion of the momentum
transfer via the fluid shows a linear increase of the organelle velocity with increasing
bound organelle concentration. The latter is in agreement with the Langevin equation
that predicts a linear relation between the force (from the bound organelles) and the
velocity. Additionally, the suspended organelle velocity (shown for the centre-line of
the system) increases linearly with increasing filament occupation albeit at a different
(less steep) slope. Figure 6.1B demonstrates that the angle of the slope depends on the
organelle’s radial distance from the filament, the closer to the filament, the more the
slope approaches that for bound organelles and the higher the measured velocity. The
latter observation was expected since the hydrodynamic interactions are introduced via
the Oseen tensor (eq.2.25). This tensor states that the momentum transfer via the fluid
is long range and falls off with the inverse of the distance from the organelle∗.

The forces that are acting on the bound and suspended organelles are deduced from
the mobility and velocity via Fi=Vi/µ0. The normalised forces are shown in Fig.6.1C.
As expected, the forces increase with increasing bound organelle concentration when
hydrodynamic interactions are considered and remain constant in the absence of the
momentum transfer via the fluid. The hydrodynamic contribution to the force on the

∗See the section ’Many Organelles Moving In A Fluid - Hydrodynamic Interactions’ in chapter 2.
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bound motors (filled circles) is always larger than the force acting upon the suspended
organelles.
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Figure 6.1: A) The average normalised axial organelle velocity for different degrees of filament occupation,
φ′
µ, measured along the filament and in solution. B) The average axial normalised organelle velocity at

different radial positions in the system. Diamonds - filament (f); squares f+2a; inverted triangles f+6a;
triangles f+10a i.e. centre-line of system where, a=0.25, is the organelle radius in simulation units.
C) Effective normalised force acting on motors for different filament occupations with F0=4.15 pN (see
table 6.1). The filled circles represent the hydrodynamic force acting on the bound organelles. For all
figures: filled symbols - with hydrodynamic interactions (HI); open symbols - without HI; diamonds -
filament; triangles - solution at centreline of system. See the column ’Model’ in table 6.1 for the simulation
settings. The simulations were performed for 150×106 simulation time steps with dt=0.0001. The
Yukawa constants: W=0.05 and rc=0.25 (all in simulation units).

The organelle concentration profile that arises from the exchange of organelles be-
tween the filament and solution is presented in Fig.6.2A. The figure shows the axial
concentration of organelles across the width, L, of the system. In the absence of hydro-
dynamic interactions (open symbols), the binding and detachment of organelles gives
rise to a concentration drop near the filament. This drop is followed by an increase of
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organelles in the centre of the system. This profile is robust as the data for different fila-
ment occupation fraction collapses (not shown). Including the hydrodynamic coupling
to the simulations does not change the shape of the concentration profile. However,
it does result in a smaller filament occupation and a larger organelle accumulation at
the centre of the system (for identical simulation settings). To investigate if the profile’s
shape is a result of using the repulsive Yukawa potential (eq.6.5) to prevent organelle
overlap, the simulations were repeated for a smaller value of the repulsion parameter
W=0.005 (in simulation units). Changing this parameter did not have any effect on the
obtained concentration profile (not shown). Modifying the cut-off length, Rc, for the
force in (eq.6.5) to a value of 3 or 6 times the organelle radius, while keeping rc constant
for the potential, did not have any significant effect on the profile either (not shown).
Additionally, as the Yukawa potential has only a short-range effect (rc=0.25, in simu-
lation units), one would expect the repulsion effect to be more pronounced at higher
filament occupation fractions. However, the figure does not show any dependency on
the filament concentration.

As expected, the normalised velocity profile (Fig.6.2B) shows that, in the absence of
the hydrodynamic coupling, the single motor velocity is recovered along the filament
and on average there is no net velocity in solution. Including the hydrodynamic in-
teractions (filled symbols) again shows that the velocity increases for both bound and
suspended organelles with increasing filament occupation. In line with the results from
6.1B, the velocity decreases with increasing distance from the filaments, and thus is
smallest in the centre of the system.
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Figure 6.2: A) Axial concentration profiles for organelles bound to the filament and in solution for dif-
ferent filament occupation fractions. L is the distance between filaments, and X the distance to the lower
filament. B) Normalised axial organelle velocity at different distances from the filament. For all figures:
filled symbols - with hydrodynamic interactions (HI); open symbols - no HI (with φ′

µ=0.07); diamonds
φ′
µ=0.09; squares φ′

µ=0.15; inverted triangles φ′
µ=0.33; triangles φ′

µ=0.49; Circles φ′
µ=0.58. See the

column ’Model’ in table 6.1 for the simulation settings. The simulations were performed for 150×106

simulation time steps with dt=0.0001. The Yukawa constants: W=0.05 and rc=0.25 (all in simulation
units).
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Comparing The Models

Next, the results that were obtained using the lattice model (chapter 4) are compared to
those of the continuum model. The discussion is limited to the data for simulations that
include hydrodynamic interactions. To be able to compare both models, all the data is
converted into real units using the conversion tables 4.1 and 6.1. The definition for the
organelle concentration that was introduced in this chapter will be used i.e. φ′

µ or φ′
s (see

eq.6.7). Most of the results that were presented in chapter 4 are for a organelle radius
of a=0.1l (in lattice units, where l=2.5 × 10−7m is the lattice spacing). In this section
additional data for a=0.2l is shown.

Figure 6.3A, compares the bound organelle velocity for different degrees of filament
occupation. For the lattice model, both series overlap at low filament occupation frac-
tions. At higher values the series start to deviate due to excluded volume interactions.
The series for a=0.1l is the first to decrease its velocity with increasing filament occupa-
tion fraction. This is as expected, as the smaller size organelles take up less volume for
the same lattice filament occupation fraction at identical lattice spacing l. In contrast,
the data from the continuum model shows a linear increase in velocity with increas-
ing filament occupation as this model does not experience the excluded volume effects
imposed by the lattice. The slope is similar to the initial slope of the lattice model.
The velocities obtained at small concentration fractions are slightly larger for the lattice
model. This can be attributed to spurious effects (see the discussion in Appendix B).

The velocity for the suspended organelles is shown in Fig.6.3B. Again the data ob-
tained using the lattice model collapses at small filament occupation fractions. In addi-
tion, the data shows that the organelle velocity decreases when excluded volume effects
decrease the bound motor velocity. The data from the continuum model shows a con-
tinuous linear increase of the velocity albeit at a smaller slope than for the lattice model.
The forces acting on both the bound and suspended organelles are deduced from the
mobility and velocity via Fi = Vi/µ0 and are shown in Fig.6.3C. As there is a linear rela-
tion between the force and velocity at low Reynolds numbers this figure shows similar
trends to Fig.6.3A and B. Note that for the lattice model, the forces acting on suspended
organelles are larger than those on the bound motors at higher filament occupations.
Indeed, comparing the additional hydrodynamic force, via momentum transfer, that
acts upon the bound organelles (Fig.6.3D) to the force acting upon the suspended (filled
circles in Fig.6.3C) organelles confirms this.

The axial concentration and velocity profiles for different radial distances from the
filament are shown for φ′

µ≈0.08 and 0.15. For radius a=0.1l this approximately corre-
sponds to respectively φµ≈0.39 and 0.79 and for a=0.2l to φµ≈0.19 and 0.39. A com-
parison of the axial concentration profile at the filament and in the solution is shown in
Fig.6.4A. The lattice model results (open symbols) show that the data for the identical φ′

s

collapses and that there is a flat profile in solution (with a small concentration increase
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Figure 6.3: A) Comparison of the average bound motor velocity 〈V 〉 in m/s at different filament occu-
pation fractions φ′

µ. B) The average axial velocity of suspended organelles in the centre of the system.
C) Motor force in N for bound and suspended organelles. D) Hydrodynamic force in N for bound and
suspended motors. For all figures: lattice model (open symbols); continuum model (filled symbols). Open
symbols: diamonds (a=0.1l) and inverted triangles (a=0.2l) - bound organelles; circles (a=0.1l) and
triangles (a=0.2l) - suspended organelles; open squares (a=0.1l) and open pentagons (a=0.2l) - hydro-
dynamic force; l=2.5 × 10−7m is the lattice spacing. Filled symbols: diamonds and squares - bound
organelles; circles - suspended organelles. Experimental data: a=2.5 × 10−7 m, V0=0.8 × 10−6 m/s,
F0=4.15×10−12 N, η=1.1 Pas, T=37 ◦C, µ0 = 1.93×105 m/Ns, Re=4.36×10−10, D0=8.26×10−16

m2/s (see tabel 2.2). Conversion of units via tables 4.1, 6.1 and eq.6.7.

near the filaments). However, the continuum model shows a drop in concentration
near the filament followed by an accumulation of organelles in the solution. This effect
gets stronger when including the hydrodynamic interactions. Note that the statistics
of the continuum model data are poorer than for the lattice model. In the simulations
both the N2 Oseen mobility tensor (eq.2.25) and the Ermak and McCammon algorithm
(eq.4.4) have to be calculated for each simulation step. As the continuum model uses
smaller simulation time steps, these matrices need to be evaluated more frequently for
this model. Thus, to run the continuum simulations for a similar total time as was used
for the lattice model, the number of organelles had to be decreased by shortening the
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length of the system. The normalised velocity profiles (Fig.6.4B) show that profiles are
similar in shape for all series. The one exception is for the lattice model at φ′

µ≈0.15
(a=0.1l) where the velocity in solution is larger than along the filament. This is caused
by spurious lattice effects and is discussed in detail in appendix B. The velocities pro-
file drops slightly with increasing distance from the filament. This decrease with the
distance is larger for the continuum model.
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Figure 6.4: A) Axial concentration profiles for organelles bound to the filament and in solution for differ-
ent filament occupation fractions. B) Normalised axial organelle velocity at different distances from the
filament. φ′

µ≈0.08: lattice - open squares (a=0.1l), open triangles (a=0.2l); continuum - filled circles.
φ′
µ≈0.15: lattice - open diamonds (a=0.1l), open inverted triangles (a=0.2l); continuum - filled squares.

