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We construct a hierarchy of exactly solvable spin-1/2 chains with so(N )1 critical points. Our construction
is based on the framework of condensate-induced transitions between topological phases. We employ this
framework to construct a Hamiltonian term that couples N transverse field Ising chains such that the resulting
theory is critical and described by the so(N )1 conformal field theory. By employing spin duality transformations,
we then cast these spin chains for arbitrary N into translationally invariant forms that all allow exact solution
by the means of a Jordan-Wigner transformation. For odd N our models generalize the phase diagram of the
transverse field Ising chain, the simplest model in our hierarchy. For even N the models can be viewed as longer
ranger generalizations of the XY chain, the next model in the hierarchy. We also demonstrate that our method
of constructing spin chains with given critical points goes beyond exactly solvable models. Applying the same
strategy to the Blume-Capel model, a spin-1 generalization of the Ising chain in a generic magnetic field, we
construct another critical spin-1 chain with the predicted conformal field theory (CFT) describing the criticality.
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I. INTRODUCTION

Spin chains have played a crucial role in the study of
magnetism ever since Bethe’s solution of the Heisenberg spin
chain.1 As relatively simple models that exhibit distinct phases
of matter, they have also tremendously contributed to our
understanding of quantum phase transitions.2 In particular, the
Ising spin chain with a transverse magnetic field has been the
prototype model to learn about quantum criticality. The exact
solution3,4 by means of a Jordan-Wigner transformation5 has
enabled one to study its properties in great detail, especially at
its critical point. Critical points, be they thermal or quantum,
are particularly interesting, because they display universal
behavior. Quantum critical points in one-dimensional systems
are often described by a conformal field theory (CFT),6,7 which
encodes the spectral structure and the characteristic algebraic
decay of correlation functions. Remarkably, the description
by a CFT is not limited strictly to the critical point, but it also
allows one to calculate most of the physical properties of the
model in its vicinity.

For the understanding of quantum matter, it is therefore
desirable to have (preferably exactly solvable, if possible)
models that exhibit interesting critical points described by
different CFTs. Some examples are already known. For
instance, the (quantum) phase transition of the transverse
field Ising chain is described by the Ising CFT and is said
to belong to the Ising universality class, as the same CFT
describes the critical point of the classical two-dimensional
Ising model. Other classic examples of integrability are
the spin-1/2 XY chain, whose criticality is described by
the so-called u(1)4 CFT, and the spin-1 Heisenberg model,
whose solution by means of a (nested) Bethe ansatz,8–10 has
enabled the confirmation of the existence of an su(2)2 critical
point. The desirable exact solvability is a scarce property
though and in general restricted to special spin chains with
nearest-neighbor interactions. A rare example of an exactly

solvable model with long-range interactions is the celebrated
spin-1/2 Haldane-Shastry model.11,12 Remarkably, this model
can be generalized to a series of critical spin-S chains with
an su(2)k=2S CFT description.13,14 Recent studies15 suggest
that this same series of critical points can also appear
with local interactions in the spin-S generalizations of the
Majundar-Gosh spin chain.16,17 Another recent approach for
exact solvability in higher spin systems has been to start with
manifestly so(N ) symmetric spin chains.18 Several subsequent
case studies strongly support the conjecture that such models
exhibit critical points described by the so(N )1 CFTs.19–22

While examples exist, it would be desirable to have a sys-
tematic framework for exactly solvable models with interesting
critical points. However, this is a nontrivial task for a simple
reason. While it is easy to verify that a critical point is described
by a given CFT, there is in general no simple prescription
to write down spin chains with critical points described by
chosen CFTs. Recently, few possible routes around this have
been pointed out by borrowing ideas from two-dimensional
topologically ordered systems. In Ref. 23 a series of long-range
parent Hamiltonians were derived from trial wave functions,
that enabled the numerical verification of the existence of
critical points described by the so(N )1 CFTs. Another route
was pointed out by us in Ref. 24, where we argued that a class of
phase transitions between topologically ordered phases—the
so-called condensate-induced transitions25—could be used to
derive spin chains with given critical points. In a nutshell,
this argument is based on the close connection between two-
dimensional gapped topological phases and one-dimensional
gapless systems.26 For a large class of topological phases
the topological quantum field theory describing the (anyonic)
quasiparticle excitations of the gapped bulk is in one-to-one
correspondence with the CFT describing its gapless edge.
We argued that if two topological phases are related by a
condensation transition, then also two critical spin chains
described by the respective CFTs should be related.
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In this paper, we fully exploit this insight and construct a
general hierarchy of exactly solvable spin-1/2 chains with
so(N )1 critical points. While for generic N these chains
contain N -spin interaction terms, their form is such that
every model can be solved straightforwardly by means of
a Jordan-Wigner transformation.27 The two simplest models
in our hierarchy, the cases N = 1 and N = 2, are the
well-known transverse field Ising model (TFI) and the XY

model, respectively. Of the other models, the physically most
interesting model and one of our main results is the case of
N = 3. It exhibits so(3)1 � su(2)2 criticality that has not been
previously discovered in local and exactly solvable spin-1/2
models. Explicitly, at criticality this spin chain takes the form

Hsu(2)2 =
∑

j

(
τ x

3j τ
y

3j+1 + τ
y

3j+1τ
x
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)
, (1)

where the τ ’s are the Pauli matrices. Terms of this type
could be viewed as staggered Dzyaloshinskii-Moriya-like
interactions,28,29 and they could be generated, for instance,
with cold atoms in optical lattices.30

The starting point of our construction of the hierarchy
of so(N )1 models is a system of N decoupled critical TFI
chains. The criticality of the latter is described by a product
of N Ising CFTs, that is related to the so(N )1 CFT via a
condensation transition. Drawing on this insight,24 the first step
is to couple the TFI chains together in a nonlocal manner that
respects all the symmetries of the system. This is in agreement
with the observation by Witten31 that so(N )1 models are
essentially equivalent to N Ising models at criticality. The
second step is to employ spin duality transformations to write
the coupled systems in a translationally invariant and Jordan-
Wigner solvable form for arbitrary N . The models we obtain
are fine-tuned to criticality by construction. By introducing
generic couplings, we find that for certain parametrizations,
for instance varying the relative couplings between the two-
and three-spin terms in (1), their phase diagrams can be viewed
as generalizations of either of the two simplest models in our
hierarchy, the transverse field Ising or the XY model.

While the exact solvability is an attractive feature of our
hierarchy, we also show that our condensation transition
motivated approach is not limited to exactly solvable models.
To this end we consider the one-dimensional quantum version
of the the two-dimensional classical Blume-Capel model,32,33

which roughly speaking is a spin-1 generalization of the TFI
chain in a generic magnetic field. This model admits no known
solution, but it has been shown to exhibit a tricritical point
described by the tricritical Ising CFT. Applying the same
construction as we did in the case of the so(N )1 hierarchy,
we derive another model with a critical point described by the
predicted supersymmetric minimal model.

We have structured the paper such that it is accessible for
readers with different backgrounds. We start in Sec. II with a
general description of the motivation underlying our construc-
tion, namely that of the condensate-induced transitions, and
give an outline of how it is applied to construct the hierarchy
of so(N )1 critical spin chains. This section gives the readers

who are mainly interested in the resulting spin chains an idea
of the method, without having to go through the details. These
details are given in Sec. III, where we review the concepts
of anyon models and condensate-induced transitions between
topological phases. We illustrate these concepts with examples
that are relevant for the current paper. In Sec. IV, we apply
these concepts to construct a general Hamiltonian counterpart
of a condensation transition in the setting of N decoupled
critical TFI chains. This hierarchical construction is the first
main result of our work. The second main result is presented in
Sec. V, where we give the spin duality transformations to cast
the hierarchy of resulting Hamiltonians into an exactly solvable
and translationally invariant form. The phase diagrams of the
constructed spin chains are studied in Sec. VI, where we show
that they exhibit structure that is qualitatively similar to those
of the transverse field Ising and XY chains. The generality
of our condensation transition motivated construction is
demonstrated in Sec. VII, where we provide an example of
it being applied to a spin-1 model that does not admit exact
solution. We conclude with Sec. VIII, where the physical
realization of our models, their relation to known problems,
and various interesting future directions are discussed.

For the sake of clarity, some of the details of our work
are left for the appendixes. In Appendix A we explicitly
derive the generalized boundary term that we use to derive
the hierarchy of so(N )1 spin chains. The general spin
duality transformations we use to cast the spin chains in a
translationally invariant form are given in Appendix B. In
Appendix C we explain at a general level the connection
between CFTs and the spectra of critical one-dimensional
(1D) models. Finally, Appendix D contains the details of the
spectra predicted by so(N )1 CFTs that describe the criticality
of the hierarchy of spin chains we construct.

II. BACKGROUND AND OVERVIEW OF THE METHOD

In this section, we briefly explain the main idea behind
our construction of exactly solvable spin chains with so(N )1

critical points. Our method is based on our previous work24

where we argued that condensate-induced transitions in two-
dimensional topological phases25 have a precise counterpart
for critical spin chains. We showed using two specific examples
that if the CFTs describing the two critical spin chains are
related via the condensation mechanism, then, up to a spin
duality transformation, the two spin chains differed only by a
nonlocal term. We argued that this condensing boundary term
implemented a counterpart of condensate-induced transition in
critical spin chains by constraining the boundary conditions in
a specific manner. In particular, we argued that the constraints
are equal to removing those states from the spectrum that
corresponded to the CFT fields that are confined in the
condensation framework following the condensation of a
bosonic field.

Here we fully exploit this insight to construct local,
translationally invariant, and Jordan-Wigner solvable spin
chains with so(N )1 critical points. Our main example in
Ref. 24 was to show that in the presence of suitable condensing
boundary term two decoupled critical transverse field Ising
chains (TFIs) could be exactly mapped to the critical XY

chain, in agreement with the condensation framework relating
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the corresponding Ising and u(1)4 CFTs. Our main result in the
present work is to show that this is just one example of a larger
hierarchy. Instead of just two TFI chains, we will start from
N decoupled TFI chains described by a Hamiltonian HN

TFI.
Using the framework of condensate-induced transitions we
then construct a generalized condensing boundary term HN

B .
This term couples all the TFI chains together in a nonlocal
manner that constrains the boundary conditions such that the
desired CFT fields are effectively confined. At the microscopic
level this is equivalent to forcing all the N TFI chains to
have simultaneously either periodic or antiperiodic boundary
conditions.

The simple structure of this term enables us to find
general duality transformations that allow us to write the
total Hamiltonian Hso(N)1 = HN

TFI + HN
B as a translationally

invariant spin chain for arbitrary N . These spin chains are N

local in the sense that the resulting Hamiltonians will always
contain N -spin operators acting on up to N adjacent spins.
However, the form of these many-body operators is such that
all the constructed Hso(N)1 models can always be solved by
means of a Jordan-Wigner transformation. In terms of fermions
the N locality means that the unit cell grows linearly with N ,
with the fermions subject to tunneling and pairing of ranges
up to N − 1 nearest neighbors. By comparing the analytic
solutions to the CFT predicted by the condensation framework,
we explicitly verify that the spin chains are critical and indeed
described by the so(N )1 CFT. Finally, we analyze the phase
diagrams of the Hso(N)1 spin chains when their couplings
are tuned away from criticality. We find that for a suitable
parametrization, for all odd N models the phase diagrams are
qualitatively similar to that of a TFI chain, while for even N

they are similar to that of the XY chain. For generic couplings
both series of models exhibit phases beyond these two simplest
members of the hierarchy.

The exact solvability of the constructed spin chains follows
from two properties. First, the elementary building blocks of
our construction, the critical TFI chains, are exactly solvable.
Second, the condensing boundary term HN

B respects all the
symmetries of the TFI system and, while being manifestly
nonlocal, acts locally on every symmetry sector of the
system. However, the exact solvability is not required by
the condensation framework. To demonstrate that it applies
also to spin chains which do not admit a solution via a
Jordan-Wigner transformation (or any exact solution to our
knowledge), we consider a similar construction as above for
spin-1 chains. Instead of TFI chains, we start from a decoupled
system of two spin-1 Blume-Capel models described by HBC.
Roughly speaking, these are spin-1 generalizations of a TFI
chain in a general magnetic field and they are known to
have a tricritical point described by the tricritical Ising CFT.
We employ again the condensation framework to construct
an appropriate condensing boundary term H BC

B . When the
Blume-Capel chains are coupled by such a term and the
HBC + H BC

B system is fine-tuned to the tricritical point, we
verify that the critical behavior coincides with the predicted
supersymmetric minimal model with central charge c = 7/5.
By constructing a duality transformation for the spin-1 system,
we show that the Hamiltonian HBC + H BC

B can be transformed
into a local and translationally invariant form that bears striking
similarity to the constructed hierarchy of spin-1/2 chains.

