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Abstract: We investigate contributions to the provision of public goods on a 
network when efficient provision requires the formation of a star network. We 
provide a theoretical analysis and study behavior is a controlled laboratory 
experiment. In a 2x2 design, we examine the effects of group size and the 
presence of (social) benefits for incoming links. We find that social benefits are 
highly important. They facilitate convergence to equilibrium networks and 
enhance the stability and efficiency of the outcome. Moreover, in large groups 
social benefits encourage the formation of superstars: star networks in which the 
core contributes more than expected in the stage-game equilibrium. We show that 
this result is predicted by a repeated game equilibrium. 
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1 Introduction 
When individuals acquire and share information, they often do so in groups where they are 

connected in a network structure. Early work by Lazarsfeld et al. (1944) and Katz and 

Lazarsfeld (1955) suggests that individuals’ roles in the network are distributed in a specific 

way, where a limited number of individuals influence the majority. This has been observed in 

applications as diverse as fashion, opinions and voting. Similar findings have been reported 

more recently. On Wikipedia for instance, a small number of ‘Wikipedians’ is responsible for 

the vast majority of articles (Voss, 2005; Ortega et al., 2008). These observations imply that 

information is typically acquired and shared in networks with a core-periphery structure, 

where a small core acquires information and a large periphery free-rides. 

 In this paper, we investigate what drives the formation of such core-periphery 

networks for the acquisition and sharing of information. An example motivating our research 

is the development of open source software (OSS). On OSS projects, there are usually a few 

developers that contribute most of the code while the majority of those involved contribute 

little or nothing at all (Mockus et al., 2005; von Krogh & von Hippel, 2006; Crowston et al., 

2006). The creation of OSS is a public good: everybody can freely access and change the 

software code and its use is non-rival.1 Hence, there are two ways to access software code: 

one can either write it personally or use someone else’s code.  

Galeotti and Goyal (2010) – GG hereafter – show that these patterns may be the result 

of strategic interaction. In their network formation game, agents desire to access some public 

good, for instance OSS code, which they can do either by investing personally (writing code) 

or by making links to others (using someone else’s code). Their main result is that in every 

strict equilibrium of the game, the number of players who invest in the public good is limited. 

These players – ‘the influencers’ – form the core of the network. Other (periphery) players 

link to the core, without contributing themselves. Together, the core and periphery players 

form a core-periphery network. 

The GG model provides a useful theoretical structure for our analysis. In a controlled 

laboratory experiment, we investigate public good provision in a network environment where 

players decide both on their contributions to the public good and on their network 

connections. In particular, we will consider two network characteristics that may affect the 

structure in which individuals choose to acquire and share information. First, we examine 

                                                
1 Depending on the specific open source license, there may be license requirements on open source software. For example, it 
is often required that the updated software is also made freely available (e.g., Fershtman and Gandal 2011). 



 2 

whether core-periphery networks, or more specifically star networks, form more easily when 

players in the core receive (social) benefits from incoming links. Second, we investigate the 

effects of group size on the networks that are formed. In a 2x2 experimental design, we will 

systematically vary benefits from incoming links and group size. We vary both in such a way 

that the (stage-game) equilibrium predictions of the GG model remain unaffected.2 

Nevertheless, we conjecture that both variations matter. First, if a player derives 

(social) benefits from incoming links, her payoff is increasing in the number of players that 

link to her. In contrast, a player’s payoff is independent of the number of incoming links 

without social benefits. In GG’s baseline model there are no social benefits. Many 

applications, though, highlight their role. OSS-developers, for example, may derive positive 

utility from others using their code. Alternatively, social benefits may represent payments by 

a third party (Roberts et al., 2006), e.g., through advertisements. The way that we model 

social benefits allows for either of these interpretations. In the model and in the experiment, 

the presence of social benefits simply implies that more incoming links will lead to a higher 

(monetary) payoff.  

One feature of the original GG model without social benefits is that at least one player 

in the core earns a lower payoff than players in the periphery. This is the case, because in 

equilibrium all players receive the same benefits from the public good, while the costs of 

investing are higher than the costs of linking. As a result, any player prefers to be in the 

periphery of the network. This makes it very difficult to coordinate on a core-periphery 

network. Moreover, it seems counterintuitive that ‘the influencers’ earn a lower payoff than 

the periphery players. Introducing benefits for an incoming link can change this payoff 

asymmetry without changing the equilibrium network structure. With social benefits, the core 

players may earn more in equilibrium than the periphery players.  

Our second variation is in group size. The GG model predicts that the maximum 

number of players who invest and form the core is independent of group size. We conjecture 

that group size may matter, especially when there are benefits to incoming links. This is 

because larger networks have more links and therefore generate more benefits from incoming 

links. For example, the number of peers that use an OSS developer’s code may positively 

influence her status (Lakhani & Wolf, 2005; von Krogh & von Hippel, 2006; Fershtman & 

Gandal, 2011) or future job opportunities (Lerner & Tirole, 2002). Hence, we may see more 

players in the core when groups are larger. We empirically investigate this conjecture by 

                                                
2 In section 5, we show that with repeated interaction social benefits do matter for the equilibrium predictions. 
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varying the group size between four and eight. Our 2x2 design allows us to study the 

interaction between social benefits and group size.  

 Our results confirm our conjecture that social benefits matter. When they exist, we 

observe more Nash network architectures, more convergence to stable outcomes and higher 

levels of efficiency. In the final 10 rounds, we observe Nash architectures (i.e., a core-

periphery structure) in around 75% of the observations in with social benefits. Without social 

benefits, groups only form Nash architectures in around 20% of the observations in the final 

10 rounds. Social benefits also lead to more convergence to stable networks. In the two 

treatments with social benefits, 11 out of the 14 groups converge to a stable network while 

without benefits only 3 out of the 13 groups converge to a stable network.  

The effect of group size is slightly different than conjectured. It turns out that not the 

number of players in the core is affected, but their investment in the public good. In groups of 

four and in the presence of social benefits, groups converge mostly to the Nash star network 

while with groups of eight we observe that groups mostly converge to ‘superstars’. In a 

superstar, the core player invests in more units of the public good than in the Nash star. They 

do so in a way that makes superstars more efficient than the Nash star network. The 

formation of superstars is in line with our theoretical result for the finitely repeated game. We 

show that superstars with a fixed core player can only be supported in a (subgame perfect) 

repeated game equilibrium if social benefits are present. 

We argue that these superstars form because of competition for the core position. 

With benefits for an incoming link and groups of eight, it becomes very attractive to be in the 

core of a star. In the first half of the experiment, we observe in most groups that multiple 

participants compete by investing heavily in the public good after which they converge to a 

superstar in the second half of the experiment. 

We conclude that stars need benefits: the introduction of social benefits has a 

substantial impact on the rate of convergence. Our main explanation for this effect is that the 

introduction of social benefits changes the payoff asymmetries between core and periphery 

players in the network. Superstars need more, however. They require a periphery that consists 

of sufficiently many players (and the corresponding social benefits) to make heavy 

investment worthwhile. In all cases, social benefits not only lead to more convergence but 

also to higher efficiency. With social benefits, payoffs are significantly closer to the socially 

efficient outcome than without social benefits. 

The remainder of this paper is structured as follows. We start with a brief discussion 

of previous studies in section 2. We set up the experimental game in section 3. Section 4 
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describes the experimental design and procedures and in section 5 we provide equilibrium 

and efficiency predictions. The results of the experiment are described in section 6 and 

section 7 concludes. 

 

2 Previous Literature 
There is a relatively large theoretical literature on network formation and the provision of 

public goods in networks, either with endogenously formed networks or exogenously given 

networks.3 Most relevant for our study is the work by Galeotti and Goyal (2010), who extend 

the network public goods game of Bramoullé and Kranton (2007) by adding endogenous 

network formation using the protocol designed by Bala and Goyal (2000). As mentioned 

above, we employ the Galeotti and Goyal (2010) framework in our experiment. 

 In this brief overview, we focus on experimental work related to ours. Following the 

boost in network formation theory, the experimental literature on network formation has been 

steadily growing in recent years. Closest to our study is a recent working paper by Rong and 

Houser (2012), who investigate network formation and best-shot public good games. Their 

work differs both in the game that is played on the network and the treatment variables they 

use. Their game is a best-shot public good game with binary investment: players either invest 

or not and in equilibrium the (four) players form a star where only the center invests. In their 

game, the efficient outcome is supported in a Nash equilibrium with a unique network 

architecture. Hence, efficiency enhancing superstars cannot form in their design. They do not 

consider the effects of social benefits and group size. In agreement with the results of our 

treatments without social benefits, they observe Nash networks in only around13 percent of 

the cases in the baseline treatment. In their design, they vary the action space that is available 

to the players and find that a restricted action space yields more equilibrium (star) networks. 