For both figures: L is the distance between bio-filaments, and X the distance to the lower bio-filament
and l=2.5 × 10−7m is the lattice spacing. Experimental data: a=2.5 × 10−7 m, V0=0.8 × 10−6 m/s,
F0=4.15×10−12 N, η=1.1 Pas, T=37 ◦C, µ0 = 1.93×105 m/Ns, Re=4.36×10−10, D0=8.26×10−16

m2/s (see table 2.2). Conversion of units via tables 4.1, 6.1 and eq.6.7.

Discussion

The goal of this chapter is to validate the results that were obtained using an extended
exclusion model (chapter 4) by using a continuum simulation model. As explained in
the introduction, the lattice model is sensitive to excluded volume effects, spurious lat-
tice dynamics and has a coarse spatial and temporal resolution. All these factors may
influence the outcome of the simulations. The continuum model that was introduced
in this chapter does not have these sensitivities and is used to validate the results. Both
models show that momentum transfer via the fluid indeed has a positive effect, re-
sulting in higher bound and suspended organelle velocities. This effect, that was also
confirmed experimentally (see chapter 5), thus cannot be neglected.
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However, there still are some concerns. The results from the continuum model show
that the measured velocities (and drag forces) increase linearly with the organelle con-
centration. This does not take any physical limitations of the molecular motors into
account. Actual motor velocities depend on the speed at which a motor physically can
step i.e. on the speed of the conformational changes (crossbridge cycle) that take place
inside the motor protein during the hydrolysis of ATP. In the text below the simulation
results are discussed and compared to experimental data.

The single motor parameters that are used in the simulations (see tables 4.1, and 6.1)
are chosen in the velocity and force range of both kinesin and myosin motors. I intro-
duce the motor-organelle complexes into the simulations without specifying the type
of molecular motor. This allows for subsequent analysis from the perspective of either
motor type. The used single motor parameters are based on a combination of exper-
imental data as summarised in table 2.2. In this table a representative model system
for a molecular motor cargo is introduced. I chose a cargo size of 500 nm that could
e.g. represent the size of a melanosome [21], which is a typical organelle (see table 1.1).
The velocity for kinesin motors carrying a cargo of similar size was found to be ≈800
nm/s [17, 62]. This velocity was chosen as the single motor velocity in the simulations
as it also falls within the velocity range of myosin motors (table 6.2). The cytosol vis-
cosity that was measured in vivo for different cells is summarised in table 2.4. I chose to
use the viscosity from the publication of Hill et all. [23] where it is given as 1.1 Pas for
kinesin motors carrying cargoes of 250-500 nm in a PC12 cell. Finally, using the veloc-
ity, viscosity and organelle size, the accompanying mobility (eq.2.19) and motor force
are calculated (eq.2.19) together with other parameters (see chapter 2). The results are
summarised in table 2.2.

Velocities

In table 6.2, the simulation results are discussed from the perspective of both kinesin
and myosin motors. The table shows the maximum velocities that were measured in
the simulations and compares these to some of the fastest molecular motors that have
been reported in literature. The velocities found in the simulations are large with respect
to the single motor velocity but still fall within the range of the fastest motors that are
reported in literature.

Forces

The forces needed to move the organelles at the largest velocities in the simulations
exceed the single motor stall forces reported in literature (kinesin: 4.2 pN [33]; 5.4 pN
[15], 5.7 pN [10]; myosin: 3 pN [199]; 3-4 pN [203]; 5-6 pN [204]). However, Hunt
et al. [33] presented experimental data that shows that the stall force increases with
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Velocity Forcea Stepsb ATPasec Comment Reference
µm/s pN s−1 s−1head−1

Experimental Data For Molecular Motors
0.4 - 0.8 2.1 - 4.2 50 - 100 25 - 50 Kinesin [17]

0.77 - 0.88 4.0 - 4.6 96.3 - 110 48.1 - 55 Drosophila Kinesin [62]
2 - 3.5 10.1 - 18.2 250.0 - 437.5 125.0 - 218.8 DdUnc104d [198]

0.3 1.56 8.1 4.1 Myosin-V [199]
0.6 3.13 16.3 8.2 Myosin-Vae [200]
7 0.6 189.2 94.6 Myosin-XI [30]

30 - 62 13 810.8 - 1621.6 405.4 - 810.8 Myosin [201]
1.6 - 3.6 3.5 - 39 - - Muscle Myosinf [202]

Simulations
Single Motor

0.8 4.15 100 50 Kinesin Table 2.2
0.8 4.15 21.6 10.8 Myosin Table 2.2

Kinesin
1.4 7.17 172.7 86.4 Lattice model Fig.6.3A
3.5 18.11 436.4 218.2 Continuum model Fig.6.3A

Myosin
1.4 7.17 37.3 18.7 Lattice model Fig.6.3A
3.5 18.11 94.4 47.2 Continuum model Fig.6.3A

Table 6.2: Comparison of simulation results to the fastest molecular motors described in literature. It is
assumed that one ATP is consumed per step. Calculated values: aF=v/µ0 with µ0=1.93 ×105 m/Ns;
bsteps=v/step size. The step sizes of kinesin and myosin are respectively 8 and 37 nm; cATPase is the
rate of hydrolysis per head per second. For a dimeric motor: ATPase=steps/2; d A dimeric kinesin motor
of the UNC104/KIF1a motor subfamily observed in Dictiostellium; e Measured in vivo in a COS-7 cell,
in vitro velocity, 0.58 µm/s; fAn estimated 4-40 myosin heads are attached.

increasing motor density where motors share the load. For example, the largest stall
force reported in this article for kinesin motors is 16 pN. The latter force is similar to the
force found for the largest measured velocity in the simulations. This suggests that for
the results to be plausible multiple molecular motors need to be attached to the same
organelle that cooperate and share a load. The latter can be described by the following
equation [134], where, N , is the number of motors:

Vi = Nµ0Fi. (6.8)

That multiple motors can be attached to a cargo was confirmed experimentally by
Ashkin et al. [28] and Hirokawa [29] who used electron microscopy imaging on fixed
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cells to show that some vesicles were attached to the microtubules by 2-3 kinesin mo-
tors. In addition, in vivo experiments, using quantum dots as positional markers for
molecular motors, show that the velocity of organelles are constrained to quantised val-
ues suggesting that each peak represents a different number of motors pulling a vesicle
through a viscous solution [25, 31, 41, 42].

From single motor force-velocity experiments it is known that the motor processivity
decreases when there is either a positive or negative force exerted upon the motors
(kinesin [11]; myosin-V [55]). However, when multiple motors are collectively carrying
a cargo, the cargo’s processivity is increased [147]. A theoretical study by Klumpp et
al. [134] suggests that the distance, x, that a cargo can travel before detachment can be
predicted by: x=5N−1/N . These arguments suggest that, in the presence of external
forces, it would be beneficial for motors to collectively carry cargoes through the cell.

ATPase and Duty Ratio

Joe Howard mentions in his book [3]∗ that the free energy derived from the hydrol-
ysis of ATP under typical cellular conditions is 100 pN·nm=25 kbT ([ATP]∼10 mM;
[ADP]∼10 µM; [Pi]∼1mM). This means that under these conditions the thermodynamic
force, i.e. the maximum force that a single, fully reversible kinesin motor, could theoret-
ically work against is 12 pN (=100 pN·nm/8 nm) and 2.7 pN for myosin. These forces
are smaller than the forces at high velocities in our simulations and smaller than for the
fast motors in literature (see table 6.2). This suggests that either the physiological con-
ditions in the cells are very different and/or that motors are sharing the load. A typical
stall force for a kinesin motor is 5-6 pN, which means that the kinesin does 40-48 pN·nm
of work and that the efficiency of this motor is about 40-48%.

The ATPase rates found for the maximum velocities of the simulations are large
compared to those of a single motor. For example, for a single hypothetical myosin
motor moving at 0.8 µm/s the ATPase rate is 10.8 s−1head−1 (see table 6.2). However,
the ATPase rate at the maximum velocities that was measured in the simulations are
2 (lattice model) - 5 (Continuum model) times larger. Interestingly, the ATPase rates
for myosin in experiments can be much larger than this value e.g. 94.6 s−1head−1 for
Myosin-XI [30]. In addition, Sugi et al. [205] found an ATPase rate of 425 s−1head−1 in
the internodal cells of Chara corallina. The authors argue that this is a large value with
respect to the single motor ATPase and mention that a mechanically coupled interaction
between the heads of multiple myosin molecules attached to the same bead would be
advantageous.

