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The triple-dipole (Axilrod-Teller) and the exchange three-atom potentials are compared for a
number of specific arrangements of three argon and xenon atoms. For these configurations, total
potentials are constructed, taking a Lennard-Jones (6-12) potential for each pair. It is found that for
all arrangements the exchange three-atom potential is by far the more important correction to the
two-body interaction. Qualitatively, the changes with respect to the two-body potential are more

pronounced for xenon than for argon.

I. INTRODUCTION

The quantitative interpretation of properties of dense
atomic or molecular systems necessitates accurate
knowledge of interaction potentials over a wide range of
interatomic or intermolecular separations. The theoretical
determination of such potentials is a problem of long
standing which is still being pursued intensively. Excel-
lent recent reviews of this subject can be found in the
literature.! —*

Out of the very vast spectrum of phenomena covered
under the general heading of “interaction potentials” we
select the simplest systems, those composed of rare-gas
atoms, and we focus our attention to the question whether
or not the interactions in such systems can, or cannot, be
adequately described by pair potentials. To formalize
these concepts, we denote by ( Hy ) the expectation value
of the total Hamiltonian H, Iy for a system of N interacting
rare-gas atoms, and by >_ (H{’) the sum of one-atom
expectation values for a system of noninteracting atoms.’
The static interaction potential is then defined as

N .
V(1,2,...,N)=(Hy)— 3 (H{) . a
i=1

Next, we assume validity of a cluster expansion for V'

N
V(1,2,..,N= 3 Vii,)+ 3 Vijk)+--- .

hj=1 ijk=1
i<j i<j<k 2

30

The meaning of the different terms on the right of (2) is
clear from this equation: Suppose Eq. (1) can be solved
exactly. Separate from V that part depending on the
coordinates of two atoms (7,j) only. Their sum yields the
total two-atom interaction Y _ i VG, j), etc. However,
since (1) cannot be solved exactly, the formal development
(2) is in practice ambiguous in that effective pair potentials
can be found which, in dense media, are sufficiently accu-
rate for the interpretation of separate phenomena
(cohesive energies of rare-gas solids, viscosity of
compressed rare gases, heat conductivity, and the like).
An average of such effective potentials for different phe-
nomena can then serve as a first approximation to the
“true” interatomic potential.

The interesting question arises whether there are phe-
nomena in dense atomic or molecular systems which can-
not be described in terms of any acceptable (effective) pair
potential. An example is the observed stability of the
face-centered cubic crystal structure for solid neon, argon,
krypton, and xenon compared to that of the hexagonal
close-packed arrangement: pair-potential calculations
[e.g., of the Lennard-Jones (6-12) or the Mie (n,m) type]
invariably yield an extremely small (order of 0.01 percent)
difference between the cohesive energies of the two struc-
tures, and invariably of the wrong sign. For a more de-
tailed account of this problem, we refer to the literature.®

Axilrod and Teller,” and Axilrod® were the first to ad-
dress this problem in terms of three-atom interactions,
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i.e., a deviation from an additive pair potential. Another
phenomenon necessitating nonadditive potentials concerns
low-temperature deviations of elastic coefficients from the
so-called Cauchy relations in solids, observed for example
with alkali halides. Detailed accounts are found in the
literature.” However, the Axilrod-Teller three-body po-
tential is not the only low-order contribution to the three-
body interactions. It has been shown by one of us and col-
laborators’® that exchange interactions may contribute sig-
nificantly in the short-distance range.

The triple dipole and exchange three-body interactions
are discussed in Secs. II and III, respectively. In Sec. IV
the strength of the (local) exchange potential is compared
to the sum of thé two-body interactions and the Axilrod-
Teller contribution. In Sec. V some conclusions are
drawn regarding the applicability of such potentials to the
numerical simulation of properties of matter.

II. TRIPLE DIPOLE POTENTIAL

The Axilrod-Teller (abbreviated AT) three-body poten-
tial can be straightforwardly derived by applying third-
order Rayleigh-Schrédinger perturbation theory to a trip-
let i,j,k of rare-gas atoms, i.e., neglecting exchange ef-
fects. Let r;, 7y, and rj denote the distances between
the atomic centers and 6;, 6;, and 6y inner angles of the
triangle formed by them. The third-order perturbation
energy, Var, is then