 Within this experimental literature, most relevant here are studies that use the Bala 

and Goyal (2000) model as the network formation protocol, like we do. A typical result is 

that groups rarely converge to equilibrium (star) networks (Falk and Kosfeld, 2012).4 This 

holds when players are homogenous in their value to others. With heterogeneity in values, 

                                                
3 For an overview of the theoretical literature on network formation, see for example Goyal (2007) and Jackson (2008). 
Other theoretical papers that study public good provision on endogenously formed networks include Cho (2010) and 
Cabrales et al. (2011). Galeotti et al. (2010), Boncinelli and Pin (2012) and Bramoullé et al. (2012) study public good 
provision on exogenous networks. 
4 Falk and Kosfeld (2012) do observe equilibrium networks in their treatments with ‘one-way flow’, i.e. where information 
only flows in the direction of the player who maintains the link. We study networks with ’two-way flow’, i.e. information is 
exchanged between both players on either side of a link. With this protocol Falk and Kosfeld find hardly any convergence to 
Nash networks unless they allow for pre-play communication between participants. 
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star networks form more often (Goeree et al. 2009). The (non-)occurrence of Nash equilibria 

has mainly been attributed to inequity aversion (Falk and Kosfeld, 2012; Goeree et al., 2009). 

In environments where the equilibrium payoff differences between core and periphery 

players are large, Nash networks are typically not observed. The role of inequity aversion is 

highlighted in Goeree et al. (2009), who estimate the parameters from the Fehr and Schmidt 

(1999) model and find that subjects experience envy, but no guilt.5  
  Other experimental studies consider public good games with strategic substitutes on a 

fixed network. Rosenkranz and Weitzel (2012) experimentally investigate the public good 

game by Bramoullé and Kranton (2007), which is also the game participants play in our 

endogenous network setting. They vary the (exogenously imposed) network structure 

between treatments. The results show that it is very difficult for subjects to coordinate in this 

game, but that on the star and the complete network they find some confirmation of the 

theory. Charness et al. (2012) test the Galeotti et al. (2010) prediction that when players have 

incomplete information about the network structure, the multiplicity of equilibria is reduced 

compared to the case of complete information. Their laboratory results largely support this 

prediction, as even in the case of incomplete information most groups converge to 

equilibrium play.6  

 We contribute to this literature in various ways. First of all, we highlight the role of 

social benefits and payoff asymmetries in network formation and show that the introduction 

of social benefits increases the rate of convergence and the overall efficiency. Secondly, we 

show that superstars may form in the (finitely) repeated game equilibrium, but that superstars 

with a fixed core player can only be part of a repeated game equilibrium with social benefits. 

Third, we find that superstars are formed with social benefits when group size increases and 

players jockey to be in the core. Fourth, we show that the core-periphery networks predicted 

by the GG model are observed in the presence of social benefits. Finally, we show that stable 

star networks may form when the value of a player is endogenous. This extends the work by 

Goeree et al. (2009) who show that star networks form under exogenous value-heterogeneity 

but not with homogeneous values. 

                                                
5 Berninghaus et al. (2006) also highlight the role of inequity aversion in network formation. In their network formation 
experiment in continuous time, participants often rotate being the core of the star in order to equalize payoffs. Falk and 
Kosfeld (2012) also observe rotating, but only if they allow participants to communicate prior to the experiment. We do not 
observe any behavior consistent with rotating the core position in our data. 
6 There are several other experimental papers that investigate games on an endogenous network  (Ule, 2005, Corbae & 
Duffy, 2008, Knigge & Buskens, 2010, Berninghaus et al., 2011, Wang et al., 2012). However, the games they use differ 
substantially from ours. 
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Our paper also sheds some light on previous field studies. In a natural field 

experiment, Zhang and Zhu (2011) investigate contributions to Chinese Wikipedia. They use 

the repeated blockings of Chinese Wikipedia in mainland China as exogenous variation in 

group size and observe that contributions increase when groups are larger. Restivo and Van 

de Rijt (2012) provide a nice example of how social benefits may be operationalized in the 

field. They show that informal rewards (‘barnstars’) encourage contributors on Wikipedia to 

increase their contributions. Our experiment and the GG model jointly provide a possible 

explanation for both findings. We systematically vary group size and social benefits and 

show that superstars thrive when they receive social benefits in large groups. We find support 

for a mechanism where superstars are driven by repeated game effects; from the outset some 

players contribute a lot to acquire the core position in the star; they continue to perform in an 

exemplary way until a final phase in which their performance deteriorates.  

 

3 Experimental game 
In our experiment, we implement a modified version of GG’s ‘Law of the Few’ model. Our 

main adaptations are that we introduce benefits for an incoming link in some of the 

treatments and that the investment decision is discrete rather than continuous.7 In this section, 

we will describe the version of the game that we use in the experiment. Section 5 describes 

the equilibrium and efficiency predictions. 

Let 𝑁  denote the set of players 1,2,3,… ,𝑛 . Every player 𝑖 ∈ 𝑁  decides 

simultaneously on her links 𝑔! and her investment 𝑥! in some good. Any player 𝑖 decides on 

whether to make a link to any of the other players 𝑗 ≠ 𝑖. If she decides to make a link, we 

write 𝑔!,! = 1 and 𝑔!,! = 0, if not. By convention, we set 𝑔!,! = 0. The linking decisions of 𝑖 

are summarized by 𝑔! = 𝑔!,!,𝑔!,!,… ,𝑔!,!  and the linking decisions of all players jointly 

define the (directed) network architecture 𝑔 = (𝑔!,𝑔!,… ,𝑔!).  

 In contrast to the game by GG, investing is a discrete choice. Hence, every player 

𝑖 ∈ 𝑁 chooses a positive integer for 𝑥!, i.e. 𝑥! ∈ {0,1,… , 𝑥!"#}. A strategy of player 𝑖 is then 

described by her link and investment decisions, for which we write 𝑠! = (𝑔! , 𝑥!), and i’s 

strategy space is denoted by 𝑆!. A strategy profile 𝑠 is the collection of all strategies 𝑠! of all 

𝑖 ∈ 𝑁. The set of all possible strategy profiles is denoted by 𝑆. 

                                                
7 GG also analyze a model allowing for transfers. The main difference with the social benefits in our game is that the size of 
the transfers in GG equal the costs of making a link, while in our case benefits are strictly smaller than the costs of making a 
link. Moreover, there is a difference in interpretation; social benefits may be considered to reflect either extrinsic or intrisic 
motivation, transfers or exogenous income provided by a third party, depending on the application in mind.  
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Players receive benefits from accessing units of the local public good. The public 

good is local insofar that any player 𝑖 accesses her own investment 𝑥! and the investments 𝑥! 

of her neighbors 𝑗 ∈ 𝑁!. A player 𝑗 is a neighbor of 𝑖, if 𝑖 links to 𝑗 or if 𝑗 links to 𝑖, i.e. 

𝑁! = {𝑗|max  {𝑔!,! ,𝑔!,!} = 1}. The total number of units that 𝑖 accesses is then given by 

𝑦! = 𝑥! + 𝑥!!∈!! . The benefits 𝑓 𝑦!  of accessing units are increasing and concave in 𝑦!. 

Note that the investment of 𝑖 and her neighbors are perfect substitutes: 𝑖 values her own 

investment the same as any investments by her neighbors. 

Investing in units of the good comes at a constant marginal cost of 𝑐! per unit. We 

introduce small heterogeneities in the cost of investment, as we will describe in more detail in 

the next section. Making a link comes at a cost 𝑘, which is the same for all players. Linking is 

less costly than investing, i.e. 𝑐! > 𝑘  ∀  𝑖 ∈ 𝑁. Players receive (social) benefits 𝑏 from each 

incoming link. We distinguish between the cases where 𝑏 > 0 and 𝑏 = 0. Moreover, we take 

𝑘 > 𝑏, which ensures that making links has a net cost to society. All in all, this results in the 

following payoff function: 

 

1     𝛱! 𝑠 = 𝑓 𝑦! − 𝑐!𝑥! − 𝑘 𝑔!,!!∈!! + 𝑏 𝑔!,!!∈!! . 

 

If we assume self-regarding preferences, a strategy profile 𝑠∗ is a Nash equilibrium if for 

every player 𝑖 ∈ 𝑁 it holds that 

(2)   𝛱! 𝑠!∗, 𝑠!!∗ ≥ 𝛱! 𝑠! , 𝑠!!∗   ∀  𝑠! ∈ 𝑆!, 

where 𝛱! 𝑠!∗, 𝑠!!∗  is the payoff of player 𝑖 given that she chooses 𝑠!∗ and the other players 

choose 𝑠!!∗ .  

