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~/[AARTEN DE RIJKE 

Y D E  VENEMA 

Sahlqvist's Theorem for 
Boolean Algebras with 
Operators 
with an Application 
to Cylindric Algebras 

A b s t r a c t .  For an arbitrary similarity type of Boolean Algebras with Operators we 
define a class of Sahlqvist identities. Sahlqvist identities have two important  properties. 
First ,  a Sahlqvist identity is valid in a complex algebra if and only if the underlying 
relational atom structure satisfies a first-order condition which can be effectively read off 
from the syntactic form of the identity. Second, and as a consequence of the first property, 
Sahlqvist identities are canonical, that  is, their validity is preserved under taking canonical 
embedding algebras. Taken together, these properties imply that  results about a Sahlqvist 
variety V van be obtained by reasoning in the elementary class of canonical structures of 
algebras in V. 

We give an example of this strategy in the variety of Cylindric Algebras: we show 

that  an impor tant  identity called Henkin's equation is equivalent to a simpler identi ty that  

uses only one variable. We give a conceptually simple proof by showing that  the first- 

order correspondents of these two equations are equivalent over the class of cylindric atom 

structures. 

1. I n t r o d u c t i o n  

The aim of this note is to explain how a well-known result from Moda~ Logic, 
S~hlqvist's Theorem, can be applied in the theory of Boolean Algebras with 
Operators to obtain a large class of identities, called Sahlqvist identities, that  
are preserved under canonical embedding algebras. These identities can be 
specified as follows. Let a = { fi : i E I } be a set of (normal) additive 
operations. Let an untied term over cr be a term that  is either 

(i) negative (i.e., in which every variable occurs in the scope of an odd 
number  of complementat ion signs - only), or 

(ii) of the form gl(g2.. .  (gn(x)). . .) ,  where the g+s are+duals of unary  el- 
ements of a (i.e., gi is defined by gi(x) = - f i ( - x )  for some unary 
operator  in or), or 

Presented by I s t v ~ n  N ~ m e t i ;  Received December 15, 1993; Revised June 24, 1994 

Studla Logica 54: 61-78, 1995. 
© 1995 KluwerAcademic Publishers. Printed in the Netherlands. 



62 M. de Rijke, Y. Venema 

(iii) dosed  (i.e., without  occurrences of variables; note  tha t  this case is 
covered by (i)), or 

(iv) obtained from terms of type (i), (ii) or (iii) by applying + , .  and ele- 
raents of a only. 

Then,  an equality is called a Sahlqvist equality if it is of the  form s = 1, 
where s is obtained from complemented untied terms - u  by applying duals 
of elements of a to terms tha t  have no variables in common,  and • only. 

Before proceeding, let us give some examples and non-examples of Sahlqvist 
identit ies in algebraic logic. First of a~, the axioms governing normal ,  ad- 
ditive Boolean Algebras with Operators { fl : i e I } ( f i (x  + y) = f ix  + f i Y  
and fi0 = 0) are Sahlqvist identities. This should be obvious for the later 
axiom, while the former is equivalent to 

f i (x  + y) .  - ( f i x  + f i y )  <~ 0 and (f ix + f i y ) .  - f i ( x  + y) <<. 0, 

o r  

- [ f i ( x  + y) " - ( f i x  +fiy)] = 1 and - [(fix + f i Y ) " - f i ( x  + y)] = 1. 

Now, finally, bo th  f i(x + y) .  - ( f i x  + f iY )  and ( f ix  + f l y ) .  - f i ( x  + y) are 
unt ied terms,  as required. 

Next, recall tha t  closure algebras are normal,  additive Boolean algebras 
with a single operator  (.)c satisfying 

These inequalities are equivalent to - [ x . - x  c] = 1 and - [ x  co. - x  c] = 1, 
respectively; and clearly, bo th  of these are Sahlqvist identities. 

As a further  example, all axioms for both  relation and cylindrir algebras 
can be brought  in a Sahlqvist form. 

RA CA 
(x + y); z = x; z + y; z 
(x + y ) V =  xVTyV 
(x ;y ) ; z  = x ; (y ;z )  
x ; l ' =  x 

(x; y ;xv 
x~; - ( x ;  y) ~< - y  

c~O = 0 
X <~ e i x  

ci(x " ciy) = cix " ciy 
c~cjx = cjc~x 
dii= 1 
df f= ck(dik " dkj) 
c i ( d i j  . x )  . c (di  . = 0 
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Let's consider the RA axioms first. Using the tricks demonstrated above, 
it should be obvious by now that the first six RA axioms are equivalent to 
(pairs of) Sahlqvist identities. As for the last RA axiom, Johan van Benthem 
observed that  it has a SaMqvist equivalent 

- [ ( x v ; - ( x ;  y)) .  y)] = 1. 

Now, what about the CA axioms? The first five CA axioms are clearly 
(equivalent to) Sahlqvist identities, while the sixth one is equivalent to the 
conjunction of dij  • -ck(dik. d~j) = 0 and - d i j  • ck (d ik"  dk j )  = 0 ,  or, equiv- 
alently, to the conjunction of -[dij. -ck(dik" dkj)] = 1 and -[-dij .  ck(dik. 
dkj)] = 1. And the latter two are Sahlqvist identities. The last CA axiom 
is equivalent to -[ci(dij" x). c i ( d i j . - x ) ]  = 1, which, again, is a Sahlqvist 
identity. 