III. FRAMEWORK OF CONDENSATE-INDUCED
TRANSITIONS

In this section we first introduce the minimal knowledge
of anyon models and CFTs that is required to understand
the framework of condensate-induced transitions. Then we
illustrate the transitions using examples that motivate us later
to construct the family of exactly solvable spin chains with
so(N )1 critical points. Readers interested only in the spin
chains themselves can skip this section and go directly to
Sec. IV.

A. Anyon models and CFTs of type so(N)1

The hallmark of two-dimensional topologically ordered
phases is that their low-energy theories, regardless of the
microscopics, are fully described by topological quantum field
theories, or more informally, by “anyon models.” For our
purposes we can regard them as sets of data that encode the
properties of the different types of quasiparticle excitations
of the system. In a nutshell, an anyon model is specified by
(i) the types of anyons (topological charges carried by the
quasiparticles), (ii) their fusion rules (how can two quasiparti-
cles behave when combined), and (iii) their topological spins
(that encode the mutual statistics of the quasiparticles). A
thorough account of such models can be found in Ref. 34,
but for our purposes only the minimal information consisting
of the three ingredients above is needed.

There is an intimate connection between anyon models and
CFTs. This connection, usually going under the name of bulk-
edge correspondence, states for a large class of models that if
the gapped bulk of a two-dimensional topologically ordered
phase is described by a given anyon model, then the gapless
one-dimensional edge of the system is described by a given
CFT, and vice versa. The precise correspondence between
the data characterizing the anyon model and the CFT is as
follows: The different anyon types correspond to the primary
fields of the CFT, which both satisfy the same sets of fusion
rules (in the latter they appear as expansions of primary field
correlation functions). Each field a is also associated with
scaling dimension ha that is directly related to the topological
spin of the anyon a through θa = e2πiha . For a comprehensive
account of CFTs, we refer the reader to Ref. 7. An additional
important property of a given CFT is its central charge c, which
is a measure of the number of degrees of freedom in the theory.

We will illustrate these concepts below with few examples
that are relevant to us. In particular, we will be mainly
concerned with CFTs which go under the name of so(N )1.
These models have N real fermionic degrees of freedom,
corresponding to a central charge c = N/2, where each real
fermion contributes c = 1/2 (a single bosonic degree of
freedom would contribute c = 1). Their primary fields, fusion
rules, and scaling dimensions exhibit systematic structure that
we consider separately for N odd and N even.

1. so(N)1 CFTs with N odd

All so(N )1 CFTs with odd N contain three primary
fields that we denote by 1, ψ , and σ . Their scaling dimen-
sions are h1 = 0, hψ = 1/2, and hσ = N/16, respectively,
and they satisfy the fusion rules (which are commutative,
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a × b = b × a)

ψ × ψ = 1, σ × ψ = σ, σ × σ = 1 + ψ, (2)

with ψ and σ fusing trivially with the vacuum 1, i.e., ψ ×
1 = ψ and σ × 1 = σ . From these fusion rules and scaling
dimensions we infer that as an anyon model 1 would denote
the vacuum state and ψ a fermionic quasiparticle (half integer
spin). On the other hand, σ would correspond to a non-Abelian
anyon, because of the fractional spin and because fusing σ with
itself has several possible outcomes.

Due to isomorphisms between the associated CFTs, some
of the theories go under more familiar names. For instance,
so(1)1 is more commonly known as the Ising CFT, because it
is the CFT describing the critical point of the two-dimensional
classical Ising model (as well as the critical point of the one-
dimensional transverse field Ising chain). As an anyon model
it is relevant, for instance, to p-wave superconductors where ψ

corresponds to a Bogoliubov quasiparticle and σ to a Majorana
mode binding vortex.35 In addition, so(3)1 is usually referred
to as su(2)2.

2. so(N)1 CFTs with N even

All so(N )1 CFTs with even N contain four primary fields,
1, ψ , λ1, and λ2, with scaling dimensions h1 = 0, hψ = 1/2,
and hλ1 = hλ2 = N/16, respectively. The fusion rules depend
on N such that for N = 2,6, . . . they are given by

ψ × ψ = 1, λ1 × ψ = λ2, λ2 × ψ = λ1,
(3)

λ1 × λ1 = λ2 × λ2 = ψ, λ1 × λ2 = 1,

while for N = 4,8, . . . they are given by

ψ × ψ = 1, λ1 × ψ = λ2, λ2 × ψ = λ1,
(4)

λ1 × λ1 = λ2 × λ2 = 1, λ1 × λ2 = ψ.

As an anyon model, ψ would again be a fermion, whereas λ1

and λ2 would be Abelian anyons except for N an odd multiple
of 8, in which case they are fermions, and for N a multiple of
16, in which case they are bosons.

Like the odd N cases, some of the even cases are
known more commonly under other names. The so(2)1 CFT,
describing the criticality of the XY spin chain, is often denoted
as u(1)4, while so(4)1 can be denoted as a product theory
u(1)2 × u(1)2 � su(2)1 × su(2)1. As anyon models both are
relevant, for instance, to collective vortex states in p-wave
superconductors.36

3. Product theories

In this paper, we make frequent use of products of CFTs that
can be constructed in a straightforward manner. For instance,
a direct product theory of N Ising CFTs with central charge
c = N/2, denoted here by Ising×N ≡ Ising × · · · × Ising,
consists of 3N primary fields that are labeled as (a1, . . . ,aN ),
with a1, . . . ,aN = 1,ψ or σ . The fusion rules of these fields
follow associatively from the fusion rules of a single Ising CFT
and the scaling dimensions are obtained as the sum of those of
the constituent fields, i.e., h(a1,...,aN ) = ∑N

i=1 hai
.

B. Condensate-induced transitions between topological phases

A condensate-induced transition occurs when a bosonic
quasiparticle in a topologically ordered phase condenses.
Without going into the microscopic details of such a process,
the nature of the condensed phase can be worked out at
the level of anyons models, as has been studied in detail
in Ref. 25. Condensation implies that the vacuum state is
redefined, which imposes consistency conditions on the other
quasiparticles in the system. These conditions derive from
demanding that the condensate of the bosonic quasiparticles
behaves like a genuine vacuum, i.e., that (i) it fuses trivially
with all other quasiparticles; (ii) it has trivial statistics with all
other quasiparticles; (iii) it is unique.

Violating any of these conditions means that the quasiparti-
cle spectrum must change (some particles are identified, some
confined) in a manner that leads to these three conditions being
satisfied.25 We illustrate the condensate-induced transitions
with three examples that are relevant to us.

1. Ising×2 → so(2)1

As the first example, we consider the condensation of the
boson (ψ,ψ) in the Ising×2 CFT. The first step of condensation
is to identify this boson with the vacuum label, i.e., we set
(ψ,ψ) = (1,1). In order for (ψ,ψ) to behave like the vacuum,
the demand (i) above implies that all particles a and b that are
related by fusion with the boson should be identified. That is, if
a × (ψ,ψ) = b, then we set a = b. We arrive at a reduced set of
particle types 1̃ = (1,1) = (ψ,ψ), ψ̃ = (1,ψ) = (ψ,1), σ̃1 =
(σ,1) = (σ,ψ), and σ̃2 = (1,σ ) = (ψ,σ ), while the particle
(σ,σ ) remains unaffected at this step.

Demanding (ii) is equivalent to confining all particles that
have nontrivial statistics with the new vacuum. This in turn
is equivalent to removing all identified particles with unequal
conformal weights from the spectrum.25 Since h(σ,1) = 1/16,
but h(σ,ψ) = 9/16, the particles σ̃1 and σ̃2 are eliminated from
the particle content of the condensed phase.

Finally, demanding (iii) one finds that (σ,σ ) has to branch
into several particles, because fusion with itself gives rise to
two times the new vacuum, (σ,σ ) × (σ,σ ) = (1,1) + (1,ψ) +
(ψ,1) + (ψ,ψ) = 2 · 1̃ + 2 · ψ̃. The uniqueness of the vacuum
can be satisfied if one replaces (σ,σ ) by λ1 + λ2 and demands
that the particles 1̃, ψ̃ , λ1, and λ2 satisfy the fusion rules
(3). Evaluating the scaling dimensions of these particles as
sums of the constituent ones, we obtain so(2)1 � u(1)4 as the
self-consistent theory for the condensed phase.

2. so(2)1× Ising → so(3)1

As the second example we consider the condensation of the
boson in the so(2)1× Ising theory. We label the particles in the
so(2)1 theory as in the previous example by 1̃,λ1,λ2,ψ̃ . The
product theory so(2)1 × Ising contains a boson (ψ̃,ψ), which
we identify with the vacuum (1̃,1). Going through steps (i)–(iii)
again as described above, we find first that the following
particles are pairwise identified: (1̃,1) = (ψ̃,ψ), (1̃,ψ) =
(ψ̃,1), (λ1,σ ) = (λ2,σ ), and (1̃,σ ) = (ψ̃,σ ), (λ1,1) = (λ2,ψ),
(λ1,1) = (λ1,ψ). However, the identified particles in the latter
set have unequal scaling dimensions, which means that they
have to be confined. The fusion rules of the remaining three
particles are self-consistent and the new vacuum is unique.
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Thus, no particles need to split and one obtains a theory with
three particles: 1′ = (1̃,1) = (ψ̃,ψ), ψ ′ = (1̃,ψ) = (ψ̃,1), and
σ ′ = (λ1,σ ) = (λ2,σ ). These particles satisfy the fusion rules
in Eq. (2), and by considering the scaling dimensions, one finds
that the condensed phase is described by the so(3)1 � su(2)2

model.

3. Generalization: Ising×N → so(N)1

Since the main difference between different N even and
N odd theories lies in the different N dependent scaling
dimensions, we can immediately see that the two examples
above obey the general rule: If one condenses the boson formed
out of the two fermions in a so(N )1 × so(N ′)1 theory, then one
induces the transition

so(N )1 × so(N ′)1 → so(N + N ′)1. (5)

Recalling that Ising×3 � so(1)×3
1 , this implies that the two ex-

amples above can be viewed as two successive condensations

so(1)×3
1 → so(2)1 × so(1)1 → so(3)1. (6)

It is then straightforward to generalize the result of successive
condensations in the so(1)×N

1 model for arbitrary N .
Without loss of generality, we can always choose to condense
consecutively and pairwise N − 1 bosons such that the process
is equivalent to a series of alternating pairwise condensations
between product theories consisting of either of two odd
N theories (example 1) or an even N and an odd N theory
(example 2). Regardless of the order in which the bosons
are condensed, the fully condensed phase will be described
by the so(N )1 theory. At the level of CFTs this means that
condensate-induced transitions conserve the central charge,
i.e., both the uncondensed and condensed phases have
effectively the same number of fermionic degrees of freedom.

Our main result is to show that this same structure applies
also to critical spin chains. Motivated by the condensation
framework, we will start with N decoupled critical TFI chains
(described by Ising×N ) and implement the counterpart of
condensation by coupling them with a nonlocal condensing
boundary term. Employing a suitable duality transformation
we arrive at a local spin chain with an so(N )1 critical point.

IV. CONDENSATE-INDUCED TRANSITIONS
AND CRITICAL SPIN CHAINS

In this section we first introduce the elementary building
block of our construction—the critical transverse field Ising
chain. Then we review the results of Ref. 24 that provide the
physical motivation for the construction of the condensing
boundary term. Going beyond the earlier studies for two
critical TFI chains, we generalize the condensing boundary
term for a system of N decoupled TFI chains.

A. Critical transverse field Ising chain

The starting point of our derivation of a spin chain, with an
so(N )1 critical point, is a system of N decoupled critical TFI
chains. We realize such a system as a single critical TFI chain
of length L (with L a multiple of N ) with N th nearest-neighbor

interactions only,

HN
TFI =

L−1∑
j=0

σx
j σ x

j+N + σ z
j . (7)

Periodic boundary conditions, i.e., σα
j+L = σα

j , are always
assumed. For N = 1 one recovers the usual nearest-neighbor
TFI chain, which is readily solved via a Jordan-Wigner
transformation.3,4 The resulting fermionic Hamiltonian is
given by

H 1
TFI =

L−1∑
j=0

(2c
†
j cj − 1) +

L−2∑
j=0

(cj − c
†
j )(cj+1 + c

†
j+1)

−P(cL−1 − c
†
L−1)(c0 + c

†
0), (8)

where cj is a complex fermion operator at site j . This
Hamiltonian describes paired fermions and conserves only
the fermion parity described by the symmetry operator P =∏L−1

j=0 σ z
i = exp(iπ

∑
j c

†
j cj ). The presence of the operator

−P , multiplying the hopping and interacting term crossing
the boundary, leads to a coupling between the parity sectors
and the boundary conditions. For odd parity (P = −1) one
has periodic boundary conditions (cL ≡ c0), while for even
parity (P = 1), one has antiperiodic boundary conditions
(cL ≡ −c0). In momentum space the Hamiltonian can be
diagonalized with a Bogoliubov transformation, which gives
the spectrum

H 1
TFI = ∑

k

√
2 + 2 cos(2πk/L)(2c

†
kck − 1), (9)

where the c
†
k create fermions with momentum k.37 Due to the

parity-dependent boundary conditions, these momenta take
integer values for P = −1 and half integer values for P = 1.

