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Received 26 July 1983

The longitudinal self-diffusion coefficient for a magnetized plasma with a small plasma parameter
is calculated from kinetic theory in the weak-coupling approximation. Asymptotic expressions for this
coefficient are derived in the limits of weak and of strong magnetic field. For intermediate strength
of the magnetic field numerical results are presented.

1. Introduction

Kinetic equations for a magnetized plasma with a small plasma parameter have
been discussed by several authors'). However, up to now little is known about the
quantitative dependence of transport phenomena on the magnetic field.

In this paper we study self-diffusion through a hot dilute plasma in a uniform
magnetic fieid. The system considered is a one-component Couiomb piasma with
a neutralizing background. We make use of a weak interaction approximation for
the pair correlation function. The assumption that the single-particle distribution
function satisfies a Markovian equation yields the Landau form for the collision
term. For this model we derive the quantitative dependence on the magnetic field
of the coefficient of self-diffusion along the field.

In the course of the calculation we have found that it is advantageous to avoid
the usual unwieldy series involving Bessel functions and to retain an integration
with respect to time. We have obtained asymptotic expansions in w/w,, the ratio
of the Larmor and the plasma frequencies, both for strong and for weak magnetic
fields. For intermediate values of wp/w, the integrations have been performed
numerically.

2. Derivation from kinetic theory of an explicit expression for the longitudinal
self-diffusion coefficient

For a spatially homogeneous plasma in a uniform stationary magnetic field B
the single-particle distribution function f, satisfies the equation
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0 .0
lia + wg(p, A B) 'a]fl(Pls t)

0
= . . jdrz sz[V,,v(|r1 - r2|)]g(r1 — Py P Put), 2.1
1

where g(r) — ry, i, pos 1) = fo(r1, 12, Prs P2 1) — [P, 1) fi(P, t) is the pair cor-
relation function, v(r) the interaction between the particles, w, = eB/mc the
Larmor frequency, and B a unit vector along the magnetic field. Neglecting triple
correlations we have the following equation for the pair correlation function:

0 .
Eg(n — 1, P, Py t) = —iL3(ry, p)g(ry — ro, Py, Py 1)

+17,0(r — ] % Lirs 1).i(Pas 1) + 8 (s — Py Prs Py 1]

0
+ 5‘ : J\d"z dp3[VrlU(|’1 - "3|)]f1(P1, 1)g(ry—ry, po, P, t)
I

+(1e2), (2.2)

where L(r, p) = —i(p/m)-V,—iws(p A B)-0/dp is the Liouville operator for a
single particle in a magnetic field and (1 < 2) stands for the preceding terms with
indices 1 and 2 interchanged.

The Landau-approximation to (2.1) is obtained by retaining only the con-
tribution that is quadratic in the interaction. Hence we require an approximate
solution g; of (2.2) that is correct to first order in v. If we assume that g; vanishes
in the infinite past we have

t

gulr — . pi, pan 1) = j ds{e‘i“g"""’*Lg"z"”]"“)

— 0

0
x [V, o(r —r))- a—plflm, )fi(pr $)+(1 & 2)} . (2.3)

The time evolution which describes the free motion in a uniform stationary
magnetic field is given by ‘

el F(r, p) = Flr(1), p(1)], >

where r(t) and p(¢) are the solutions at time ¢ of the equations of motion with
initial condition (r, p):

1
mwg

x_.'p

t -
r(t)=r +’§LL +—[p, sinwyt +p, A B(1 — cos wyt)] = r — , (2.5a)

p()=pj+p coswgt +p, ANBsinwgt=y_,p. (2.5b)
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The labels | and L indicate components parallel to and perpendicular to the
magnetic field, respectively. Obviously we have

d
q @ P)=vp. (26)

Now the approximate pair correlation function g; is inserted into (2.1) and one
arrives at the kinetic equation?)

0 G,
|:6 +wg(p, A B)+ :lfl(Pl, )= 5111 : J‘d"z dPZ{[Vrludrl - "2|)]

x Jf 451740 vr(6) — ra} s FpA(5) 5 + 11l + 1

+(1e 2)} . Q.7

Since in this paper we will be discussing self-diffusion along the magnetic field
only, we may assume the single-particle distribution function to be gyrotropic, i.e.
cylindrically symmetric around B. Then the second term in the left-hand side of
(2.7) vanishes and the arguments p, ,(s) in the single-particle distribution functions
can be replaced by p,,. Furthermore, we assume the single-particle distribution
function to relax much slower than the pair correlation function. Hence we may
neglect the difference between the values of f; at times ¢ + s and ¢, respectively.
In this way the kinetic equation becomes Markovian. Using the Fourier transform
of the interaction v(k) = | dr e=*""v(r) and changing s to —s we obtain from (2.7)

aﬁ(pl’t)
o op, f J(z )3"(")2

x [k f ds eit'o ¢-rimge ‘)’s] (aa )fl(ph Nfi(ps 1) . (2.8)

This kinetic equation has been put forward earlier*®). The above discussion clearly
shows how the assumptions of gyrotropy and Markovian behaviour enter into the
derivation.