V ar =v(1+3 cosB;cosf;cos0 )/rgr,-irji , (3)

where v=(9/16)Ia?, with I the first ionization potential
of the atom, and « its polarizability. Just as the Van der
Waals second-order induced dipole-dipole (proportional
to r~°) interactions, Eq. (3) is the leading term in a mul-
tipole expansion; ¥Vt is therefore often called the
“triple-dipole  potential.””  The term (1 + 3cos6;
X cos@;cosfy) is positive (repulsive V1) for all three an-
gles <90°, negative (attractive V1) if one angle is > 90°,
reaching a minimum of —2 for three atoms on a straight
line. ’

It is of interest, as Axilrod® has done, to express the dis-

tances 7y, 7y, and rj in terms of the nearest-neighbor
distance, rg, in the rare-gas solids. This gives rise to a
factor (9/ 16)Ic’/r§ in Eq. (3). We divide this quantity by
the depth, €, of the Lennard-Jones (6-12) potential, to ob-

tain the dimensionless quantity Z*=(9/ 16)(1. a’/er).
The following Table I collects, for later use, values of
these parameters for the rare-gas solids Ne, Ar, Kr, and
Xe.

The value of Z* can be taken as a measure of the rela-
tive strength of the AT potential. It is very small for
neon, increases steeply from Ne to Ar and to Kr, and then
flattens off. In principle, the importance of the AT po-
tential lies in providing possibly a key to the stability
problem of rare-gas solids; it was in fact devised for this
purpose. Axilrod® found that, although the AT potential
does favor the fcc structure, the difference with the hcp
configuration is of the order of 0.01 percent, so that con-
clusive evidence is not obtained on this basis. Just as the
Van der Waals r ~° potential represents the long-range tail
of the pair interaction, the AT potential constitutes the
tail of the three-atom interaction. Higher-multipole con-
tributions have also been investigated;w‘12 however, due
to their shorter range, neglecting exchange effects be-
comes a serious shortcoming. Generally, the AT potential
should not be applied for distances smaller than the
nearest-neighbor separation in rare-gas solids. Short-
range three-atom interactions of exchange type will be dis-
cussed in the next section.

Primarily because of its simple analytic form, the AT
potential has found widespread application in the study of
condensed rare-gas (and other) systems (see, for example,
Refs. 2 and 4). A recent application by two of us!>!* con-

“cerns the problem of stability and lifetimes of rare-gas (Ar

and Xe) microclusters in a molecular dynamics simula-
tion. Such rare-gas clusters are usually produced in the
laboratory in expanding supersonic jets. After their for-
mation, the clusters are ionized (photo or electron impact)
and detected by time-of-flight mass spectrometry. An in-
teresting feature in these experimental studies was the
detection of so-called “magic numbers” in the distribution
of their masses: clusters with certain (“magic”’) numbers
of atoms occur much more frequently than their neigh-
bors. The magic-number phenomenon was first observed
by Echt, Sattler, and Recknagel'>!¢ with clusters of xenon
atoms. The concept of magic numbers in connection with
atomic clusters of expected high stability was already for-
mulated by Mackay'” in 1962 on the basis of hard-sphere
packing rules, with an icosahedron (thirteen atoms) as
building - block. The numbers resulting are
13,55,147,309,561, ..., and these numbers (or close to
them) are indeed observed with xenon (and other sub-

TABLE 1. Values for the different parameters determining the relative strength Z* of the Axilrod-

Teller (triple-dipole) potential between three rare-gas atoms. The values for I (first ionization potential),
a (polarizability), € [depth of the Lennard-Jones (6-12) potential], and 7, (nearest-neighbor distance in

the solid) are taken from standard literature.

The dimensionless parameter Z* is equal to

9/16)Ia?/er}.

; Iy a(10~%* cm?) e/k (K) ro (A) I1a3/rd(10~16 erg) Z*(average)
Ne 21.56 0.391/0.377 349 3.20 0.587/0. 526 0.006
Ar 15.76 1.635/1.614 119.8 3.83 6.08/5.85 0.020
Kr 14.00 2.48 171 3.95 14.95 0.037
Xe 12.13 4.03 221 4.34 21.88 0.038
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stances). During the past few years, many papers have
appeared, on rare gas and other clusters, often reporting
exceptional stabilities for certain cluster sizes. A
comprehensive list can be found, e.g., in Refs. 14 and 16.