The duty ratio†, r, is the ratio between the time a motor head spends attached, τon,

∗On pages 230-231 and 254.
†See appendix D for a more detailed explanation of the duty ratio.
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and the total time of the crossbridge cycle of a motor, τtot, and is given by [3, 76]:

r =
τon
τtot

=
δ ATPase

V
. (6.9)

In this equation, δ, is the step size of the motor, ATPase, its ATPase rate and, V , the
velocity. For a single processive molecular motor the duty ratio has to be at least 0.5.
A smaller value means that there are moments that neither of the two motor heads is
attached to the cytoskeleton and that thus the motor would detach from the filament.
For non-processive motors, such as muscle myosin, this value is much smaller than 0.5.
The cooperativity hypothesis suggests that even though the duty ratio of the individual
motors is 0.5 or larger, the effective duty ratio could be smaller than 0.5. For example,
if we assume that the fastest experimental kinesin velocity in table 6.2 is the result of
a group of motors that collaborate∗, then the duty ratio becomes 0.11. Using another
definition of the duty ratio, r=1/Nmin, that relates it to the minimum number of molec-
ular motor heads, Nmin, needed for continuous processive movement, suggests that at
least 9 motor heads or 5 two-headed kinesin motors are needed. That 5 motors can be
attached to a cargo and collaborate is supported by the in vivo experiments by Sthridel-
man et al. [25]. Their experiments suggest that the cargoes in NT2 cells are carried by
1-5 molecular motors.

Conclusion

In this thesis we try to explain the physical phenomena of cytoplasmic and axoplas-
mic streaming where many organelles are carried simultaneously through a viscous
medium. The above discussion of velocities, forces and ATPase showed that the max-
imum values that were found in the simulations are large with respect to the single
motor values. However, experiments reported in literature reported values that were
similar or, in the case of myosin, much larger. From this can firstly be concluded that
the observed velocities lie within the physical limits of the motors.

Secondly, for the motors to generate the forces needed to move at these velocities two
mechanisms need to be considered: (1) hydrodynamic interactions between the molec-
ular motors via the surrounding medium and (2) cooperation between motors that are
attached to the same cargo. We have shown both by means of simulations (chapters 4
and 6) and experiments (chapter 5) of an ordered system, that the momentum transfer
through the surrounding medium affects both the motion of the bound and suspended
motors. The momentum transfer via the fluid can be seen as an additional positive force
that pushes the organelles forward.

∗For each motor: ATPase=50 s−1head−1, V=3.5µm/s, δ=0.8
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There is physical evidence that multiple molecular motors can be attached to an
organelle at the same time [28, 29] but there is no consensus in literature if, and how,
these motors collaborate. There are experiments that suggest that a set of identical
motors attached to the same cargo can work together [25, 31, 41, 42] or that motors of
different properties are present at the same time [43, 206]. In addition, organelles that
change direction on their cytoskeletal track have been reported where motors with op-
posite directionality are present and a protein complex called dynactin is suspected to
regulate the switching between both motors [207]. A tug-of-war between motors has
been reported to be unlikely as impairment of one of the two motors does not increase
the transport in the opposite direction [208]. Cooperation between motors on a cargo
could help motors overcome the large friction forces in the cytosol by load sharing,
increase the processivity and explain the large ATPase needed for fast organelle trans-
port. However, motor cooperation alone cannot explain the observed directed transport
of suspended organelles. Thus, hydrodynamic interactions are necessary to reach the
velocities that are observed in phenomena such as cytoplasmic or axoplasmic streaming
motor while motor cooperation may be needed. More research is necessary to answer
this question.
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Chapter 7

Outlook

Introduction

This chapter serves to provide the reader with a potential extension of the work pre-
sented in previous chapters. In this thesis a plausible explanation was given for the
biological phenomena cytoplasmic and axoplasmic streaming. The results presented
in chapters 4, 5 and 6 suggest that the actively transported organelles set up a non-
negligible flow in the surrounding medium capable of displacing suspended objects
in an otherwise quiescent fluid. So far only translational hydrodynamic interactions
in planar geometries have been studied. It can be expected that the same mechanism
yields alternative types of flow in different geometries. Indeed, in chapter 3∗ experi-
ments [96, 98] and simulations [97] were discussed of particles moving on a Brownian
ratchet in a toroidal trap. These studies showed that hydrodynamic interactions be-
tween the particles make these particles move faster along their rotational trajectory
thus setting up a rotational flow field. Moreover, Goldstein et al. [209] showed that
a complex flow field appears in cytoplasmic streaming of algal species such as Chara
and Nitella. Here motors carry cargoes along actin filaments that are attached to the
cylindrical cell wall. The filaments are arranged in two spiralling bands of opposite po-
larity†, thereby allowing for simultaneous transport in opposite directions. The arising
flow field consists of two components: Firstly, a component parallel to the spiral, and
secondly, flow perpendicular to the spiral in radial direction. The combination of both
gives rise to rotational flow and allows for fluid mixing.

In the review of Shimmen on cytoplasmic streaming [6] reference was made to ex-
periments by Kuroda and Shimmen. These authors prepared a cytoplasmic drop in
which chloroplasts were rotating in absence of external forces. Shimmen mentions that
the rotational motion is thought to be driven by the same mechanism as cytoplasmic

∗See section ’Brownian Ratchets Featuring Hydrodynamic Interactions’.
†Similar to the red and white bands of a barber pole.

95



streaming. Without knowledge of the details of the biological system or the physics
that drive the chloroplasts, I would like to suggest answering a related question: is it
possible for molecular motors, that are carrying cargoes while walking along the surface
of a spherical object, to transfer enough momentum through the fluid for this object to
start rotating? To study this effect the theory of translational hydrodynamic interactions
that was discussed in chapter 2 has to be expanded with rotational interactions.

In the sections below the theory on hydrodynamic interactions is expanded by in-
troducing rotational hydrodynamic interactions. Moreover, a model is proposed that
could be used for testing the hypothesis that molecular motors can make an object ro-
tate via hydrodynamic interactions. This work is accessible to both simulations and
experiments. Finally, possible applications for microfluidic devices are discussed.

Rotational Hydrodynamic Interactions

In chapter 2 the Langevin Equation was introduced for interacting organelles (eq.2.43).
This equation includes the hydrodynamic interactions between the organelles. The lat-
ter is included to account for the momentum that is transferred into the cytosol by the
actively transported organelles. It is possible, by means of a hydrodynamic interaction
tensor, to solve the flow field that arises from this transport. For example, assuming that
the active organelles are treated as point particles, the arising flow field (eq.2.23) can be
solved using the Oseen tensor (eq.2.25), that only includes long-range interactions. In
addition, a description for the flow field that includes the size of the organelles, short
and long range interactions is found using the Rotne-Prager tensor (eq.4.10). In the the-
ory in chapter 2 only translational motion has been considered and rotational motion
has been neglected. However, if an organelle is under influence of an external torque,
T , it will rotate with constant angular velocity, ω, and subsequently, via molecular mo-
mentum transfer, set up a flow field. The magnitude of this rotational flow field, V́

r
, is

given by [66, 155]:

V́
r
=

(a
r

)3

ω × r. (7.1)

The required torque for an organelle i to overcome the fluid friction and maintain
rotation is given by the equation below [57]:

T i = 8πηa3ωi =
1

µr
0

ωi. (7.2)

In this equation, the constant of proportionality is the rotational self-mobility µr
0. The

solution of the flow fields governed by momentum transport in both translational (su-
perscript t) and rotational (superscript r) directions can be expressed as a combination
of forces, torques and a mobility tensor. Ignoring thermal fluctuations, the following
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equations for the translational and rotational velocities, can be written for the interac-
tions between an organelle i and all other organelles j [154, 155]:

V i = µtt
ii · F i +

∑
j,j6=i

µtt
ij · F j + µtr

ii · T i +
∑
j,j6=i

µtr
ij · T j (7.3)

and

ωi = µrt
ii · F i +

∑
j,j6=i

µrt
ij · F j + µrr

ii · T i +
∑
j,j6=i

µrr
ij · T j. (7.4)

Note that the mobility tensor consists of translational (superscript tt), rotational (rr),
and combined components (tr and rt). It is possible to write these equations more con-
cisely via introduction of a velocity, v = [V 1, . . . ,V N,ω1, . . . ,ωN], and a force vector
f = [F 1, . . . ,F N,T 1, . . . ,T N]. This yields [155]:

v = M · f . (7.5)

In this equation, the generalised mobility matrix, M , is introduced that consists of
sets of 3×3 Cartesian mobility tensors. It is defined as [155]:

M =

[
µtt µtr

µrt µrr

]
=



µtt
11 · · · µtt

1N µtr
11 · · · µtr

1N
... . . . ...

... . . . ...
µtt

N1 · · · µtt
NN µtr

N1 · · · µtr
NN

µrt
11 · · · µrt

1N µrr
11 · · · µrr

1N
... . . . ...

