

UvA-DARE (Digital Academic Repository)

Synthetic biology of cyanobacterial cell factories

Angermayr, S.A.

Publication date 2014

Link to publication

Citation for published version (APA):

Angermayr, S. A. (2014). *Synthetic biology of cyanobacterial cell factories*. [Thesis, fully internal, Universiteit van Amsterdam].

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:11 Feb 2023

Table of contents

1	General introduction
2	Engineering a cyanobacterial cell factory for production of lactic acid31
3	On the use of metabolic control analysis in the optimization of cyanobacterial biosolar
	cell factories
4	Exploring metabolic engineering design principles for the photosynthetic production of
	lactic acid by <i>Synechocystis</i> sp. PCC 6803
5	Carbon sink removal: Increased photosynthetic production of lactic acid by
	Synechocystis sp. PCC 6803 in a glycogen storage mutant
6	Chirality matters: Synthesis and consumption of the D-enantiomer of lactic acid with
	Synechocystis sp. PCC 6803
7	Intermezzo: The variety of excreted products and synthetic biology targets in the
	intracellular metabolism of metabolically engineered cyanobacteria101
8	Synthesis of 2,3-butanediol by <i>Synechocystis</i> sp. PCC 6803 via heterologous expression
	of a catabolic pathway from lactic acid- and enterobacteria
9	Microdroplet-based assay and sorting of lactate secreting cyanobacteria
10	Dynamics of the physiology, metabolome and proteome during the circadian cycle of
	Synechocystis sp. PCC 6803 under culturing conditions relevant for mass culturing 143
11	General discussion 163
Ref	Perences 177
Summary/Samenvatting 193	
Pub	plications 201
Acl	cnowledgements 203