If fi(pi,t)=nf(p), where n is the number density and f(p)=
(B/2nm)** exp( — Bp?/2m), the right-hand side of (2.8) vanishes. In fact, it
becomes then

o

. d dk ,
in’B . jdpzﬂ(Pl)ﬁ(Pz) jm v(k )k J dsd—ds [e e " pu=pim] (2.9)

0
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Now the s-integration yields — 1, so that the k-integrand is anti-symmetric; thus
the expression (2.9) vanishes.
In order to obtain a linearized collision operator we write

Jipr, 1) = nfo(p)I1 + h(py, 1)) - (2.10)

For small deviations from equilibrium the kinetic equation (2.8) may be replaced
by its linear form,

Swesd 2RI 32Ss

6.f1(pl’ t) _
a

with a linearized collision operator 7 that follows directly from (2.8). Since we
want to study self-diffusion we consider all particles but a small number of tagged
ones to be in thermodynamic equilibrium. Correspondingly, the distribution
function for the tagged particles satisfies a linearized kinetic equation, that
contains I, instead of I; explicitly,

—n’{Ih)(py, 1) , @.11)

0 dk
Lh)py, 1) = . Jdpz j any v(k)fo(p) fo(p2)

* [k f ds s mring -vs] ' %h(m, ). 2.12)
1

The longitudinal diffusion coefficient can now be expressed in terms of the
so-called collision brackets corresponding to the linearized collision operator I..
In lowest Chapman-Cowling approximation we have the simple form

1
3" = nﬂz[pH’ p"]s > (2.13)

where [py, pil, = § dp, p1y1,p,|- By performing a partial integration with respect to
p. we obtain the following expression:

1 2 dk 2 ( ik ag - (p—p)im
3n=nﬁ jdpldpzjmv(k) kﬁﬁ,(pl)ﬁ,(pz)!dse" er=pim (2.14)

The momentum integrations can be carried out

[[ap 40 —expl—kferiomp) ~ 10 ~cos opiompo . @19

For v we insert the screened Coulomb potential v(k) =e?/(k*+ k}), where
ky = e./Pn is the inverse Debye-length. Hence it will be convenient to introduce
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the dimensionless variables: x = k/kp and ¢ =w,s in (2.14). With the usual
coupling constant I' = fe’/4na, where a = (3/4nn)'?, one has kp = /3T /a, and
the self-diffusion coefficient is given by

X 1

1 1 2rsewe xt .
= d dzz? | dr e—xue0-22w00) 2.16
D| wa® = Jx(1+x2)’J ZZJ ¢ 216
0 0 0

withz=%-B, b= wg/w, and the abbreviations:

u(b,t)= % (1 —cos bt),
2.17)
v(b,)=1*—u(b,t).
Because the x-integration is divergent for large x a cut-off at X has been imposed.
Since the Landau approximation certainly ceases to be valid for wavevectors
larger than the inverse Landau length r{'=4n/Be’ one may choose
X =rp/ry= 1/\/51“3/2 as an upper bound.
For the cases b—0 and b— o0, corresponding to vanishing and to infinite

magnetic field strength, respectively, the integrals over z and ¢ are easily evaluated.
Namely, for 6 =0,

1 fo el ’
f dzz? f dr e~ = —6‘/;’; (2.18a)
0 0

and for b—o0
1 ©
f dzz? J dr e~ = %. (2.18b)
0 0

As a consequence a simple proportionality relation holds

Db=0,T) 3 @19

3. Asymptotic expressions for the self-diffusion coefficient

For general values of b we write the z-integral in (2.16) as a confluent
hypergeometric function. One has®)

1

jdz e = % \/é erf(/w) = Fi(1/2,3/2, — w), (3.1

0
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and hence, by differentiation with respect to w and a Kummer transformation,