... . . . ...
µrt

N1 · · · µrt
NN µrr

N1 · · · µrr
NN


(7.6)

This matrix is square, symmetrical and positive definite∗ [154, 155], thus M = MT .
Moreover, the generalised Einstein relation holds, in which, D, is the diffusivity matrix:

D = kbTM . (7.7)

Analogous to eq.2.41, the diffusivity matrix is a 3-dimensional position dependent
tensor. The elements of the generalised mobility matrix (eq.7.6) can be solved using
the Rotne-Prager approximation†. The latter yields a solution for the different mobility
tensors that is accurate up to (a/rij)

3 and the components of this matrix are given as
[155]‡:

∗A positive definite matrix requires that the following inequalities hold: µtt > 0, µrr > 0 and detM =

µttµrr − (µrt)
2
> 0 [154].

†This approximation includes the Rotne-Prager tensor given by eq.4.10.
‡An alternative method for calculating the elements can be found in [210, 211].
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µtt
ij =

Îµt
0

3
4
µt
0

a
rij

(
Î+ r̂ijr̂ij

)
+ 1

2
µt
0

(
a
rij

)3 (
Î− 3r̂ijr̂ij

)
i 6= j

µrr
ij =

Îµr
0

−1
2
µr
0

(
a
rij

)3 (
Î− 3r̂ijr̂ij

)
i 6= j

(7.8)

µtr
ij = µrt

ij =

0

µr
0a

(
a
rij

)2

r̂ij× i 6= j

Adding thermal noise to eq.7.5, yields the following Langevin equation for the sys-
tem [146, 212](compare with eq.2.42):

v =
dX

dt
= M · f + kbT (∇ ·M) + g(t). (7.9)

In this Equation, X , refers to the position of the organelle. As the elements of the mo-
bility matrix, M , are position dependent, thermal fluctuations can result in additional
drift terms. This is compensated for by including the drift term kbT (∇ ·M ) [146, 212].
The mean and variance of the thermal fluctuations acting upon the organelles are given
by [145, 146]:

〈g(t)〉 = 0

〈g(t)g(t′)〉 = 2kbTMδ(t− t
′
).

(7.10)

The thermal forces exhibit a correlated diffusion as the generalised mobility matrix
depends upon the organelle positions in the system. The Ermak and McCammon algo-
rithm [72], (see chapter 4), can be used to generate the correlated thermal fluctuations.
Next, the Langevin equation is integrated from time t to t + ∆t and discretized with
respect to time to yield the following equation that can be solved using computer sim-
ulations [146]:

∆Xt = (M · f)∆t+ kbT (∇ ·M)∆t+ g(∆t). (7.11)

In the above equation g(∆t) has identical statistical properties to g(t) (see eq.7.10)
[146]. The spurious drift term, kbT (∇ · M ), vanishes since at Rotne-Prager level only
two-body interactions are taken into account i.e. (∇ ·M) = 0 [155]. This simplifies the
equation to:

∆Xt = (M · f)∆t+ g(∆t). (7.12)
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This Langevin equation can be used to calculate the trajectories of interacting or-
ganelles taking both translational and rotational hydrodynamic interactions into ac-
count.

The Model

The stochastic Langevin equation (eq.7.12) can subsequently be used to solve the model
shown in Fig.7.1. In this system a hollow or solid bead is suspended in an otherwise
quiescent fluid with a viscosity similar to cytosol (≈1 Pas). The latter is important
to maximise the hydrodynamic coupling between the organelles and between the or-
ganelles and the bead. The organelles and the bead are subject to thermal fluctuations
but other external forces such as gravity can be neglected (see chapter 2). The molecular
motors with cargoes walk along the cytoskeleton in unidirectional direction. On each
organelle acts a net driving force, but it is assumed that the organelles do not rotate i.e.
the external torque on each organelle is zero. Thus, the velocity of any organelle, i, in
the Langevin equation (eq.7.12) depends on the force acting upon it, the hydrodynamic
coupling via the forces acting upon all other organelles, j, plus momentum transfer
from the torque on the bead. The bead has no net external force or torque acting upon
it, its rotation is purely driven by the momentum transferred via the fluid. However, as
mentioned above, when it rotates it will influence the velocities of the organelles.

Using computer simulations the following questions can be answered:

• Is this a plausible mechanism to make the bead rotate?

• What minimum motor density (required energy) is necessary to make the bead
rotate?

• Is there a relation to be found between the organelle size, mass, and the motor
density?

Experiments

The predictions from the computer simulations can subsequently be tested in an exper-
imental set-up. For this purpose a bead of a convenient material for experiments can be
etched with parallel tracks that span all the way around the sphere. Next, these tracks
can be lined with cytoskeletal elements using one of the techniques described in litera-
ture for microfluidic devices [213–216]. The motor-cargo complexes can be added to the
system in the form of bead assays i.e. as micrometer scale beads coated with molecu-
lar motors [3]. Previous chapters showed that the hydrodynamic coupling is strongest
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Figure 7.1: A bead is suspended in a quiescent fluid and is covered with parallel cytoskeletal tracks that
span the whole bead. Molecular motors with cargoes walk in unidirectional fashion along the filaments.
Does the combined momentum transfer from the active transport make the sphere rotate?

in viscous fluids such as cytosol. One possible fluid with a viscosity of 1 Pas∗ is Xan-
than [45]. It has been shown that using this water-soluble bacterial exopolysaccharide
increases the cargo velocity in gliding assays [45]. The experiments could confirm the
validity of the hypothesis and give a possible explanation for cytoplast rotation.

Applications For Microfluidic Devices

Recently, many papers have been dedicated to research of microfluidic devices (see
reviews [213–216]), which are nanoscale systems that are inspired by cell biology. In
these synthetic structures molecular motors are used as a power source to create a me-
chanical force for either autonomous transport of cargoes and/or for actuation of other
processes†. Possible applications are sorting, separation, purification and assembly of
materials [216]. In most systems the molecular motors are used in the configuration of
a gliding or bead assay. It is possible to guide the motor-cargo complexes directly using
the surface of the chip by mechanical confinement in designed channels, selective pat-

∗At a concentration of 2 mg/ml, Mw = 1× 106 − 7× 106.
†Similarly, artificial cilia are studied to create pumping and/or mixing in microfluidic devices [217].
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terning of the surface with motors or filaments or by a combination of both [214]. Addi-
tionally it is possible to steer via external stimuli [213,216] such as electrical fields [218],
magnetic fields [219] and flow fields [220]. The latter is important for this thesis as the
flow fields considered were driven by an external force or a gradient. We propose the
via hydrodynamic interactions it is possible to generate a flow field locally by using
hydrodynamic interactions between the cargoes. This novel idea might well give rise to
a whole new range of applications.

The results presented in this thesis could directly be applied to work presented by
Bull et al. [221]. The authors performed simulations of a microfluidic pump. The pump
consisted of an annular channel of which the surface was coated with molecular motors.
The molecular motors where aligned in unidirectional fashion. Through the channel a
single bead was actively transported (gliding assay). The simulations showed that the
microfluidic pump produces a flow in the range of 10−18−10−12 l/s. The fluid used in
the system was water. This result could be improved by increasing the number of beads
in the system although this effect would be larger in a more viscous environment.
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Appendix A

Dynamics Of The Lattice Model

The bio-filament

In the work of Lipowsky et al [129, 130], the bound motors, are driven along the bio-
filament that is defined as an ASEP model (see chapter 3), by imposing a biased diffu-
sion upon them. The velocity, V 0, of a single motor is given by the degree of bias. The
latter is the difference between the rate to step forward α and backward β and is given
by:

V 0 = (α− β) ln̂. (A.1)

In the equation above, l, is the lattice spacing, which is typically the size of a motor-
organelle complex and, n̂, a normal vector. Typically, more than one motor will be
attached to the bio-filament. Thus, similar to traffic on a highway, the motor velocity
will depend on the amount of traffic it encounters. The more traffic on the road, the
slower cars will move or alternatively the more free space, (1− φµ), on the bio-filament,
the faster molecular motors walk. Assuming a homogeneous distribution, the velocity
of a motor, i, can be estimated:

V i = V 0 (1− φµ) . (A.2)

This equation predicts a linear velocity decrease with increasing motor density. Sim-
ilarly, the flux of bound motors, J i, is given by:

J i = V iφµ = V 0 (1− φµ) lφµ. (A.3)

The equation predicts a maximal flux of motors at an occupation fraction of φµ = 0.5,
which yields: J i,max = 0.25V 0. At smaller volume fractions the flux is low due to the
small number of motors in the system. At higher values, more motors are present, but
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their flux is limited by excluded volume interactions. The above equations are well
known results from traffic-jam models [222, 223].

As mentioned in chapter 1 different types of molecular motors exist. Each motor
operates with its particular velocity, processivity and preferred walking direction. The
model allows for modelling the different types by changing the degree of bias and the
detachment probability. In addition, the polarity of the bio-filament can be reversed by
interchanging the values of α and β (for plus or minus-end motors).