 

4 Experimental design and procedures 
As explained above, we employ a full 2x2 factorial design that varies the group size and the 

presence of benefits for an incoming link. Table 1 summarizes this design: we have groups of 

either 4 or 8 participants, who play the experimental game either with (𝑏 = 12) or without 

(𝑏 = 0) social benefits. 
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TABLE 1: 2X2 DESIGN: TREATMENTS AND NUMBER OF GROUPS IN EACH TREATMENT 

  Social benefits 
  b = 0 b = 12 

Group size 
n = 4 7 8 
n = 8 6 6 

Notes. Rows (columns) distinguish between group size (benefits) treatments. Cell entries denote the numbers of observations 
(groups) for each combination of treatments. 

Previous experimental studies on network formation (Goeree et al., 2009; Falk & Kosfeld, 

2012) have shown that network formation games are rather difficult for experimental 

participants. Subjects need time to understand the game and to coordinate their actions. To 

deal with these issues, we implemented a partners design: i.e. participants are randomly 

assigned a role within a group and play the experimental game for 50 rounds, with fixed 

partners.8 These partners are identified by letters from A to D or A to H, depending on the 

group size. The number of rounds is announced in the experimental instructions (see 

Appendix A). 

As introducing public good investment makes the game even more difficult than 

network games with exogenous values, we introduced two additional measures. First, 

participants are given 10 practice rounds in order to familiarize them with the game. In each 

of these rounds, participants can try as many decisions as they like during one minute. There 

is no interaction in these rounds as the decisions of the other players are exogenously given 

and kept fixed during the practice round.9 Second, we introduce small heterogeneities in the 

costs of investment 𝑐!  between players. These differences are small enough to keep the 

theoretical predictions independent of the player: in equilibrium the cost heterogeneities do 

not determine who will take which position in a network. 

In the network game, all participants simultaneously decide on whom to link to and 

how much to invest. On their decision screen, participants can review all previous decisions 

in a history box, where their own decisions are marked in orange and the decisions of others 

in blue. Once everyone in the session has made a decision, participants are informed of the 

resulting network and their own payoffs. Examples of key screenshots are provided in 

Appendix B. 

                                                
8 This corresponds to how OSS developers interact. On many OSS projects, the key contributors remain active over several 
years (Robles et al., 2005, Crowston et al., 2012) 
9 The practice rounds can be played online at www.creedexperiment.nl/superstars/extras.php. 
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In the experiment, earnings are denoted in ‘points’. In addition to the starting capital of 1000 

points, subjects earn points in every round. Total point earnings are exchanged at the end of 

the experiment at a rate of 1 euro for every 140 points. Table 2 gives the benefits function 

𝑓 𝑦  (in points): the costs of linking 𝑘 and investing 𝑐! are given in Table 3 As specified in 

section 3, the function 𝑓 𝑦  is increasing and concave in 𝑦, and 𝑐! > 𝑘  ∀  𝑖. Note that the cost 

of investing 𝑐! varies by player, where A has the lowest cost of investing and the cost of 

investing increases by the alphabetical order. 

Sessions were run in April 2012 in the CREED-laboratory of the University of Amsterdam 

and lasted about 2 hours.10 In total, 156 subjects participated in the experiment, each in only 

one session. Participants were recruited from the local CREED database, which consists 

mostly of undergraduate students from various fields. Of the participants in our experiments, 

39% are female and 60% were studying at the Faculty of Economics and Business. Cash 

earnings were between 17.10 euro and 49.50 euro, with a mean of 26.59.11 

The experiment was computerized using PHP/MySQL and was conducted in Dutch. 

Upon entering the laboratory, participants were randomly allocated a separate cubicle and 

communication was prohibited throughout the session. Before starting the network 

experiment, we elicited risk preferences using a procedure similar to Gneezy and Potters 
                                                
10 We also ran pilot sessions based on a strangers design where the participants were provided with a social history screen. 
We found that coordination is extremely difficult when participants do not have a fixed role and that with fixed roles, 
stranger rematching, social history screen and social benefits some groups converge to Nash equilibria, but less often than 
with partner matching. 
11 In one session, participants received an additional 10 euro because the session took almost 3 hours. This is not included in 
the numbers above. They were not informed about this additional lump-sum payment until the experiment had finished.  

TABLE 2: BENEFITS FROM ACCESSING THE PUBLIC GOOD 

Units accessed 𝑦!  0 1 2 3 4 5 5+ℓ𝓁 
Benefits 𝑓(𝑦!) 0 50 80 90 94 96 96+ℓ𝓁 
Notes: Benefits from accessing units of the public good in experimental points.  

TABLE 3: COSTS OF PUBLIC GOOD INVESTMENT AND LINK FORMATION 

Role A B C D E F G H 

Cost per unit of the PG 𝑐!  
n = 4 23 25 27 29     
n = 8 22 23 24 25 26 27 28 29 

Link cost 𝑘 20 20 20 20 20 20 20 20 
Notes: Costs per unit of PG investment and costs per link made in experimental points. At the beginning of the 
experiment, participants are assigned an id, which is denoted by a letter A to H. This id remains constant throughout the 
experiment. 
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(1997). Participants were only informed of the outcome of this part at the very end of the 

experiment. After this, participants read the instructions of the network game at their own 

pace, on-screen. While reading the instructions, a printed summary was handed out. To 

ensure that all participants understood the instructions, they were required to answer several 

test questions. The experiment would only continue if everyone had answered all questions 

correctly. The ten practice rounds followed the test questions before the network game 

started.12 

We ended each session with a short questionnaire where we gathered some 

demographic data and asked participants to describe how they had made their decisions in the 

network game. After this, we privately informed participants of the outcome of the risk 

elicitation task and their aggregate earnings in the experiment. Participants were privately 

paid in cash for all rounds of the network game and the risk-elicitation task.  

 

5 Equilibrium and efficiency predictions 
5.1 Stage-game equilibria 

Here, we derive the stage-game equilibrium predictions for the experimental game described 

in section 3 and the parameters presented in section 4. If we assume selfish and rational 

players, the Nash equilibrium networks of the stage game are the same in all experimental 

treatments, i.e. they are core-periphery networks where either one or two players invest and 

form the core while the remaining players link with the core and do not invest themselves.13 

This is also the main result of GG. 

Figure 1 and Figure 2 illustrate the Nash equilibrium networks. In these figures, 

circles represent the players and the numbers inside these circles represent the investment by 

the player concerned. A link is represented by an arrow, which points away from the player 

who initiated it. Hence, we see either a Nash star network (Figure 1), where only the single 

core player invests or a Nash 2-hub network (Figure 2) where both core players invest. In 

either case, the other players form links to the core and do not invest.  

                                                
12 An English translation of the handout summary is provided in Appendix A. A translation of the full instructions and the 
practice questions is available at www.creedexperiment.nl/superstars/extras.php. 
13 The proof follows directly from Proposition 2 in Galeotti and Goyal  (2010). Contrary to what is suggested in their 
Proposition 3, the core player is not uniquely determined in our game even though we have small heterogeneities in the costs 
of investment. This is because we implement discrete rather than continuous investments. 
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FIGURE 1: NASH STAR NETWORKS 

   
Notes: Nash star networks with n=4 and n=8 players. 

Figure 1 shows Nash star networks with 4 and 8 players. In either case, there is exactly one 

player who invests in two units of the public good and makes no links while the other players 

do not invest and make exactly one link to the core-player who invested in the two units. This 

type of star network is referred to in the literature as a periphery-sponsored star.  

FIGURE 2: NASH 2-HUB NETWORKS 

  
Notes: Nash 2-hub networks with n=4 and n=8 players. 

Figure 2 illustrates Nash core-periphery networks with 2 players in the core, again for groups 

of 4 and 8 players. We will refer to these networks as Nash 2-hub networks. In these 

networks, each of the two core players invests in 1 unit and one of the two core players 

makes a link to the other core player, who makes no links. As in the Nash star, the periphery 

players do not invest but they do link to (each of) the core players. 

The intuition for why these are the possible networks in equilibrium is the following. 

The marginal benefits of the public good exceed the costs of investing for up to two units of 

the good. This means that every player wants to access at least two units of the good. Recall 

that the investments of a player and her neighbors are perfect substitutes. As the costs of 

making a link are strictly smaller than the costs of investing, i.e. 𝑘 < 𝑐!   ∀  𝑖 ∈ 𝑁, any player 
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would strictly prefer to access the investment of others rather than investing personally. 