The CFT describing the criticality of the TFI chain is the
Ising CFT with central charge c = 1/2. This CFT has three pri-
mary fields, 1, σ , and ψ , with scaling dimensions h1 = 0, hσ =
1/16, and hψ = 1/2. In general, if the spectrum of a critical
quantum chain can be described in terms of a CFT, this implies
that all the states can be labeled by the fields (or sectors) of the
CFT. The energy of these states (after an appropriate shift and
rescaling) take the form E = 2h + n in the large L limit. Here,
h denotes the scaling dimension of a primary field in the CFT,
and n is a non-negative integer. The connection between CFT
and critical spectra is discussed in more detail in Appendix C.
For our purposes the essential property is the correspondence
between the assignment of the CFT sectors and the boundary
conditions. In particular, all states in the even parity sector
(P = 1, with antiperiodic boundary conditions) are labeled
by either 1 or ψ , while all the states in the odd parity sector
(P = −1, with periodic boundary conditions) are labeled by σ .

For N > 1 the Hamiltonian (7) describes N completely
decoupled critical TFI chains of length L/N . Each of these
chains can independently be solved via a Jordan-Wigner
transformation. The parity of the fermions is conserved
independently for each of the N chains, which means that HN

TFI
has N mutually commuting symmetry operators given by

Pn =
L/N−1∏

j=0

σ z
jN+n, n = 0,1, . . . ,N − 1. (10)
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The boundary conditions for the fermions in chain n depend
only on the parity Pn of the fermions in that chain. When
diagonalized, the dispersion relation for each chain will be
identical to (9). Since the N TFI chains are decoupled, the
criticality of the whole system is described by the Ising×N CFT
with central charge c = N/2. The labeling of the states by
the Ising×N primary fields follows directly from the labeling
of the states in each chain according to the correspondence
between the boundary conditions described above.

B. Condensing boundary term

We argued in Ref. 24 that the counterpart of condensate-
induced transitions in critical spin chains occurs not through
the condensation per se, but through the confinement of some
of primary fields it induces. Because of the correspondence
between the CFT sectors and the boundary conditions of
the TFI chains, constraining the set of allowed boundary
conditions is equivalent to removing some of the CFT sectors
from the theory. Our main result in Ref. 24 was to argue that
in a system of two critical TFI chains the states labeled by the
confined CFT primary fields could in general be removed from
the spectrum by adding to the Hamiltonian a nonlocal term that
made the boundary conditions of the two chains depend also
on the symmetry sectors of each other. We showed that the
spectrum is subsequently modified in a manner that encoded
all the features of condensate-induced transitions and had the
predicted critical behavior.

To motivate the generalization to a system of N decoupled
TFI chains, let us briefly revisit this example where the
condensing boundary term takes the form

H 2
B = (P1 − 1)σx

L−2σ
x
0 + (P0 − 1)σx

L−1σ
x
1 . (11)

Adding it to H 2
TFI we obtain

H 2
TFI + H 2

B =
L−3∑
j=0

σx
j σ x

j+2 +
L−1∑
j=0

σ z
j

+P1σ
x
L−2σ

x
0 + P0σ

x
L−1σ

x
1 . (12)

If we would solve this problem using a Jordan-Wigner
transformation, the boundary conditions for the fermions in
both chains would now depend on the product P0P1. This
means instead of four independent boundary conditions, both
chains are now forced to have simultaneously either periodic or
antiperiodic boundary conditions. As illustrated in Table I, the
correspondence between the boundary conditions and the CFT
sectors is modified such that there are no longer states labeled
by confined primary fields in the spectrum (see Sec. III B for
the corresponding condensate-induced transition). Indeed, by
studying how the energy spectrum is precisely modified (states
in some symmetry sectors occur now at integer momenta while
they used to occur for half integer momenta, and vice versa),
we found that it coincides precisely with the critical spectrum
described by the so(2)1 � u(1)4 CFT. Moreover, we showed
by an exact mapping that H 2

TFI + H 2
B is equivalent to a critical

XY chain24 (see also Sec. V A).
The key insight behind the form of the condensing boundary

term was the correspondence between the boundary conditions
and the CFT sectors. This correspondence applies beyond the
TFI chain. For instance, for the critical XY chain described by

TABLE I. Top part: The symmetry sectors (P0,P1), the corre-
sponding boundary conditions (BC0,BC1) in the fermionic picture,
and the Ising×2 CFT sectors that label all the states in the respective
symmetry sectors of H 2

TFI. Bottom part: Same, but now in the
presence of the confining boundary term H 2

B . After performing
the spin duality transformations (17) to map the system to (18), the
symmetry sectors mix and map to the parity symmetry sectors of
the XY chain described by the operator T z = P0P1. In Ref. 24 we
showed that the matching of the states in the two models is in exact
agreement with the predictions of the condensation framework.

Sectors of H 2
TFI

(P0,P1) (BC0,BC1) Ising×2 fields
(1,1) (−1,−1) (1,1), (1,ψ), (ψ,1), (ψ,ψ)
(1,−1) (1,−1) (1,σ ), (ψ,σ )
(−1,1) (−1,1) (σ,1), (σ,ψ)
(−1,−1) (1,1) (σ,σ )

Sectors of H 2
TFI + H 2

B = HXY

(P0,P1) (BC0,BC1) Ising×2 fields T z u(1)4 fields
(1,1) (−1,−1) (1,1), (1,ψ), (ψ,1), (ψ,ψ) 1 1,ψ̃

(1,−1) (1,1) (σ,σ ) −1 λ,λ̄

(−1,1) (1,1) (σ,σ ) −1 λ,λ̄

(−1,−1) (−1,−1) (1,1), (1,ψ), (ψ,1), (ψ,ψ) 1 1,ψ̃

the so(2)1 CFT the primary fields 1 and ψ again always label
states for antiperiodic boundary conditions, while all the states
for periodic boundary conditions are labeled by either λ1 or λ2.
As we discussed in Sec. III B, condensate-induced transition
in an Ising×N system can always be understood as a series of
consecutive pairwise transitions between two odd N theories
(like the Ising×2 example above) or between an N even and N

odd theories. The simplest example of the latter in spin chains
is realized in a decoupled system of a critical TFI chain and
a critical XY chain that is described by Ising×so(2)1 CFT. In
Appendix A we show that this transition can be realized by cou-
pling the two chains with a condensing boundary term similar
in form to (11). Since the XY chain can be viewed as emerging
from two coupled TFI chains as described above, we find that
we could have equally started with a system of three decoupled
critical TFI chains and added the condensing boundary term,

H 3
B = (P1P2 − 1)σx

L−3σ
x
0 + (P0P2 − 1)σx

L−2σ
x
1

+ (P0P1 − 1)σx
L−1σ

x
2 . (13)

Like in the N = 2 case, this term couples the TFI chains such
that when H 3

TFI + H 3
B is fermionized with a Jordan-Wigner

transformation, all three are forced again to have simultane-
ously either periodic or antiperiodic boundary conditions.

This motivates us to write down a condensing boundary
term that implements the counterpart of successive condensa-
tions of all the N − 1 bosons in a system of N decoupled TFI
chains. Assuming that L/(2N ) is an integer (the L-dependent
form is given in Appendix A), the general condensing term is
given by

HN
B =

N−1∑
n=0

⎡
⎣

⎛
⎝∏

l �=n

Pl − 1

⎞
⎠ σx

L−N+nσ
x
n

⎤
⎦ . (14)

We have verified, for N � 16, that the Hamiltonians HN
TFI +

HN
B indeed are critical, and always have the so(N )1 critical
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behavior predicted from the condensation picture, by making
use of the exact solution we present in the next section.

The nonlocal Hamiltonians HN
TFI + HN

B seem to break
translational invariance. However, when restricted to any
one of the symmetry sectors (P0,P1, . . . ,PN−1), they are
local and translationally invariant. This suggests that it could
be possible to find duality transformations that would give
local and translationally invariant representation for all these
Hamiltonians. Indeed, in the next section we provide such
transformations for arbitrary N and show that the resulting
Hamiltonians can be solved by means of a Jordan-Wigner
transformation.

V. EXACTLY SOLVABLE SPIN CHAINS WITH so(N)1

CRITICAL POINTS

Motivated by the framework of condensate-induced transi-
tions, we argued above that spin chains of the form HN

TFI + HN
B

are always critical and described by so(N )1 CFT. We now
set the condensation picture aside and focus on constructing
local, translationally invariant and Jordan-Wigner solvable
representations for these spin chains. To this end we employ a
duality transformation between the σ spin variables that used
to write down the TFI chains and a new set Pauli operators τ .
In particular, we will show that one can always write

Hso(N)1 (τ ) = HN
TFI(σ ) + HN

B (σ ), (15)

where Hso(N)1 (τ ) is N local (some terms consist of τ Pauli
operators acting on N adjacent spins) and translationally
invariant with respect to a unit cell of N (N odd) or N/2
sites (N even).

There are a number of general features shared by our
hierarchy of models Hso(N)1 . First, the form of the N -local
terms is such that the spin Hamiltonians can always be solved
by the means of a Jordan-Wigner transformation. Second, the
boundary conditions for the fermions, like for the TFI chains
(8), turn out always to depend on the total fermion parity. In
terms of the dual σ and τ Pauli operators, it is always described
by the operator

Pso(N)1 =
N−1∏
n=0

Pn =
L−1∏
j=0

σ z
j =

L−1∏
j=0

τ z
j , (16)

where the TFI chain specific parity operators Pn are defined
in Eq. (10). In other words, the condensing boundary term
couples the N TFI chains in such a way that their total fermion
parity sectors coincide with the parity sectors of the Hso(N)1

chain. A third thing to note is that since HN
B does not break any

of thePn symmetries, they must also be symmetries of Hso(N)1 .
Thus the number of symmetry operators for Hso(N)1 increases
linearly with N , which results in an increased degeneracy in
their spectra.

We will first present the explicit forms of the Hso(N)1

Hamiltonians, the required duality transformations to obtain
them, and their solutions for N � 5. Based on their systematic
form we then give the general form for exactly solvable
Hso(N)1 Hamiltonians and their solutions for arbitrary N . As
the corresponding general duality transformations are lengthy,
we present them in Appendix B.

A. N = 2 case

The simplest case of N = 2 has been considered in Ref. 24,
where it is shown that the Hamiltonian Hso(2)1 coincides exactly
with that of a critical XY chain. This follows from the spin
duality transformations

σ z
2j = τ

y

2j τ
y

2j+1, σ z
2j+1 = τ x

2j τ
x
2j+1,

σ x
2j =

⎛
⎝∏

i<j

τ x
2iτ

x
2i+1

⎞
⎠ τ x

2j , σ x
2j+1 = τ

y

2j+1

⎛
⎝∏

i>j

τ
y

2iτ
y

2i+1

⎞
⎠ ,

(17)

that when applied to (15), give the exact relation

Hso(2)1 =
L−1∑
j=0

(
τ x
j τ x

j+1 + τ
y

j τ
y

j+1

)
. (18)

We note that transformations similar to Eq. (17), and the
relation between two TFI chains and the XY chain for open
boundary conditions, were studied in Refs. 38–41.

The solution after a Jordan-Wigner transformation is given
by

Hso(2)1 =
∑

k

√
2 + 2 cos

(
4πk

L

)
(2c

†
kck − 1), (19)

where the momenta k depend on the parity Pso(2)1 of fermions
present in the system. For odd parity (Pso(2)1 = −1), the
momenta take integer values k = 0,1, . . . ,L − 1, while for
even parity (Pso(2)1 = 1), the momenta take half integer values
k = 1/2,3/2, . . . ,L − 1/2.

B. N = 3 case

For the case N = 3 we employ the duality transformations
(here 0 � i,j � L/3 − 1)

σ z
3j = τ

y

3j τ
z
3j+1τ

y

3j+2,

σ x
3j =

⎛
⎝∏

i<j

τ
y

3iτ
x
3i+1τ

z
3i+2

⎞
⎠ τ

y

3j τ
x
3j+1τ

y

3j+2

×
⎛
⎝∏

i>j

τ z
3iτ

x
3i+1τ

y

3i+2

⎞
⎠ , (20)

σ z
3j+1 = τ x

3j τ
y

3j+1, σ x
3j+1 =

⎛
⎝∏

i<j

τ
y

3iτ
x
3i+1τ

z
3i+2

⎞
⎠ τ

y

3j ,

σ z
3j+2 = τ

y

3j+1τ
x
3j+2, σ x

3j+2 = τ
y

3j+2

⎛
⎝∏

i>j

τ z
3iτ

x
3i+1τ

y

3i+2

⎞
⎠ .