Let's move on now to an example of an identity that  is not (equivalent to) 
Sahlqvist equations. There are several reasons why an identity - t  = 1 need 
not be a Sahlqvist identity, one of which is that  t is a non-negative term that  
fails to be an untied one because some additive operator f in t is in the scope 
of a dual operator g. As an example demonstrating that  such violations of 
the Sahlqvist requirements may quickly lead to failure of preservation of 
canonical embedding algebras, consider the so-called McKinsey axiom from 
modal  logic: 

[:]~p --* <)Dp or [:]©x • ~[:]x = [:]~x, 

(Note that  the latter is an identity between positive terms.) This ax- 
iom/ident i ty  is not a Sahlqvist identity as the subterm [::]Ox is not an untied 
one, precisely because of the above reason. Due to a recent result of Gold- 
blatt 's ,  the McKinsey axiom is not preserved under canonical embedding 
algebras (cf. [Goldblatt 1991a, Cor. 5]). 

In fact, Sahlqvist proved two results concerning Sahlqvist identities. Refor- 
mulated in Mgebraic terms, the correspondence theorem states the existence 
of an algorithm that ,  given a Sahlqvist identity z/, produces a first-order 
formula ys such that  for any relational structure ~, ~s holds in ~ iff rfl holds 
in the complex Mgebra Em ~" of ~. In the canonicity part  it is proved that  
Sahlqvist identities are canonical, i.e. they are preserved under taking canon- 
ical embedding algebras. The main ideas behind these, results can already 
be found in J5nsson-Tarski [1952]. In particular, with some additional effort 
the canonicity theorem can be derived as a consequence of Theorem 3.10 of 
that  paper. (For a more detailed and up to date exposition of this mat ter  
we refer to J6nsson [1994], which also contains new material.) 
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Nevertheless, we feel that algebraic logicians might find some new and 
potentially interesting ideas in the modal side of the field. Here we are think- 
ing mMnly of the correspondence part of the theory. Basically, its effect is 
that in the setting of Sahlqvist identities, there are useful results concerning 
relational structures that one may transfer to the corresponding variety of 
BAO's. For instance, the equivalence of two equations may be proved or 
disproved by reasoning on modal frames (or atom structures) rather then by 
manipulating these equations themselves. Note that this strategy of reduc- 
ing algebraic issues to questions about atom structures has appeared before 
in the literature on algebraic logic, cL [Andreka, Thompson 1988], [Henkin 
et al. 1971, 1985], [Maddux 1982]. The intended contribution of this paper 
is to show how Sahlqvist's theorem offers a more general, systematic and 
unified perspective on this strategy. 

As this note is aimed primarily at algebrMsts, we assume that the reader 
is familiar with basic algebraic notions and facts; for algebraic details not 
explained in this note we refer the reader to [Goldblatt 1989]. We will be 
somewhat more explicit concerning the modal logical results and definitions 
we will need; most of them will be presented in §2. After that, in §3, we 
describe the modal counterparts of the above Sahlqvist equalities, and par- 
tinily prove a Sahlqvist Theorem, which says that Sahlqvist formulas are 
both canonical and first-order. From this the preservation of Sahlqvist 
equalities under canonical embedding algebras is easily derived. Finally, §4, 
which is essentially a part of the second author's dissertation [Venema 1991], 
contains a detailed demonstration of the usefulness of the Sahlqvist Theo- 
rem. By reasoning on the modal frames, we can give a very simple proof 
that Henkin's equation in cylindric algebras is equivalent to an identity in a 
simpler form. Up till now, no purely algebraic proof for this simplification 
is known to us. 

The reader is advised to skip §2 upon a first reading, and only to return 
to it later on to look up a definition. 

We would like to thank Johan van Benthem for stressing the importance 
of Sahlqvist's Theorem, Hajnal Andrdka, Istv£n Ndmeti and Ildik5 Sain for 
encouraging us to write this note, and Prof. B. JSnsson for helpful sug- 
gestions concerning the earlier report version of this paper [Rijke, Venema 
1991]. 

2. P r e l i m i n a r i e s  

A Boolean algebra with operators (BAO) is an algebra ~ of type ( + , . ,  - ,  0, 1} 
U {fi  : i  C I }  such that (B, + , . , - , 0 ,  1) is a Boolean algebra, and the oper- 
ators { fi : i E I } are (finitely) additive (join preserving) in every argument; 
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a BAO is called normal if for every fi, fi(~) = 0 whenever one of the terms 
x j=O.  