Combined, this implies that the total investment will sum up to two units. Hence, there will 

be either one or two players who invest in equilibrium, as is the case in the Nash star and 2-

hub networks. Note that there are multiple Nash star and Nash 2-hub equilibria, as every 

player can be in the core of the network in equilibrium, despite the heterogeneities in 

investment costs.14 

 As mentioned above, the stage-game equilibria are the same in all four experimental 

treatments. GG show that in equilibrium, the number of players in the core is independent of 

group size. More specifically, they show that the number of core players |𝑁!| is bounded 

from above by |𝑁!| ≤ 𝑦 !
!

, where 𝑦  is the number of units any player will access in 

equilibrium. This result carries over to our game, where 𝑦 = 2, 𝑐! ∈ 22,29   ∀  𝑖 and 𝑘 = 20; 

thus 𝑁! ≤ 2.9. Hence, there will be either one or two players in the core of the equilibrium 

network. 

 Introducing social benefits does not affect the set of stage-game equilibrium 

networks. This is the case because, given the strategies 𝑠!! of all players 𝑗 ≠ 𝑖, for any player 

𝑖 ∈ 𝑁 a strategy 𝑠! yields a (strictly) higher payoff than strategy 𝑠!! if and only if 𝛱! 𝑠! , 𝑠!! −

𝛱! 𝑠!!, 𝑠!!  is (strictly) positive. Hence, player 𝑖 will prefer strategy 𝑠! over 𝑠!! if 

(3)  𝑓 𝑦! − 𝑓 𝑦!! − 𝑐! 𝑥! − 𝑥!! − 𝑘 𝑔!,!!∈!! − 𝑔!!,!!∈!!
! + 𝑏 𝑔!,!!∈!! −

𝑔!,!!∈!!
! ≥ 0. 

 

As the linking decisions of all other players are fixed in the above equation, it must be that 

𝑔!,!!∈!! = 𝑔!,!!∈!!
!  and the final term on the left hand side of (3) cancels. Hence, i’s 

decision is independent of the social benefits level 𝑏 and the set of equilibrium networks must 

be independent of 𝑏. 

 

                                                
14 To be precise: there are 𝑛 different Nash star equilibria and 𝑛(𝑛 − 1) Nash 2-hub equilibria. 
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FIGURE 3: SUPERSTARS 

    
Notes: Examples of superstars. A superstar is a periphery-sponsored star where the core player invests more than in the 
Nash star. For 𝑛 = 4, the superstar where the core player invests in 3 units is an efficient outcome of the game, for 𝑛 = 8 
this is the superstar where the core-player invests in 4 units. 

5.2 Efficient networks: Superstars 

Next, we consider efficient networks in the distinct treatments. We define social welfare 𝑊 

in a network resulting from a strategy profile 𝑠 as the sum of all individual payoffs, i.e. 

𝑊(𝑠) = 𝛱!(𝑠)!∈! . A network 𝑠 is called efficient if  

(4)     𝑊 𝑠 ≥𝑊 𝑠!   ∀  𝑠! ∈ 𝑆.    

 

Based on this definition, the efficient network is a (minimally-sponsored) star in which the 

core player invests in more units than in the Nash star and the periphery players do not 

invest.15 If n = 4 the core player invests in 3 units and if n = 8 she invests in 4 units.16  

 In our analysis, we will also consider superstars. We call a network 𝑠 a superstar if it 

is a periphery-sponsored star where the core invests in more units than in the Nash star. 

Examples of superstars are illustrated in Figure 3. Note that the efficient periphery-sponsored 

stars are superstars.  

 

5.3 Repeated game equilibria 

In the experiment, participants play the stage game 50 times in fixed groups. This constitutes 

a finitely repeated game with a plethora of repeated-game equilibria. In Appendix C, we 

                                                
15 This follows from Proposition 4 in GG. A minimally-sponsored star is a star network where all connections between the 
core player and the periphery players are minimally sponsored, i.e. either the core or the periphery player makes a link but 
not both. Note that the periphery-sponsored star is also a minimally-sponsored star. 
16 Note that in the efficient star networks, the total investment is higher than in the Nash star and that none of the Nash 
networks is efficient. However, the Nash star is the efficient equilibrium as the sum of all benefits and costs of investment is 
the same in the Nash star and in the Nash 2-hub, but the sum of link costs and social benefits ((𝑘 − 𝑏) 𝑔!,!!,!∈!  ) is higher 
(i.e., more negative) in the Nash 2-hub because there are more links in this network than in a star. 
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discuss a set of repeated-game equilibria that are more efficient than the repeated play of 

stage-game equilibria. 

GG only provide an analysis for the stage game. Appendix C shows that superstars 

can be sustained in a (subgame perfect) repeated game equilibrium. For all our treatments, 

superstars can be sustained until round 48 by rotating the core position. However, we know 

from previous studies (Goeree et al., 2009; Falk & Kosfeld, 2012) that coordination is very 

difficult in network formation experiments. Moreover, in many examples of real world 

networks, such as OSS projects, the key contributors typically do not change over time 

(Mockus et al., 2005). If we restrict the set of repeated game equilibria to profiles in which 

the core position is not rotated, we can show that superstars cannot be sustained without 

social benefits. In the presence of social benefits however, a superstar with a fixed core can 

be sustained until the penultimate round. 

The intuition behind this result is the following: in the presence of social benefits, the 

periphery players can induce the core to contribute at the efficient level by the threat that they 

will remove their links if the core invests too little. This threat has no bite without social 

benefits.  

 

6 Results 
In this section, we will present our experimental results. We will provide an overview of the 

networks we observe, and a discussion of the stability and efficiency of these networks. We 

will also report the circumstances under which super stars are observed and we will deal with 

the question of how the emergence of superstars can be explained. Unless stated otherwise, 

all tests reported in this section are Mann-Whitney tests. Throughout, we use two-sided tests 

using average statistics per group as units of observation. 
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FIGURE 4: DEVELOPMENT OF NASH NETWORKS 

 
Notes: Lines show the relative frequencies of stage-game equilibria by treatment and round: i.e. all Nash star and Nash 2-
hub networks. Lines are smoothed by taking the moving average over rounds 𝑡 − 3 to 𝑡 + 3 for every round 𝑡. 

6.1 Do groups converge to Nash equilibria? 

First, we consider the question of whether Nash networks are formed. Figure 4 shows the 

relative frequency of Nash networks over time across treatments. The darker lines refer to the 

treatments with social benefits and the lighter ones to those without. In addition, the solid 

lines refer to treatments with groups of 4 while the broken lines refer to treatments with 

groups of 8. In the treatment with groups of four and social benefits (𝑛 = 4, 𝑏 = 12), we find 

that the relative frequency of Nash networks steadily increases over time. In early rounds we 

observe few Nash networks, but in the final 10 rounds of this treatment we observe Nash 

networks in 70% of the cases. 

 Nash networks occur considerably less often in the other three treatments. In each of 

these, the number of Nash networks starts out low and increases over time, but only to a level 

of around 20%. If we compare the mean number of Nash networks between the social benefit 

treatments – (𝑛 = 4, 𝑏 = 12) versus (𝑛 = 4, 𝑏 = 0) – the difference is significant at the 5% 

level, both across all rounds (𝑝 = 0.03) and for the last 10 rounds (𝑝 = 0.04). Also when we 

compare the treatment with social benefits and larger groups (𝑛 = 8, 𝑏 = 12) to the smaller 

networks with social benefits (𝑛 = 4, 𝑏 = 12), we observe significantly fewer Nash networks 
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across all rounds (𝑝 = 0.04) and marginally significantly fewer in the last 10 rounds 

(𝑝 = 0.08).17 Other pairwise differences between treatments are statistically insignificant. 

 

6.2 Do groups converge to Nash architectures? 

It may be difficult for participants to coordinate exactly on Nash networks. Therefore we will 

first consider Nash architectures, which are all networks where the linking decisions are the 

same as in a Nash network, but the public good investments may differ. That is, we will look 

at the occurrence of periphery-sponsored star and periphery-sponsored 2-hub networks, 

irrespective of investment levels. 

 Figure 5 plots the relative frequency of Nash architectures over time. Again we see 

that in treatment (𝑛 = 4, 𝑏 = 12) the relative frequency steadily increases over rounds, now 

up to 75% in the last 10 rounds. This is no surprise, as all Nash networks are also Nash 

architectures by definition. Interestingly, we now also observe that most groups converge to 

Nash architectures in the (𝑛 = 8, 𝑏 = 12) treatment.18 In the last 10 rounds we observe Nash 

architectures in 72% of the group/round observations in this treatment. For the two treatments 

without social benefits (𝑛 = 4, 𝑏 = 0) and (𝑛 = 8, 𝑏 = 0), we observe Nash architectures in 

only 31% and 25% of the cases, respectively, in the last 10 rounds. 