Langmuir Kinetics

The flux of motors detaching from the bio-filament and motors attaching to the filament
can be used to estimate the bound motor number density, φµ. This is described by the
following equation:

Particle flux out = Particle flux in

φµ (1− φs) γd = pφs (1− φµ) γa

φµ =
1

1 + γd(1−φs)
pγaφs

. (A.4)

Where, φs, is the number density in solution, γd and γa the rates of respectively
detachment and attachment and, p, the probability that a motor in solution diffuses to-
wards the bio-filament. This probability depends upon the geometry of the system and,
in case of a lattice model, on the lattice connectivity. For example, in the described lat-
tice model the organelles are moving on a simple cubic lattice. Thus, for an organelle
that is located on a lattice node adjacent to a filament, the probability for moving to-
wards the filament (and attach to it) is, p = 1/2s. In the latter equation, s, is the number
of dimensions in the system.
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Appendix B

Spurious Effects On The Lattice

Spurious Effects

The motion of a single molecular motor bound to the cytoskeleton can be described via
a biased diffusion. This is a combination of a driving velocity component derived from
hydrolysing ATP, V 0=(V0, 0, 0), and a diffusive component, gi. The motor velocity, V i,
is given by:

V i = V 0 + gi = µii · F 0 + gi. (B.1)

In this equation, µii = µ0Î, is the motor mobility with magnitude µ0 and Î is an iden-
tity matrix, F 0 = (F0, 0, 0), is the force generated while a molecular motor hydrolyses
ATP and the diffusive component, gi, has the following mean and variance:

〈gi(t)〉 = 0

〈gi(t)gj(t
′
)〉 = 2Dijδ(t− t

′
) = 2kbTµijδ(t− t

′
).

(B.2)

Note that the hydrodynamic interaction contribution of the Langevin equation (see
eq.4.1) is absent from equation B.1 as a motor exerts no hydrodynamic interactions on
itself. In the d-lattice model that is used in chapter 4, the motor positions and displace-
ments are restricted to lattice positions. During one simulation time step the motors are
allowed to make a move of either zero (dwell), ±1 or ±2 lattice nodes in both x and y
directions. To be able to map the Langevin equation on the lattice, the simulation pa-
rameters (see table 4.1 in chapter 4) are tuned to be of order one. A velocity that is too
small would not utilise the full span of the mapping algorithm and a too large velocity
would only trigger steps of maximum value. Moreover, the thermal energy has to be
large enough to be able to reach the full displacement range of ±2 lattice nodes. In order
to map equation B.1 on the lattice, the algorithm in Fig.B.1 is used (see chapter 4∗).

∗In the section: ’Allowing For Larger Displacements’.
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Dwell +1 +2-1-2

-0.25 0.25 1.5-1.5

STEP SIZE

VELOCITY

Figure B.1: Mapping of calculated motor displacements on the lattice. Small displacements, −0.25l <
∆x < 0.25l will cause the motor to dwell in its current position. Intermediate displacements, 0.25l ≤
|∆x| ≤ 1.5l, will be mapped on the adjacent lattice node. Large steps, |∆x| ≥ 1.5l will be mapped on the
second neighbour node.

However, an unwanted side effect of mapping the shifted Gaussian distribution
(eq.B.1∗) on a lattice, is the appearance of spurious dynamics. This results in veloci-
ties that deviate from the expected (mean) value. Including the spurious effects, ε, into
eq.B.1 yields:

V i = V 0 + gi + ε = 〈V 0〉+ gi. (B.3)

In this equation, the effective single motor velocity is given by:

〈V 0〉 = V 0 + ε. (B.4)

The spurious effects can be understood by means of Fig.B.2. In the absence of a net
motor force, i.e. V0=0, the Gaussian velocity distribution is symmetrical around zero
(see Fig.B.2A) and it crosses the threshold values (±0.25 and ±1.5 in Fig.B.1) for stepping
forward or back with equal probability. Thus, for the simulation parameters that were
determined in Table 4.1 in chapter 4, the mapping algorithm yields the expected average
velocity of 〈Vi〉=〈gi(t)〉=0.

However, as molecular motors can derive motion from hydrolysing ATP, the posi-
tion of the average velocity is shifted corresponding to the single motor velocity, V0,
but the mapping algorithm remains the same. For example, in Fig.B.2B, the nominal
motor velocity is V0=0.2. The velocity mapping at this point is no longer symmetrical
around the average velocity, thus random velocity deviations, gi, in either positive or
negative direction have different effects that on average do not cancel each other out. As
in Fig.B.2B V0 is close to the threshold (0.25), a small random displacement towards the

∗The mean value is V0.
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threshold value suffices to cross it, whereas a small displacement in opposite direction
of equal size will not yield a displacement. This results in an over or underestimation
of the measured single motor velocity 〈V0〉. For V0=0.2 this leads to an overestimation of
the velocity. As shown in Fig.B.3A and B, this overestimation decreases with increasing
mobility, µ0, and V0. The mobility is a measure for the variance of the Gaussian veloc-
ity distribution. Therefore, the larger the mobility∗, the broader the distribution (see
eq.B.2). This improves the mapping on the lattice, as it effectively decreases the effect
of the shift of the distribution’s mean and increases the probability for crossing the es-
tablished thresholds in both positive and negative direction. The effect of increasing V0,
is shown in Fig.B.2C. The figure shows that choosing the motor velocity further away
from the threshold at 0.25 decreases the spurious effects and approximately yields the
single motor velocity. This is confirmed in Fig.B.3B, where the normalised single motor
velocity is shown for different V0. However, when V0 approaches the next threshold at
1.5, the spurious lattice effect causes an underestimation of the velocity.

Fig.B.3C shows that the results from Fig.B.3A-B, are recovered when multiple mo-
tors are present in the system. Similar to the single motor data, the spurious effects
increase with V0 and µ0. In addition, the spurious dynamics increase with the motor
concentration until they reach a maximum at φµ=50%. The filament is modelled as an
ASEP†, where excluded volume is taken into account, and the motors predominantly
walk in a forward direction. It is therefore more likely for a motor to collide with an-
other motor when moving backward, against the direction of flow, than for moving
forward. This means that, even though the mapping for multiple motors is calculated
in the same way as for a single motor, the excluded volume effects in the system will not
allow for every (trial) move. For increasing concentrations up to φµ=50% this effectively
changes the shape of the velocity distribution as back stepping becomes less likely due
to excluded volume effects. In the forward direction the effect will be less relevant as,
on average, all motors walk in the same direction and the next lattice node is more likely
to be free. However, at filament occupations beyond φµ=50% the average motor-motor
separations become very small‡. Above φµ=50% displacements of ±2 become less prob-
able because of space constraints. The magnitude of the spurious velocity increase is
shown for different occupation fractions in Fig.B.3D. In this figure the spurious velocity
deviation (〈V0〉 minus the theoretical velocity for an ASEP model (eq.A.2)) is normalised
using 〈V0〉. For the simulation settings that were used in chapter 4 to investigate hydro-
dynamic interactions (V0=0.4, µ0=0.3769) the normalised spurious deviation, is found

∗At constant kbT .
†This is a modified ASEP that allows for motor detachment from and attachment to the filament via

Langmuir Kinetics. Moreover, the original model only allows for steps of ±1 lattice nodes per time step
(see chapter 3).

‡Assuming a homogeneous motor distributed along the bio-filament the free space between 2 motors
can be calculated via: x =

(1−φµ)
2φµ

(in lattice spacings l).
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Figure B.2: A) Mapping of the single motor velocity distribution on the lattice in the absence of a net
external force (V0=0). The measured velocity 〈V0〉 corresponds to the nominal velocity. B) A Single
motor moving with a velocity (V0=0.2) close to the threshold value, for a move of +1 lattice node, yields a
measured velocity larger than the theoretical velocity. C) The deviation of the single motor velocity from
the nominal velocity decreases with increasing V0.

to have a maximum value of 0.05 for φµ=50%. This value is small with respect to the
velocity increase via hydrodynamic interactions (compare with Fig.4.5A).
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Figure B.3: A) Measured single motor velocity 〈V0〉 divided by the theoretical motor velocity, V0,
for different µ0. Open triangles - V0=0.2; Open squares - V0=0.4; Open circles - V0=0.6; B) Nor-
malised single motor velocity for different values of the nominal velocity V0; µ0=0.3769 and
F0=n×0.26525 (with n = 1, 2, . . . , 12). Figures A-B: Npart=1 and Tmax=108. C) Normalised
velocity for different degrees of bio-filament occupation. The line represents the theoretical
ASEP velocity (eq.A.2). D) Measured velocity minus ASEP velocity divided by 〈V0〉. Figures
C-D: Squares V0=0.4; Closed squares 〈V0〉=0.43; Open Squares 〈V0〉=0.49; Circles V0=0.6; Closed
circles 〈V0〉=0.63; Open circles 〈V0〉=0.70; Squares, µ0=0.3769; Circles, µ0=0.1923; Npart≈1000,
Tmax=10000.