Let us quickly move on to the Stone Representat ions of BAO's,  the so-called 
general frames.  First ,  a modal similarity type is a pair S = (O,p), where 
0 = { Vi : i E I } is a set of modal operators, and p is a rank function for 
O. As variables ranging over modal  operators we use V, V l , . . .  ; for monadic  
moda l  operators  we use ~>, <~I, . . . .  For Vi E S its dual operator  <i is defined 
as  <1i(¢1, . . . , Cp(i)) ~'~ " ~ 7 i ( ' ~ ¢ 1 , - - - ,  ~¢p(i)); the dual of a monadic  opera tor  
<~i is denoted  Eli. A modal language is a pair M = (S, Q), where S is a 
moda l  similarity type,  and Q is a set whose elements are called proposi t ion 
letters.  F rom the moda l  and Boolean constants ,  and the proposi t ion letters,  
the  moda l  formulas are built  up in the obvious way, u s ing - - ,  A, and the  
operators  in S. When  no confusion arises we write M(S) or even M ra ther  
than  M(S,  Q). 

A general frame 3 of similarity type S is a tnple (W, { Ri : i E I }, )4;) 
where W 7i 0, Ri C_ Wo(i) +1, and W C_ Sb(W) contains 0, and is closed under  
.., - ,  and  the operators  { fia~ : i E I }, where fn~ : Sb(W) p(i) -* Sb(W) is 
defined by 

fR , (Z l , . . . ,  zp(0) = 
(1) A A 

For fu ture  use we also define gR, : Sb(W) v(0 --* Sb(W),  by pu t t ing  gn,(Y1, 
• .. ,Yp(i)) = - f n i ( - Y l , . . . , - Y v ( o ) .  A gripke frame or atom structure of 
similarity type  S is a tuple (W,{ Ri : i E I } ) ,  with W and { Ri : i E I }  
as before. A general frame 3 defines a Kripke frame 3 #  via the forgetful 
functor  ( .)# : ( W , { R i  : i E I } , W ) ~  ( W , { R i  : i E I } ) .  A Kripke frame 3 
defines the general frame 3 # via (.)# : (W, { Ri : i E I }) ~ (W, { R i :  i E 
I ), Sb(W)). 

Given a general frame 3 = (W, { Ri : i E I }, W) its complex algebra is 
the  BAO 3 + = (IV, U , N , 0 , W , - , { f R ,  : i E I } ) ,  where fR~ : Sb(W) p(i) 
Sb(W)  is defined as in (1). 

Given a BAO ~B with operators  {fi : i E I ~, the general frame ~3+ is 
the tuple  (X~ ,  { RS~ : i E I }, IV), where X ~  is the set of ultrafilters on ~ ,  

1Algebraists may  be accustomed to seeing the argument  places reversed in the def- 
init ion of the funct ion fR,(Y~, . . . ,Yp(1))  as {x0 : 3 x l . . . x p ( i ) ( R i ( x o , x l  . . . . .  xp(i)) A 
Al<j<~p(i)(xi E ~ ) ) }  in (1). Being modal  logicians we like to think tha t  the moda l  

no ta t ion  is the more elegant one. 



66 M. de Rijke, Y. Venema 

Rfi  c_ X ~  (i)+1 is defined by 

R/~(a0, a l , . . . ,  ap(i)) iff 

Vj (1 <<. j <~ p(i) -+ xj E aj) implies f i ( x l , . . . ,  xp(0) E ao, 

and }4; _C Sb(X~) is {d:: z e B } for ~ = {a e X ~ : x  e a}. The canonical 
structure ¢_z ~ of ~ is the structure (~3+)#. By definition the complex 
algebra of the canonical structure of ~ is called the canonical embedding 
algebra of ~ :  ~ra ~ = (¢.z ~3)+. 2 By a canonical variety we mean one that 
is closed under canonical embedding algebras. 

A valuation on a general frame ~ is a function V taking proposition 
letters to elements of W; a valuation on a Kripke frame ~ is a valuation 
on ~#. In algebraic terms: a valuation is an assignment to the variables of 
elements of W, where W is the carrier of a subalgebra of ~#. Truth of a 
modal formula in a model (~, V) is then defined as follows: (~, V), w0 I= p 
iff w0 E V(p); (~, V)i w0 I= -1¢ iff (~, V), w0 ~= ¢; (~', V), wo I= ¢ A ¢ iff both 
(~, V), w0 l= ¢ and (~, V), w0 l= ¢; and (~, V), w0 l= Vi(¢a, . . . ,  ep(i)) iff 
qwl , . . . ,  wp(i) (Ri(w0, w l , . . . ,  wp(i)) h Al~<j<~0(0(~, Y), wj 1= ej)).  We write 
(~, V) ~- ¢ for: for all w E W, (~, Y), w ]= 4;; ~, w I = ¢ is short for: for all 
valuations Y on ~, (~, V), w I= ¢; and ~ I = ¢ is short for: for all w E W, 

I= ¢. 
A modal formula ¢ in n proposition letters induces an n-ary polynomial 

he(x1, . . . ,  x~) which may be defined as follows: 

h p i ( x l , . . . , x ,  ) - x j  
= 

h¢^¢(Xl, . . . ,xn) =- h¢(x~ , . . . , xn ) .h¢(x l , . . . , x~)  
hv,(¢l ..... ¢~,))(Xl,...,xn) =- fR,(h¢~(xl , . . . ,x~), . . . ,h¢~i)(Xl , . . . ,x~)) .  