A principal difficulty in drawing information on atom-
ic clusters from experiments lies in the complication that
the clusters are ionized prior to detection, so that the ex-
perimentally established exceptional stabilities may refer
only to ionized, not to neutral clusters. This issue, at
present much debated, has not yet been resolved; the
standpoint that ionization often leads to (severe) fragmen-
tation of the atomic clusters has been advanced among
others by Haberland and co-workers.'®

Apart from this issue, the question can be asked regard-
ing validity of Mackay’s packing rules for stability of mi-
croclusters under a potential more realistic than that per-
taining to rigid spheres. It was mentioned earlier that cer-
tain of the observed peaks with xenon clusters!>!® can be
“explained” on the basis of Mackay’s rules; others, howev-
er, are not. For argon no magic numbers for small clus-
ters have been observed. The magic numbers found by
Friedman and Beuhler! for larger argon microclusters de-
viate considerably from the Mackay numbers. It is not
easy to see why xenon should comply so much better with
these rules than argon, also if ionization is 1mportant
Molecular-dynamics (MD) simulation of microcluster sta-
bility and lifetimes offers an excellent tool for pursuing
the maglc number phenomenon. In the research quoted
above,!>!* MD computations for argon and xenon in the
compressed gas phase were carried out, and the stability

and lifetimes of the clusters formed were analyzed as a

function of the interaction potential. The potential used
was of the Lennard-Jones (6,12) form, supplemented by
the AT potential (3). The magic number n =13 was not
found with a Lennard-Jones potential alone; it did appear,
however, for xenon clusters upon adding the AT potential.
For argon, n=13 was not found to be magic in either
case. The question whether n =19 is also magic could
not be answered because of limitations in computer time.

The results for n =13 clearly indicate that three-atom

potentials may have a decisive influence on the exception-
al stability of clusters of certain sizes. In the following
section we will discuss the short-range counterpart of the
AT potential as a step towards MD calculations including
.the complete three-atom potential.

Another aspect of microclusters stability, but unrelated
to magic numbers, concerns the most stable structure for
a cluster of a given number of rare-gas atoms. On the
basis of a Lennard-Jones (6-12) or a Morse potential it is
invariably found that (n > 3) small-sized clusters should
possess a compact three-dimensional structure. =26 It
seems realistic to assume that such a result will hold for
any acceptable pair potential. On the other hand it is
tempting to speculate, albeit without a priori theoretical
foundation, what the most stable configuration would be-
come if the factor Z* in front of the “reduced” AT po-
tential could be increased by, say, one order of magnitude.
Static calculations of this type have been carried through
by Hoare et al.,>!~?3 Halicioglu and White,*#?> and by
Oksuz.?® At very large values of Z* a linear cluster con-
figuration is found to be energetically favored, in view of

1595

the form of the AT potential. At about Z* ~0.3, interest-
ing changes happen, e.g., the close-packed icosahedron for
n =13 no longer becomes the structure of lowest potential
energy, eventually giving way to two-dimensional struc-
tures and, finally, to a one-dimensional arrangement of .
the atoms. For details, see Refs. 21—26. A look at the
Z* values of Table I, however, reveals that 2*20.3 is
unrealistic on the basis of the AT potential: The values of
Z* for rare-gas solids are smaller by at least one order of
magnitude. As such, the question of (n =13) structures
more stable than the icosahedron under the influence of
AT-type interactions, can be dismissed as unrealistic.
However, the short-range three-atom potential, of ex-
change type, to which we will now turn, can produce
changes in stability and, at the same time, explains the
higher stability of the face-centered cubic structure for
rare-gas solids.?’

III. THREE-ATOM EXCHANGE INTERACTIONS

A three-atom exchange potential was proposed by one
of us and collaborators,® again in connection with the
rare-gas crystal stability problem. This potential is ob-
tained from model calculations applying perturbation
theory in first and second orders, including exchange. In
the model, the electrons on each one of the three atoms
are replaced by one (“effective”) electron; the spins of the
three electrons are taken parallel, to avoid chemical bond-
ing. The orbitals of these electrons are chosen of 1s-
Gaussian form with a parameter B such as to reproduce
the r —% part of the Lennard-Jones (6,12) pair potential, or
from a fit to the diamagnetic susceptlblhtles of the
atoms.®?® A perturbation procedure is followed in which
the different orders are defined in terms of powers of a
small parameter A as in the usual Schrédinger perturba-
tion theory without exchange.?’ This necessitates a redefi-
nition of the unperturbed Hamiltonian H, and the pertur-
bation H' which for the special case of two- hydrogen
atoms '@ and b are defined as follows:

H0=HQ( 1,2)A12+H0(2,1)A21 >
4)
H,=H'( 1,2)A12+H'(2,1)A21 .