1

sz e =Le=" F(l,5/2, w). (3.2)
[}

The divergent contribution in (2.16) will appear as a separate term, if we use
Fi(1, 572, w) =1+ 2/SHw Fi(1, 72, w) . (3.3)
Combining (2.16) and (3.1)-(3.3) now yields

1 3 1
1Dy =——; rS/Z\/; [5 log(1 + X?) —%+m2—)+ J(b, r)}
P
1 3
ﬁmfs/z\[;[—log(ﬁF3/2)—%+J(b,F)] (r<, (3.4)
p
where
X/b
Jb. = | a2k
b, )= xm (x), (3.5a)
0
and
4 —12x2
K(x)=5 - dr e=™*w F\(1,7/2, w), (3.5b)
0

with the abbreviation w = [t — 2(1 — cos ¢)]x*. The integral in (3.5a) remains
convergent when the upper limit becomes infinitely large. Hence, J(b, I') does not
depend on X provided X /b is sufficiently large.

Let us now study the asymptotic properties of K(x) for either small or large
values of its argument. If x <1 we expand w F(1,7/2,w) about #’x2. Using
d[w* \F(a, c, w)}/dw = az*~' |Fi(a + 1, ¢, w)°) we arrive at

w F\(1,7/2,w)~ t>x* F\(1,7/2, t*x?)
—2x%(1 —cos 1), Fi(2,7/2, ’x?) (x <1). (3.6)

With this expansion we obtain from (3.5b)

4
K(x)~— j A1[xAF(5)2, )2, — 1Px) — 2x4,F\(3/2, 72, —1°%Y)
57
0

+2x%cos t,F(3/2,7/2, —xD)] (x <1). 3.7
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The third term can be omitted, since it is O(x’ exp(— (1/4)x ~%))"). The remaining
terms yield")

K(x) 1—21; (1-3x%) (x<1). (3.8)

For x > 1 we discuss the contribution of [0, n] to K separately. To that end we
write

Kx)= Y K"%x), (3.92)
n=0
where
©0) 4 —2x2

K9%x) = 5—\/; dt e~ w F|(1,7/2,w), (3.9b)
(2n+1)x

K"(x) = Si f dt e ™w F(1,7/2,w) (n=1). (3.9¢)

T

@2n—Dr

Let us now consider K9(x) for x > 1. Owing to the presence of the Gaussian
weight factor we may use an expansion about ¢ =0 in the integrand

wiF T2 w) = Y 2 ) (3.10)
W15 WI=x\13 73607 75\ 1@t : '

By extending the integration in (3.9b) over [0, c0) we get the following asymptotic
expansion

1 1
~ 1+-— . .
40x3< +8x2) (x> D) (3.1
For n > 1 and x > 1 we may use the asymptotic expansion
e—2x2(1 ~cos f) 1
e ™ F(1,7/2,w)~T(7/2) ——y—+ 0(—) . (3.12)
w w

The exponential in (3.12) is, for large x, sharply peaked, so that only values of
t close to 2nn contribute significantly. Hence, the leading contribution is

3 e~
K(x) =5~ 12x?) (3.13a)
3
s (3.13b)

where the third member of (3.13) follows from the asymptotic expansion for the
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modified Bessel function. Finally, combining (3.9), (3.11), (3.13) we have

K(x) 2401x3 [1 + lzics/(fx) +é:| x>0, (3.149)
where {(3) = £2,, 1/n? is the Riemann {-function.

The asymptotic expansions for K(x) will be used to derive asymptotic expres-
sions for J(b, I'} for either small or large values of b. If b <1 we split the
integration interval in (3.5a) into [0, x,] and [x,, X/b]. We choose x, such that
x,> 1 and bx, < 1. Then for x < x, one has x*/(b =2 + x?)? ~ b*x*, while for x > x,

(3.14) is applicable. Hence we arrive at

Xo X/b
1 x 15¢3) 1
J(b, F):'[dxb“ XK (x) + 5 J R [1+2n5/2x +§;—5]. (3.15)
0 xg

The first term is O(b*) and the remaining terms are easily evaluated

3(03)

J(b, r)_—b2 T

b3+ O(b*?) (3.16)

for arbitrarily small § > 0. In this asymptotic expression we omitted contributions
that are O(b/X).