And conversely, each polynomial in a similarity type of BAO's is of the form 
he for some modal formula ¢ in a modal language of the appropriate type. 
This identification of formulas and terms is made explicit in the following 
proposition. 

PROPOSITION 2.1. Let S be a modal similarity type, ~ a general frame of 
type S, and ¢ a formula in M(S).  Then ~ I= ¢ iff (~)+ I= he = 1. 

A (normal) modal logic in a language M(S) is a subset A of the set of 
formulas in M(S) that contains as axioms all propositional tautologies (PL), 
as well as 

Sin [Henldn 1970] the canonical embedding algebra of ~ is called the Stone extension 
of ~3; in [Jonsson, Tarski 1952] and [Henkin eta]. 1971, 1985] it is called the perfect 
extension of ~ .  
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, p j - l , p ,  p j + l , .  . . ,  pp(0)v 
(DB) Vi(pl, . . ., Pj-1, P', Pj+I , . . . ,  Pp(i))) ~* 

V/(pl, . . .  ,Pj-I,P V P~,Pj+I,-.-, Pp(/)), 

and that is closed under the following derivation rules: 

(MP) if ¢ , ¢  ~ ~b E A then ¢ E A 
(UG) if ¢ E A then -,Vi(¢l,. •., ¢j-1, -~¢, ¢j+1, . . . ,  ¢p(i)) E A 
(SUB) if ¢ E A then all substitution instances of ¢ are in A. 

For a logic A a canonical general .frame for A is defined by ~A(a) = 
(91A(a))+, where 91A(a) is the free algebra (on a generators) of the variety 
Vh, where 91 EVA if[ 91 ~ he = 1, for all ¢ E A. For a class of general or 
Kripke frames K, let Th(K) = {¢  : for all ~ E K, ~ I-- ¢}. We call a logic 
A sound with respect to a class of general or Kripke frames K if A C Th(K), 
and complete with respect to K if Th(K) C_ A. A logic A is called canonical 
if (~A(a))# I = A, for every canonical general frame ~A(a). 

Lo(S) is the first order language of type S; it has relation symbols Ri (i E I) 
of arity p(i) + 1. LI(S) is Lo(S) extended with unary predicate symbols Pj 
corresponding to the proposition letters of our modal ]anguage. L2(S) is the 
language of monadic second order logic with relation symbols Ri (i E I) of 
arity p(i) + 1, and variables Pjs ranging over sets. A modal formula ¢ locally 
corresponds to a formula a(x) if for all Kripke frames ~" of the appropriate 
type, 7, w ~ ¢ iff ~ I= a[w]. A modal formula ¢ corresponds to a sentence 

if for all Kripke frames ~ of the appropriate type, ~ 1= ~ iff ~ ~ a. 
When interpreted on frames modal formulas correspond to L2(S)-formulas 
(cf. [Benthem 1983]). 

3. A Sahlqvist theorem 

To describe the modal counterparts of the earlier Sahlqvist equalities we 
need the following definition. 

DEFINITION 3.1. Let S be a modal similarity type. Positive and negative 
occurrences of a proposition letter p are defined as usual by: (i) p occurs 
positively in p, (ii) a positive (negative) occurrence of p in ¢ is a negative 
(positive) occurrence ofp in -1¢ and in ¢ ---, ¢,  and a positive (negative) one 
in ¢ v 4 ,  ¢ A 4, ¢,..., ¢,(0), ¢,..., E S). A 
formula ¢ in M(S) is positive (negative) if every proposition letter occurs 
only positively (negatively) in ¢. ¢ is monotone in the proposition letter p if 
for every model (7, V) and every valuation Y' on ~ with Y(p) C_ Y'(p) and 
otherwise the same as Y, (7, V),w [= ~ implies (7, V'),w [= ~. 
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Note tha t  in a positive formula negations of modal  or Boolean constants  
are allowed. Also, if ¢ is positive then ¢ is mono tone  in all proposi t ion 
letters. 

DEFINITION 3.2. Fix a modal  similarity type S. A formula ¢ in M(S) 
is a Sahlqvist anteceden~ if it is built up from formulas tha t  are either nega- 
tive, closed (i.e., wi thout  occurrences of proposit ion letters),  or of the  form 
Dil ...Di~p, using only V,A and Vl, where ~ i ~ , . . - , ~ n ,  Vi E S. 

Define the set of Sahlqvist formulas in M(S) as being the smallest set X 
such tha t  if ¢ is a Sahlqvist antecedent ,  and ¢ is a positive formula,  then  
¢ ~ ¢ E X;  if a l , a 2  E X then 0.1A 0" 2 E X; and if a l , . .  ",0.p(0 E X have 
no proposit ion letters in common,  then ~i(0.1,. . . ,  0.p(0) E X.  

For a modal  similarity type S that  contains only unary  operators  several 
definitions exist of what  it is for a formula in M(S) to be a Sahlqvist formula; 
however, all are equivalent to (or are covered by) the restrict ion of 3.2 to 
such similarity types. 