 We conclude that groups converge considerably more often to Nash architectures 

when there are benefits for an incoming link. These differences are also statistically 

significant. If we compare the treatments with and without social benefits (pooled across 

group sizes), the difference is significant at the 5% level, both across all rounds (𝑝 = 0.01) 

and the final 10 rounds (𝑝 = 0.01). If we compare the treatments with and without social 

benefits for a given group size, the differences are significant for groups of four across all 

rounds (𝑝 = 0.04) and marginally so in the last 10 rounds (𝑝 = 0.06). For groups of eight, 

the differences are marginally significant in the final 10 rounds (𝑝 = 0.09), but not across all 

rounds (𝑝 = 0.22).  

 

 

                                                
17 A Kruskal-Wallis test comparing all four treatments also rejects the hypothesis that the relative frequency of Nash 
networks is the same across treatments: 𝑝 = 0.03 in all rounds and 𝑝 = 0.07 in the last 10 rounds. 
18 The upward trend for the two cases with social benefits is confirmed by statistical testing. Signed Wilcoxon tests reject the 
hypothesis that the frequency of Nash architectures is the same in the first and second halves of the experiment for the 
treatments with social benefits (𝑝 = 0.02 for (𝑛 = 4, 𝑏 = 12) and 𝑝 = 0.03 for (𝑛 = 8, 𝑏 = 12)) but not for the treatments 
without social benefits (𝑝 = 0.67 for (n=4, b=0) and 𝑝 = 0.49 for (n=8, b=0). 
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FIGURE 5: DEVELOPMENT OF NASH ARCHITECTURES 

 

Notes: Lines show the relative frequencies of Nash architectures, i.e. all periphery-sponsored stars and periphery-sponsored 
2-hub networks. In a Nash architecture, the network structure is the same as in the Nash networks, but the investments may 
differ from Nash predictions. Lines are smoothed by taking the moving average over rounds 𝑡 − 3 to 𝑡 + 3 for every round 𝑡. 

 

In treatment (𝑛 = 8, 𝑏 = 12), we observe that most groups play a Nash architecture in the 

final 20 rounds of the experiment. However, unlike treatment 𝑛 = 4, 𝑏 = 12, we do see an 

end-effect: there is a sharp decline in the number of Nash architectures in the last 10 rounds. 

We will look at this end-effect in more detail in section 6.4. Before doing so, we will 

investigate the networks to which groups converge in the different treatments. 
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FIGURE 6: PROPORTION OF GROUPS CONVERGING 

 
Notes: Bars show the proportion of groups converging by treatment and the network to which a group converges. A group 
converges to a network if this network is observed for more than 5 consecutive rounds. The graph does not change if we 
define convergence as observing the same network for either more than 3 or 4 rounds. No group converged to any other 
network and no group converged to more than one type of network. 

6.3 To which networks do groups converge? 

In the preceding subsections we found that with social benefits, groups converge to Nash 

architectures most of the time. The question remains, to which networks they converge. 

Figure 6 shows the proportion of groups that converge to a stable network. A group is said to 

converge if it is observed to play exactly the same network in more than 5 subsequent rounds, 

where every player has the same role in each round.19 In the two treatments with social 

benefits, 11 out of 14 groups converge to a stable network, all of which are periphery-

sponsored stars. Without social benefits, only 3 out of 13 groups converge to a stable 

outcome. Hence, the introduction of social benefits has a crucial effect on the convergence 

towards stable networks. The difference in proportions is highly significant (Fisher’s exact 

test, 𝑝 = 0.01).  

 Aside from the differences in the frequencies of convergence, we observe that groups 

converge to different networks in distinct treatments. In the treatments with social benefits, 

groups always converge to periphery-sponsored stars (if they converge). With groups of four 

this is always the Nash star, while with groups of eight only 1 group converges to the Nash 
                                                
19 Callander and Plott (2005) and Rosenkranz and Weitzel (2012) use a similar notion of convergence in their analysis.   

0
.2

.4
.6

.8
1

Pr
op

or
tio

n

n=4, b=0 n=4, b=12 n=8, b=0 n=8, b=12

Nash star Nash 2−hub
Superstar



 19 

star, while 4 groups converge to a superstar. Hence, larger groups converge to star networks 

that are more efficient than the stage-game Nash equilibria. In the treatments without social 

benefits we observe far less convergence. In (𝑛 = 4, 𝑏 = 0) we find that only 2 out of 7 

groups converge to a stable network and both groups converge to the Nash 2-hub network. In 

(𝑛 = 4, 𝑏 = 0), only a single group (out of 6) converges, this time to the Nash star. 

These results that that stars need benefits: we observe considerably more convergence 

when there are social benefits, both with groups of 4 and groups of 8 players. There is no 

significant effect of group size on the frequency of convergence (Fisher’s exact test, 

𝑝 = 1.00). Group size does affect the level of public good contributions, however, when 

there are social benefits. With larger groups, the core player invests in more units of the good 

and superstars form. These superstars are either efficient, or very close to being efficient. We 

discuss them in more detail in the following subsection. 

 

6.4 Superstars 

In treatment (𝑛 = 8, 𝑏 = 12) most groups converge to a superstar: a periphery sponsored star 

where the core invests in more units than in the Nash star. We rarely observe investment 

above two units in the other treatments.20 The superstars that we observe in treatment 

(𝑛 = 8, 𝑏 = 12) are efficient or very close to being efficient. Here, we will discuss possible 

explanations for why superstars are formed in this treatment but not in the other treatments.  

 In section 5.3 we showed that superstars can be part of a repeated game equilibrium in 

all treatments. Superstars with a fixed core player however, can only be supported with 

positive social benefits. This is what we observe in treatment (𝑛 = 8, 𝑏 = 12): in the 

superstars that are formed, the same player always takes the core position. Thus, the observed 

networks are in line with the theoretical predictions. Note that even though superstars with a 

fixed core are also part of a repeated game equilibrium in treatment (𝑛 = 4, 𝑏 = 12), we do 

not observe stable superstars in this treatment.21 An intuitive explanation for this result is that 

being in the core of the superstar is particularly attractive in large groups. With groups of 

eight, the core player in a superstar earns a higher payoff than a periphery player in the Nash 

star, while in groups of four the opposite holds. This makes it worthwhile for periphery 

                                                
20 More specifically, we observe investment above two units in 1.2% of the observations in the other treatments. 
21 Two groups did form a superstar in treatment (𝑛 = 4, 𝑏 = 12), However, one group only stayed in this superstar for two 
subsequent rounds while the other group only played a superstar in two separate rounds. Of course, we do observe that most 
groups in this treatment play another repeated game equilibrium: the repeated play of the Nash star.  
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players in large groups to ‘challenge’ the core in a Nash star, while such an incentive is 

lacking in small groups.  

Indeed, participants seem to compete for the core position in treatment (𝑛 = 8, 𝑏 =

12).22 Figure 7 shows the number of players who invest in more than two units of the good in 

each of the six groups in treatment (𝑛 = 8, 𝑏 = 12). In all groups we observe some player 

investing in more than two units of the good, and in five out of six groups we observe 

multiple participants doing so. In four of these groups, at some point all competitors but one 

give in and the group converges to a superstar. In one group (group 5), two participants 

continue to compete for the core position until the final round. 

 An alternative explanation would be that subjects are concerned about the payoffs of 

other players; they may for example be inequity averse or altruistic. In the Nash star with 

eight players, the core player earns about twice as much as the periphery players. She can 

decrease this payoff difference by investing in more units: all periphery players will benefit 

while the payoff of the core player drops. To distinguish between this alternative explanation 

and a repeated game explanation behavior in the final rounds can be used. In the four groups 

that converge to a superstar, in the final round three core players decrease their investment in 

the public good to the stage-game Nash level of two, or below. This is illustrated in Figure 7. 

Groups 1, 2, 3 and 6 converged to a superstar. In the final round, the core players of the 

superstars in 1, 3 and 6 decreased their investment to two units or less, which they would not 

have done if they were driven by guilt or altruism. The process of subjects’ jockeying for the 

core position in the early rounds together with the end-round effect support the repeated 

game interpretation of the results.23  

 

 

                                                
22 The benefits function 𝑓(𝑦) is such that it is never a best response for a player to link to multiple players if there is one 
player who invests in two or more units. Hence, the best response for selfish and rational players who do not invest 
themselves is to make one link to the player with the highest investment. 

23 The beneficial effect of social benefits on coordination on a superstar is reminiscent of a result reported in Brandts and 
Cooper (2006) and Brandts et al. (2007). In their weakest-link games, increasing the benefits of coordination leads to 
coordination at higher effort levels. An important difference between their result and ours is that in the weakest link game 
coordination of the efficient outcome is supported as a Nash equilibrium of the stage game, while we observe that superstars 
invest more than what is expected in the stage-game equilibrium. 
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FIGURE 7: NUMBER OF PARTICIPANTS BUYING ABOVE NASH LEVELS IN (𝑛 = 8, 𝑏 = 12) 

 
Notes: Lines show the number of participants who buy more than two units of the good in each of the six groups for every 
round of treatment (𝑛 = 8, 𝑏 = 12).  