Discussion

Spurious lattice effects will appear when an symmetrical (around zero) mapping al-
gorithm is used in combination with a shifted Gaussian distribution with finite mean.
For a single motor, the magnitude of this effect can be controlled by ensuring that the
variance of the distribution is large enough to sample the full mapping range. More-
over, choosing the velocity further away from the mapping thresholds minimises the
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spurious effects. In addition, spurious dynamics effectively modify the variance of the
distribution causing a small over or underestimation of the motor velocity. When multi-
ple motors are present in the system, excluded volume effects influence the magnitude
of the spurious effects. This causes larger deviations with increasing filament occupa-
tion fraction with a maximum value at filament φµ=50%. The magnitude of the spurious
dynamics are smaller than the magnitude of the motor velocity increase due to hydro-
dynamic interactions.
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Appendix C

Material and Methods of Chapter 5

Introduction

What follows is the experimental procedure followed by Agnieszka Esseling-Ozdoba
who did her research in the group of prof. dr. A.M.C. Emons at Wageningen Univer-
siteit. See more more details [150, 162]. Copyright 2013 Wiley. Used with permission
from Esseling-Ozdoba et al., Hydrodynamic flow in the cytoplasm of plant cells, Journal
of Microscopy, Blackwell Publishing Ltd, 2008, 231, 274-283 [150].

Plant material

Tobacco Bright Yellow - 2 (BY-2) suspension cells expressing cytoplasmic GFP (stably
transformed with plasmid pBin-35S-smGFP) were used for experiments. Suspension
cultures were grown in standard BY-2 medium containing Murashige and Skoog macro-
and microsalts, 3% sucrose, 100 mg/l myo-inositol, 200 mg/l KH2PO4, 1 mg/l thiamine,
and 0.2 µg/l 2,4-dichlorophenoxyacetic acid [224] and 50 mg/l kanamycin. Suspension
cells were prepared in about 50-µm-thick, gas-permeable micro-chambers lined on one
side with BioFoil (Vivascience, Hanover, Germany) and on the other side with a 24 x
24 mm coverslip [225]. The micro-chamber contained about 20 µl of cell suspensions.
Tradescantia virginiana plants were grown in a growth chamber with a 16-hrs photope-
riod at 25◦C and 8-hrs dark period at 18◦C and 75-80% relative humidity. Stamen hairs
with dividing cells in the apical region were dissected from immature flower buds with
a length of approximately 5 mm.
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Cell treatment with BDM

Tobacco BY-2 suspension cells expressing cytoplasmic GFP were treated with 50 mM
BDM from a freshly made stock of 0.5 M in demi water. The control cells were treated
with demi water in appropriate amount used for drug treatment. After treatment cells
were transferred into micro-chambers and within 30 min. were used for FRAP experi-
ments.

FRAP

FRAP experiments were preformed on a confocal laser scanning microscope (CLSM)
Zeiss LSM 510 Meta coupled to Zeiss Axiovert 200M inverted microscope, equipped
with 63 × 1.4 NA oil immersion objective. Prebleach and postbleach images were ac-
quired using low levels (2-4%) of excitation at 488 nm. Photobleaching was performed
using 10 scans with the 488 nm laser line at 100% transmission in a square region of
2.2 µm×2.2 µm of cytoplasmic strands. The bleached region was always perpendicular
to the long axis of the cytoplasmic strands and covered the entire width of the strand.
Fluorescence intensity values of the bleached region in the cytoplasmic strand were
measured every 0.0491 or 0.0983 s. and followed for 5 or 10 s. Fluorescence intensity
values were normalised to compare the experiments of different treatments. The av-
erage time for 50 % recovery (half time of recovery, t1/2) was determined from fitting
recovery curves.

Microinjection

For microinjection experiments we immobilised T. virginiana stamen hairs in a thin layer
of 1% low temperature gelling agarose (BDH Laboratory Supplies, Poole, UK) in cul-
ture medium (5 mM HEPES, 1 mM MgCl2, and 0.1 mM CaCl2, pH 7.0) and 0.025%
Triton X-100 (BDH Laboratory Supplies, UK), following the procedure described by Vos
et al, 1998 [226] Synthetic lipid (DOPG) vesicles were made of 98% of the anionic non-
fluorescent phospholipid 1,2-Dioleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DOPG,
Avanti Polar Lipids) and for 2% of the fluorescent phosphocholine Bodipy FC12-HPC
(Molecular Probes, excitation maximum at 503 nm, emission maximum at 512 nm).
Phospholipids were mixed together and dried onto a glass surface under a stream of
nitrogen, followed by at least 2 hours under vacuum to remove the last traces of sol-
vent. The dried lipid mixture was hydrated with microinjection buffer (5 mM HEPES,
0.1 mM KCl, pH 7.0) to a concentration of 0.5 mg/ml. The lipids were freeze-thawed
with liquid nitrogen for five cycles to disperse them and pushed through an extruder
with a polycarbonate filter with a 60 nm pore size to yield vesicles with a diameter
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of approximately 80 nm. The vesicle diameter was determined using dynamic light
scattering. Stealth vesicles were made in a similar way, only with addition of 2, 5, 10,
20 and 30% of PEG phospholipids (1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-
N-[Methoxy(Polyethylene glycol)-5000] (Ammonium Salt) (Avanti Polar Lipids)). The
microinjection experiments were conducted according to Vos et al, 1998 [226]. In short,
borosilicate needles with filament were back-filled with vesicle solution and mounted
onto a micro-needle holder and attached into a screw type syringe (Gilmont Instru-
ments, Barrington, Illinois) via water-filled fine polyethylene tubing. The needle holder
was placed into a micro-manipulator (model N0-303, Narashige Scientific Instruments,
Tokyo, Japan) mounted on an Eclipse TE-2000-S inverted microscope (Nikon, Tokyo,
Japan). Images were collected with a 63x, 1.4 NA DIC lens with a Cell Map IC (BioRad,
Hemel Hampstead, UK) confocal laser-scanning microscope.

113



114



Appendix D

The Duty Ratio

The Molecular motors that are studied in this thesis are processive motors i.e. a single
motor can walk along a filamentous tracks without dissociating from it. A simple theo-
retical model called the duty ratio (originally called the duty cycle [75]) was developed
to determine if a motor is processive [3, 76]. The duty ratio, r, (eq.D.1) is the fraction
of time, τon, a single head of a molecular motor spends bound to the cytoskeleton dur-
ing the hydrolysis of a single ATP. The velocity, V , of a motor head equals the working
stroke, δ, divided by the time it spends bound to the cytoskeleton τon. Moreover, as the
stepping cycle is related to the ATPase rate, ATPase, the total cycle time is expected to
be τtot=1/ATPase. Finally, it is possible to couple the duty ratio to the number of mo-
tor heads, Nmin, needed for continuous movement. Combining the above leads to the
following expressions for the duty ratio [3, 76]:

r =
τon

τon + τoff
=
τon
τtot

=
δATPase

V
∼=

1

Nmin

. (D.1)

Assuming that both heads spend an equal amount of time in bound state, the duty
ratio has to be at least 0.5 for processive motors. At lower values there will always be
moments at which none of the heads will be attached, and therefore more than two
heads or even an array of motors would be required. Additionally, it is known that
when a single processive head moves its path distance to the next available binding
site, for kinesin this can be 8 nm (Inchworm) or 16 nm (Hand-over-hand), the centre of
mass of the molecule only moves the distance of a single binding site. The duty ratio
is constrained by the size of the conformational changes the motor makes as well as by
the cytoskeletal path. A typical value for a processive kinesin-I motor is r=0.5 whereas
a muscle myosin motor has a duty ratio of only r=0.01, suggesting that a single motor
head only covers a small fraction of the distance between two binding sites [76]. This
means that skeletal muscle myosin is not a processive motor and thus an array of motors
is needed to work in concert to generate motion.
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Summary

Why this thesis?

All organisms (plants, animals, fungi and bacteria) are built up from cells. These are
the smallest building blocks of an organism that contains its genetic material (DNA).
In eukaryotic cells the DNA is stored in the cell nucleus. Eukaryotic cells are mem-
brane bound structures that are filled with cytoplasm and a cytoskeleton. The latter
consists of microtubules and filaments that determine the internal organisation of the
cell and gives the cell its shape. The cytoplasm consists of cytosol (the liquid compo-
nent) and membrane bound organelles e.g. vesicles, mitochondria, chloroplasts, perox-
isomes, lysosomes, golgi apparatus, cell nucleus, etc.

In this thesis I study the influence of the cytosol on organelle transport in the eukary-
otic cell. In particular, I am interested in the phenomena cytoplasmic and axoplasmic
streaming. In both these phenomena, many organelles are transported in the same di-
rection over relatively long distances. This molecular cargo transport is powered by
molecular motors. These molecular motors are transport proteins that literally walk
along the cytoskeleton while carrying a cargo such as an organelle. When a cargo is
dragged through the cytosol it will experience resistance in the form of an opposing
fluid friction force. The magnitude of this force depends upon the size and shape of the
cargo as well as on the viscosity of the fluid. The latter is a physical material property
that indicates how strongly a fluid resists deformation. In the cytosol the viscosity is a
factor 1000 larger than in water. This means that, in the cell, molecular motors need to
deliver a much larger force to obtain the same velocity as in water. However, the motor-
cargo velocities measured in vivo (in a living cell) are similar to, or even larger than, the
single motor velocities from in vitro (laboratory environment) experiments in water. The
goal of this thesis is to explain the underlying mechanism that makes this possible and
to provide a possible explanation for cytoplasmic and axoplasmic streaming.