We believe tha t  the generalization to arbitrary similarity types is in fact 
ours. One may  wonder Whether this is the obvious generalization f rom the 
'unary  case', e.g., why are boxes (i.e., duals of unary normal ,  addit ive op- 
erations) allowed in Sahlqvist antecedents,  while for n >/ 2 duals of n-ary 
operat ions in S are not? The reason why we are interested in Sahlqvist 
formulas is tha t  they may  be shown to be complete and to define certain 
first order properties of the underlying relations in (generalized) frames. A 
look at the kind of formulas forbidden in Sahlqvist antecedents  in the unary  
case in order to guarantee  these properties,  shows tha t  they typically include 
combinat ions of the form [3(. . .  V . . . ) ,  or, in f irs t-order terms,  Y(. . .  V . . . ) .  
But  these are precisely the combinations tha t  pop up when we have n-ary 
boxes (n/> 2) around! (In fact, if V is a binary modal  operator ,  and ,~ is its 
dual, then  (p~p)~p -+ (pVp)Vp may already be shown to be non-elementary.)  

Before proving an impor tan t  proper ty  of Sahlqvist formulas we recall tha t  
for a binary relation R , / ~  = { (y, x) : Rxy }. To each modal  formula  ¢ we 
associate a set operator  F¢ as follows. Let P 1 , . . . ,  Pk be sets and let P ab- 
breviate P 1 , . . . ,  Pk. FPJ = Pj (1 ~< j < k), while F-~¢(P) = ( F ¢ ( P ) )  c, and 
F¢^¢(/3)  = F¢(/3)NF¢(/3) .  FV,(¢~ ..... Cv(,))(f) = fR,(F¢l(_~),...,rCp(,)(fi)), 
while  F"'( ¢1 ..... ¢~(,))(/5) = g R , ( F ¢ ' ( P ) , . . . , F ~ ' ) ( P ) ) .  W e  a s s u m e  tha t  the 
set operator  corresponding to Boolean or modal  constants  is provided by the 
context  in which these constants occur. 

THEOREM 3.3. Let S be a modal similarity type. Let X be a Sahlqvist 



Sahlqvist's Theorem... 69 

formula in M(S). Then X corresponds to an Lo( S)-sentenee ct× effectively 
obtainable from X. 

PROOF. This is more or less similar to the proof of [Sahlqvist 1975, 
Theorem 8] (cf. also [Benthem 1983, Theorem 9.10]). Assume that X has the 
form ¢ -+ ¢.  

Let P l , . . . , P k  be the proposition letters occurring in X. Having ~ = 
(I/V, { R i :  i e I } ) ] =  X means having ~ I= VfiVx(x e F×(/3)). By assump- 
tion the latter formula has the form 

(2) v fvx  (x e r+(>~)-+ x e r+(/3)), 

where ¢ is a Sahlqvist antecedent, and ~b is a positive formula. Next, using 
such equivalences as 

(3) 
v...  ( (+^ e F~'V~(/3))-+ ,r) ++ 

A v... ((+A 
j=1,2 

x e r ,n (p ) )~  ,r), 

(4) 
v...  ((+ A ~ e r~,+,,-..,+,~,))(p))-~ ,r) 

v...Vy,...yp(,) ((+ ^ R,~y, ...y,,(,) ^ A(y~ ~ r+(/3)))  + ,r), 
J 

and 

(5) ( ( ,  A + v . . .  ( ,  + 

(2) can be rewritten as a conjunction of formulas of the form 

k mj  

(~) ViVxV~Z((+ A A A(y,J ~ gRo,~ 
j = l  I=1 

h 

-- .g%(5)))-+ V (zj e F+,(/3))), 
j=l 

where ~5 is a quantifier free Lo-formula ordering its variables in a certain way, 
and where all the Cjs are monotone. If a predicate variable P occurs only in 

h F ¢  j the consequent Vj=l(zj e (/3)) in (6), then, by the monotonicity of the 
Cjs, it can be replaced by ±, and the quantifier binding P may be deleted. 
Thus we may assume that every predicate letter occurs in the consequent 
of (6) only if it occurs in the antecedent of (6). 



70 M. de Rijke, Y. Venema 

m j  
By an easy argument we have that At=~(yu E gR~,~ ...gRltj (Pj)) if and 

ra j  
only if we have U/=I f /~%'--  f / ~ i  ( { ylj }) c_ Pj. Thus by universal instanti- 

ation (6) implies the first order formula 

(7) 

h m l  

VxVy2~(~ ~ V Zj ~ F'¢../(U f~1,1 ...f/~r,t l ({y/1}),. . .  
j=l /=1 

mk 

• - - , U  f~ , , k  • f~,~,k ({ y,,k } ) ) ) .  
/=.1 

But, conversely, by the monotonicity of the functions FCJ (7) implies (6), 
and we are done. 

To prove the general case one may argue inductively. If the Sahlqvist 
formulas X1, X2 have been shown to correspond to a l ,  a2, respectively, then 
X1 A X2 corresponds to oL 1 A 0t2] and if XI, . .  ",Xp(i) a r e  Sahlqvist formu- 
las that have no proposition letters in common, and that have been shown 
to correspond to Vx a ] , . . . , V x  ap(i), then '~(X1,. . . ,  Xp(i)) corresponds to 
V x g ( R i x y l . . .  Yp(i) ~ al(yl)  V . . .  V ap(i)(yp(i))). " 

Two remarks are in order. First, in the above result we may in fact re- 
place 'corresponds' by 'locally corresponds'. But given the algebraic appli- 
cation we have in mind the global version is more natural. Second, Mthough 
the algorithm in the above general proof may seem somewhat intractable or 
even obscure, in particular examples it is quite manageable, as is witnessed 
in §4. 