If b > 1 we first consider the case where X /b < 1. Equivalently, we have ry < ry,
with r, the thermal gyroradius w3 '(mpB)~'7, so that we are dealing with a guiding
centre plasma. We insert (3.8) into (3.52) and we get the leading contribution

X/b

1 3
J(b,F)zEJ 5T 2)2(1 3x2)

:%[log(l X)=l+15m ! ]_2[—1og(fr3/2)—2] (3.17)

for b—>oo and I < 1. The self-diffusion coefficient then follows from (3.4).
Comparing it with Dy for 5 -0, which follows by inserting (3.16) into (3.4), one
immediately recovers the proportionality relation (2.19).

If on the other hand » > 1, but not X/b < 1, the asymptotic expansion must
be derived in a more subtle way. We now choose bx; > 1 such that x, < 1; using
(3.8) for x < x, and x*/(b >+ x?)? ~ 1 — 2/b*x” for x > x, we arrive at

*0 X/b

J(b, I‘)_—f (—b—)i—w(l 3x%) + jdx(l _FZ%)F)K(X)' (3.18)

X0
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Consequently,
Jb, I)~ilogh — i+ C + 0%, (3.19)
for arbitrarily small é > 0; here
X/b
C= f dxK(x) + }log x, (3.20)

*0
is independent of x, < 1. If X/b is sufficiently large C is also independent of X /b.
Numerically, we have found C = —0.406.

From (3.4) and (3.19)~(3.20) it is seen that in leading order 1/D) is proportional
to log(X \/B ) = log(rif’/rury?) for rp<ry<rp,. We have found here that the
leading order contribution for the self-diffusion coefficient is not obtained by
simply replacing the Debye length in the Coulomb logarithm by the gyroradius,
as is sometimes suggested'?).

4. Numerical results

For intermediate values of b the double integral J(b, I'), which determines the
dependence of the longitudinal diffusion coefficient on the magnetic field, must be
evaluated numerically. The integrand of J(b,I') contains the function K(x)
defined in (3.5b). If either x <1 or x > 1 we may use for K(x) the asymptotic
expansions (3.8) and (3.14), respectively. For arbitrary values of x the infinite
domain of the z-integration is divided into finite subintervals, as in (3.9). For n
sufficiently large one may use (3.12) to evaluate K®, as in (3.13a). Consequently,
we get

Kx)= ZO K®(x) + e"z"ZIO(ZxZ)l:C 3-Y ’—J{I . 4.1

8n2x? =
Only the first N + 1 terms at the right-hand side must be evaluated numerically.
The actual value of N depends on x and on the required precision. Once numerical
values of K(x) have been obtained the evaluation of J(b, I') is straightforward.

The results of the calculation of J(b, I') are presented in table 1. The column
marked I' =0 contains the values for J(b, I') that are obtained by putting the
upper limit in the x-integral equal to co. For b > 1 the values of J(b, 0) agree with
those found from the asymptotic expansion (3.19), while for I" # 0 the numerical
results approach the asymptotic values obtained from (3.17). For all I' the
tabulated results are consistent with (3.16) as b approaches 0.

Using (3.4) and table I one finally obtains the curves for the reduced
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TasLE |
The contribution J(b,I') to the inverse longitudinal self-diffusion
coefficient
r 0 0.05 0.1 0.2
b
0.1 1.36 x 10~* 1.36 x 10~* 1.36 x 10~ 1.33 x 10~*
1 2.04 x 1072 2.04 x 1072 2.04 x 10-2 2.01 x 102
2 7.88 x 1072 7.88 x 1072 7.87 x 1072 7.75 x 1072
5 2.88 x 107! 2.88 x 10~} 2.87 x 107! 2.79 x 10™!
10 5.48 x 10! 5.48 x 107! 5.44 x 107! 494 x 107!
20 8.60 x 107! 8.58 x 10! 8.37 x 10! 6.32 x 107!
50 1.30 1.29 1.11 6.85 x 107!
100 1.65 1.55 1.18 6.93 x 107!
200 1.99 1.68 1.20 6.94 x 10!
o — 1.72 1.20 6.94 x 10~!
o
<
X
o4
o
@
"
0.05
0.1
0.2
o
et
t 1
0 20 b 40

Fig. 1. The reduced longjtudinal self-diffusion coefficient Ry as a function of the dimensionless
magnetic field b, for the values 0.05, 0.1 and 0.2 of the coupling constant I'.

longitudinal self-diffusion coefficient

Db, T)
Ry, Iy="L2" 2 4.2
&0 =3l6 7 (4.2)
as drawn in fig. 1. As this figure shows the longitudinal diffusion process is
gradually impeded as the magnetic field becomes stronger. For large field strengths
the reduction factor for the diffusion coefficient is 2/3, as mentioned already in
(2.19).
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