Molecular Motors

In chapter 1, the molecular motors are introduced. These are proteins that, by hydrol-
ysis of ATP, are capable of converting chemical energy into mechanical work. I am
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interested in linear motors that walk along cytoskeletal tracks while carrying cargoes
such as vesicles or other organelle types. This is called active transport. There are three
different families of motor proteins: kinesin and dynein that are associated with micro-
tubules and myosin that walks on actin filaments. In the chapter results from both in
vitro and in vivo experiments are discussed.

The physics

In chapter 2 the fluid dynamics equations are introduced that can be used to describe
the motion of molecular motors with cargoes (organelles) in a fluid medium. These
equations describe both the transport in solution and along the cytoskeleton. In addi-
tion, the forces that are acting upon the motor-organelle complexes and the transport
properties are discussed. The latter is treated using dimensionless numbers such as the
Reynolds (inertia versus friction forces), Péclet (diffusion versus directed transport) and
Stokes (sensitivity to a flow field) numbers. For small objects, such as molecular mo-
tors and their cargoes, the friction and thermal forces dominate over inertial forces and
over the influence of gravity. This is called a low Reynolds number environment, where
the fluid motion can be described using the Stokes equation. In the course of (active)
directed organelle transport along the cytoskeleton, there will be collisions between the
organelles and the surrounding fluid molecules. During these collisions momentum is
transferred from the organelle to the fluid molecules. The fluid molecules in turn will
collide with their neighbours, transfer momentum, etc., etc. This momentum transfer
does not continue indefinitely as at each collision a small part of the energy is dissi-
pated. I assume that cytosol is a Newtonian fluid, in this type of fluid the magnitude
of the momentum transfer decreases linearly with the inverse of the distance. The mo-
tion of other organelles, either suspended or bound to the cytoskeleton, will be influ-
enced by the momentum transport via the fluid and vice versa. When many organelles
are simultaneously transported in the same direction by molecular motors along the
cytoskeleton, then the momentum transfer to the fluid molecules will give rise to a di-
rected fluid flow. This fluid flow will give the bound motors a ’push in the back’ making
them walk faster along the cytoskeleton. In addition, the suspended organelles will go
with the flow resulting in directed motion. In this thesis I investigate if this flow field,
driven by momentum transfer, can explain biological phenomena such as cytoplasmic
streaming in plants and axoplasmic streaming in neurons. Mathematically, the flow
field can be modelled using a hydrodynamic interaction tensor (e.g. using the Oseen
or the Rotne-Prager tensor). Finally, at the end of the chapter, a Langevin type equation
is introduced. This equation describes the motion of suspended and bound motor-
organelle complexes and the hydrodynamic interactions between them. This equation
will be solved using computer simulations in chapters 4 and 6.
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Models For Molecular Motor Transport

The theoretical models that inspired the simulation models that are introduced in this
thesis are reviewed in chapter 3. From these models is learned that a model for molec-
ular motors should include the following features:

• Directed motion of molecular motors along the cytoskeleton.

• Thermal fluctuations (diffusion) of motors attached to the cytoskeleton or in solu-
tion.

• Adsorption of motors on, and desorption from, the cytoskeleton.

However, all the models that are discussed neglect the effects of momentum transfer
via the fluid. In chapters 4 and 6 two new simulation models are introduced that include
all the above features and additionally include the hydrodynamic interactions via the
fluid. The two models are a lattice model and a Brownian dynamics model.

Results

In chapters 4 and 6 computer simulations are presented of a Newtonian fluid embed-
ded between two parallel sections of cytoskeleton with identical polarisation. In the
system, the molecular motors with cargoes alternate between periods of directed active
transport when bound to the filament and periods of passive diffusion in solution. The
switching between these states is driven by the fact the motors can detach from and
(re)attach to the cytoskeleton, thus taking the motor processivity into account. In the
simulations the motor-cargo complexes are modelled either as hard-spheres (chapter 4)
or as soft repulsive hard-spheres (chapter 6). Hence, it is prevented that two motors can
occupy the same volume at a given moment in time i.e. excluded volume is taken into
account.

The simulations show that the collective effect of the hydrodynamic interactions
leads to a substantial increase in the average velocity of motors attached to a filament.
This effect is enhanced when the number of active motors in the system increases. More-
over, the momentum transfer leads to a non-negligible, directed flow of suspended or-
ganelles. The hydrodynamic coupling is robust enough for suspended objects to flow
across gaps in the cytoskeleton. Naturally, the more ordered the environment in the cell,
the stronger the effect of the hydrodynamic coupling. Such an ordered environment can
be found in cytoplasmic strands that cross the central vacuole in mature plant cells and
in axons.

That hydrodynamic interactions can give rise to a flow of suspended material is con-
firmed in chapter 5 where experiments on the stamen hair cells of the flower Tradescantia
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virginiana and of cells of Nicotiana tabacum are presented. In these cells cytoplasmic
streaming takes place in cytoplasmic strands which are essential transport routes for
the distribution of organelles and metabolites. In the strands active directed organelle
transport takes place powered by molecular motors. When the molecular motor activity
is inhibited then the directed transport changes to a diffusive motion. Using a technique
called Fluorescence Recovery After Photobleaching (FRAP) it can be determined if there is
any fluid flow (and in which direction) present in the cytoplasmic strand. The tech-
nique consists of injecting Green Fluorescent Proteins (GFP) into the cell’s cytosol. Next,
the fluorescent material in a small area is destroyed using a laser. Subsequently, the
fluorescent recovery in the area is followed i.e. the entry of active GFP. The direction
from which the GFP enter the area is an indicator of the direction of fluid flow. If there
is no directed fluid flow, the recovery will occur with equal velocity from all directions.
However, in the cytoplasmic strands the recovery is observed to take place in the same
direction as the active transport. More importantly, suspended organelles are observed
to move in the same direction. Thus, both simulations and experiments suggest that
momentum transfer through the solution, coming from actively transported cargoes, is
the underlying mechanism of cytoplasmic streaming. This is a novel transport mecha-
nism additional to diffusion and active motor transport.

Outlook

The reader is presented with a potential follow-up project in chapter 7. In addition to
the linear hydrodynamic interactions between the organelles via momentum transfer,
there exist rotational hydrodynamic interactions. Following the same physical mech-
anism, these interactions give rise to a rotational fluid flow field surrounding the or-
ganelles. This mechanism could e.g. be used to explain biological phenomena such as
the rotating chloroplasts that have been reported in cytoplasmic drops. Additionally,
the mechanism could make accessible all kinds of novel applications for microscopic
devices that are interesting for both ’proof-of-principle’ experiments and technological
applications.

Finally, the results presented in this thesis could be useful for medical researchers to
better understand the influence of the fluid medium on organelle transport. This may be
important as axonal transport deficiencies are linked to neurodegenerative conditions
such as Alzheimer’s decease.
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Samenvatting

Waarom dit proefschrift?

Alle organismen (planten, dieren, schimmels en bacteriën) zijn opgebouwd uit cellen.
Dit zijn de kleinste bouwblokken van een organisme die het genetisch materiaal (DNA)
bevatten. Bij eukaryote cellen is het DNA opgeslagen in de celkern. Eukaryote cellen
worden omgeven door een celmembraan en zijn gevuld met cytoplasma en een cy-
toskelet dat is opgebouwd uit microtubuli en microfilamenten die de interne organ-
isatie en vorm van de cel bepalen. Het cytoplasma bestaat zelf uit cytosol (het vloeibare
gedeelte) en membraan omgeven organellen zoals vesikels, mitochondria, chloroplas-
ten, peroxisomen, lysosomen, golgi-apparaat, celkern, etc.

In dit proefschrift onderzoek ik het effect dat het cytosol heeft op het transport van
organellen binnen de eukaryote cel. In het bijzonder ben ik geı̈nteresseerd in de fenome-
nen cytoplasmastroming en axonemaal transport. Voor beide worden veel organellen
gericht getransporteerd over relatief grote afstanden. Dit moleculair transport wordt
uitgevoerd door moleculaire motoren, dit zijn transport eiwitten die letterlijk over het
cytoskelet van de cel lopen terwijl zij een vracht in de vorm van een organel meeslepen.
Wanneer de vracht door het vloeistof medium in de cel wordt gesleept zal deze een
weerstand in de vorm van vloeistoffrictie ondervinden. De grootte van de weerstand
hangt af van de vorm en de afmetingen van het object en van de viscositeit van de
vloeistof. De viscositeit is een fysische materiaaleigenschap die aangeeft in welke mate
de vloeistof weerstand biedt tegen vervorming. In het cytosol, is de viscositeit een fac-
tor 1000 groter dan in water. Dit betekent dat moleculaire motoren in de cel een veel
grotere kracht moeten leveren om zich met dezelfde snelheid voor te bewegen als in
water. Echter, de motor snelheden die gemeten worden in vivo (in een levende cel) zijn
vergelijkbaar aan, of zelfs sneller dan, de snelheden gemeten tijdens in vitro (labora-
torium omgeving) experimenten in water. Het doel van dit onderzoek is te verklaren
hoe dit theoretisch mogelijk is en te begrijpen hoe cytoplasmastroming en axonemaal
transport plaatsvindt.
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Moleculaire Motoren

De moleculaire motoren worden geı̈ntroduceerd in hoofdstuk 1. Dit zijn transport ei-
witten die, via de hydrolyse van ATP, chemische energie omzetten in mechanische ar-
beid. Ik ben geı̈nteresseerd in lineaire motoren die over het cytoskelet lopen terwijl zij
een vracht in de vorm van een vesikel (of andere soorten organellen) meedragen. Dit
wordt actief transport genoemd. Er zijn drie verschillende families van transport ei-
witten: kinesine, dyneine en myosine. De eerste twee worden geassocieerd met micro-
tubuli terwijl myosine over actinefilamenten loopt. In het hoofdstuk worden resultaten
van zowel in vitro als in vivo experimenten besproken.