Applying them to (15) we obtain the Hamiltonian

Hso(3)1 =
L/3−1∑
j=0

(
τ

y

3j τ
z
3j+1τ

y

3j+2 + τ x
3j+2τ

x
3j+3

+ τ x
3j+1τ

z
3j+2τ

y

3j+3 + τ x
3j τ

y

3j+1

+ τ
y

3j+2τ
z
3j+3τ

x
3j+4 + τ

y

3j+1τ
x
3j+2

)
, (21)
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which is translationally invariant with respect to a unit cell
of three sites. This Hamiltonian is identical to the Hamil-
tonian Eq. (1) mentioned in the Introduction. We note that
the mixed spin terms of type τ x

3j τ
y

3j+1 and τ x
3j+1τ

z
3j+2τ

y

3j+3
are reminiscent of (longer range) Dzyaloshinskii-Moriya
interactions,42 that have been considered in the literature (see,
e.g., Refs. 43 and 44). However, unlike those models, our
hierarchy models exhibit a particular spatial alternation in the
form of the couplings that underlies their systematic critical
behavior.

Before performing a Jordan-Wigner transformation, it is
useful to perform an additional transformation such that the
fermionic form of the Hamiltonian will have real coefficients.
A unitary operator implementing this acts on the sites 3j + 1,

by swapping τ x
3j+1 ↔ τ

y

3j+1 and adding a sign as τ z
3j+1 →

−τ z
3j+1. This gives the Hamiltonian

Ĥso(3)1 =
L−1∑
j=0

(
Sj τ

y

j τ z
j+1τ

y

j+2 + τ x
j τ x

j+1

)
, (22)

where Sj = −1 for j = 0 mod 3 and Sj = 1 otherwise. The
full translational invariance is thus broken by the staggered
sign of the three-spin interaction. After the Jordan-Wigner
transformation, we obtain the Hamiltonian [compare with the
TFI case, Eq. (8)], which consist of uniform nearest-neighbor
and sign staggered next nearest-neighbor hopping and pairing
terms,

Hso(3)1 =

⎛
⎜⎝ L/3−2∑

j=0

+(c†3j + c3j )(c†3j+2 − c3j+2) − (c†3j+1 + c3j+1)(c†3j+3 − c3j+3) − (c†3j+2 + c3j+2)(c†3j+4 − c3j+4)

+ (c†3j+2 − c3j+2)(c†3j+3 + c3j+3) + (c†3j+3 − c3j+3)(c†3j+4 + c3j+4) + (c†3j+4 − c3j+4)(c†3j+5 + c3j+5)

⎞
⎟⎠

+ (c†L−3 + cL−3)(c†L−1 − cL−1) + Pso(3)1 (c†L−2 + cL−2)(c†0 − c0) + Pso(3)1 (c†L−1 + cL−1)(c†1 − c1)

−Pso(3)1 (c†L−1 − cL−1)(c†0 + c0) + (c†0 − c0)(c†1 + c1) + (c†1 − c1)(c†2 + c2). (23)

Given that we started the derivation from three decoupled TFI
chains, and essentially only changed the boundary conditions
in some of the sectors, one can expect that the spectrum
of Hso(3)1 would bear close resemblance to the spectrum
of three TFI chains. Indeed, by Fourier transforming with
respect to the three-site unit cell and diagonalizing the six
by six Bloch matrix, we obtain a spectrum in terms of three
fermions cn,k , with n = 0,1,2. To be precise, the spectrum is
given by

Hso(3)1 =
∑

k

ε0,k(2c
†
0,kc0,k − 1) + ε1,k(2c

†
1,kc1,k − 1)

+ ε2,k(2c
†
2,kc2,k − 1), (24)

where

εn,k =
⎧⎨
⎩

√
2 + 2 cos

(
2πk

(L/3)

)
for n = 0,√

2 − 2 cos
(

2πk
(L/3)

)
for n = 1,2.

The momenta k depend again on the total parity of fermions
such that for Pso(3)1 = −1 the momenta take integer values
k = 0,1, . . . ,L/3 − 1, while for Pso(3)1 = 1 the momenta take
half integer values k = 1/2,3/2, . . . ,L/3 − 1/2.

In Fig. 1 we display the low-lying part of the spectrum for
system size L = 36, which corresponds to 12 unit cells. The
energies are shifted such that the ground state has zero energy,
and subsequently rescaled such that the first excited state
has energy 2hσ = 3/8, as predicted by the CFT description.
With this shift and rescaling, all the other energies are fixed.
Comparing the energy levels and their degeneracies against
the CFT prediction explained in detail in Appendixes C

and D, we find excellent agreement with degeneracies
matching exactly. This convincingly shows that the critical
chain Eq. (21) is indeed described by the so(3)1 � su(2)2

CFT.

0 /6 /3 /2
K

0

1

2

3

E
ne

rg
y

1 - sector
 - sector
 - sector

Spectrum of the so(3)
1
 chain - L=36
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2 2

4

1

1 12 2

6 6 6 6

1 1

5 5

2 2

4 45 5 54 4 4

6

6 6

6

6
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6
12 12

FIG. 1. (Color online) The low-lying part of the rescaled spec-
trum of the critical spin chain Eq. (21) for a system of size
L = 36 (12 unit cells). The different symbols denote the different
sectors in the CFT description of this critical point, and the
dotted lines indicate the energies predicted by CFT. The numbers
indicate the degeneracies of the states. These degeneracies are in
one-to-one correspondence with the so(3)1 CFT predictions. Here
K = 2πk

L/3 .
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C. N = 4 case

For the N = 4 case we employ the duality transformations
(here 0 � i,j � L/4 − 1)

σ z
4j = τ x

4j τ
z
4j+1τ

z
4j+2τ

x
4j+3,

σ z
4j+1 = τ

y

4j+1τ
y

4j+2,

σ z
4j+2 = τ x

4j+1τ
x
4j+2,

σ z
4j+3 = τ

y

4j τ
z
4j+1τ

z
4j+2τ

y

4j+3,

σ x
4j = τ

y

4j

⎛
⎝∏

i<j

τ
y

4iτ
y

4i+3

⎞
⎠P1, (25)

σx
4j+1 = τ z

4j τ
x
4j+1

⎛
⎝∏

i<j

τ z
4iτ

x
4i+1τ

x
4i+2τ

z
4i+3

⎞
⎠ ,

σ x
4j+2 = τ

y

4j+2τ
z
4j+3

⎛
⎝∏

i>j

τ z
4iτ

y

4i+1τ
y

4i+2τ
z
4i+3

⎞
⎠ ,

σ x
4j+3 = τ x

4j+3

⎛
⎝∏

i>j

τ x
4iτ

x
4i+3

⎞
⎠P2.

The Pn = ∏L/4−1
j=0 σ z

4j+n operators appearing in the expres-
sions for σx

4j and σx
4j+3 are included ensure correct commu-

tation relations. However, they do not affect the form of the
transformed Hamiltonian.

Applying these transformations to Eq. (15), we obtain the
local Hamiltonian

Hso(4)1 =
L/2−1∑
j=0

τ x
2j τ

z
2j+1τ

z
2j+2τ

x
2j+3 + τ x

2j+1τ
x
2j+2

+ τ
y

2j τ
z
2j+1τ

z
2j+2τ

y

2j+3 + τ
y

2j+1τ
y

2j+2, (26)

which is again translationally invariant. However, unlike in
the N = 3 case where the unit cell contained N sites, here the
unit cell has the size of N/2 sites. This Hamiltonian can also
be obtained by applying the condensation framework to two
decoupled XY models, as we showed in Ref. 24.

The structure of the Hamiltonian Eq. (26) is such that it
can be solved straightforwardly by means of a Jordan-Wigner
transformation, in the same way as the XY model was solved
in Ref. 5. In terms of fermions the Hamiltonian describes
two decoupled fermion chains subject to alternating nearest-
and third-nearest-neighbor tunneling. Explicitly, we obtain the
following form:

Hso(4)1 =
⎛
⎝L/2−2∑

j=0

2(c†2j c2j+3 + c
†
2j+1c2j+2) + H.c.

⎞
⎠ .

− 2Pso(4)1 (c†L−2c1 + c
†
L−1c0) + h.c. (27)

When diagonalized, the spectrum is given in terms of two
fermions c0,k and c1,k as

Hso(4)1 =
∑

k

εk(2c
†
0,kc0,k − 1) + εk(2c

†
1,kc1,k − 1), (28)

0 /4 /2 3 /4
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2

3

E
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1
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FIG. 2. (Color online) The low-lying part of the spectrum of the
critical spin chain Hso(4)1 , Eq. (26), for system of size L = 64 or 32
unit cells. The different symbols denote the different sectors in the
CFT description of this critical point, and the dotted lines indicate the
energies predicted by CFT. While we did not indicate the degeneracies
of the states to avoid cluttering the figure, we have verified that they
are in exact agreement with the CFT predictions. Here K = 2πk

L/4 .

with

εk =
√

2 + 2 cos

(
8πk

L

)
.

Once again the momenta k runs over integers (k =
0,1, . . . ,L/2 − 1) for odd fermion parity (Pso(4)1 = −1) and
over half integers (k = 1/2,3/2, . . . ,L/2 − 1/2) for even
fermion parity (Pso(4)1 = 1). In Fig. 2 we display the rescaled
low-lying part of the spectrum of Hso(4)1 for a system of size
L = 64. The energy-level spacings in the rescaled units as
well as the degeneracies are again in exact agreement with
the so(4)1 CFT predictions, as explained in Appendixes C
and D.

D. N = 5 case

Because the spin chains for N = 1 and N = 3 take a rather
different form, it is not immediately obvious what forms the
so(N )1 chains take for arbitrary odd N . To illustrate the
hierarchical structure, we also give the Hamiltonian Hso(5)1

explicitly. Employing the general transformations given in
Appendix B, it takes the form

Hso(5)1 =
L/5−1∑
j=0

τ
y

5j τ
z
5j+1τ

z
5j+2τ

z
5j+3τ

y

3j+4 + τ x
3j+4τ

x
3j+5

+ τ x
5j+1τ

z
5j+2τ

z
5j+3τ

z
5j+4τ

y

3j+5 + τ x
5j+5τ

y

5j+6

+ τ
y

5j+2τ
z
5j+3τ

z
5j+4τ

z
5j+5τ

x
3j+6 + τ

y

5j+6τ
x
5j+7

+ τ x
5j+3τ

z
5j+4τ

z
5j+5τ

z
5j+6τ

y

3j+7 + τ x
5j+7τ

y

5j+8

+ τ
y

5j+4τ
z
5j+5τ

z
5j+6τ

z
5j+7τ

x
3j+8 + τ

y

5j+8τ
x
5j+9.

(29)
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Like the N = 3 case, also this Hamiltonian can be brought
to a form similar to (22) where the translational symmetry
is manifestly broken only by the sign of one of the five-spin
terms. To bring this model in a diagonal form, one uses exactly
the same steps as for N = 3, with the following result:

Hso(5)1 =
∑

k

4∑
n=0

εn,k(2c
†
n,kcn,k − 1),

(30)

εn,k =
⎧⎨
⎩

√
2 + 2 cos

(
2πkN

L

)
for n = 0,√

2 − 2 cos
(

2πkN
L

)
for n = 1,2,3,4.

E. General N case

The examples above are part of a hierarchy of exactly
solvable spin-1/2 models with so(N )1 critical behavior. Their
microscopic structure depends systematically on N , such that
even and odd N cases form different sets of models. We present
in Appendix B the most general duality transformations to
bring the Hamiltonians Hso(N)1 into a local and translationally

invariant form. Here we present these Hamiltonians and their
solutions for all N .

1. Odd N

The structure of the Hamiltonians for odd N is as follows.
There are pairs of two-spin and N -spin operators. One pair
will always consist of an N -spin term acting on N adjacent
spins, with two τ y operators straddling a string of N − 2 τ z

operators. The Jordan-Wigner solvability of terms of this form
was first pointed out by Suzuki.27 The second term of this pair
is a product of two adjacent τ x operators. These two terms
do not commute with one another (but they commute with all
other terms in the Hamiltonian). The remaining N − 1 pairs
consists of an N -spin term, where an τ x and a τ y straddle a
string of N − 2 τ z’s, while the second term is the product of
neighboring τ x and a τ y . Again, the two members of a pair
do not commute, while they commute with all other terms
in the Hamiltonian. Because of the structure with the strings
of τ z operators, these models can be solved by means of a
Jordan-Wigner transformation. Explicitly, the Hamiltonian for
general odd N reads

Hso(N)1 =
L/N−1∑

j=0

⎛
⎜⎝τ

y

jNτ z
jN+1 · · · τ z

jN+N−2τ
y

jN+N−1 + τ x
jN+N−1τ

x
jN+N

+
(N−1)/2∑

n=1

τ x
jN+(2n−1)τ

z
jN+(2n−1)+1 . . . τ z

jN+(2n−1)+(N−2)τ
y

jN+(2n−1)+(N−1) + τ x
jN+(2n−1)+(N−1)τ

y

jN+(2n−1)+N

+
(N−1)/2∑

n=1

τ
y

jN+2nτ
z
jN+2n+1 . . . τ z

jN+2n+(N−2)τ
x
jN+2n+(N−1) + τ

y

jN+2n+(N−1)τ
x
jN+2n+N

⎞
⎟⎠. (31)

As was the case for N = 3, this most general spin chain can
also be diagonalized with a Jordan-Wigner transformation.
The unit cell has the size of N sites, which implies that the
spectrum is given in terms of N fermionic operators cn,k . For
all odd N it is given by

Hso(N)1 =
∑

k

N−1∑
n=0

εn,k(2c
†
n,kcn,k − 1),

(32)

εn,k =
⎧⎨
⎩

√
2 + 2 cos

(
2πkN

L

)
for n = 0,√

2 − 2 cos
(

2πkN
L

)
for 1 � n � N − 1.