6.5 Frequently observed networks and stability 

If a group converges, it is always to a Nash architecture: we observe groups converging to 

Nash stars, Nash 2-hubs and superstars.24 These networks are also the most frequently 

observed networks. Table 4 lists the observed frequency of various networks.  

Across all treatments, the most frequently observed network is the Nash star. We 

observe it especially often in treatment (𝑛 = 4, 𝑏 = 12), where it is formed in 140 of the 400 

cases. As described in above, 6 out of 8 groups in this treatment converged to a Nash star and 

played this network for a substantial number of periods. In treatment (𝑛 = 8, 𝑏 = 12) we 

observe a substantial number of superstars: in 75 out of 300 the group/round observations a 

superstar is formed. Again, in this treatment most groups converged to a superstar.  

 

                                                
24 The cost heterogeneities we introduced are by themselves insufficient to achieve coordination: in the treatments without 
social benefits, we observed convergence in a small number of groups only. If convergence is achieved however (in any 
treatment), it is indeed usually the low-cost role (A) who acquires the core position. In these treatments, 10 out of 11 groups 
that converge to a star A in the core, the other group has D in the core. Over all treatments, in 71% of all stars and in 33% of 
all 2-hub networks A is in the core.  
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Table 4 also lists the stability of the selected networks by treatment. The Nash star is 

observed to be very stable in all treatments where it is formed: in more than 90% of the 

rounds in which it is observed, the Nash star is again formed in the subsequent round. The 

same is true for the Nash 2-hub network. In treatment (𝑛 = 4, 𝑏 = 0), we observe the Nash 2-

hub in 31 rounds and in 77% of the subsequent rounds the Nash 2-hub is observed again. In 

treatment (𝑛 = 8, 𝑏 = 12) we frequently observe superstars. They are also very stable: in 

76% of the rounds that a superstar is formed it is also observed in the subsequent round. Note 

that this is a sizable number: all eight participants are required to make exactly the same 

decision in the subsequent round. All other networks are observed to be far less stable than 

Nash networks and superstars. 

 

TABLE 4: FREQUENCY OF NASH ARCHITECTURES AND THEIR STABILITY 

 𝑛 = 4 𝑛 = 8 

 𝑏 = 0 𝑏 = 12 𝑏 = 0 𝑏 = 12 

Nash star 0 (-)  140 (0.90) 27 (0.96) 37 (0.97) 

Nash 2-hub 31 (0.77) 1 (0.00) 0 (-) 0 (-) 

Superstar 0 (-) 4 (0.00) 0 (-) 75 (0.76) 

Other star 19 (0.00) 38 (0.13) 19 (0.05) 3 (0.00) 

Other 2-hub 5 (0.00) 1 (0.00) 1 (0.00) 0 (-) 

Other networks 295 (0.01)  216 (0.04)  253 (0.00)  185 (0.04) 

Groups 7 8 6 6 

Observations 350 400 300 300 
Notes: Cells denote the frequency of the network architectures denoted in the first column in all rounds. The proportion 
of times that exactly the same network is played in the subsequent round is given between parentheses. The category 
‘other stars’ refers to periphery-sponsored stars only. 
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Finally, Table 5 indicates how long it takes for groups to converge. Aside from one group 

that plays the same network from round 9 to 50, groups usually need a substantial number of 

rounds to converge to a stable network. Most groups need more than 25 rounds to do so. We 

conclude that in our experiments groups need time to reach a stable network, but once 

reached they will not easily abandon it.  

 

6.6 Efficiency analysis 

We now consider treatment differences in observed efficiency. We found that the 

introduction of social benefits yields more convergence towards Nash architectures. Does this 

imply that we observe more efficient outcomes? Figure 8 shows the mean relative efficiency 

per treatment across rounds. We define relative efficiency such that it equals 1 if the efficient 

outcome is reached and 0 if the sum of payoffs equals the sum of payoffs that would be 

achieved if there were no interaction, i.e. if all players invest in two units and make no 

links.25 

 There is a large difference in relative efficiency between treatments with and without 

social benefits. Across all rounds, the mean relative efficiency of the treatments with social 

benefits is 0.67 while this is only 0.27 in the treatments without social benefits. This 

difference is statistically significant, both when we compare groups with- and without social 

benefits for 𝑛 = 4 (𝑝 < 0.01) and for 𝑛 = 8 (𝑝 < 0.01). Hence, the introduction of social 

benefits not only leads to more Nash architectures and higher convergence but also to more 

efficient outcomes.  
                                                
25 Relative efficiency 𝑟!  in round t is defined as 𝑟!(𝑠!) = (𝑊 𝑠! − ( 𝑓 2 − 2𝑐!! ) (𝑊!"# − ( 𝑓 2 − 2𝑐!!   )), where 
𝑊 𝑠!  is the sum of all payoffs in a group in round 𝑡 and 𝑊!"# is the maximally attainable sum of payoffs. The Nash star, 
which is the efficient equilibrium of the stage game, has a relative efficiency of between 0.77 and 0.89, depending on the 
treatment. 

TABLE 5: FIRST ROUND OF CONVERGENCE 

  Frequency table Mean St. Dev Groups 

𝑛 = 4 
𝑏 = 0 32 43 37.50 7.78 7 

𝑏 = 12 9 23 27 38 41 44 30.33 13.26 8 

𝑛 = 8 
𝑏 = 0 25 25.00 - 6 

𝑏 = 12 21 27 30 39 39 31.20 7.82 6 

Notes: Cell entries denote the first round from which the same network was played for more than 5 consecutive rounds, 
i.e. the minimal round t for which the same network is observed in rounds t to t+5. The column “Frequency Table” lists 
this minimal t for each of the groups for which convergence was observed. 
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FIGURE 8: RELATIVE EFFICIENCY 

 
Notes: Lines show mean relative efficiency across rounds by treatment. Relative efficiency in round 𝑡  is defined as 
(𝑤 𝑠! − ( 𝑓 2 − 2𝑐!! ) (𝑤!"# − ( 𝑓 2 − 2𝑐!! )). Lines are smoothed by taking the moving average over rounds 𝑡 − 3 
to 𝑡 + 3 for every round 𝑡. 

In line with the result that superstars occur frequently in treatment (𝑛 = 8, 𝑏 = 12) but not in 

(𝑛 = 4, 𝑏 = 12),  suggests that the relative efficiency is higher in the former treatment. This 

difference is not statistically significant, however; neither over all rounds (𝑝 = 0.20) nor in 

the final 10 rounds (𝑝 = 0.24). 

 

7 Conclusion 
We investigated network formation in an environment where players decide both on the 

network structure and on their contributions to a local public good. For this, we employed the 

model of Galeotti and Goyal (2010) and systematically investigated the effects of group size 

and social benefits. We find that the presence of social benefits is crucial for the results. With 

social benefits, we observe more Nash network architectures, more convergence to stable 

outcomes and higher levels of efficiency. In combination with a large group size, social 

benefits lead to the frequent emergence of superstars who contribute the socially efficient 

level on a Nash network. In stark contrast, groups rarely converge to equilibrium networks, 

and never to any other stable outcome when there are no social benefits to being in the core 

of the network. 
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A first question one may ask is why we observe convergence to stars with social 

benefits and not without. This may be related to the ease of coordination. Without benefits, 

the core player has a lower material payoff than the periphery players. A player finding 

herself in the core can easily change this situation by no longer investing (but this is not a 

best response, of course; she cannot make anyone else take over her position). With benefits, 

the core has higher payoffs than the periphery. Once in that position, a core player has no 

reason to change.  

A related question is why superstars need social benefits? We attribute our results to 

the repeated nature of the game. Theoretically, superstars can form in any of our treatments 

as long as players coordinate on a rotation scheme. Such coordination is extremely difficult to 

accomplish, however. In agreement with previous experimental results and observations 

outside of the laboratory, our subjects do not rotate the core position once a star network has 

been formed. If we limit our attention to subgame perfect equilibria where the same player 

remains in the core of the network, superstars can only form in the presence of social 

benefits. 