TttEOERM 3.4. Let S be a modal similarity type. For j E J, let Xj be 
Sahtqvist formulas in M(S) .  Let A be the modal logic axiomatized by { Xj : 
j E J }. Then A is canonical. Hence A is complete with respect to the class 
of Kripke frames defined by { axj : j E J }. 

PROOF. There are various ways to prove this result. The case where 
S contains only unary modal operators is [Sahlqvist 1975, Theorem 19]. To 
prove the general case one may use the same arguments together with the 
canonical frame construction for modal logics of arbitrary similarity type 
as found in [Venema 1991, Appendix A]. An alternative proof of the unary 
case may be found in [Sambin, Vaccaro 1989]. Finally, Goldblatt [1991b] 
proves that any variety of BA0s is canonical whenever it is generated by a 
frame class which is closed under ultraproducts; therefore, Theorem 3.4 is 
an immediate consequence of Theorem.3 3 • 
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We leave it to the reader to check that every Sahlqvist formula induces 
a Sahlqvist identity, and conversely. 

THEOERM 3.5. Let E be a set of Sahlqvist equalities. Let V2 be the variety 
defined by E. Then Vv. is canonical. 

PI~OOF. Let ~. be the set of modal translations of the elements of E. 
So E is a set of Sahlqvist formulas. Now, to prove the theorem, let ~ E Vz. 
Let 91=(tB[) be the free E-algebra on [B 1 generators. Then 92z([BI) -~ ~ ,  
and hence ~mPd~([Bl) -+ ~m ~ ,  by [Goldblatt 1989, Corollary 3.2.5(6)]. So 
we are done once we have shown that ~mggp,([BI) E Vp,. 

9A (tBI) 

Figure 1. 

Since gtp.(IBI)l= E, iap.(]BI) + ~ E. So by 3.4 ¢.~ Pgp.(IBI)= (iaz(IBl)+)# 
E. But then ~mPg2(IBI)= ((Pgp.(IBI)+)#) + I= E,i .e.  ~mPA2(IUl) E Vp.. 1 

REMARK 3.6. For a description of the current state of the art concerning 
canonicity and the relation with notions like first-order definability, we refer 
the reader to [Goldblatt 1991a]. 

P~EMARK 3.7. Although Theorem 3.5 describes a large part of the class 
of identities that are preserved under canonical embedding algebras, the 
Sahlqvist identities do not describe this class exhaustively. The conjunction 
of the McKinsey axiom ([:]<)p-+ <~[:]p) and the transitivity axiom (~(>p-+ 
(>p) from modal logic is a case in point: this formula is not a Sahlqvist 
formula, but it is preserved under canonical embedding algebras. 

As an application of Theorems 3.3 and 3.5, let us substantiate our earlier 
claim that when dealing with Sahlqvist equations we can move back and 
forth between modal frames and algebras~ in the sense that to prove that 
two Sahlqvist equations are equivalent over a canonical variety V, it suffices 
to establish the equivalence (in At  V) of their first-order translations. This 
means that reasoning can be done in the Kripke frames, which is usually 
much easier than manipulating Mgebraic equations. 
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TtIEOERM 3.8. Let V be a canonical variety, and ~1 and ~2 two Sahtqvist 
equations with f irst-order correspondents al  and a2. Then 

A t V [ = a l ~ a 2  ~ Vl=r/1 ~ 2 .  

PRoof .  From left to right: let 92 be an algebra in V with 92 I= ~i. By 
the fact that ~]i is a Sahlqvist equation, ~i holds in ~m 92 = (¢_z 92)+. This 
gives ¢_zP2 1= ai, so by assumption ¢.z92 [= aj .  But then again qmP2 I= ~?j, 
so ~j holds in 92 ~< ~m 92. 

From right to left: let ~ be a frame in At  V with ~ ~ ai. Then ~'+ ~ ~7i 

4. A n  e x a m p l e :  s i m p l i f y i n g  H e n k i n ' s  e q u a t i o n  

We assume familiarity with the notion of a cylindric algebra (cf. [Nemeti 
1991], [Henkin et al. 1971, 1985]), but we modify some notation and def- 
initions. Without loss of generality we may confine ourselves to the two- 
dimensional case. The algebraic language £2 has a constant d01 and two 
unary operators co and Cl, which we write as O0 and <>l, respectively, if we 
want to stress the modal aspects of the subject. A cylindric-type f rame is 
a quadruple ~ = (W, ~0, "~, D) with ,-q a binary accessibility relation (for 
Oi) on W ,  and D the subset of W where do1 holds. In the following table 
we list the modal versions of the axioms governing the variety of cylindric 
algebras, together with their first-order equivalents (i E {0, 1}): 