De natuurkunde

In hoofdstuk 2 worden de vergelijkingen van de vloeistof dynamica geı̈ntroduceerd
waarmee de beweging van moleculaire motoren met vracht in een vloeistof kunnen
worden beschreven. Deze vergelijkingen beschrijven zowel het transport van de mo-
toren en organellen in oplossing als het transport over het cytoskelet. Het hoofdstuk
besteedt ook aandacht aan de krachten die worden uitgeoefend op deze organellen
en de eigenschappen van de stroming. Deze zullen besproken worden aan de hand
van dimensieloze kentallen zoals het Reynolds getal (inertie versus frictie), Péclet num-
mer (diffusie versus gericht transport) en Stokes getal (de gevoeligheid voor een stro-
mingsveld). Voor kleine objecten, zoals organellen, domineren de frictie- en thermische
krachten over inertie en de zwaartekracht. Dit is een zogenaamde lage Reynolds getallen
omgeving, waar de beweging van de vloeistof kan worden beschreven door middel van
de Stokes vergelijking. Tijdens het gerichte organel transport over het cytoskelet zullen
er botsingen plaatsvinden tussen het organel en de omringende vloeistofmoleculen.
Gedurende deze botsingen wordt impuls overgedragen naar de vloeistofmoleculen.
Deze vloeistofmoleculen botsen op hun beurt weer met andere moleculen, etc., etc.
De impulsoverdracht gaat niet oneindig door, bij elke botsing gaat een klein deel van
de energie verloren. Wij nemen aan dat cytosol een Newtonse vloeistof is, in dit type
vloeistof neemt de impulsoverdracht in kracht af met de inverse van de afstand. De be-
weging van andere organellen, in suspensie of gebonden aan het cytoskelet, zal worden
beı̈nvloed via deze impulsoverdracht en vice versa. In het geval dat er veel organellen
door moleculaire motoren in dezelfde richting over het cytoskelet worden gesleept, dan
zal dit een gerichte vloeistofstroming tot gevolg hebben. Deze vloeistofstroming zorgt
ervoor dat de gebonden organellen een duwtje in de rug krijgen en sneller gaan lopen
over het cytoskelet. Aanvullend zullen ook de vrije organellen in de vloeistof met de
stroom meegaan. In dit proefschrift onderzoek ik of dit stroomveld, opgewekt door im-
pulsoverdracht, biologische fenomenen als cytoplasmastroming in planten en axone-
maal transport in neuronen kan verklaren. Het stroomveld kan wiskundig worden
opgelost met behulp van een hydrodynamische interactie tensor (bijvoorbeeld met de
Oseen- of de Rotne-Prager tensor). Tenslotte wordt aan het eind van dit hoofdstuk een
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Langevin type vergelijking geı̈ntroduceerd. Deze vergelijking beschrijft zowel de beweg-
ing van gesuspendeerde en gebonden organellen als de hydrodynamische interacties
tussen de organellen. Deze vergelijking zal worden opgelost middels computersimu-
laties in de hoofdstukken 4 en 6.

Transport modellen voor moleculaire motoren.

In hoofdstuk 3 staat een overzicht van de theoretische modellen voor moleculaire mo-
toren waarop de simulatie modellen, die worden gebruikt in de hoofdstukken 4 en
6, zijn gebaseerd. De belangrijkste eigenschappen die met deze modellen worden be-
schreven zijn:

• Gericht transport van moleculaire motoren over het cytoskelet.

• Thermische fluctuaties (diffusie) van de organellen in oplossing en op het cy-
toskelet.

• Adsorptie van motoren aan en desorptie van het cytoskelet.

Al deze modellen verwaarlozen echter het effect dat impulsoverdracht via de vloei-
stof heeft op het transport. In de hoofdstukken 4 en 6 worden twee nieuwe simulatie
modellen geı̈ntroduceerd die al de bovenstaande eigenschappen hebben en aanvullend
ook de hydrodynamische interacties via de vloeistof meenemen. De modellen zijn een
rooster model en een Brownse dynamiek model.

Resultaten

In de hoofdstukken 4 en 6 worden computersimulaties gepresenteerd van een New-
tonse vloeistof die ingesloten is tussen twee parallelle segmenten van het cytoskelet. In
het systeem alterneren de moleculaire motoren met lading tussen periodes van gericht
actief transport over het cytoskelet en diffuus passief transport in de vloeistof. Dit wordt
gedreven door desorptie van gebonden motoren van, en absorptie van motoren aan, het
cytoskelet. De motoren met vracht worden gemodelleerd als harde bollen (hoofdstuk
4) of als harde bollen omringd door een repulsieve schil (hoofdstuk 6). Op deze manier
wordt voorkomen dat twee bollen op hetzelfde moment dezelfde plaats innemen.

De simulaties tonen aan dat het collectieve effect van de hydrodynamische inter-
acties een substantiële toename van de gemiddelde motor snelheid op het cytoskelet
tot gevolg heeft. Dit effect wordt versterkt als het aantal motoren met lading op het
cytoskelet toeneemt. Tevens leidt de impulsoverdracht in de vloeistof tot een niet ver-
waarloosbare gerichte stroom van gesuspendeerde organellen. De hydrodynamische
koppeling is zelfs robuust genoeg om organellen over gaten in het cytoskelet heen te
laten stromen. Uiteraard zal de kracht van dit effect sterker zijn naarmate het systeem
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meer geordend is. Een voorbeeld van een geordend systeem zijn de draden van cyto-
plasma die de centrale vacuole doorkruisen in volwassen planten cellen en in axonen.

Dat hydrodynamische interacties leiden tot een gerichte stroom van gesuspendeerd
materiaal is bevestigd in hoofdstuk 5. Hier worden experimenten gepresenteerd in
cellen van haartjes op de meeldraad van de bloem Tradescantia virginiana en in cellen
van Nicotiana tabacum. In deze cellen vindt cytoplasmastroming plaats in draden ge-
vuld met cytosol die dienen als transport routes voor de distributie van organellen en
metabolieten. In de draden worden organellen gericht getransporteerd via moleculaire
motoren. Als het transport van de moleculaire motoren wordt gestopt, door gebruik
te maken van een inhibitor, wordt dit transport overgenomen door diffusie en stopt
het transport. Middels een techniek genaamd Fluorescence Recovery After Photobleaching
(FRAP) wordt de stromingsrichting van het cytosol in de draad onderzocht. In deze
techniek worden groen fluorescente eiwitten (GFP) in de cel geı̈njecteerd. Vervolgens
wordt een klein gebied met een laser bestraald waarbij het fluorescente materiaal kapot
gaat. De richting waaruit het GFP terugkeert in het bestraalde gebied geeft aan in welke
richting de vloeistof stroomt. Zonder gericht transport (geen stroming) zal dit herstel
met gelijke snelheid uit alle richtingen tegelijk plaatsvinden. Echter, in de draden vindt
het herstel in dezelfde richting plaats als het actieve organel transport via transport
eiwitten. Belangrijker nog, gesuspendeerde organellen bewegen ook in deze richting.
Zowel de computersimulaties als de experimenten suggereren dat impulsoverdracht
van de actief getransporteerde organellen naar de vloeistof het onderliggende mecha-
nisme is achter cytoplasmastroming. Dit is een nieuw transport mechanisme naast dif-
fusie en actief motor transport.

Mogelijke toepassingen

In hoofdstuk 7 wordt een potentieel vervolg project gepresenteerd. Naast de lineaire
hydrodynamische interacties tussen de organellen via impuls overdracht bestaan er
ook rotationele hydrodynamische interacties. Deze interacties, die gebaseerd zijn op
hetzelfde fysische mechanisme, veroorzaken een rotationele stroming rondom de or-
ganellen. Dit mechanisme zou kunnen worden gebruikt om biologische fenomenen te
verklaren zoals bijvoorbeeld de roterende chloroplasten die zijn geobserveerd in drup-
pels cytoplasma. Ook zou dit mechanisme nieuwe applicaties voor microfluidische ap-
paraten apparaten mogelijk kunnen maken. Dit is interessant voor zowel bewijs van
concept experimenten als voor technologische toepassingen.

Tenslotte, kunnen de resultaten die gepresenteerd zijn in dit proefschrift, medische
wetenschappers helpen om beter te begrijpen welke rol het vloeistof medium speelt bij
organel transport in neuronen. Dit kan belangrijk zijn aangezien afwijkingen in axone-
maal transport samengaan met neurodegeneratieve condities zoals Alzheimer.
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