As we discussed with the explicit examples above, the
momenta k run in the usual way over integers or half integers
depending on the total fermion parity (16).

2. Even N

The general even N Hamiltonians consist of N/2 pairs of
terms, where one member of a pair consists of two τ x operators
straddling a string of τ z operators, while the other member of
the pair consists of two τ y operators straddling a string of τ z

operators. The general Hamiltonian for even N reads

Hso(N)1 =
2(L/N)−1∑

j=0

N/2−1∑
n=0

τ x
jN/2+nτ

z
jN/2+n+1 · · ·

× τ z
jN/2+N−n−2τ

x
jN/2+N−n−1

+ τ
y

jN/2+nτ
z
jN/2+n+1 · · · τ z

jN/2+N−n−2τ
y

jN/2+N−n−1.

(33)

As the unit cell for these models contains always only N/2
sites, the spectrum is given in terms of N/2 fermions cn,k .
Explicitly,

Hso(N)1 =
∑

k

N/2−1∑
n=0

εk(2c
†
n,kcn,k − 1),

(34)

εk =
√

2 + 2 cos

(
2πkN

L

)
,

where the momenta k again depends in the usual way on the
fermionic parity (16).

We have performed checks on the low-lying states for all
these Hamiltonians up to N = 16 against the so(N )1 CFT
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predictions presented in Appendixes C and D. Labeling of the
states by the primary fields and their low-lying descendants as
well as the expected degeneracies are found to be in complete
agreement with the CFT predictions.

VI. STRUCTURE OF THE PHASE DIAGRAMS
OF THE so(N)1 MODELS

Our construction was motivated by the condensation frame-
work that related different CFTs that describe the criticality of
different spin chains. Therefore, the hierarchy of spin chains
we constructed are all fine-tuned to a critical point. However, as
is well known, the two simplest members of this hierarchy, the
TFI chain (N = 1) and the XY chain (N = 2), are typically
gapped with the critical points separating different gapped
phases. The situation is very similar for the models for general
N . In these models the number of different types of terms
grows linearly with N , so in principle one can introduce many
different coupling constants for which the models can still be
solved exactly.

A. Phase diagrams of odd N chains

We start by considering the odd N chains that contain
two-spin and N -spin terms. For concreteness we consider
the case N = 3 and introduce the most general coupling
parameters

Ĥso(3)1 =
∑

j

(
g0τ

x
3j+2τ

x
3j+3 + h0τ

y

3j τ
z
3j+1τ

y

3j+2

+ g1τ
x
3j+3τ

y

3j+4 + h1τ
x
3j+1τ

z
3j+2τ

y

3j+3

+ g2τ
y

3j+4τ
x
3j+5 + h2τ

y

3j+2τ
z
3j+3τ

x
3j+4

)
. (35)

Diagonalizing this model gives again a spectrum of
three fermions (24), but now with the generic dispersion
relations

εn,k =
⎧⎨
⎩

√
g2

0 + h2
0 + 2g0h0 cos

(
2πk

(L/3)

)
(n = 0),√

g2
n + h2

n − 2gnhn cos
(

2πk
(L/3)

)
(n = 1,2).

Let us first restrict to analyze the phase diagram when the
relative couplings between the two spin terms (i.e., the nearest-
neighbor couplings in the fermionic version) and the N -spin
terms [(N − 1)th-nearest-neighbor coupling for fermions] are
varied. To this end we set g0 = g1 = g2 = g and h0 = h1 =
h2 = h. Figure 3 shows that similar to the TFI chain, the N = 3
chain is critical only when |g| = |h|, with a gap opening up
immediately when one moves away from these four points. The
ground states in the four gapped phases can be characterized
by considering the special points g = 0, h = ±1 and g =
±1, h = 0, where all terms in the Hamiltonian commute
with each other. When g = 0 we find a unique, “polarized”
ground state. The “polarization” of the spin depends on the
position of the spins in the unit cell, and can be obtained
from the Hamiltonian in a straightforward way. For h = 0
the system has a twofold degenerate ground state in which
neighboring spins are “aligned.” Again, in which direction the
spins are aligned depends on the position of the spins in the unit
cell.

Gapped,
two-fold degenerate

ground state

Gapped,
unique

ground state

Gapped,
unique

ground state

Gapped,
two-fold degenerate

ground state

FIG. 3. (Color online) The schematic phase diagram of Ĥso(3)1 ,
Eq. (35), as a function of the angle θ , defined as cos θ = g = g0 =
g1 = g2 and sin θ = h = h0 = h1 = h2. The critical points at |g| =
|h| are indicated by the red dots, while the black dots represent the
special points with either g = 0 or h = 0 where all terms in the
Hamiltonian commute with one another.

These phases are the direct analogs of the gapped phases
present in the TFI model, with the three-spin terms playing the
role of the magnetic field term. In its fermionic representation
the TFI chain realizes Kitaev’s p-wave paired nanowire,45

where the phase with degenerate ground state corresponds to
the weak pairing topological phase and the polarized phase
to the topologically trivial strong pairing phase. For open
boundary conditions the first hosts localized Majorana modes
at the chain ends. As the odd N models of our hierarchy exhibit
similar phase diagrams, and the classification of topological
phases admits only two topologically distinct phases for
particle-hole symmetric models in one spatial dimension,46,47

we also expect similar behavior from the gapped phases of our
hierarchy models.

For general odd N and general coupling constants gn, and
hn, with n = 0,1, . . . N − 1, the situation is as follows. As long
as |gn| �= |hn| for all n, the system has a gap, but as soon as
for an arbitrary value of n one has |gn| = |hn|, the gap closes.
This implies that the phase diagram is in general richer than
that shown in Fig. 3, that is valid only for g = gn and h = hn

for all n. We leave the detailed study of the full phase diagrams
for future work.

B. Phase diagrams of even N chains

Like all the odd N models are generalizations of the
TFI chain, so can all the even N models be viewed as
generalizations of the XY chain. The general Hamiltonian
(33) implies that even N models always contain 2-, 4-,. . .
and N -spin terms. Focusing on the simplest case N = 4, we
introduce again general couplings for which the Hamiltonian
reads

Ĥso(4)1 =
L/2−1∑
j=0

g0τ
x
2j τ

z
2j+1τ

z
2j+2τ

x
2j+3 + h0τ

y

2j+3τ
y

2j+4

+ g1τ
x
2j+1τ

x
2j+2 + h1τ

y

2j+2τ
z
2j+3τ

z
2j+4τ

y

2j+5. (36)
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We have labeled the terms such that noncommuting terms
have coupling constants with the same index. For general
couplings the fermionized Hamiltonian also has pairing terms,
which means that after diagonalization, the spectrum is given
in terms of two fermions as in Eq. (28), but with more
complicated dispersions for the fermions. For n = 0,1, we
find

εn,k =
√

g2
n + h2

n + 2gnhn cos

(
8πk

L

)
.

The phase diagram for the case g0 = g1 = g and h0 = h1 =
h has qualitatively the same structure as the phase diagram of
the XY model. The difference from the phase diagrams of the
odd N chains (see Fig. 3) is that now the four critical points
at |g| = |h| separate four gapped phases with unique ground
states. Also similar to the odd N cases, all even N chains
with arbitrary coupling constants are gapped as long as for all
values of n, one has |gn| �= |hn|, and critical otherwise. This
means that also the even N cases have phase diagrams that go
beyond that of the XY chain. Their systematic study certainly
warrants further investigation.

VII. BEYOND EXACT SOLVABILITY:
THE SPIN-1 BLUME-CAPEL MODEL

In the previous sections, we used the condensation picture
to construct so(N )1 critical spin chains starting from N

decoupled TFI chains. The constructed models are solvable
via a Jordan-Wigner transformation. In this section, we
argue that this condensation picture based construction is
general and applies also to critical chains that are not exactly
solvable.

A. Blume-Capel model

To show this, we consider the so-called Blume-Capel
model, which is a spin-1 model, exhibiting a tricritical point
described by the tricritical Ising CFT. In its two-dimensional
classical incarnation, the Blume-Capel model is an Ising model
with vacancies.32,33 In its one-dimensional quantum version
we consider here, it takes the form of a spin-1 model, exhibiting
an interesting phase diagram; see for instance Ref. 48. The
Hamiltonian of the one-dimensional L-site quantum Blume-
Capel model is given by49

HBC =
L−1∑
j=0

−Sx
j Sx

j+1 + α
(
Sx

j

)2 + βSz
j . (37)

We use the standard representation for the spin-1 matrices,
namely

Sx
i = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sz

i =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

S
y

i = i√
2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠. (38)

As we did for the so(N )1 models, we also assume periodic
boundary conditions throughout. To get an idea about the

phase diagram of the model, we first consider the case α = 0.
Then, the model is the spin-1 version of the transverse field
Ising model, and exhibits a second-order phase transition (at
β = √

2) in the Ising universality class, just as the spin-1/2
transverse field Ising model. In the case that β = 0, the model
exhibits a first-order phase transition (at α = 1). For arbitrary α

and β, the phase transitions mentioned above are actually lines
of phase transitions, which meet at a tricritical point located
at α ≈ 0.910 207 and β ≈ 0.415 685. We refer to Ref. 48 for
more details on the phase diagram.

At the tricritical point, the system is described by the
tricritical Ising CFT. This CFT has central charge c = 7/10
and it is the second model in a series of CFTs, called “minimal
models,” where the Ising CFT is the first in the series.6 It
contains six primary fields, which we label as {1,σ,σ ′,ε,ε′,ε′′},
with scaling dimensions h1 = 0, hε′′ = 3/2, hε = 1/10, hε′ =
3/5, hσ = 3/80, and hσ ′ = 7/16. To describe the fusion rules
of the tricritical Ising CFT, it is easiest to give each field
two labels, one label representing a set of particles {1,σ,ψ}
satisfying the Ising fusion rules, the other representing the
so-called Fibonacci anyon model, {1,τ }, with the only non-
trivial fusion rule τ × τ = 1 + τ . Using the correspondence
1 = (1,1), ε′′ = (ψ,1), ε = (ψ,τ ), ε′ = (1,τ ), σ = (σ,τ ), and
σ ′ = (σ,1), one can derive the fusion rules of the tricritical
Ising CFT. For instance, we have σ × σ = (σ,τ ) × (σ,τ ) =
(1,1) + (1,τ ) + (ψ,1) + (ψ,τ ) = 1 + ε′ + ε′′ + ε.

The field ε′′ has scaling dimension hε′′ = 3/2, which
means that it is a fermionic field. Thus, if we consider a
Blume-Capel model with (apart from the on-site terms) next-
nearest-neighbor interactions only, we obtain two decoupled
chains, whose criticality is described by doubled tricritical
Ising CFT that contains a bosonic field with hε′′,ε′′ = 3.
This suggests that it could be possible to add an appro-
priate condensing boundary term, such that we obtain a
different spin-1 chain, whose criticality is related to that
of the doubled Blume-Capel model via the condensation
framework. To do this one needs to find a symmetry operator
that separates the confined and nonconfined CFT sectors.
Following Kennedy and Tasaki,50 we introduce the following
operators:

P x = −eiπSx = 2(Sx)2 − 1 =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

P y = −eiπSy = 2(Sy)2 − 1 =
⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠, (39)

P z = −eiπSx = 2(Sx)2 − 1 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠.

The operatorPz = ∏L−1
i=0 P z

i commutes with (37) for all values
of α and β. States with an even (odd) number of sites with Sz

i =
0 have Pz eigenvalue +1 (−1). In Fig. 4, we give the low-lying
spectrum of the Blume-Capel Hamiltonian, indicating the Pz

eigenvalues of all the states. We find that the states deriving
from the CFT sectors 1,ε,ε′,ε′′ have Pz eigenvalue +1, while
the states deriving from σ,σ ′ have Pz eigenvalue −1. This
division of the states into two groups is similar to the TFI
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Blume-Capel model, tri-critical Ising point
L = 12;  = 0.910207,  = 0.415685

FIG. 4. (Color online) The low-lying part of the spectrum of the
Blume-Capel chain at the tricritical point. The blue squares (red
diamonds) indicate the states withPz eigenvalues +1 (−1). The black
dots (blue squares) indicate the position of the primary (descendent)
fields of the tricritical Ising CFT.

chain, suggesting that a condensing boundary term could be
constructed from this operator. The spectrum also confirms
that the tricritical point is indeed described by the tricritical
Ising CFT.