Here electron 1 is associated with nucleus a and 2 with b,
and A;; and A,; are linear operators which project from
the permutation-symmetrized wave functions to the asso-
ciated simple-product functions. In this formalism the
first-(E,) and second-(E,) order perturbation energies are
given by:

E; =y |HY")+C,, (5

E,= -——6_1[(1P(0) ’ H'ZIIJ(O)) _ (¢(0) ' H'IIJ(O) )2] +C,, (6)

where € is the Unsold average energy. - C; and C, are
correction terms which are neglected with respect to the
main terms in the equations. The wave function for a
triplet (abc) of atoms is written as

¥ O(abc)=Ndet[d,(1)d5(2)¢(3)] , (7)

where
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N=[3(1—A2,)]" /%,
é=(B/m'/?) %exp(—B*r?/2)

and the overlap integral
A2y =A% + A2 + A — 2855 A g A -

Let E,, E,, denote the first- and second-order interaction
energies for a given triplet, and E O ED, the sum of pair
interactions in these orders. Then AE,=E;—E © and
AE,=E,—E (20) are the first- and second-order three-atom
interactions, and AE,/E\", AE,/E 9 their values relative
to pair interactions. For isosceles triangles of atoms,
opening angle 0, two pairs at nearest-neighbor distance in
the solids, from neon to xenon, it is found that (details are
given in Ref. 6)

AE,/E® ~AE,/E{ .

These relative three-atom energies are negative (10 to 20
percent) at 0=60° (equilateral triangle), positive (4 to 7
percent) at 6=180° (linear array of atoms) from neon to
xenon. For molecular dynamics calculations, we need to
know the total three-atom exchange energy AE per triplet,
with AE=AE,+AE,. Denoting the total pair interac-
tion for a triplet by EQ=E{” + E{” we have, from the
equality mentioned above,

T T T T

00k Ar
-01f — EXCH

L e 20 x AT 4
02 (a)

ABSOLUTE ENERGY (1072'J) RELATIVE ENERGY

8 -05f LI
e a LI+ EXCH
> —— LI+AT
@ -10 8\feca. = LJ+EXCH+ATH
b c
2 . fab = feq = 34058 tel |
E | 1 1 1 |
80 100 120 140 160
ANGLE o (deg)

FIG. 1. Relative exchange and relative Axilrod-Teller (mul-
tiplied by 20) three-atom interactions [1(a)], absolute three-atom
energies [1(b)], and total potentials [1(c)] for isosceles triangles
with opening angle 0, for argon. The smallest distance between
two atoms is 3.405 A, corresponding to the Lennard-Jones o pa-
rameter.
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, FIG. 2. Same as Fig. 1 with smallest distance equal to 3.85
A, corresponding to the nearest-neighbor distance in solid argon.
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, FIG. 3. Same as in Fig.' 1 with smallest distance equal to 4.5
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AE_AE1+AE2 AEINAEZ
E(O) E(10)+E(20) - E(IO) - E(ZO)

(8)

and thus

AE AE
AE~ E(O; E‘°)ZE(—O%E‘°> . (8)
1 2

For the total pair interaction E©) of a given triplet it is
most accurate to take the sum 3™ of Lennard-Jones
(6,12) potentials for the three pairs of atoms; the relative
three-atom exchange interaction is obtained from the
model calculations. In the rare-gas solids, nonisosceles
triangles as well as those involving atoms from further
shells around a central atom play a minor role for stabili-
ty. On the basis of the above results it is easily established
that the face-centered cubic lattice has the higher stability,
by a few percent of the cohesive energy, compared with
the hexagonal close-packed structure. Details are given in
Ref. 6. In the next section we compare AE, Eq. (8'), the
Axilrod-Teller potential V., Eq. (3), and the total
Lennard-Jones potential > '), for a number of speci-
fic arrangements of three argon and three xenon atoms,
respectively.

000
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-010

o o
- N

ABSOLUTE ENERGY (102" J) RELATIVE ENERGY
=] o
o w

= -15
t\"O I
= b -=- LI+ AT
& 20 o - LI+EXCH+AT]
w
& fp = 3.405R (@)
(o]
2 25 fo = 44058 1
o
bt ] 1 ] ! ]

80 100 120 140 160
ANGLE © (deg)

FIG. 4. Same as in Fig. 1 but for nonisosceles arrangements
of three argon atoms.
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IV. COMPARISON BETWEEN LENNARD-JONES
(6-12) POTENTIALS,
AXILROD-TELLER (AT) AND THREE-ATOM
EXCHANGE POTENTIALS, FOR SPECIFIC
ARRANGEMENTS OF ARGON AND XENON ATOMS

As has already been mentioned, three-body contribu-
tions to the total potential are expected to play an impor-
tant role with respect to the stability and structure of
matter. It is, therefore, important to know how the poten-
tials described in Secs. II and III contribute to the total
energy as a function of the spatial arrangement of the
atoms. It is difficult to make this comparison analytically
because of the complex mathematical form of the ex-
change potential.*® For this reason, a number of different
atomic arrangements will be analyzed numerically.