(Cli)  x ~ cix (Nl i )  Vu u  ~i  u 
( c 2 i )  x ~< - e ~  - c~x ( N 2 ~ )  W v  (4  ~ i  v ~ v ~ i  u )  

(C3i) cix ~ cicix (N3i) Vuvw ((u ~i  v A v ~i  w) 
U ~i  W) 

(C4i) clcjx < cjc~x (N4i) Vuvw ((u "~i v A v ~ j  w) --* 
3u' (u ~ j  4' ^ ~' ~i  w))  

(C5i) cidol (N5i) Vu3v (u  ~i  v A Dr)  
(C6i) ci(dol" x) <~ -ci(do~" - x )  (N6i) Vuvw ((u ~ v A u ~ w h 

Dv ^ Dw )  -~ v = w). 

We define C1 = C10 A Cl l ,  etc. A cylindric algebra is an algebra 9.1 = 
(A, +, - ,  Co, ci, do1) such that (A, +, - )  is a Boolean Algebra, co and cl are 
normal and additive, and C 1 , . . . ,  C6 are valid in 92. The variety of cyhndric 
algebras is denoted by CA. 

A cylindric frame is a cylindric type frame ~ such that N 1 , . . . ,  N6 are 
valid in ~. So a frame ~ = (W, N0, ~ ,  D) is cylindric iff '~0 and ~1 are 
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equivalence relations (N1, N2 and N3 for respectively reflexivity, symmetry 
and transitivity), every ~i-equivalence class contains precisely one 'diagonal' 
element in D (N5 for existence, N6 for unicity), and ~0 and ~1 permute 
(N4); below these facts may be used without notice. Cylindric frames are 
called 'cylindric atom structures' in parts of the literature on algebraic logic, 
cf. [Henkin et al. 1971, 1985]. 

The following proposition is immediate by the Sahlqvist form of Ct ,  . . . ,  
C6, and Theorems 3.3 and 3.4; the result is known from the literature on 
algebraic logic, cf. [Henkin et aL 1971, 1985, Section 2.7]. 

PROPOSITION 4.1. (i) 3 is a cylindric frame iff 3 + is a cylindric algebra. 
(ii) CA is a canonical variety. 

Besides the axioms C1 , . . . ,  C6 governing the variety of cylindric algebras, 
additional equations play an important r61e, especially Henkin's equation 3 

(7) co(x.  - y .  Cl(X. y)) <. Cl(-d01" cox). 

For example, it can be shown that adding z/(and the version of z/where co 
and cl are interchanged) to C1 , . . . ,  C6, one obtains a complete equational 
axiom system for the set of equations valid in the variety of representable 
cylindric algebras, cf. [Henkin et al. 1971,1985, Theorem 3.2.65]. (This is 
only true in the two-dimensionM case; in the higher dimensionM case the r61e 
of 7, though important, is not decisive; cf. Theorems 4 and 5.1 of [Nemeti 
1991].) One might wonder why the authors of [Henkin et al. 197t,1985] 
decided against giving ~ the status of a CA-axiom. One of the reasons may 
have been that z/is less transparent than the other seven. In the remainder 
of this section we will show that y has a simpler equivalent (over the variety 
CA), and that the equivalence is very easy to prove using the Sahlqvist form 
of the equations. 

So let us define the intended simplification of Henkin's equation: 

(7') d 0 1 - c o ( - X ,  c l x )  <~ C l ( - d o l  • cox). 

Clearly both z/and U' are Sahtqvist equations. Let us compute their first- 
order equivMents. 

3The earliest reference to this equation seems to be in L. Henkin, Cylindric algebras 
of dimension 2, Bull. Amer. Math. Soc. 63:26, 1957. A further reason to ascribe this 
equation to ttenldn can be found [Taxski 1986, Vol. 4, p. 65, footnote 27]. 
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DEFINITION 4.2. Let a, a t be the formulas 

( (u  ~o  v ~1 w t, v # w) -+ VuVvVw 
(~) 

3x(-~Dx A u "~1 x A (x "~o v V x ~o w)))  

(cd) VuVvVw ( ( D u h  u "~o v "1 w h v # w) --+ 3x(-~Dx A u"~l  x "~o w)) .  

The following pictures explain the meaning of a and a t for cylindric 
frames: 

1,# "x (¢ D) 

V" "U 0 

W" 
0 

"x (t~ D) 

1,# 

V o 
0 

/ " u E D  

Figure 2: a Figure 3: a t 

PROPOSITION 4.3. Let ~ be a frame of the appropriate similarity type. 
T h e n q ~ l = a  ~ ~'+ l= 7/ and ~ l= a r ~ ~+ I =~/ t  

PROOF. For ~, we will spell out the algorithm of Theorem 3.3 to find 
its first-order correspondent. First consider its modM variant 

(x) Oo(pA "~q A Ol(p A q))--+ ~'1('~dol A Oop). 

Let ¢ and ~b be respectively the antecedent ~0(P A ~q A Ol(p A q)) and the 
consequent O1(--dol A <~oP) of this formula. Clearly X is a Sahlqvist formula, 
as ¢ is a Sahlqvist antecedent and ¢ is positive. 