B. Constructing a new spin-1 chain
from condensation framework

We now use the correspondence between the symmetry
sectors Pz = ±1 and the tricritical Ising CFT primary fields
to construct a condensing boundary term for the Blume-Capel
chain with next-nearest-neighbor interactions only.

The CFT describing the tricritical point of the decoupled
system is given by the product of two tricritical Ising CFTs.
This CFT has central charge c = 7/5 and it contains 36 primary
fields. The field labeled by (ε′′,ε′′) has scaling dimension
h(ε′′,ε′′) = 3, which means that it is a boson that can condense.
Without going into details, the construction of the theory after
condensing this boson follows the same lines as the case of the
Ising×2 theory, by making use of the fact that the fusion rules
of the tricritical Ising CFT can be seen as a “product” of an
Ising and a Fibonacci sector. In the end one obtains a theory
containing the 16 fields

1 = (1,1), ε′′ = (1,ε′′), σ1 = (σ,σ )1, σ ′
1 = (σ ′,σ )1,

ε = (ε,ε), ε′ = (ε,ε′), σ2 = (σ,σ )2, σ ′
2 = (σ ′,σ )2,

εl = (ε,1), ε′
l = (ε′,1), σ ′′

1 = (σ ′,σ ′)1, σ ′
3 = (σ,σ ′)2,

εr = (1,ε), ε′
r = (1,ε′), σ ′′

2 = (σ ′,σ ′)2, σ ′
4 = (σ,σ ′)2.

(40)

The fusion rules for these fields are equivalent to the fusion
rules of Fib × Fib × Z4, where Fib stands for the Fibonacci
fusion rules introduced above, and Z4 correspond to charges
l = 0,1,2,3, which upon fusion are added modulo 4 [i.e., they
correspond to the fusion rules of u(1)4].

The condensation process confines all the primary fields
that contain only a single σ or σ ′ field. In the Blume-Capel
chain with next-nearest-neighbor interactions all states labeled
by these fields reside in the symmetry sectors for whichPz

even =
−Pz

odd, where Pz
even = ∏

j,even P z
j and Pz

odd = ∏
j,odd P z

j are
the symmetry operators for the two decoupled chains on even
and odd sites, respectively. The lack of an exact solution means
that there is now no obvious correspondence between the
fermion boundary conditions and the symmetry sectors, but
the similar spectral partitioning as in the system of two TFI
chains motivates us still to construct a similar condensing
boundary term. In precise analogy to (11), this term is given
by

HB
BC = (

1 − Pz
even

)
Sx

L−1S
x
1 + (

1 − Pz
odd

)
Sx

L−2S
x
0 . (41)

Just as was the case for the spin-1/2 chains we considered,
it is possible to perform a duality transformation on the spin-
1 operators and transform HBC + HB

BC into a translationally
invariant form. This transformation can be compactly written
as H cond

BC = U (HBC + HB
BC)U †, where

U =
∏
j < k

j even
k odd

eiπSz
j S

z
k . (42)

We note that the form of this operator is closely related to the
one considered in Ref. 51. More explicitly, the individual spin
operators transform as

T x
j,even =

⎛
⎝ ∏

k<j,odd

P z
k

⎞
⎠ Sx

j , T x
j,odd = Sx

j

⎛
⎝ ∏

k>j,even

P z
k

⎞
⎠ ,

T
y

j,even =
⎛
⎝ ∏

k<j,odd

P z
k

⎞
⎠ S

y

j , T
y

j,odd = S
y

j

⎛
⎝ ∏

k>j,even

P z
k

⎞
⎠ ,

T z
j,even = Sz

j , T z
j,odd = Sz

j , (43)

which gives the local and translationally invariant Hamiltonian

H cond
BC =

L−1∑
j=0

− T x
j T x

j+2 + 2T x
j

(
T z

j+1

)2
T x

j+2

+α
(
T x

j

)2 + βT z
j . (44)

We have diagonalized this Hamiltonian exactly for a system
of size L = 12. Figure 5 shows that although the finite-size
effects are rather substantial, the spectrum is in excellent
agreement with the predicted CFT with the 16 primary fields
given by (40).

To gain insight in the CFT with the primary fields (40)
describing the tricritical point of the Hamiltonian Eq. (44),
we note the following. The starting point was the tricritical
Ising CFT, which is the first in a series of CFTs having N = 1
supersymmetry.52 This series is labeled by the integer m =
3,4, . . ., with central charges c = 3/2{1 − 8/[m(m + 2)]},
giving c = 7/10 for m = 3. Condensation transitions conserve
the central charge, and after condensing the boson in the
product theory of two tricritical Ising CFTs, one finds a
theory which seems to inherit the N = 1 supersymmetry.
The central charge of this theory is c = 7/5, which is indeed
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FIG. 5. (Color online) The low-lying part of the spectrum of the
model Eq. (44) at the tricritical point. The blue squares (red diamonds)
indicate the states with Pz eigenvalues +1 (−1). The black dots
indicate the position of the primary fields (40) of the CFT describing
this critical point.

among the central charges of the supersymmetric “minimal”
models, namely for m = 10. For m even, the central charge
does not uniquely specify the supersymmetric CFT. There are
different CFTs with the same central charge that form different
modular invariants.53 The standard diagonal modular invariant
for m = 10 has 76 (Virasoro) primary fields. It turns out that
the theory at hand corresponds to an exceptional modular
invariant, namely (D6,E6), which indeed has 16 primary fields.
We verified explicitly that the CFT we constructed is indeed
the (D6,E6) invariant53 of the m = 10 CFT, by making use
of the explicit form of the characters of the Virasoro minimal
models54 and the characters of the N = 1 supersymmetric
minimal models.55

The qualitative similarity of the condensing boundary term
suggests that this counterpart of condensation transition in
two Blume-Capel models is just one example of a larger
hierarchy, exactly like the coupling of two TFI chains by
means of such term was the simplest example of the so(N )1

hierarchy. Indeed, since the fusion rules of a tricritical Ising
CFT could be understood as the product Ising × Fib, and
the condensed boson in the doubled theory was formed out
of the fermions in the two Ising-like sectors, the transition
acts trivially in the two Fib sectors. At the level of fusion
rules, the transition modified them as Ising×2× Fib×2 → Z4×
Fib×2. As the corresponding CFT contains a fermion in the
spectrum (40), one can imagine considering a system of three
or more tricritical Blume-Capel models coupled together by
a generalized condensing boundary term similar to the one
we derived for three TFI chains in Appendix A. Starting
from N Blume-Capel models, one would then expect a
transition

Ising×N × Fib×N → so(N )1 × Fib×N, (45)

where all the CFTs refer only to the fusion rules (scaling
dimensions have to be worked out separately). The resulting

criticality would be described by a CFT with central charge
c = 7N/10, but in general these would not correspond to an
N = 1 supersymmetric minimal models, because their central
charge is maximally c = 3/2. We leave it for future work to
study whether such hierarchy could be realized at the level of
spin-1 chains.

VIII. DISCUSSION

We have generalized the insight of Ref. 24, that two-
dimensional condensate-induced transitions25 have counter-
parts in critical spin chains, to construct a hierarchy of exactly
solvable spin-1/2 chains with so(N )1 critical points. Our
construction is based on first coupling together N critical TFI
chains by means of a nonlocal Hamiltonian term—a condens-
ing boundary term that can be derived from the condensation
picture—and then transforming these coupled systems into
a translationally invariant form by means of general spin
duality transformations. As our construction respects the
symmetries of the decoupled TFI system, the resulting chains
are also exactly solvable with a Jordan-Wigner transformation.
Comparing the energy spectra of the constructed chains to the
predictions by CFT, we explicitly verified that all the chains
in our hierarchy are indeed critical and described by so(N )1

CFTs. While the exact solvability is an attractive feature of
our hierarchy, the condensation transition motivated approach
goes beyond exactly solvable models. We showed that a similar
strategy could be applied also to two decoupled tricritical
Blume-Capel models, TFI-like spin-1 models with, to our
understanding, no known exact solution, and derived another
critical spin-1 chain with a critical point described by the
predicted supersymmetric minimal model with central charge
c = 7/5.

The constructed so(N )1 spin chains contain up to N -
spin operators whose couplings are tuned to criticality by
construction (namely, they are all are equal). However, exact
solvability enables one to explore their phase diagrams
beyond the critical point. By varying the couplings of
nearest-neighbor two-spin with respect to N -spin terms, we
showed that the phase diagrams of all odd N models are
qualitatively similar to the one of the simplest members
of the hierarchy, the transverse field Ising chain, with the
longer range couplings playing the role of the Zeeman term.
For the even N models the different terms could always
be grouped to varying range generalizations of the XX and
YY terms appearing in the XY model. Varying their relative
couplings produced a phase diagram qualitatively similar to
this canonical spin chain. While these results illustrate the
general features of the phase diagrams, the number of terms
in our so(N )1 models grows linearly with N . For generic
couplings the phase diagrams are expected to exhibit additional
phases and critical points. We leave their study for future
work.

In addition to the full phase diagrams of our hierarchy of
models, there are also several other interesting aspects that
deserve further investigation. First, one can use the exact
solutions of the models to study the nature of the ground
states, including correlations in them21 and their entanglement
properties.56 In this respect it would be particularly interesting
study the overlap of our N -local ground states with the
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projected Pfaffian states that are exact ground states of infinite
range models with so(N )1 criticality.23 The low-energy theory
of our models could also be studied and compared to that
for the so(N ) symmetric spin chains.20 A second natural
future direction is to consider various generalizations of our
hierarchy models. The simplest generalization is to include a
local magnetic field term (which is already present in the TFI
model). Even in the presence of such a term, all the models can
still be solved by means of a Jordan-Wigner transformation.
On the other hand, if one adds a term σ z

i σ z
i+1 to the critical

XY chain, one obtains the so-called XXZ chain, which can
be solved by the Bethe ansatz.1 It would be most interesting to
investigate if one can add analogous terms to our models and
obtain spin chains that allow for a solution via Bethe-ansatz
techniques.

A third open question is the physical realization of our
hierarchy models. As the locality of our models grows
linearly with increasing N , the experimentally relevant ones
reside in the small N end of the hierarchy. Indeed, three-
spin interactions required for the N = 3 chain have been
constructed in triangular optical lattices,30 but a challenge
remains to isolate only those required for our hierarchy
of models. Another way around the problem of many-spin
interactions would be to treat the fermions as fundamental
degrees of freedom. A proposal to implement the fermionic
version of the TFI chain with cold atoms in an optical lattice
has been put forward in Ref. 57. Since all our models are
equivalent to free fermion problems of up to range N tunneling
and pairing, the realization of the N = 3 chain with its inter-
esting su(2)2 critical point could be possible along the same
lines.

When viewed in terms of fermions, the odd N models also
generalize Kitaev’s celebrated Majorana chain45 that can be
obtained from the TFI chain (which is the simplest odd N

model in our hierarchy). From the classification of topological
phases,46,47 it follows that for one-dimensional systems in class
D, the symmetry class of the odd N models, there can only be
two types of phases, namely a trivial phase, and a topological
(nontrivial) phase. In the phase diagrams we studied, these two
types of phases correspond to the “spins aligned” phase with
twofold degenerate ground state (the analog of the topological
phase with Majorana end states for open boundary conditions)
and the “spin polarized” phase with unique ground state. As
the critical point of our models corresponds to the transition
between these two phases, the so(N )1 criticality would usually
imply that the adjacent phases would be somehow distinct from
those with a critical point in the Ising universality class. Thus
it would be fundamentally interesting to study whether there
is any observable microscopic signature that distinguishes the
gapped analogs of the “topological” phases for N = 3,5, . . .

from those of the N = 1 case.
Finally, the application of the condensation picture24 to spin

chains is far from complete. This is vividly illustrated by the
presented spin-1 Blume-Capel example, which we strongly
believe is just a single example of another hierarchy, exactly
like the mapping between two TFI chains and the XY chains
was just the simplest example of the so(N )1 hierarchy. The fact
that our construction works even in the absence of clear corre-
spondence between the boundary conditions and the symmetry
sectors suggests that there is something more fundamental to

be understood about the form of condensing boundary term.
A clue to this might be the way the constraining of boundary
conditions closely resembles a Gutzwiller projection that has
been used to construct so(N )1 critical states.23 Given such
understanding, it would be interesting to generalize our method
first to N Blume-Capel models and then to other (higher) spin
chains. This should also be possible in models whose criticality
is not described by a CFT that is a direct product. Within the
set of models we constructed, the counterpart of condensation
could in principle be performed when N is a multiple of 16,
because then the CFT describing the criticality contains always
a bosonic field. In Appendix D we comment on the possibility
of using the condensation picture to obtain spin chains with
critical points described by (E8)1, and products thereof. While
such models are likely to have little experimental relevance, it
would be academically highly satisfying to find a realization
of such an exotic mathematical structure in terms of a spin
chain.
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APPENDIX A: GENERALIZED CONDENSING
BOUNDARY TERM

In this appendix, we first explicitly derive the condensing
boundary term (13) for the system of three decoupled TFI
chains. Then we give the most general form for these terms
that takes into account possible additional signs that can appear
for different chain lengths L.