In our experimental game the position of the core player in a superstar is only superior 

in terms of payoffs to the periphery position in the Nash star when groups are large and there 

are social benefits. In agreement with this observation, we only observe that subjects start by 

jockeying for the core position in this treatment. Once the dust has settled and subjects have 

implicitly agreed on who will be the core of the superstar, a stable outcome arises in which 

the core player consistently contributes more than the stage-game Nash level and all others 

continue to form links to the core. This convention of playing the game survives until the 

final phase of the experiment, in which the superstars opportunistically decrease their 

contributions. Alternatively, one could consider inequity aversion as a reason for superstars 

to arise in this treatment. We have argued above that this explanation is hard to reconcile with 

the observation that the core players reduce their investments in the final round of the game.  
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Appendix A: Summary of the Instructions 
Below is translation of the summary of the (Dutch) instructions, which was handed out on 

paper to the participants. All treatment dependent text is marked in italics. Full instructions 

for each of the treatments are available on www.creedexperiment.nl/superstars/extras.php. 

 

Summary of the instructions 
You can earn points during the experiment. These points are worth money. How many points 

(and hence how much money) you earn, depends on your own decisions, the decisions of 

others and luck. At the end of the experiment your earned points will be converted to euros 

and the earned amount will be paid to you in private. Your total earnings consist of the points 

you earn in the first part of the experiment (the lottery) and the sum of all points that you earn 

in the second part of the experiment. At the beginning of the second part you will receive a 

starting capital of 1000 points. This will also be added to your earnings. 

 

Every 140 points are equivalent to 1 euro. 

 

The second part of the experiment consists of 50 rounds. At the beginning of the experiment, 

you will randomly placed in a group of 8 participants. The composition of this group will not 

change during the experiment. In this group you will be randomly assigned a role. This role 

will be indicated by a letter: “A”, “B”, “C”, “D”, “E”, “F”, “G” or “H”. The letters “A”, 

“B”, “C”, “D”, “E”, “F”, “G” and “H” will thus refer to the same participant throughout 

the entire experiment. 

 

Every round you can earn points by having ‘access’ to units of a good. The number of points 

that you earn depends on the number of units that you have access to. This is shown in the 

following table: 

 

Units 0 1 2 3 4 5 6 7 8 9 10 10+i 
Benefits 0 50 80 90 94 96 97 98 99 100 101 101+i 
 

These benefits are the same for each role and all participants in this experiment. The table 

shows for instance that you earn 80 points if you have access to 2 units and that you earn 100 

points if you have access to 9 units of the good. 
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There are three ways to access units of the good. 

 

1. You buy units of the good yourself. 

2. You make a ‘link’ to another participant. In this case you have access to the units that 

the other participant has bought and the other participant has access to your 

purchases. How you make a link will be explained in a moment. 

3. Another participant makes a link to you. In this case you have access to the units that 

the other participant has bought and the other participant has access to your 

purchases. 

 

If you make a link to another participant and this other participant also makes a link to you, 

you will only access the entire purchase of the other participant once. 

 

In addition, you can earn points if other participants make a link to you. For each link that 

another participant makes to you, you will receive 12 points. 

 

Buying units and making links is costly. The cost of making a link is the same for all roles 

but the costs of buying units differ by role.  

 

The cost of making a link is 20 points for each role. The cost of making a link are only paid 

by the participant who makes the link. Every round, you can maximally make one link to 

each of the other roles. This means that you can maximally make 7 links. 

 

The costs of buying units differ by role. The costs of buying units of the good are given in the 

table below. Every round, you can maximally buy 5 units of the good. 

 

Role A B C D E F G H 
Cost per unit 22 23 24 25 26 27 28 29 
Cost per link 20 20 20 20 20 20 20 20 
Benefits per link to your role 12 12 12 12 12 12 12 12 
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Appendix B: Screen shots  
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Appendix C: Repeated game equilibria 
In this Appendix we analyze the finitely repeated game. As usual, this game has a plethora of 

repeated game equilibria, including repetition of the stage-game equilibrium in each of the T 

periods. Here, we are interested in equilibria in which players earn higher payoffs than when 

they repeatedly play a stage-game equilibrium. We focus on equilibria in which an efficient 

network is consistently formed. In addition, we restrict our attention to strict subgame perfect 

equilibria. In the GG model, efficient networks are all superstars. We denote the efficient 

investment level by the core player in the superstar by 𝑦. 

One way to support efficient equilibria is by the use of punishment strategies. Like Benoit 

and Krishna (1985) we consider the use of ‘optimal punishments’. The optimal punishment 

strategy yields the worst possible payoff for the punished player 𝑖 that is feasible in a 

subgame perfect equilibrium. The average payoff for the punished player 𝑖 from the optimal 

punishment in K periods of punishment is denoted by 𝑤!(𝐾)/𝐾, where 𝑤! 𝐾  is the total 

payoff of the punished player in these 𝐾 periods. Benoit and Krishna show that this payoff is 

bounded by:  

 

(C.1) 𝑣! ≤ 𝑤! 𝐾 𝐾 ≤ 𝑤! 1 , 
 

where 𝑣!  is 𝑖 ’s minmax payoff and 𝑤!(1)  her worst possible payoff in a stage-game 

equilibrium.  

 

Proposition 1: In any of our experimental games, superstars can be supported as part of a 

subgame perfect equilibrium until period 𝑇 − 2.  

 

Proof. One way to support superstars is by rotating the core position. Suppose that all players 

observe a perfectly correlated signal 𝜃! at the beginning of each period 𝑡. This signal is an 

independent draw from the set {1, …, 𝑛}. Each integer is drawn with equal probability.26 

Consider the strategy profile 𝑠∗, where each player’s strategy 𝑠!∗ adheres to: 

 

                                                
26 Superstars can also be supported until period 𝑇 − 2 if the core position is rotated deterministically, i.e. if there 
is a sequence 1, 2,… , 𝑛 − 1, 𝑛, 1, 2,… !!!

!!! that determines which player will be in the core. This proof is more 
involved however. For expositional reasons, we chose to include the ‘sunspot’ equilibrium as our main point is 
that by rotating, superstars can be part of a repeated game equilibrium in each of our treatments. 
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“In each period, the player to fill the core position is determined by the draw of 𝜃!, i.e. if 

𝜃! = 𝑗, player 𝑗 will be in the core position in period 𝑡. In a period, the core player does not 

form any links, and all other players only form a link to this core player. In the first T-Q 

periods the core player invests the efficient level 𝑦 and in the final Q periods the core player 

invests the stage-game Nash level 𝑦. If some player 𝑖 deviates in round 𝑡, play switches to the 

punishment regime and the deviating player will be punished in rounds 𝑡 + 1 to 𝑇 by the 

optimal punishment strategy.” 

 

The strategy profile 𝑠∗ constitutes a subgame perfect equilibrium if it satisfies the one-stage-

deviation principle. That is, the strategy profile 𝑠∗ is a subgame perfect equilibrium if and 

only if : 

 

(C.2) 𝜋! 𝑠!∗, 𝑠!!∗ > 𝜋! 𝑠!!, 𝑠!!∗   ∀  𝑖 ∈ 𝑁,∀  𝑠!!, 
 

where 𝑠!! indicates a deviant strategy of player 𝑖, which differs from the equilibrium strategy 

𝑠∗ only in period 𝑡 and conforms to 𝑠∗ thereafter (see for instance, Theorem 4.1 in Fudenberg 

and Tirole (1991, p.109) for a proof). 

Let 𝜋!! and 𝜋!! denote the stage-game payoff of being, respectively, in the core or the 

periphery of the efficient superstar. Likewise, we write 𝜋!! and 𝜋!! for the payoff of being, 

respectively, in the core or the periphery of the Nash star.  

In 𝑠∗ , the final 𝑄  periods consist of a sequence of stage-game equilibria, hence, a 

profitable one-stage-deviation can only exist in the first 𝑇 − 𝑄  periods. First consider 

deviations by the core in these periods. The optimal deviation by the core player in a 

superstar is to invest in the Nash level 𝑦 which implies that a Nash star would result. Hence, 

by deviating in period 𝑡 ≤ 𝑇 − 𝑄, the sum of payoffs in periods 𝑡 to 𝑇 of core player 𝑖 will 

be:  

 

(C.3) 𝜋! 𝑠!!, 𝑠!!∗ = 𝜋!! + 𝑇 − 𝑡 !! !!!
!!!

.  
 

The expected payoff from following 𝑠!∗ is 𝜋! = !!!
!
𝜋!! +

!
!
𝜋!!  in each of the first 𝑇 − 𝑄 

periods and 𝜋! = !!!
!
𝜋!! +

!
!
𝜋!! in each of the final 𝑄 periods. In every period 𝑡 ≤ 𝑇 − 𝑄, 

the core player in the superstar will not deviate if: 
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(C.4) 𝜋!! + 𝑇 − 𝑄 − 𝑡 𝜋! + 𝑄𝜋! > 𝜋!! + 𝑇 − 𝑡 !!(!!!)
!!!

. 
 

As 𝜋! > 𝜋! > 𝑤! 1 ≥ !! !!!
!!!