It is instructive first to compare AE,/E\” (or
AE,/EY) with the Axilrod-Teller potential, relative to
the sum — 3, _ J.%I a¥/ rg of the Van der Waals induced-
dipole interaction for the three pairs. Abbreviating this
sum by 3 VW) we obtain, with (3)

3a(1+3 cosf;cosf;cosby )/r,-;r,%rﬂ

Var/ (VdW) _
AT/ YU/rS+1/r5+1/r)

’

9)
which is negative for angles < 90°, and positive for larger
angles.

01 Xe A
oor — EXCH 1
ok 10 x AT B

- (a) -
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:}? 104
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£ -30 .
e 1 1 1 1 L
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ANGLE © (deg)

FIG. 5. Same as in Fig. 1 for three xenon atoms in which the
smallest distance is 4.1 A, corresponding to the Lennard-Jones o
parameter.
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In the following figures, 1(a), 2(a), and 3(a) for argon,
and 5(a), 6(a), and 7(a) for xenon, we compare the two rel-
ative potentials for a triplet of argon or xenon atoms in
isosceles arrangements in which the opening angle is 0,
the Gaussian B parameters are 0.623 and 0.454 A-L
the nearest-neighbor distances 3.85 and 4.38 A, e/k is
119.8 and 221 K, and o is 3.405 and 4.1 A for argon and
xenon, respectively. ;

From these figures we conclude:

(i) the strength of the relative first- or second-order ex-
change interaction is for argon about twenty times that of
the relative Axilrod-Teller potential [Eq. (9)] for all isos-
celes triangles. This factor is found to be about ten for xe-
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and then flattens off more markedly. 2 sl . (el
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7(b) for xenon, we plot the absolute three-body energies 80 100 120 140 160

corresponding to the Axilrod-Teller and exchange poten- ANGLE 8 (deg)

tials for the same isosceles arrangements. As can be seen FIG. 8. Same as in Fig. 1 but for nonisosceles arrangements

from Figs. 1(b) and 5(b), the Axilrod-Teller potential be-  of three xenon atoms.



comes relatively important for angle less than 100°. We
note that at 60° the exchange potential becomes zero in
Figs. 1(b) and 5(b), because the sum of Lennard-Jones po-
tentials vanishes.

The potential for the isosceles arrangements given
above are presented in Figs. 1(c), 2(c), 3(c) for argon and
5(c), 6(c), and 7(c) for xenon. For distances smaller than
the nearest-neighbor separation in the solid the qualitative
behavior of the total energy as a function of the angle is
not affected by three-body contributions. Quantitatively
the exchange potential contributes significantly more than
the AT-potential. With increasing distances also qualita-

tive changes occur in the angle dependence of the poten-

tial. The change in the pair potential because of the
three-atom exchange interactions is of the magnitude ex-
pected if the factor Z* in the AT potential increases by an
order of magnitude.?*~26

Finally, in Figs. 4(a)—4(c) and 8(a)—8(c) we compare
the relative, the total three-body interactions and the total
potentials for nonisosceles configurations for argon and
xenon, respectively. The same trends as those found for
isosceles arrangements are also observed for these trian-
gles under the assumption that AE,/E O~AE,/EY also
for nonisosceles triangles. Therefore, the relative impor-
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tance of the three-body exchange potential is not restrict-
ed to particular arrangements of the atoms.

V. SUMMARY

By applying first- (and second-) order exchange pertur-
bation theory, supplemented by third-order nonexchange
(Axilrod-Teller) three-atom interactions, we have con-
structed potential-energy functions for three rare-gas
atoms (argon and xenon) for specific spatial configura-
tions. The exchange three-atom interactions affect only
the immediate neighborhood of an atom selected, whereas
the Axilrod-Teller potential is of longer range. The total
interaction for a three-atom configuration, taking a
Lennard-Jones (6-12) potential for each pair, differs con-
siderably from a two-body description if the distance be-
tween closest neighbors is larger than the Lennard-Jones o
parameter. These differences are qualitatively more pro-
nounced for xenon than for argon. It is expected that
these differences will play an important role with respect
to the stability and lifetime of rare-gas clusters. Conse-
quently, these effects should be taken into account in nu-
merical analyses of the properties of condensed matter.
Molecular-dynamics calculations on the above basis are in
progress.
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