1. Derivation

Let us consider a system of three decoupled critical TFI
chains (we label them 0, 1, and 2) described by H 3

TFI and
consider condensing a boson in two of them, say chains 0 and
1, by adding the condensing boundary term

H 2
B,01 = (P1 − 1)σx

L−3σ
x
0 + (P0 − 1)σx

L−2σ
x
1 . (A1)

By employing the duality transformations (17), the resulting
system H 3

TFI + H 2
B,01 could be written as a decoupled system

of a critical XY chain and a critical TFI chain. The criticality
of this theory is described by so(2)1× Ising CFT, which
also contains a boson. Recalling example 2 in Sec. III B,
condensation of this boson would lead to confinement of
all the product primary fields that together with the 1 and
ψ fields contain only a single σ , λ1, or λ2 field. These
fields label the states in the total odd parity sectors of
H 3

TFI + H 2
B,01, i.e., when the TFI chain and the XY chain

have different boundary conditions. Defining T z = P0P1 as
the parity operator for the XY chain part of the system, we
can force them to have always same boundary conditions, thus
effectively condensing the boson in the so(2)1× Ising system,
by adding to H 3

TFI + H 2
B,01 the further condensing boundary
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term

H ′
B = (T z − 1)σx

L−1σ
x
2 + (P2 − 1)

(
τ x
L−2τ

x
0 + τ

y

L−2τ
y

0

)
.

(A2)

The duality transformations (17) imply that τ x
L−2τ

x
0 =

P1σ
x
L−3σ

x
0 and τ

y

L−2τ
y

0 = P0σ
x
L−2σ

x
1 . Thus the total condens-

ing boundary term added to H 3
TFI can be written as

H 2
B,01 + H ′

B = (P0P1 − 1)σx
L−1σ

x
2 + (P1P2 − 1)σx

L−3σ
x
0

+ (P0P2 − 1)σx
L−2σ

x
1 . (A3)

The two boundary terms implementing the counterparts of
the two condensations in critical spin chains are therefore
equivalent to a single condensing boundary term. This term
constrains the boundary conditions of the decoupled system
such that all the three TFI chains can only have simultaneously
periodic or antiperiodic boundary conditions across all the
eight symmetry sectors labeled by (P0,P1,P2).

Since any sequence of condensing all the bosons in a system
of N decoupled TFI chains can be understood in terms of
pairwise condensations of either this type (N odd theory with
N ′ even theory) or that considered in the main text in Sec. IV B,
any such process must be equivalent to adding the generalized
boundary term (14).

2. Most general L-dependent form

In the main text, we restricted ourselves to the cases where
the system size is an even multiple of N . The reason we
did this is that in the case that L is an odd multiple of N ,
the boundary Hamiltonians contain some additional signs.
While they are not important from the point of view of the
condensation framework, they are required for the general
duality transformations we present in Appendix B to bring the
Hso(N)1 Hamiltonians into a translationally invariant form. In
the end of the day, the additional signs come from the fact
that Pauli matrices obey the relation τ xτ y = iτ z, which when
applied an even but not a multiple of four times gives rise to a
sign.

In the case that N is even, the condensing boundary term
takes the following form:

HN
B =

N−1∑
n=0

⎡
⎢⎢⎢⎣S

⎛
⎜⎜⎜⎝

N−1∏
l = 0
l �= n

Pl

⎞
⎟⎟⎟⎠ − 1

⎤
⎥⎥⎥⎦ σx

L−N+nσ
x
n ,

(A4)

S =
{

(−1)L/N for N mod 4 = 0,

1 for N mod 4 = 2,

while for the case of odd N they are given by

HN
B =

[(
N−1∏
l=1

Pl

)
− 1

]
σx

L−Nσx
0

+
N−1∑
n=1

⎡
⎢⎢⎢⎣(−1)L/N

⎛
⎜⎜⎜⎝

N−1∏
l = 0
l �= n

Pl

⎞
⎟⎟⎟⎠ − 1

⎤
⎥⎥⎥⎦ σx

L−N+nσ
x
n . (A5)

When L is an even multiple of N , both cases reduce to the
form given in the main text as Eq. (14).

APPENDIX B: EXPLICIT FORMS OF SPIN
TRANSFORMATIONS

In this appendix we give the spin transformations that are
necessary to bring the Hamiltonians Hso(N)1 = HN

TFI + HN
B

into a form that is manifestly translationally invariant.
The form of these transformations for general N are rather

unwieldy when expressed completely in terms of the Pauli
matrices τ . To simplify the notation, we introduce a set of
string operators, that are closely related to the parity operators
Pn of Eq. (10), whose definition we repeat here for convenience

Pn =
L/N−1∏

j=0

σ z
jN+n, n = 0,1, . . . ,N − 1. (B1)

The string operators we need are

P <j
n =

∏
i<j

σ z
Ni+n, P >j

n =
∏
i>j

σ z
Ni+n, (B2)

where n = 0,1, . . . N − 1, and we have the relation Pn =
P

<j
n σ z

j P
>j
n . Finally, we need the products of these operators

over all n, so we introduce

P
<j
t =

N−1∏
n=0

P <j
n , P

>j
t =

N−1∏
n=0

P >j
n . (B3)

Using this notation, the transformations for σx in the case
N = 4 in Eq. (25) take the following form:

σx
4j = τ

y

4jP
<j
t P

<j

0 P1,

σ x
4j+1 = τ z

4j τ
x
4j+1P

<j
t P

<j

1 ,
(B4)

σx
4j+2 = τ

y

4j+2τ
z
4j+3P

>j
t P

>j

2 ,

σ x
4j+3 = τ x

4j+3P
>j
t P

>j

3 P2.

The generalization for arbitrary even N reads as follows:

σ z
jN = τ x

jNτ z
jN+1 · · · τ z

jN+N−2τ
x
jN+N−1, σ x

jN = τ
y

jNP
<j
t P

<j

0

(
N/2−1∏
n=1

Pn

)
,

σ z
jN+1 = τ

y

jN+1τ
z
jN+2 · · · τ z

jN+N−3τ
y

jN+N−2, σ x
jN+1 = τ z

jNτ x
jN+1P

<j
t P

<j

1

(
N/2−1∏
n=2

Pn

)
,

...
...
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σ z
jN+N/2−2 = τ x

jN+N/2−2τ
z
jN+N/2−1τ

z
jN+N/2τ

x
jN+N/2+1, σ x

jN+N/2−2 = τ z
jN · · · τ z

jN+N/2−3τ
y

jN+N/2−2P
<j
t P

<j

N/2−2PN/2−1,

σ z
jN+N/2−1 = τ

y

jN+N/2−1τ
y

jN+N/2, σ x
jN+N/2−1 = τ z

jN · · · τ z
jN+N/2−2τ

x
jN+N/2−1P

<j
t P

<j

N/2−1,

σ z
jN+N/2 = τ x

jN+N/2−1τ
x
jN+N/2, σ x

jN+N/2 = τ
y

jN+N/2τ
z
jN+N/2+1 · · · τ z

jN+N−1P
>j
t P

>j

N/2,

σ z
jN+N/2+1 = τ

y

jN+N/2−2τ
z
jN+N/2−1τ

z
jN+N/2τ

y

jN+N/2+1, σ x
jN+N/2+1 = τ x

jN+N/2+1τ
z
jN+N/2+2 · · · τ z

jN+N−1P
>j
t P

>j

N/2+1,PN/2

...
...

σ z
jN+N−2 = τ x

jN+1τ
z
jN+2 · · · τ z

jN+N−3τ
x
jN+N−2, σ x

jN+N−2 = τ
y

jN+N−2τ
z
jN+N−1P

>j
t P

>j

N−2

⎛
⎝ N−3∏

n=N/2

Pn

⎞
⎠ ,

σ z
jN+N−1 = τ

y

jNτ z
jN+1 · · · τ z

jN+N−2τ
y

jN+N−1, σ x
jN+N−1 = τ x

jN+N−1P
>j
t P

>j

N−1

⎛
⎝ N−2∏

n=N/2

Pn

⎞
⎠ . (B5)

When N is odd, the transformations for the matrices σ z are given by

σ z
jN = τ

y

jNτ z
jN+1 · · · τ z

jN+N−2τ
y

jN+N−1,

σ z
jN+1 = τ x

jNτ
y

jN+1,

σ z
jN+2 = τ x

jN+2τ
y

jN+3,

...

σ z
jN+(N−1)/2−1 = τ x

jN+N−5τ
y

jN+N−4,

σ z
jN+(N−1)/2 = τ x

jN+N−3τ
y

jN+N−2, (B6)

σ z
jN+(N−1)/2+1 = τ

y

jN+1τ
x
jN+2,

σ z
jN+(N−1)/2+2 = τ

y

jN+3τ
x
jN+4,

...

σ z
jN+N−2 = τ

y

jN+N−4τ
x
jN+N−3,

σ z
jN+N−1 = τ

y

jN+N−2τ
x
jN+N−1.

Finally, the matrices σx transform as

σx
jN = τ

y

jNτ x
jN+1 · · · τ y

jN+N−3τ
x
jN+N−2τ

y

jN+N−1P
<j
t

(
(N−1)/2∏

n=1

P <j
n

)
P

>j
t

⎛
⎝ (N−1)∏

n=(N−1)/2+1

P <j
n

⎞
⎠ , (B7)

σx
jN+1 = τ

y

jNP
<j
t P

<j

1

(
(N−1)/2∏

n=2

Pn

)
,

σ x
jN+2 = τ z

jNτ z
jN+1τ

y

jN+2P
<j
t P

<j

2

(
(N−1)/2∏

n=3

Pn

)
,

...

σx
jN+(N−1)/2−1 = τ z

jN · · · τ z
jN+N−6τ

y

jN+N−5P
<j
t P

<j

(N−1)/2−1P(N−1)/2,

σ x
jN+(N−1)/2 = τ z

jN · · · τ z
jN+N−4τ

y

jN+N−3P
<j
t P

<j

(N−1)/2,

σ x
jN+(N−1)/2+1 = τ

y

jN+2τ
z
jN+3 · · · τ z

jN+N−1P
>j
t P

>j

(N−1)/2+1,

σ x
jN+(N−1)/2+2 = τ

y

jN+4τ
z
jN+5 · · · τ z

jN+N−1P
>j
t P

>j

(N−1)/2+2P(N−1)/2+1,

...
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σx
jN+N−2 = τ

y

jN+N−3τ
z
jN+N−2τ

z
jN+N−1P

>j
t P

>j

N−2

⎛
⎝ N−3∏

n=(N−1)/2+1

Pn

⎞
⎠ ,

σ x
jN+N−1 = τ

y

jN+N−1P
>j
t P

>j

N−1

⎛
⎝ N−2∏

n=(N−1)/2+1

Pn

⎞
⎠ .

APPENDIX C: CFT PREDICTIONS
FOR THE CRITICAL SPECTRA

Conformal field theory gives a detailed prediction for
the spectra of one-dimensional critical systems. We refer to
Ref. 7 for a general introduction to CFT. Once the correct
CFT for a given critical system has been identified, one
can obtain the spectrum in the thermodynamic limit. In
particular, the energies of the states of an L-site chain are
given by

E = E1L − πvc

6L
+ 2πv

L
(hl + hr + nl + nr ). (C1)

Here, the on-site energy E1 and the velocity v are nonuniversal
numbers, while the central charge c and the scaling dimensions
hl and hr can take several values, one for each primary field,
and are determined by the conformal field theory. Finally, nl

and nr are non-negative integers. The subscripts l and r refer
to the left- and right-moving modes of the CFT, which are
decoupled.

To confirm that a particular finite-size spectrum is con-
formal, one typically shifts the energy of the states, such
that the ground state has zero energy, Egs = 0. In addition,
one rescales the energies, such that the lowest excited state
has energy Eex,1 = hl + hr . After this shift and rescaling,
the spectrum is fixed completely, and one can compare it
to the spectrum predicted by CFT. The CFT spectrum takes
the form E = hl + hr + nl + nr = 2h + nl + nr , were we
assumed that the left and right scaling dimensions are equal,
hl = hr = h, which will always be the case for the theories
we encounter in this paper. In addition, we also assumed that
the scaling dimension corresponding to the ground state is
h = 0.