, it suffices to consider only period 𝑡 = 𝑇 − 𝑄. Using this, we 

can rewrite (C.4) to: 

 

(C.5) 𝑄 > !!
!!!!

!

!!!!!(!) !
, 

 

which gives a condition for the minimal length of the ‘Nash phase’ that is needed to avoid 

deviation by the core. As 𝜋! > 𝑤! 1 ≥ !! !!!
!!!

 and 𝜋!! > 𝜋!!, the right hand side of (C.5) is 

always positive.  

If 𝑏 = 0, we have 𝑣! = 𝑤! 1 = 𝜋!!. Using this in (C.5) , we can compute for our 

game that 𝑄 ≥ 1 if 𝑛 = 4, 𝑏 = 0 and 𝑄 ≥ 2 if 𝑛 = 8, 𝑏 = 0.27 Similarly, in our games with 

social benefits, the worst stage-game equilibrium payoff is the periphery position in the Nash 

2-hub. Using this as the average punishment payoff 𝑤!(𝑄) 𝑄 in case of deviation, we find 

that 𝑄 ≥ 1 if 𝑛 = 4, 𝑏 = 12 and 𝑄 ≥ 2 if 𝑛 = 8, 𝑏 = 12. This shows that no core player will 

deviate in the first 𝑇 − 𝑄 periods for the above bounds on 𝑄. 

Now consider deviations by a periphery player 𝑗. Note that within a period, the 

periphery player best responds by linking to the core in the superstar. If a periphery player 

deviates, she will be punished in all 𝑇 − 𝑡  remaining  periods. The expected future payoffs in 

case of deviation are thus 𝑤!(𝑇 − 𝑡). As 𝜋! > 𝜋! > 𝑤! 1 ≥ !! !!!
!!!

, the expected future 

payoff of adhering to the strategy 𝑠!∗ is strictly larger than the future payoffs of deviation. 

Hence, no periphery player will deviate, which shows that the strategy profile 𝑠∗ constitutes a 

subgame perfect equilibrium. Q.E.D. 

 

Given that in practice rotation schemes are hardly implemented, we now focus on equilibria 

where the same network structure is played in all periods. We divide the game in two phases: 

a ‘superstar phase’ where a superstar with a fixed core is played in the first 𝑇 − 𝑄 periods, 

and an ‘end phase’ which consist of the final 𝑄 periods. 

 

                                                
27 More specifically, if 𝑛 = 4, 𝑏 = 0 we have 𝑄 > !

!
 and if 𝑛 = 8, 𝑏 = 0 we have 𝑄 > !"

!
. 



 35 

Proposition 2: If we only allow strategies where (1) on the equilibrium path the linking 

decision of each player does not change and where (2) within each phase the investment 

decision of each player does not change, then superstars can only be supported in the 

presence of social benefits. 

 

Proof. The first condition in Proposition 2 implies that all network structures on the 

equilibrium path should be the same as a superstar’s structure, i.e. all networks should be 

periphery-sponsored stars where a fixed player 𝑖 is in the core in every period. The second 

condition in Proposition 2 implies that the end phase should consist of the repeated play of a 

specific stage-game equilibrium, as both the linking and investment decisions are not allowed 

to change. In combination, the two conditions result in the repeated play of the Nash star in 

the final phase, as this is the only stage- game equilibrium that is a periphery-sponsored 

star.28 Hence, in this type of equilibrium, the efficient superstar is played in periods 1 to 

𝑇 − 𝑄 and the Nash star is played in the final 𝑄 periods. In every period, the same player 𝑖 

fills the core position. Now, consider the following strategy profile 𝑠∗: 

 

“In each period, the core position is filled by the same player 𝑖. This player does not form 

any link, and all other players only form a link to this core player. In the first T-Q periods the 

core player invests the efficient level 𝑦 and in the final Q periods the core player invests the 

stage-game Nash level 𝑦 . If some player j deviates in round 𝑡 , play switches to the 

punishment regime and the deviating player will be punished in rounds 𝑡 + 1 to 𝑇 by the 

optimal punishment strategy.” 

 

First, consider deviations by the core player. As before, the optimal deviation by the core in 

the superstar phase is to lower her investment to 𝑦, which results in a Nash star. Hence, the 

core will not deviate in the first 𝑇 − 𝑄 periods if: 

 

(C.6) 𝑇 − 𝑄 − 𝑡 + 1 𝜋!! + 𝑄𝜋!! > 𝜋!! + (𝑇 − 𝑡)
!! !!!
!!!

, 
 

                                                
28 A less stringent requirement would be to impose no additional restrictions on the networks in the final 𝑄 
rounds, except that the proposed equilibrium should be subgame perfect. In this case, superstars can be 
sustained for some time in the game without social benefits, but only for the first 36 periods in groups of four 
and the first 27 periods in groups of eight. Furthermore, the final 𝑄 periods would again require changes of the 
network and involve networks that are not stage-game equilibria. Our aim here is to describe equilibria that 
avoid such coordination problems. 
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and will have a profitable deviation if the reverse holds. If 𝜋!! <
!! !!!
!!!

, it is sufficient to 

consider only period 𝑡 = 1, while if 𝜋!! >
!! !!!
!!!

 it is sufficient to consider only the final 

period of the superstar phase, i.e. 𝑡 = 𝑇 − 𝑄. 

First consider the game without social benefits. As before, !! !!!
!!!

= 𝜋!!. As 𝜋!! >

𝜋!!, we consider period 𝑡 = 1. Using this in (C.6) reduces the condition to 𝜋!! > 𝜋!! which is 

not true. Thus, the reverse sign holds in (C.6) and a profitable deviation exists for the core 

player. Hence, the strategy profile 𝑠∗ does not constitute a subgame perfect equilibrium in the 

absence of social benefits. 

Now consider the game with social benefits. With social benefits 𝜋!! > 𝑤 1 ≥ !! !!!
!!!

, 

which implies that it is sufficient to consider the last period of the superstar phase.29 Using 

this in eq. (C.6) yields:  

 

(C.7) 𝑄 > !!
!!!!

!

!!
!!!!(!)/!

, 
 

which provides a condition for the minimal length of the Nash phase, as in condition (C.5). 

We can substitute and rewrite (C.7) as: 

 

(C.8) 𝑏 > !
!!!

!!! !!! ! ! !! !
!

+ !! !
!

− 𝑓 𝑦 − 𝑐!𝑦 .  

 

The right hand side of (C.8) is strictly positive, as !!(!)
!

≥ 𝑣! = (𝑓 𝑦 − 𝑐!𝑦) and 𝑦 −

𝑦 𝑐! > (𝑓 𝑦 − 𝑓 𝑦 ). In other words, we need positive social benefits to sustain a superstar 

in this type of equilibrium.  

For our game, we can use !! !
!

≤ 𝑤!(1) and the fact that the lowest stage-game 

equilibrium payoff for the treatments with social benefits is obtained in the periphery of the 

Nash 2-hub. As the payoff in the periphery of the Nash 2-hub is strictly smaller than 𝜋!!, 

condition (C.7) implies that 𝑄 ≥ 1  in all treatments with social benefits.30 In the final 𝑄 

                                                
29 This holds if (𝑛 − 1)𝑏 > 𝑤! 1 + 𝑐!𝑦 − 𝑓 𝑦 , hence when the social benefits or the number of players are 
sufficiently large. For our experimental game, it holds for all roles in all treatments, except for role D in 
treatment 𝑛 = 4, 𝑏 = 12.  
30 Choosing 𝑄 = 𝑇 − 1 in (C.8) shows that we need 𝑏 > 2.09 if 𝑛 = 4 and 𝑏 > 0.66 if 𝑛 = 8 to sustain a 
superstar with the low cost player A as the core. If we set 𝑄 = 1, we obtain 𝑏 > 6.33 if 𝑛 = 4 and 𝑏 > 4.86 if 
𝑛 = 8. 
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periods, the Nash star will be played, which is a stage-game Nash network. Hence, the core 

player has no profitable one-stage-deviation.  

Finally, consider the periphery players in the game with social benefits. Again, within 

a period, the periphery players best respond by linking to the core in the superstar. If a 

periphery player deviates, she will be punished in all 𝑇 − 𝑡  remaining  periods. The average 

future payoffs in case of deviation are thus !! !!!
!!!

. As 𝜋!! > 𝜋!! ≥ 𝑤! 1 ≥ !! !!!
!!!

, the 

future payoffs of adhering to the strategy are strictly larger than the future payoffs of 

deviation. Hence, no periphery player will deviate, which shows that the strategy profile 𝑠∗ 

constitutes a subgame perfect equilibrium in the game with social benefits, and that 

superstars can be sustained until period 𝑇 − 1. Q.E.D. 

	
  

 