Now let ~ -- (~V, ~0, ~1, D) be a Kripke frame for the language, then 
; ~  xitr 

(s) ~ t = w v e v Q ( ~  ~ F'~(P, Q)). 

Now the formula x E F×(P, Q) is by definition equivalent to 

(9) x e F ¢ ( P , Q ) - +  x e F ¢ ( P , Q ) .  
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Step by step we will rewrite (9), abbreviating u E P by Pu. Starting with 
the antecedent of (9), we obtain 

3yl(x ,'oo Yl A Yl E FP^-'q^°I(P^~)(P, Q)) -+ x E F¢(P,  Q), 

or bet ter  

Vyl((X N0 Yl A Yl E FPA~q^<)I(PAq)(P,Q))--+ x E F¢(P,Q)), 
yielding the effect of (4). Then we get 

Vyl((X ~'~0 yl APyi  A-~QyI A Yl E F%(pAq)(P,Q)) -~ x E F¢(P ,Q) ) ,  

and (5) gives 

((X e'° 0 Yl A PYi A Yi E F~l(pAq)(P, Q)) --+ (x E F¢(P, Q) v Qyl)). Vyl 

Using (4), we obtain 

VylVy2 ((x No Yl A PYl A Yl "~1 Y2 A PY2 A Qy2) -+ 
(10) 

(x e F*(P, Q) v Qyl)). 

So we have ~r I= X iff the following formula holds in ~r: 

((x ~o Yl A Yl "°1 Y2 A PYl A PY2 A Qy2) -+ VxVPVQVyl Vy2 

(x E F¢(P, Q) v Qyl)) .  

Comparing this formula with (6), we observe that for both Yl and Y2 the 
sequence gR,~j ...gnh~ of (6) is empty, so the universal instantiation men- 
tioned just above (7) simply means replacing Pu by u E {Yl, Y2} (or better,  
by (u = Yt V u = Y2)), and Qu by (u = y2). 

So (10) is equivalent to the following instance of (7), viz. 

~X~yl~Y2((X ~0 Yl A Yi ~'01 Y2)"-+ (X E F¢({yl,Y2}, {Y2})V (Yl --- Y2))), 

which really means 

((x ~o Yl h Yl ~1 Y2) -+ VxVylVy2 

(Yl "~ Y2 V~ZI(X'°I Zl A-nDzIA~Z2(ZI'~oz2A(z2-----yl Vz2---- y2))))). 
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Transpor t ing  (Yl = Y2) back to the antecedent ,  and  af ter  some straightfor-  
ward  formula  manipula t ion ,  we finally obta in  

VxVylVy2 ((x  "~o Yl h Yl "~1 Y2 A Yl ~ Y2 ) -* 

~ZI(X r'~l Zl A - D z l  A (zl "~o Yl V Z 1 ~ 0  Y2))), 

which is what  we were after.  

We now arrive at  the main  result of this section, which s ta tes  t h a t  over 
the  var ie ty  of cylindric algebras the equat ions r! and  ~f are equivalent .  Note  
t h a t  this result  applies to cylindric algebras of a rb i t r a ry  dimension:  

PROPOSITION 4.4. Let92 be a cylindric algebra. Then91 ]= ~ ¢==~ 92 I= rf . 

PROOF. By the previous two proposit ions it is sufficient to show tha t  
for a cylindric f rame ~, ~: I= a -; ::- ~ ]= a ' .  

(¢=) Assume tha t  ~" ]= a ' .  To prove tha t  ~" ]= a ,  let u, v and  w be worlds in 
wi th  u ~o v "~1 w and v y~ w. We have to find an x wi th  x ~ D,  u " 1  x 

such tha t  x is in the O-equivalence class with v or wi th  w. Dist inguish the  

following cases: 

C a s e l :  u E D .  

Then  ~ I= a r immedia te ly  gives us the desired x, wi th  x ~o w. 

Case 2: u ¢ D .  
Then  u itself is the desired x, as u ~o v and u ~1 u. 

( 0 )  For the o ther  direction, we assume tha t  ~" I= a ,  we consider a rb i t r a ry  
u, v and w in ~ wi th  u E D,  u ~0 v "~1 w and v ~ w, and  set ourselves the  
task to find an x wi th  x ~ D and  u " 1  x N0 w, viz. F igure  3. 

Since ~ t= a ,  there  is a y ~ D with u "~1 y and  y "~0 v or y ~o w. 
Dist inguish 

Case 1: y "~o w. 
This  means  we are finished immediate ly:  take x = y. 

Case 2: y "~o v. 
Since ~ I= N4,  there is a z in ~" with y ~1 z "~o w, as in Figure 4: 
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0 
W • 

1,¢ 

V • / 

" z  W 

I1 

eU V o ~ - -  z o /  

Figure 4. Figure 5. 

Distinguish 

Case 2.1: z ¢ D. 
Again we are finished: take x = z. 

Case 2.2: z E D. 

This implies z = u because ~ 1= N6, so we have the situation depicted in 
Figure 5. We now have w "~0 z = u "~0 v ~0 Y, so y "~0 w after all, and we 
are back in case 1: take x = y. • 
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