CFT not only predicts which energies will be present in
the spectrum, it also predicts their degeneracies (and to some
extent, their momenta). This information is encoded in the
partition function of the CFT. The total partition function splits
into left- and right-moving pieces, one for each primary field.
In general, for a primary field φi , with scaling dimension hi ,
the left-moving part of the partition function reads Zl(φi) =
q

hi

l

∑∞
nl=0 cnl

q
nl

l (and similar for the right-moving part), where
the cnl

are constants, depending on the primary field, and we
view ql as a formal variable. The total partition function takes
the form Ztot = ∑

i Zl(φi)Zr (φi), where the sum runs over all
primary fields in the theory.

To explain how the partition function Ztot encodes the
energies of the states in the spectrum of a critical model,
we look at the “vacuum sector” of the CFT, which corre-
sponds to the trivial primary field, with scaling dimension
h = 0. The total partition function for this sector takes the

form

Zl(1)Zr (1) = 1 + c1,0ql + c0,1qr + c2,0q
2
l

+ c1,1qlqr + c0,2q
2
r + · · · . (C2)

Each term correspond to cnl,nr
states, which have the energy

nl + nr (or, in general, 2h + nl + nr ) that appears as the power
of the ql variables. So, the degeneracy of the states is encoded
in the constants cnl,nr

.
CFT does not completely predict the momenta of the states,

but one can make the following remarks. Let us assume that
the state corresponding to the primary field φi has momentum
k (in units of 2π/L). This momentum is not fixed by the CFT.
Often, but not always, the momenta of the states obtained from
this primary field by increasing the values nl and nr is given
by k − nl + nr . This is typically true for Virasoro minimal
models (such as the Ising CFT). In the presence of additional
symmetries, additional shifts in momenta can occur (typically,
shifts by π or π/2) upon increasing the values of nl and nr .
Thus, one cannot completely predict the momenta of all the
states, even if the momenta of the states corresponding to the
primary fields are known.

In Appendix D we explicitly state the partition functions
for the so(N )1 CFTs that are relevant to our hierarchy of spin
models.

APPENDIX D: CHARACTERS OF THE so(N)1 CFTs

In this appendix we will give the precise forms of the
partition functions of the so(N )1 CFTs describing the critical
behavior of the hierarchy of spin chains we constructed. In
the CFT literature, the partition functions Zl and Zr are often
referred to as (chiral) characters of the CFT, and denoted as
Zl(φi) = chql

(φi) and Zr (φi) = chqr
(φi). In this appendix we

will adopt this notation.
The characters of so(N )1 CFT were considered in, for

instance, Ref. 58, using a so-called spinon formulation. Here
we give the characters, making use of the knowledge that they
can be written in terms of N free fermions, by employing the
condensation picture.

1. Characters for N = 1

For N = 1, the so(N )1 theory is just the Ising CFT, i.e., the
minimal model with central charge c = 1

2 ; see Ref. 6. Because
the formulation of the so(N )1 characters we use is based on
the characters of the Ising theory, we give them here explicitly.

We start by introducing the following notation: (q)m =∏m
k=1(1 − qk), for m � 1 an integer. In addition, we define

(q)0 = 1 and (q)∞ = ∏∞
k=1(1 − qk). With this notation, we

can write the (chiral) characters of the vacuum sector 1, the σ
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sector, and the ψ sector as follows:

ch1(q) =
∑
m � 0
even

qm2/2

(q)m
= 1 + q2 + q3 + 2q4 + 2q5 + · · · ,

chσ (q) = q1/16
∑
m � 0
even

qm(m−1)/2

(q)m

= q1/16(1 + q + q2 + 2q3 + 2q4 + 3q5 + · · · ),

chψ (q) =
∑
m � 1

odd

qm2/2

(q)m

= q1/2(1 + q + q2 + q3 + 2q4 + 2q5 + · · · ). (D1)

2. Characters for N = 2

The case so(2)1 is equivalent to a compactified free boson
CFT, namely u(1)4, which has four primary fields. More
detailed information on these CFTs can be found, for instance,
in Ref. 59.

In the general case u(1)p, with p an integer, the fields are
labeled by an integer l = 0,1, . . . ,p − 1, and the associated
characters read

chp,l(q) = 1

(q)∞

∑
m ∈ Z

m mod p = l

qm2/2p. (D2)

We labeled the fields of the so(2)1 theory as 1, λ1, λ2, and ψ ,
which correspond to the labels l = 0, l = 1, l = 3, and l = 2,
respectively. Using Eq. (D2), we find the following results:

chN=2
1 (q) = ch4,0(q) = 1

(q)∞

∑
m ∈ Z

m mod 4 = 0

qm2/8

= 1 + q + 4q2 + 5q3 + 9q4 + 13q5 + · · · ,

chN=2
λ1

(q) = chN=2
λ2

(q) = ch4,1(q) = ch4,3(q)

= 1

(q)∞

∑
m ∈ Z

m mod 4 = 1

qm2/8

= q1/8(1 + 2q + 3q2 + 6q3 + 9q4 + 14q5 + · · · ),

chN=2
ψ (q) = ch4,2(q) = 1

(q)∞

∑
m ∈ Z

m mod 4 = 2

qm2/8

= q1/2(2 + 2q + 4q2 + 6q3 + 12q4 + 16q5 + · · · ).

(D3)

3. Characters for N = 3

With N = 3, the model so(3)1 is equivalent to su(2)2.
The general models su(2)k have often been considered in
the literature; see for instance the Refs. 60–62, which give
details on the characters from rather different perspectives. The

characters take the following form (using the labels 1,σ,ψ):

chN=3
1 (q) = 1

(q)∞

∑
m1 � 0
m2 ∈ Z

qm2
1+2m1m2+m2

2

(q)m1

= 1 + 3q + 9q2 + 15q3 + 30q4 + 54q5 + · · · ,

chN=3
σ (q) = q3/16

(q)∞

∑
m1 � 0
m2 ∈ Z

qm2
1+2m1m2+m2

2+m2

(q)m1

= q3/16(2 + 6q + 12q2 + 26q3 + 48q4

+ 84q5 + · · · ),

chN=3
ψ (q) = q1/2

(q)∞

∑
m1 � 0
m2 ∈ Z

qm2
1+2m1m2+m2

2+m1+2m2

(q)m1

= q1/2(3 + 4q + 12q2 + 21q3 + 43q4

+ 69q5 + · · · ). (D4)

4. Characters for N = 4

The model so(4)1 is equivalent to u(1)2 × u(1)2 (or
su(2)1 × su(2)1), so the characters can be obtained directly
from Eq. (D2). Using the following correspondence to the
labels (l1,l2) of the u(1)2 × u(1)2 theory, 1 = (0,0), λ1 =
(0,1), λ2 = (1,0), and ψ = (1,1), one finds

chN=4
1 (q) = 1 + 6q + 17q2 + 38q3 + 84q4 + 172q5 + · · · ,

chN=4
λ1

(q) = chN=4
λ2

(q)

= q1/4(2 + 8q + 20q2 + 48q3 + 102q4

+ 200q5 + · · · ),

chN=4
ψ (q) = q1/2(4 + 8q + 28q2 + 56q3

+ 124q4 + 232q5 + · · · ). (D5)

5. Characters for general N

We now give the form of the characters for the general
theory so(N )1. In analogy to the condensation picture that we
employed to construct the hierarchy of spin chains form N

decoupled TFI chains, these characters can be expressed in
terms of the characters of the Ising model, namely ch1(q),
chσ (q), and chψ (q), given in Eq. (D1).

In the case N = 2, one finds

chN=2
1 (q) = chN=1

1 (q) chN=1
1 (q) + chN=1

ψ (q) chN=1
ψ (q),

chN=2
λ1

(q) = chN=2
λ2

(q) = chN=1
σ (q) chN=1

σ (q), (D6)

chN=2
ψ (q) = 2 chN=1

1 (q) chN=1
ψ (q).

By using this result, we obtain the characters for the case
N = 3 as

chN=3
1 (q) = chN=1

1 (q) chN=1
1 (q) chN=1

1 (q)

+ 3chN=1
1 (q) chN=1

ψ (q) chN=1
ψ (q),

chN=3
σ (q) = 2 chN=1

σ (q) chN=1
σ (q) chN=1

σ (q),
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chN=3
ψ (q) = 3 chN=1

1 (q) chN=1
1 (q) chN=1

ψ (q)

+ chN=1
ψ (q) chN=1

ψ (q) chN=1
ψ (q). (D7)

From these results, it is not hard to obtain the structure for the
general case of so(N )1. For N even they are given by

chN
1 (q) =

N∑
p = 0
p even

(
N

p

)(
chN=1

1 (q)
)N−p(

chN=1
ψ (q)

)p
,

chN
λ1

(q) = chN
λ1

(q) = 2N/2−1(chN=1
σ (q)

)N
, (D8)

chN
ψ (q) =

N−1∑
p = 1
p odd

(
N

p

)(
chN=1

1 (q)
)N−p(

chN=1
ψ (q)

)p
,

while for N odd the characters read

chN
1 (q) =

N−1∑
p = 0
p even

(
N

p

)(
chN=1

1 (q)
)N−p(

chN=1
ψ (q)

)p
,

chN
σ (q) = 2(N−1)/2

(
chN=1

σ (q)
)N

, (D9)

chN
ψ (q) =

N∑
p = 1
p odd

(
N

p

)(
chN=1

1 (q)
)N−p(

chN=1
ψ (q)

)p
.

6. Remark about the character of (E8)1

We close this appendix by making a remark about the CFT
associated with (E8)1. When N = 16, the scaling dimensions
of the fields λ1 and λ2 of the so(N )1 CFT are integers. This
means that one could condense, for instance, the field λ1.
It turns out that after condensation, the fields λ2 and ψ are
confined, so one is left with a theory which consists of only
the vacuum sector, and has central charge c = 8. This is the
so-called (E8)1 CFT.

The character of this theory reads

ch(E8)1 (q) = chN=16
1 (q) + chN=16

λ1
(q). (D10)

In principle, one could try to take the spin chain, which has
so(16)1 as its critical behavior, and add a boundary term, which
causes the condensation to the (E8)1 critical behavior. It turns
out, however, that if one constructs the full spectrum associated
with the (E8)1 CFT, one obtains exactly the same energies
as predicted by the so(16)1 CFT, because of the following
relation:(

ch(E8)1 (q)
)2 = (

chN=16
1 (q)

)2 + (
chN=16

λ1
(q)

)2

+ (
chN=16

λ2
(q)

)2 + (
chN=16

ψ (q)
)2

. (D11)

In principle, the momenta of the states could differ, but because
CFT does not fully specify the precise momenta, one cannot
unambiguously say if a certain spectrum is described by the
so(16)1 or (E8)1 CFT. It is more a matter of choice how one
interprets the spectrum.

In the case that N = 32, the situation is slightly different.
The theory so(32)1 also contains two bosons, this time with
hλ = 2, which can be added to the chiral algebra. One obtains
the theory (E8)1 × (E8)1,

ch(E8)1 (q) × ch(E8)1 (q) = chN=32
1 (q) + chN=32

λ1
(q). (D12)

However, in this case, the number of states in the spectra differs
between the theories (E8)1 × (E8)1 and so(32)1, because of the
inequality(

ch(E8)1 (q)
)4 �= (

chN=32
1 (q)

)2 + (
chN=32

λ1
(q)

)2

+ (
chN=32

λ2
(q)

)2 + (
chN=32

ψ (q)
)2

. (D13)

So, it should be possible to take the spin chain with so(32)1

critical behavior, and add an appropriate boundary term, to
obtain a critical spin chain described by the (E8)1 × (E8)1

CFT. We did not embark on this exercise, however.
Finally, we note that for N = 16p, with p an integer p � 3,

the spectrum of the theory so(16p)1 contains two bosons, with
integer scaling dimension p > 2. Adding one of these bosons
does not directly give the [(E8)1]p CFT as one might have
expected naively. Instead, one finds the following relations for
N = 48, 64, 80, 96:

chN=48
1 (q) + chN=48

λ1
(q)= (

ch(E8)1 (q)
)3 + 348q,

chN=64
1 (q) + chN=64

λ1
(q)= (

ch(E8)1 (q)
)4 + 1024q ch(E8)1 (q),

chN=80
1 (q) + chN=80

λ1
(q)= (

ch(E8)1 (q)
)5 + 1920q

(
ch(E8)1 (q)

)2
,

chN=96
1 (q) + chN=96

λ1
(q)= (

ch(E8)1 (q)
)6 + 3072q

(
ch(E8)1 (q)

)3

+ 98 304q2. (D14)

In general, the sum chN=16p

1 (q) + chN=16p

λ1
(q) decomposes in

terms of(
ch(E8)1 (q)

)p
,
(
ch(E8)1 (q)

)p−3
, . . . ,

(
ch(E8)1 (q)

)p mod 3
.

For completeness, we give the explicit decomposition. For p

a positive integer, we have

chN=16p

1 (q) + chN=16p

λ1
(q)

=
�p/3∑
j=0

28j p

p − j

(
p − j

2j

)
qj

(
ch(E8)1 (q)

)p−3j
, (D15)

where the floor function �x denotes the largest integer j , such
that j � x.
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